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INTERRELATIONSHIP OF DEFORMATION 

-- AND'IllACTURE'CONTOURS 

by 

L.P. Trudeau* 

ABSTRACT 

Analytical work on the aspects of the stress field 

that cause a slant fracture to start forming is described. 

The "build-up" distance for transverse stress and the orient-

ation of the stress field both point to the importance of 

the quantity (in- - 1)R for a circular contour. It is shown, 

further,that a unit zero isoclinic beginning from the location 

defined by this quantity is practically an osculating curve 

Of the unit circle. Using this interrelationship, it is 

demonstrated that fractures, in a number of sections from 

crack-notch toughness specimens, follow the elastic zeio 

isoclinic precisely even though considerable plastic flow 

Preceded the fracture. For cup-cone fractures in round 

tensile-test specimens, this same quantity appears to define the 

i nterrelationship between surface contour and the width of 

the cone. 

*Research Scientist, Engineering Physics Section, Physical 
Metallurgy Division, Mines Branch, Department of Energy, Mines 
& Resources, Ottawa, Canada. 
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RELATION ENTRE LA DÉFORMATION ET LES PROFILS DE FRACTURE 

par 

L. P. Trudeau* 

RÉSUMÉ 

L'auteur décrit les travaux analytiques effectués sur 

les aspects du champ de contrainte qui provoquent l'amorce d'une 

fracture inclinée. La distance de développement de la contrainte 

transversale et l'orientation du champ de contrainte mettent toutes 

deux en relief l'importance de la valeur  (Ir- 1)R pour un profil 
circulaire. L'auteur montre ultérieurement qu'un isocline zéro 

unitaire partant de l'endroit déterminé par cette valeur est pra-

tiquement une courbe osculatrice du cercle unitaire. A l'aide de 

cette relation, il montre que dans un certain nombre de coupes 

provenant d'éprouvettes servant aux essais de résistance à l'effet 

d'entaille, les fractures suivent très exactement l'isocline zéro 

élastique, même lorsqu'une déformation plastique considérable a 

précédé la fracture. Dans le cas des fractures en forme de cônes 

dans les éprouvettes cylindriques soumises à des essais de traction , 

 il semble que cette même valeur détermine la relation entre le 

profil de surface et la largeur du cône. 

3.0 *Agent scientifique de recherche, Section du génie physique, Divi0 11  
de la métallurgie physique, Direction des mines, ministère de 
l'Énergie, des Mines et des Ressources, Ottawa, Canada. 
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INTRODUCTION 

In a previous publication (1) , evidence was presented 

to show that "shear lips" formed in the process of tensile 

fracture are - actually zero isoclinic surfaces characterized 

by purely normal displacements and zero shear. Investigations 

on the aspects of the stress field that cause the slant fract-

ure to start forming are now reported. An interrelationship 

between the change in surface contour caused by plastic flow 

and the form of the fracture has been found. Fracture contours 

are shown that follow an elastic zero isoclinic precisely, even 

though several per cent of plastic flow preceded fracture. 

PLANAR THEORY 

Two aspects of stress fields were considered as possible 

influences on the form of a tensile fracture. One was the 

"build-up" distance of transverse or radial stress arising from 

a curved cavity or surface contour, and the second was the effect 

Of  such a contour on the orientation of the stress field. At 

the symmetry plane surface of a cavity in a plate under simple 

tension, the transverse stress will, of course, be  zero, but  it 

will increase to a maximum at some distance away from the cavity 

and this distance is referred to here as the "build-up" distance. 

The question of the "build-up" distance of transverse 

stress was approached through the use of an N.I. Muskhelishvili 

complex potential for the plane problem of an elliptical hole 
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in a plate under tension. The calculations involved are out-

lined in Appendix I. Figure 1 shows the coordinates used and 

the "build-up" distance for an ellipse of any eccentricity. 

For the limiting cases of a circle (m-- o) and a crack (m = 1), 

the expression derived yields results known to be correct. As 

will be shown subsequently, the case of a circular contour is 

of most immediate importance and the "build-up" distance from 

the surface is 
(
r- 1)R, or 0.414R. 

As further background for studies of the form of a 

tensile fracture, information was desired on the orientation 

of the stress field in the presence of a cavity or surface 

contour of finite radius. In a previous  report 	was shown 

that in the presence of a crack there are three zero iso-

clinics with one, of course, being the symmetry plane containing 

the crack. The other two isoclinics, which are symmetrically 

disposed with respect to the crack plane, begin at the crack 

tip at an angle of 60 degrees to the symmetry plane and grad-

ually bend over to a lower angle as the distance from the crack 

tip increases. If now one considers the case of a cavity with 

a finite radius of curvature, there will still be a zero iso-

clinic forming the primary symmetry plane. But the question 

arises as to whether the two other zero isoclinics will be 

coincident with the symmetry plane for some distance away from 

the surface of the cavity or whether they immediately diverge 

as in the case of a crack. If they are coincident, over what 

distance does this coincidence persist? 
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X=R(p-4-115 ) cos e 

Y= R ( p— ri) sin e 

Semi— axes of elliptic hole  0= R (I+ m) , b= R —m 

Build up" distance for ex  stress with e = o is; 

2 p 2  ( — 2m
3  -km

a
-3)= (m

a
— 2m —3)(p

4
+M

2
) 

For a circle 	m=O and 
X p 

Figure 1. Coordinate system and equation for "build-up" 
distance of transverse stress. 



-4- 

These questions can be resolved most expeditiously if 

one has a solution for the rectangular coordinate XY shear stress. 

An A.C. Stevenson complex potential was considered to be most 

convenient for this purpose. In Appendix II the shear 

stress and zero isoclinics are given for a circular hole in 

a plate under simple tension. It turns out that the auxiliary 

zero isoclinics are coincident with the symmetry plane for a 

distance away from the surface of the hole of 0.414R. 

This distance of 0.414R is the same as the "build-up" 

distance determined 

for the examples to 

not without further 

in stress corrosion 

above. This quantity is the relevant one 

be discussed, but the isoclinic result is 

significance for fracture. For instance, 

tests with cracked specimens the fracture 

same material 

This behaviour is rationalized 

a higher 

often follows an inclined isoclinic, whereas the 

will break flat when tested dry. 

on the basis that the inclined isoclinic carries 

normal stress but a lower hydrostatic tension than the symmetry 

plane. The present result indicates that if the defect has a 

finite root radius, the fracture will tend to start flat because 

all three isoclinics are coincident. 

The next aspect investigated was the possible inter-

relationship between a circular contour causing a certain 

"build-up" distance and an isoclinic originating from that 

point. Figure 2 shows the result. 
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Figure 2. A unit circle has a "build-up" distance such 
that a unit isoclinic originating from that 
point is almost exactly an osculating curve 
of the circle. 
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It is found that a unit circle  bas a "build-up" 

distance such that a unit isoclinic originating at that point 

is practically an osculating curve of the circle. When a 

search was made for the physical significance of this inter-

relationship', the results shown in Figures3, 4 and 5 were ob-

tained. The fracture contours in sections from plate-type, 

crack-notch toughness specimens follow the elastic zero iso-

clinic precisely, even though considerable plastic flow pre-

ceded fracture. This leads to the expectation that surface 

dimpling from plastic flow preceding fracture should have a 

circular contour. Initial measurements support  this,  and  further 

measurements are planned. 
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Figure 3. Section of fracture in *-inch-thick 250- 
grade maraging steel specimen near start of 
fracture. 
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Figure 4. Section of fracture from same specimen as 

in Figure 3, but farther away from start 
of fracture. 
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z  

Figure 5. Section of fracture in i-inch-thick 
HP 9-4-25 steel specimen. 
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EMBEDDED CIRCULAR CRACKS 

I.N. Sneddon (2) has given a 3-dimensional elastic 

solution for an embedded circular crack. The form of the 

solution for the shear stress is such that a simple analytic 

expression for the zero isoclinic is not readily derivable. The 

table of shear stress values given by Sneddon is not on a suffi-

ciently fine grid and does not extend far enough away from the 

crack tip for present purposes. 

Detailed values of the zero isoclinic  contour,  obtained 

by computation from Sneddon's equations, are given in Table 1. A 

graph of this 3-dimensional isoclinic is given in Figure 6,along 

with the planar one for comparison. They are quite similar but 

the 3-dimensional one falls a bit below the planar isoclinic away 

from the crack tip region. The 3-dimensional zero isoclinic is 

also independent of the elastic constants, such as Poisson's ratio 

and Young's modulus, in an isotropic material. 

The cup in a cup-cone fracture of a round tensile-test 

bar is often a reasonable approximation of the embeddecUcilar 

crack considered in the analysis. Figure 7 shows a tensile-test-

bar fracture and there is some deviation of the fracture contour 

from the isoclinic. However, this material was sufficiently ani- 

sotropic to develop a noticeable ovality in the neck, so a more 

isotropic specimen might show closer agreement. 

As a matter of trial, it is shown in Figure 7 that the 

radius defined by taking the "shPar lip" width as 0.414R agrees 

well with the surface contour. Two additional examples of good 

agreement are given in Figure 8 for copper specimens partially 

broken in a stiff testing machine (3) 
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TABLE 1 

Coordinates of 3-Dimensional Zero Isoclipiç  

ei is p 1 in Sneddon's notation andI is C - a ) 

Y 

1.0001 

1.001 

1.010 

1.030 

1.040 

1.10 

1.20 

1.40 

1.60 

1.80 

2.00 

2.20 

2.40 

2.60 

2.80 

3.00 

3.20 

3.40 

3.60 

3.80 

4.00 

0.00017315 

0.0017263 

0.016781 

0.047649 

0.062009 

0.13800 

0.24195 

0.41074 

0.55495 

0.68653 

0.81047 

0.92935 

1.04468 

1.15740 

1.26815 

1.37735 

1.48533 

1.59232 

1.69849 

1.80398 

1.90891 
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xla 

Figure 6. The 3-dimensional zero isoclinic is the 
solid line,while the planar one is shown 
dashed. 
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Figure 7. Cup-cone fracture of 0.505-inch tensile- 
test bar of 200-grade maraging steel. Planar 
isoclinic is shown dashed and 3-dimensional 
one is dot-dashed. The radius defined by 
taking the "shear lip" width as 0.414R 
agrees well with the surface contour. 

■ 
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Figure 8. Surface contour agrees with radius defined by 
taking "shear lip" width as 0.414R. Specimens were 
traced from Figures 38 and 42 of copper bars 
in reference 3. 
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CONCLUSIONS 

These results strongly reinforce the suggestion 

that a "shear lip" is actually a zero isoclinic contour and 

indicate that some aspects of fracture are calculable on the 

basis of an interrelationship between zero isoclinics and 

circles. 
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APPENDIX I  - Calculation of "Build-up" Distance  
of Transverse Stress 

The coordinate system has been given in Figure 1. For 

an elliptical hole in a plate, with the edge of the hole free 

from external stress, and the applied stress a tension at infinity 

of magnitude p in a direction at an angle a with the x axis, 

Muskhelishvili (4 ' p ' 338) 
gives the potentials: 

0(C) = 141- (t +  2e2-  m) 

0(c) 	PR f -211 	e2ia 
le 	C 	

_ (l+m2 ) (eaia -  m)e__ 	 
in 	 t

2 	in) 

From p. 333, 

z = w (t) = R (C +) and C = pei8  

From pp. 182-3, 

aia
• 

	

cp(C) = e ( C) 	P C2 -2e 	m  

	

W' (C) 	4 	C2 - rn  

' (C) à
Ur-nr 

e -  i Pa = 1> (c) + cp(c) 	C2   	lb (C) 0' (C) + 	(C)  4 (C)1 
re to (C) 

Thus the pp stress that is desired is the real part of this 

expression. Performing the required operations,one obtains: 
t 

érby (C) 	e P (.te2i«  -  
(C2  - M) 2  

UTTe5 	(c) = Rp C (t2 	m) (e2ia _ m)  

(t2  - m)-2  

(t) ̀ Pe) = 	(C) = _ g211 te-2ia _ e2ia _ a+m2\ feaut _ m ,,m  

(1)  

(2) 

(3) 
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Substituting (1), (2) and (3) in the expression for the stresses, 

one obtains, after some reduction: 

'37) - ip0 _ p p4 - 2p2  cos 2 (0 - a) - m2  1- 2 m cos 2a 
cos 

2 2 1 e 	ia _ m)(154 e -4i8 2 
- m 8 ) 

(p4  - 2mp2 cos 26 4. in2)2 

p p2•2lŒ (pe210 -  m)  + 	p4  - 2mge cos 28 + m2  

p e 	 2 ie 2 (a-0) (pa e 	_ 
2m p4 - 2mp2  cos 26 + M2  

ia 
P  (1 +1112 (e 2 	_ no 02 [( p2 e 2 ie_ m)  _2j,2 e2 ie] p2 e ie_ m)  

m(4_2mpd  cos 26 + ma) 2  

Taking the real part of this expression with a = 7  and e = o 
we obtained the stress: 

e P p4  + 2 p2  —m2 —  2m 2. 
(pe -m) 2  

P P2 (1 + m)(p2  + m)  
(P —m) 3  

pp2 	P  r 
 

p2 -m 	2m(p' -m) 

ILL. ( 1  + m2  ) ( 1  + m) (Pd  + m) 
2m 	 (P2  -m)  

As a check on the correctness of this result, the a) stress 

should be zero at the surface of the hole where p= 1, and this 

is the case. 
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To obtain the "build-up" distance we need the location 

where the ei5 stress is a maximum. Taking the derivative of 

the 	stress and equating it to o, one finds, after some 

reduction,that the "build-up" distance along the x-axis is 

defined by: 

2p2 (-2m2 i-m2 -3) = (m2 -2m-3) (p4+m2 ) 

As a partial check, the limiting conditions are given correctly 

by this equation, because for a circle m = o and p =± 12, and for 

a crack m = 1 and p = ± 1. 

This general equation may prove helpful in fractographic 

and other studies. Part of the "stretch zone" observed in 

fractography may be a "shear lip". 
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APPENDIX  II - Calculation of Orientation of Stress Field 
with dircular Bole  

Stevenson (5)  gives the following potentials for an 

elliptical hole in a plate under a simple tension T at infinity 

at an angle.8 to the x-axis: 

218 
u(a) = Tc [a + 

(2e 	
-X)] 

a 

w(a) = -TC[e-2i8 a2  + e2i8 a-2 4. 2(1-2X cos 28 + X 2 ) log a] 

where Z C(a + X ), 2C = a + b and 2XC = a-b 

For a circle X = o and with 8 - br, these potentials reduce to: 

fi(a) - TC [a - .g„-] 

w(a) 	TC2  [a2 + 	- 2 log a] 

Stevenson gives the stress relation: 

-2(xx - yy + 21XY) 	Z 1.2" (Z) +  w " (Z-) 

Differentiating: 

irt(Z) = 	4T 
b-573 

w" (Z) = T [2 + 2 + 6 
-ori2  U 

if) 
With Z = r e 1.0 - co., then a - r .ec 

Substituting: 

Z 	(Z) 	- 4TC2  e 46  

ei2O + 6 C4 ei"  Fe (Z- ) 	T [2 + 2 c2  F4  r2 
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Thus el-f3T+2iTir = 2T c2  ei4e  - T [1-1-c 2  e20 	3c
4 e148 

r2 	 Fe' 

As a check on the correctness, consider first the real part 

of this equation: 

51-yy - 2T c 2  cos 48-T-T c 2  cos 28- 3T C4 cos  49 

On the edge of the hole for r = c and 8 = o, the transverse 

stress 	will be zero. 

Substituting, 

-YY = 2T-T-T-3T, 

e - 3T, 
which is the correct stress concentration factor for a hole. 

The XY shear stress is i the imaginary part, 

rcY = T  e2  (2r2  sin 40-3e2  sin48-r2  sin 28) 
n-  r4 

For the zero isoclinic the xy shear stress is zero. 

Therefore: 

2r2  sin 48-r2  sin28 = 3e2  sin 40 

r 2 	3c2 sin 48  
2 sin 48 - sin 28 

For 8 small, sin 8 - 8 

r = c 	= 1/2 c 
-11T 

All three zero isoclinics are coincident over the sanie  

distance as the "build-up" distance for the SiX stress. 
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