

CANADA

Dopt. Mines \& Tachnical Surveys MINES BRANCH

THE MEASUREMENT OF-THE SURFACE AREA OF URANIUM DIOXIDE POWDER

PIETRO R. GORLA

MINERAL SCIENCES DIVISION
EPARTMENT OF MINES AND CHNICAL SURVEYS, OTTAWA

MINES BRANCH

RESEARCH REPORT
R 90

REPRODUCED FROM NUCLEAR SCIENCE \&
ENGINEERING VOLUME 11, P. $48-54,1961$

The Measurement of the Surface Area of Uranium Dioxide Powder*

P'ietio R. Gorla
Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada
Received January 50, 1961

Abstract

A comparative method has been developed for the determination of surface areas of UO_{2} powder. The methorl depends on the sorption of phosphate ions from a solution containing P-32 labeled $\mathrm{NaH}_{2} \mathrm{P}_{4}$ on the powder surface. By comparison with samples of known surface area, measurements have been obtained in the range $1.0-14 \mathrm{~meter}^{2} / \mathrm{gm}$. The internal consistency of the method is better than $\pm 2 \%$ and agreement withmeasurementsby the BET method averages around $\pm 5 \%$. The method is simple and fairly rapid, and can be adapted to irradiated material.

INTIODUCTION

The specifice surface area of UO_{2} powder is one of the fartors which rontrol the sintering properties of the powder in the fabrication of reactor fucl rods. In general, a high sinter density ran be achieved from powders having a large specific surface area (f). A minimmon of about $3+4$ meters/gm is required to approach the Hemretieal VOL density of 10.97 $\mathrm{gm} / \mathrm{ce}$ (2, 3) in any terhoologically arecptable sintering cyrle.

A mumber of mothorls can be used to measure the specifie surface area of powders (1). Among the most common methods in routine analyses are those depending on sorption onto the surface of the powder, or on air permeatility through the powder. The sorption ean le either from a gas or from a liguid. The gas methods are hased ou sorption of a gas, c. g., nitmgen, the inert gases, of hydrocarbons, at low temperatures. The hasie principle of all the gas adsorption methods is that proposed by Brmatuer et al. in 1938 (0). Although very reliable (6), and applicable to may types of poivder (in a rauge from $50 \mathrm{~cm}^{2} / \mathrm{gm}(7)$ up to a few thousands of scpuare meters per gram), the method is still relatively complex in spite of many recent improvements in techmigue.' For this reason it was felt

[^0]worthwhile to explore the possible use of liquid sorption methods for rapid relative determinations of surfare areas.

Surfare area determinations depending on sorption from a lipuid are generally based on sorption of fatly acids from organie solutions. Although as accurate as the gas sorption methods (9), they do not have the same range of applicability. Moreover, they repuire fatty acids and solvents of the highest. purity and, in ecrtain cases, vacuum apparatus to desorb any gas from both the solution and the powder (4). Both types of sorption methods give an absolute value of the surface area, but depend on an accurate knowledge of the space occupied by a single molecule of the adsorbed speries.
The gas permeability method, measuring the dynamies of a gas flow through a packed bed, gives ouly the surface arca of the npen pores. This means that for porous material having a large fraction of open, re-entrant pores the values of the specific surfare area measured with the gas permeability method are generally lower than the values obtained with the sorption method (7). The present rescarch resulted from an attempt to obtain a quick, simple method for measuring the specifie surface area of VO_{2} powder in the range used for fuel-rod fabrication. However, it may also be used to measure a wider range of areas. It does not require any pre-treatment of the sample. The method is not absolute and is based on a comparison between the sorptioni of an artive molecute-radioartive sodinm dihydrogen

Fig. 1. Typical adsorption curve
orthophosphate from an aqueous solution at room temperature on a reference sample and on the powder under examination.

THEORY ANI) PROCEDURE

Uranium dioxide has refractory properties and is attacked readily only by oxidizing agents. This implies that a medium-strength, nonoxidizing, nonreducing acid should adhere to the surface of UO_{2} without oxidizing or corroding it. A solution of sodium dihydrogen orthophosphate was found suitable for this purpose. A radioisotope of phosphorus, $\mathrm{P}-32$, is readily available in high specific activity, carrier-free solutions as $\mathrm{H}_{3} \mathrm{P}^{32} \mathrm{O}_{4}, \mathrm{P}-32$ is a pure beta emitter ($E_{\text {max }}=1.71 \mathrm{Mev}, T_{1 / 2}=14.3$ days $)$, easily measured by a standard Geiger counter. These properties make the use of $\mathrm{P}-32$ labeling very convenient as a means of measuring the phosphate concentration in a solution-one simply adds a known amount of the carrier-frec $\mathrm{H}_{3} \mathrm{P}^{32} \mathrm{O}_{4}$ to the phosphate solution and then counts for a known period of time with a Geiger counter. Any decrease in the phosphate concentration can be followed by a proportional decrease in the comnting rate. It has been observed that the reaction of phosphate ions, at room temperature, on UO_{2} powder is an irreversible reaction which, after an initial period of time, shows a very slight linear increase with time (Fig. 1). This increase is probably due to the building up of one or more layers of phosphate ions on the surface of the uranium oxide. It is evident that there is a threshold in the concentration of the solution, below which it would be impossible to eover the whole surface of a given amount of UO_{2}. A phosphate solution having a concentration somewhat above the threshold will show
a large change in the concentration following the sorption on UO_{2} powder. After a period of shaking sufficient for the reaction to reach the linear section of the curve (Fig. 1), the ratio of the change in P-32 concentration, due to a sample of unknown surface area, to the change in P-32 concentration with another sample of known surface area, is, within the accuracy of this method, equal to the ratio of the surface areas of the two powders.

EXPERIMENTAL PROCEDURE

One gram of UO_{2} powder, without any pre-treatment, was accurately weighed into each of four Lucite ${ }^{2}$ test tubes. Two of the samples were the unknown powder, and two were reference powder samples of known (BET) surface area. The phosphate solution was a $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution with an activity of about $2 \mu \mathrm{C} / \mathrm{ml}\left(\right.$ for $\left.\mathrm{H}_{3} \mathrm{P}^{32} \mathrm{O}_{4}\right)$. Fifteen milliliters of this solution were poured very carefully into each test tube. Each test tube was then reproducibly positioned in a paraffin block at a fixed distance beneath an end-window Geiger counter (Fig. 2) and counted for 2 min . Due to the careful addition of the liquid over the powder in the test tube the UO_{2} remained at the bottom and did not affect the counting rate. ${ }^{3}$ The first count was thus proportional to the
${ }^{2}$ In some preliminary experimental work, using glass test tubes, it was found that counting errors were introduced due to variations in the internal diameter of different test tubes. They were therefore replaced by Lucite test tubes which possessed a much more uniform cross section.
${ }^{3}$ Two centimeters of water are more than enough to stop all the beta and alpha particles from natural uranium. The Geiger counter, on the other hand, is relatively inefficient for detecting gamma radiations, which are usually low in intensity in purified UO_{2}.

Fig. 2. Counter assembly
concentration of the solution before sorption. (This procedure was found more convenient in practice than the reverse one of adding known amounts of powder to the liquid and it was verified experimentally that no appreciable error was introduced from instantaneous sorption effects.)

After counting, the test tubes were closed with a polyethylene-covered rubber stopper and agitated for half an hour. This time was more than enough to reach saturation adsorption of phosphate on the
uranium dioxide powder. Following shaking, the test tubes were centrifuged for 10 min to remove the UO_{2} powder from suspension. The liquid phase in the tubes was then counted again for 2 min . The second count was proportional to the phosphate concentration after sorption. The difference between the two count rates was then proportional to the amount of phosphate adhering to the surface of the powder. If $\Delta_{\mathrm{A} 1}$ and $\Delta_{\mathrm{A}^{2}}$ are the differences in count rate before and after shaking for two samples of the unknown
powder, and $\Delta_{B 1}$ and $\Delta_{B 2}$ are the corresponding differenes in comiting rate of two samples of the reference powder, one can write:

$$
\frac{\Delta_{\mathrm{A} 1}+\Delta_{\mathrm{A} 2}}{\Delta_{\mathrm{B} 1}+\Delta_{\mathrm{B} 2}}=\frac{A_{\text {teot }}}{A_{\text {ref }}} .
$$

ENPLRIMENTAL, HETVAIL

Counter Assbmbly

The paraffin holder for the test tube is placed under the Geiger counter in a brass box (30 cm high, 13 cm decp, 13 cm wide) that is completely open in front. The paraffin holder can slide ont of the brass box for the positioning and for the removal of each test tube. 'Three lead bricks shield the closed sides of the brass box. A black paper cover is put on the open side while the Geiger counter is operating to exelude daylight from the Geiger tube. In the interior of the paraffin container there is a movable platform, free to move up and down in a Ldeitelined shaft for a length of 2 cm (Fig. 2). The platform can be moved from outside the bums box by means of two nylou strings passing though the paraffin contanner and the brass box, guided by two glass tubes of very.small diameter. The function of the platform is to keep the position of the meniseus of the liquid inside the test tube always at the same distance (6 cm) from the (iciger comiter. The Iacite ring at the top of the paraffin container serves both as a holder of the test tube and as a referenee point. for the liquid meniserus.

Solutions

The phosphate solution for each experiment was. prepared by diluting ati appropriate amomit of a stock pliosphate solntion having a concentration $10^{-1} \mathrm{M}$ of $\mathrm{NaI}_{2} \mathrm{P}^{\prime} \mathrm{O}_{4}$. Table I indicates the optimum concentration of the phosphate solution for the experted surfare arous.

The pll of these solutions does not vary significantly with the roncentration of the phosphate, showing a value of 4 from concentrations of 2 M down to 0.03 d of $\mathrm{Nall}_{2} \mathrm{P}^{\prime} \mathrm{O}_{4}$. Comtosion of NO_{2} is not an important problem with this phosphate

TABISE I
Sutabif: l'ionsilate: Concentrations

Surface arca $\left(\right.$ meter$\left.^{2} / \mathrm{gm}\right)$	Concentralion $\left(10^{-2} \mathrm{l} /\right)$
20	5
15	$5-2.5$
10	2.5
5	$2.5-0.62$
0.5	$0.62-0.31$

TABILE II
Cumbarisun of Corrusion Iasies

'Type of solution	$\begin{gathered} 10^{-1} \mathrm{M} \\ \mathrm{NaH}_{2} \mathrm{PO}_{4} \end{gathered}$	$\left\lvert\, \begin{gathered} 8.43 \times 10^{-2} \mathrm{M} \\ \mathrm{H}_{3} \mathrm{I}^{2} \mathrm{O}_{4} \end{gathered}\right.$	Distilled water
Amotint of solurlion used (ml)	20	18	20
Amount of UO. powder used for the immersion (gin)	1.85	1.75	1.92
Time of immersion (hr)	18.5	10	10
$\mathrm{U})_{2}$ found in solution after filtration (gm) ${ }^{n}$	1.154×10^{-4}	6.06×10 ${ }^{-1}$	2.25×10^{-3}

* The analyses of the $U O_{2}$ content in the solutions were made by the fluorophotometric method (10).
solution. Table II compares the effects of corrosion observed by simply immersing the same UO_{2} powder ($7.71 \mathrm{~meter}^{2} / \mathrm{gm}$) in different solutions.

In the case of solid samples, which present a much lower surface area, the phosphoric arid solution did not corrode the sample appreciably. Only 1.1 in $\times 10^{-8} \mathrm{gm}$ of WO_{2} dissolved from a sintered UO_{2} pellet (density $10.53 \mathrm{gm} / \mathrm{cc}$; diameter 1 cm) which had one side immersed for 1.5 hr in 4 ml of 1.7 $\times 10^{-x} \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ (containing one drop of HCl , so that the pII was approximately 2). Morcover, an x-ray examination of the part of the sample exposed to the solution did not show the presence of a phosphate compound. Firom the experience with the UO2 pellets it was found to be easier and more accurate to measure the derrease in counting rate of the phosphate solution with a Geiger tube, rather than the increase in the activity of the UO_{2} sample with a scintillation counter.

The specifie artivity of the phosphate solution was chosen at the level of $2 \mu \mathrm{C} / \mathrm{ml}$, berause it is possible to achieve good counting statisties with only two minutes of comnting. However, some experiments were carried out at the level of 0.5 $\mu \mathrm{C} / \mathrm{ml}$, and at connting times of 10 min .

Detheton Chamactemeties

The Geiger counter used in this work was a selfquenching end-window counter of type TGC-2. Its deal time was determined by the method of two soures (11). The two sources were VO_{2} sintered pellets of about 10 gm each, with an activity of about 10^{2} cornts $/ \mathrm{min}$ cach. The dead time was found to be 150μ sec. No electronic quenching circuit was used with the Geiger counter. No corrections were applied to the counting results for the increase
in rombls due to seallering (12) of the beta radiation by the air molecules in the $\mathrm{f}_{\text {a }}$ an between the Geiger counter and the somere.

ENPERIMENTAL RENULSA

The cxperimental results are shown in Jig. 3. The ordinate represents the BEX' surfare arm, and the abseissa the phosphate sorption surface area meastrements. The straight line has a slope of 45 deg. It is evident that there is fairly good agreement between the two methods. Two types of powders are represented in the diagram: powders tested as recoived, and mixtures of them. Among the powders of the first type, the values obtained with the phosphate sorption method are in good
agrement with those obtained with the BET method, with the exeeption of one powder having the BEI' surfane area value of 1.97 meter $^{2} / \mathrm{gm}$. The phosphate sorption value for this powder is about 50% higher than the BETI value; however, it is obvious from Table III that there was a remarkably high internal consistency in measurements on this sample.

In the preparation of synthetie mixtures the method of blending was found to be critical. It has been found experimentally that it is very difficult to achieve good mixing of fine powders by a dry method, becaluse of the electrostatic charges on the surface of the powder which produce agglomerates of fine particles that do not mix evonly. One-gram

Fig. 3. Experimental results
samples taken from larger mixtures obtained by previous mixing of appropriate amomts of two powders showed bigger diserepancies from the BE'T' surface area values than did those samples in which the two powders were mercly combined in the same ratios up to. 1 gm inside the test tube. This effert was clcarly due to difficulties in obtaining truly representative samples for the former mixtures.
The internal consistency of the method is shown in Table III. It is seen to be better than $\pm 2 \%$ on the average. Table IV shows a comparison with the BET' values of the results obtained with the phosphate sorption method for various powders, both those tested as received, as well as for synthetic mixtures mixed inside the test tubes.

TABLE III
Internal Consistency of Ļesults

$\begin{aligned} & \text { Experimental } \\ & \text { results } \\ & \text { (meter } / \mathrm{gm} \text {) } \end{aligned}$	Average value	Percent error	Method of preparation ${ }^{\text {a }}$ \qquad
1.00	1.04	1.28	A
1.02			A
3.13	- .	2.2	A
2.82			A
2.63	2.94		A
2.97			A
3.15			A
2.75	2.60	1.08	A
2.54			A
2.80			A
4.50	4.40	1.23)	A
4.15			A
4.23			A
4.18			A
4.45			A
4.68			A
4.64			A
10.43	10.03	2.5	13
O.6H			13
14.35	14.13	1.05	A
$1+.12$			A
13.50			A
14.54			A
Mean per cent error ± 1.7			

" $\mathrm{A}=$ powders tested as received; $\mathbf{B}=$ powders mixed inside the test fulse.

$$
\text { Percent error }=\frac{\sqrt{\Sigma_{1}{ }^{n}\left(f-x_{i}\right)^{2} / n(n-1)}}{i} \times 100
$$

Where $\bar{x}=$ average value, and $n=$ number of runs per nowder anmple.

TAB1, IV
Comparison of the 'Two Methods

Number of the sample	Phosphate sorption surface area (average) (meter ${ }^{1} / \mathrm{gm}$)	Number of runs	Method of preparation ${ }^{\text {a }}$	13ET surface area (meter²/ gm)	Percent deviation
1	1.04	2	A	1.06	-1.88
2	2.94	5	A	1.97	+40.3
3	2,69	3	A	2.75	-2.18
4	4.40	7	A	4.60	-4.35
5	5.20	1	B	6.15	-14.5
6	0.28	1	B	0.50	-4.27
7	7.52	1	13	7.80	-4.33
8	10.03	2	B	9.50	+5.58
9	11.04	I	B	11.13	-0.81
10	13.78	1	B	11.95	+15.3
11	12.00	1	B	12.44	+4.50
12	14.13	4	A	14.40	-1.87

" $\mathrm{A}=$ powders tested as received; $\mathrm{B}=$ powders mixed inside the test tule.

discussion

The phosphate sorption method, based on the comparison between the sorption of an active phosphate ion on a refcrence sample of known surface area and on the powder under cxamination, does not require any pre-treatment of the powder itself. The internal consistency is fairly high, of the order of $\pm 2 \%$ as seen from Table III. The sampling is a crucial point. Due to the small amount of powder (1 gm) used, it must be free of large lumps which would introduce major crrors in surface determinations. From this point of view, representative sampling is of major importance and sampling errors form the biggest factor in the diserepancy between the two methods, which has a mean value of $\pm 5-6 \%$. It should be pointed ont that the BET values were always taken as referenee standards, which means that the accuracy given above is unt absolite, but relative to that of the BET method, which itself is sulbject to errors of the arder of $\pm 3-5 \%$.

Experiments were performed to see if it was possible to measure the surface area of sintered $\mathrm{U} \mathrm{O}_{2}$ pellets. The diffusion of the phosphate solution through the capillaries of the solid samples proved to be a very slow process compared with that of a gas, so that the surface area obtained was the geometrical area only. For that reason the phosphate sorption method appears to be less uscful when dealing with sirtered UO_{2} samples.

For rontine work the system could be calibrated with known samples and the use of reference samples
could be restricted to prriodie cherks to allow for the decay of the l-is2 artivity in the stock solution.

Acknowledoments

The aluthor wishees to express his appreciation to 1)r. G. (i. Eichholz for much guidance during this work, to Ire. H. I'. Dibles, J. D. Keys and C. M. Lapointe for many helpfil discussions, and to many other members of the Physies and Radiotracer Suldivision of the Mineral kciences Division, for advice and assistance. To Mr. W. J. Craigen of Eldorado Mining und Refining Ltd., IJr. J. R. Macliwan of Atomic IEnergy of Canada Itd., and Dr. A. H. Webster of the Mines Branch he is grateful for cooperation in supplying the uranium dioxide jowders of known BFT surface areas and sintered $\mathrm{UO} \mathrm{O}_{2}$ pellets. This work was done during tenure of a Post doctorate Fellowship of the Nat ional Research Council of Canadn, which is gratefully acknowledged.

REFERENCES

1. J. Belle and B. Lustman, Properties of UO2. Westinghouse IReport WAP')-184 (1957).
2. N. F. H. Bright, K. V. Gow, and A. T. Prince, Mines Branch Iesearch Report MI) 209, Dept. of Mines and Technical Surveys, Ottawn, Canada, (1958).
3. G. M. Betier, Jr. and H. H. Haumer, wigta Boek on Uranium lioxide." (iladding, Mclsean and Co., Los Angeles, California, 1960.
4. C. Orr, Jr. and J. M. Dallavalle, "Fine Particle Measurement (Size, Surface and [ore Volume)." Macmillan, New York, 1959.
5. S. Ibrunater, P. H. Emmett, and. E. Telder, J. Am. Chem. Sor. 60, 309 (1938).
6. T. Smith, Atomics International Report NAA-NIR 5319, 1960.
7. Symposium on Partirle Size Measurement, A.S.T.M. Special Technical Publication No. 234 (1958).
8. F. D. Leipziger, and L. A. Aldamabi, Nurlear Sci. and Eng. 8, 312 (1960).
9. C. Orr, H. G. Blocker, anis S. L. Craid, T'rans. Am. Inst. Mining, Met. Petrol. Engrs. 194, 0357 (1952); J. Metals 4, 657 (1952).
10. J. C. Inales, The determination of uranitum by the fluorophotometric method. Monograph No. 806, I ept. of Mines and Technical Surveys, Ottawa, Canada (1958).
11. E. Blevler and G. J. Goldsmith, "Experimental Nucleonies." IReinhart, New York, 1952.
12. 13. P. Buntr, Nurleonics 5, (2), 28 (1949).

[^0]: * Published with pernission of the lirector, Nines Branch, Department of Mines and Techmieal survers. Ottana, Camada.
 ' A gas sorption method has heen used recently to determine the spectifie surfare area of irradiated CO. powder (8).

