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Mines Branch Research Report R 229 

ANALYSIS OF ROCK SLOPES, 
USING THE FINITE ELEMENT METHOD 

by 

Y. S. Yu* and D. F. Coates** 

SUMMARY 

Studies have been conducted on the deformation and stress patterns 
around typical rock slopes, taking into account slope angle, slope shape, 
gravity and/or tectonic stress field, by using the finite element method. 
These two-dimensional studies have been supplemented by three-dimensional 
axisymmetric investigations. 

Initial studies verified the compatibility of the finite element 
technique with results obtained from photoelastic experiments. A total of 
45 loading conditions were examined. Comparison of results between the two- 
dimensional plane strain and the three-dimensional axisymmetric case indicates 
that the two solutions produced almost the same results in a gravity stress 
field. However, the results differ increasingly with an increase in the 
residual horizontal stresses; e.g., the tangential stresses near the toe in 
plane strain could be 56 and 100 per cent higher as compared with that of 
axisymmetric geometry and loading for K=1 and 3 respectively. 

For both solutions of plane strain and axisymmetric geometry, the 
excavation displacements at the crest are approximately proportional to the 
factor K as well as to the slope angle. Also, the largest principal stress 
induced near the toe is proportional to the factor K but not to the slope 
angle where it exceeds 60 0 ; in other words, the rate of increase of stress 
near the toe decreases when the slope angle is increased from 600  to 900 . 

Tensions seem to occur along the slope face under some loading 
conditions and definitely do occur in axisymmetric models when loaded with a 
high uniaxial horizontal stress. 

Analyses based on Mohr's strength theory indicate that if failure 
occurred, it would be initiated at some distance behind the toe, although this 
depends on loading conditions. 

* Research Scientist, ** Head, Mining Research Centre, Mines Branch, 
Department of Energy, Mines and Resources, Ottawa, Canada. 
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ÉTUDE ANALYTIQUE DES 'TALUS ROCHEUX 
PAR LA MÉTHODE DES ÉLÉMENTS FINIS 

par 

Y.S. Yu* et D.F. Coates** 

RgsumÉ 

Les auteurs ont étudié les configurations de déformations et de 
contraintes autour de talus rocheux type, en faisant intervenir l'angle de 
pente, la forme du talus, la gravité et (ou) le champ de contraintes tecto-
niques, par la méthode des éléments finis. A ces études en deux dimensions 
sont venues s'ajouter des recherches sur des systèmes tridimensionnels 
possédant un axe de symétrie. 

Les premières études ont confirmé la compatibilité de la technique 
des éléments finis avec les résultats des expériences de photo-élasticimétrie. 
Les auteurs ont étudié, •au total, 45 conditions de charge. La comparaison des 
résultats obtenus dans le cas d'une répartition plane des tensions sur 
modèle h deux dimensions et dans le cas d'un modèle tridimensionnel possédant 
un axe de sËuétrie, montre que les deux approches ont apporté des résultats 
presque identiques dans le cas d'un champ de contraintes gravitationnelles, 
Cependant, les résultats diffèrent d'autant plus que les contraintes rési-
duelles horizontales sont,plus importantes; par exemple, les contraintes 
tangentielles h proximité du pied du talus, dans le cas d'une répartition 
plane des tensions, pouvaient être supérieures de 56 et de 100 pour cent à 
celles correspondant h une géométrie et h une charge présentant un axe de 
symétrie, pour K=1 et K=3 respectivement. 

pans les deux cas de répartition plane des tensions et de géométrie 
 présentant'un axe de symétrie, les déplacements h la crête du talus et dus à 

l'excavation sont approximativement proportionnels au facteur K et kt l'angle 
de pente. Egalement, la plus grande contrainte principale induite près du 
pied du talus est proportionnelle au facteur K, mais non h l'angle de pente 
si celui-ci dépasse 600 ; autrement dit, le taux d'accroissement de la 
contrainte près du pied du talus diminue lorsque l'angle de pente augmente 
de 600 	90°. 

Il semble que des tensions existent le long de la face du talus 
sous certaines conditions de charge et ces tensions existent certainement 
dans les modèles possédant une axe de symétrie, s'ils sont soumis h de fortes 
contraintes horizontales et parallèles. 

* Chercheur scientifique, ** Chef du Centre de recherche sur les techniques 
minières, Direction des mines, ministère de l'Énergie, des Mines et des 
Ressources, Ottawa, Canada. 
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Des analyses basées sur la théorie des contraintes de Mohr montrent 
que, si une fracture se produisait, elle prendrait naissance b une certaine 
distance derrière le pied du talus, encore que ceci dépende des conditions 
de charge. 
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1. INTRODUCTION  

A vigorous effort is presently under way around the world to place 
the design of rock slopes on a rational basis. Therefore, a knowledge of stress 
distributions in and under slopes is a fundamental requirement for any mech-
anistic understanding of rock slope behaviour. An accurate evaluation of stresses 
and displacements around  •excavations in rock is a difficult task, particularly 
for the geometries of rock slopes, if the rock mass in which the slope is to 
be cut is not homogeneous, isotropic, and elastic. 

Rock slope research arises primarily in Canada from the need for more 
information on the stability of the walls in large open-pit mines. During the 
last decade the mineral production from open-pit mines in Canada has signifi-
cantly increased, so that now this method accounts for approximately 607. of the 
total ore mined. In turn, this had led to a great increase in the volume of 
waste excavations. At present, the selection of pit sloPe- angles is, however, 
still largely a matter of experience and engineering judgement. Thus, much 
thought is being given to the considerable economic benefit which would result 
if pit slope angles could be made steeper by even beo or three degrees. Alter-
natively, the same economic benefit might be also achieved by changing the 
slope so that the volume of waste excavation would be reduced, i.e., using 
possibly a convex, parabolic outline of slope instead of a constant slope. 

It is generally recognized that slope stability depends, primarily, 
on how the rock behaves under a stress sytem caused by the excavations. In 
general, the design of an open-pit mine should be such that the slopes are steep 
enough to result in economical mining and flat enough to ensure safety of the 
miners and of the equipment in the pit. Research work is still required to pro-
vide the necessary scientific information and to show its method of application 
to the design of optimum pit slopes. 

In view of the importance of this matter to the Canadian mining 
industry, the Mining Research Centre of the Mines Branch has been conducting 
research to gain some knowledge and a better understanding of the factors 
governing the stability of pit slopeg. It started with an attempt to solve the 
differential equations applicable to the slope geometry in plane strain condi-
tions. However, it soon became apparent that, even with recent developments 
in modern  mathematics, no simple solution of this problem would be obtained. 
Alternate techniques were examined. On the one hand, it was decided to initiate 
some experimental work on deformable models, to obtain experimentally some 
useful data. On the other hand, numerical approximation techniques were 
examined, one of which, the finite element method, looked very promising. 

The finite element technique was developed for the design of irregular 
structures in both aeronautical and civil engineering (1, 2). It seems to be 
an extremely precise and flexible tool for problems in complex-shaped continua. 
With this method, the inclusion of anisotropic properties does not unduly 
complicate the problem. In addition, arbitrary loading functions can be readily 
analysed. Initial studies have verified the compatibility of the numerical 
simulation technique with results obtained from photoelastic experiments (3). 
An extensive study regarding the deformation and stress patterns has been 
conducted taking into account slope angles (30 0 , 45° , 60 ° , and 900 ), slope 
shape, and tectonic stress fields. These two-dimensional studies have been 
supplemented by a three-dimensional investigation of slopes with slope angles 
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of 30 0 , 60 0 , and 90 0 , under gravitational and tectonic stresses. 

2. STRESS ANALYSIS TECHNIQUES FOR EXCAVATED ROCK SLOPES 

Although many elastic prototypes can be used to provide useful infor-
mation for structures with geometries and loadings that can be approximated by 
these solutions, there are many practical cases of irregular geometries, non-
uniform material and non-uniform loadings, such as rock slopes, that cannot be 
solved by the theory of elasticity. 

In the past decade, stress investigations of rock slopes have 
largely been performed by experimental techniques such as photoelastic and 
geomechanical modelling. With these laboratory techniques the making of 
satisfactory models for effective simulation takes up much time and normally 
can be performed only by specially trained and highly skilled personnel. With 
the photoelastic method, for example, possible error could arise from inaccurate 
loading, conversion of isochromatic fringes to principal stresses, temperature 
sensitivity, inelastic behaviour of the model material, non-simulation of 
Poisson's ratio, and body weight. Similarly, with geomechanical models, major 
problems are associated with obtaining accurate model materials and simulating 
actual loading. As a result, there has been continual need for more flexible 
and precise tools. 

With the advent of the high-speed digital computers and of complex-
shaped aerospace structures, the finite element method was devised to handle 
the cases that could not be solved in the classical manner (4, 5). 

2.1  The Finite Element Method  

The basic concept of the finite element method is the idealization 
of the actual continuum as an assemblage of a finite number of discrete 
structural elements, interconnected at a finite number of nodes at which some 
fictitious forces, representative of the distributed stresses acting on the 
element boundary, are introduced. 

The finite elements are formed by figuratively cutting the original 
continuum into a number of appropriately shaped pieces, each element retaining 
properties of the original material. In the analysis,these assumed structural 
elements are equivalent to the components of an ordinary framed structure. 
Thus, the analytic process consists merely of the normal operations of satis-
fying compatibility and equilibrium conditions at nodal points, using any 
standard structural analysis procedure. In practice, the displacement formu-
lation has been found most convenient and is generally used. 

Several types of elements may be used in the representation of a 
structure. In the plane stress or plane strain analysis, either triangular 
or quadrilateral elements can be used. In the finite element approximation of 
axisymmetric solids, the continuous structure is replaced by a system of axi-
symmetric elements which are interconnected at circumferential nodes or nodal 
circles. Mathematically, it is two-dimensional in nature, but the triangular 
or quadrilateral element of plane stress or strain analysis becomes the cross 
section of these ring elements. 
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An example of a 60 0  slope mesh is illustrated in Figure 1(b). The 
coordinate system is labeled r, z, and t, as shown in Figure 1(a), so that 
the same subscripts can be used for both plane strain and axisymmetric 
analysis. Figure 1(b) represents schematically the finite element model that 
was used to determine the stress and displacement around the 60°  slope. 

The slope, as shown in Figure 1(b), is divided into a finite number 
of elements connected at their nodal points. Either quadrilateral or triangular 
elements can be used. However, the quadrilateral elements, if used, were sub-
divided automatically into four triangles within the computer program. On the 
basis of an assumed variation of displacements within an element (e.g. linear), 
together with stress-strain characteristic of this element material, the 
stiffness ôf each nodal point of each element is computed. For each nodal 
point in the system, two equilibrium equations may be written expressing the 
nodal points force in terms of the nodal-point displacement and stiffness. 
These equations are then solved for the unknown displacements. With the dis-
placements of all nodal points known, strains and stresses within each element 
are then computed. The basis and derivation of the mathematical formulation 
have been described in great detail (4, 5, 6). 



(1)) (a) 

Figure  1. The geometry of the sloiDe studies: 	(a) definition of axes, (b) finite element model. 



5 

2.2 Initial State of Stress  

The state of stress in the undisturbed rock consists of the vertical 
initial stress Sv  and the horizontal initial stress Sx . Vertical stress 
existing in the medium in the undisturbed«state is due to gravity and, in a 
uniform medium, will vary linearly with depth. The horizontal component of 
stress is due partly to gravity and Poisson's effect, but can be due to the 
residual stress arising from the geological history of the medium. No matter 
what its cause, the horizontal component is always expressed as the vertical 
stress times a factor, i.e., Sx  =  KS.  

2.2.1 Constrained Lateral Stress: 

The concept of constrained lateral stress has enjoyed considerable 
popularity. If, during the loading history of the rock, the lateral displace-
ment is rigidly constrained, then the horizontal stress will be a fraction of 
the vertical stress as shown in Figure 2 (a). 

2.2.2 Constant Lateral Pressure: 

Another type of tectonic stress which might be considered is a 
constant horizontal stress. This would be applicable when the tectonic stress, 
St, is several times the overburden stress, a case that has been verified by 
measurements in several instances (7). The initial stress state has the form 
as shown in Figure 2(a). 

2.3 Excavation Displacement by the Finite Element Technique  

Excavation displacement is defined as the movement of the rock mass 
induced by excavation. It is an important aspect in examining the ground 
reaction to the removal of pit material. In order to determine the excavation 
displacement, the initial state of the displacement, i.e. the elastic displace-
ment of the model without excavation, must . be  known. This can be easily 
accomplished by the following approach: The mathematical model is first loaded 
with its field stress (gravity and/or tectonic stress) without the excavation; 
the tectonic stress, if any, is assumed uniformly distributed across the depth; 
the resulting displacements are then used as the initial conditions for the 
model with the desired excavations. Then the excavation displacements can 
be obtained by subtracting the initial displacements at each node from the 
final displacements of model with the excavations, as shown in Figure 2(b). 

The second approach is to apply changes in stress, AS, to the 
excavation boundary as illustrated in Figure 2(c). Application of changes in 
stress (AS) which are equal to the initial stresses (So) but opposite in sign, 
results in a stress-free condition along the excavated boundary. The applied 
change in stress is resisted by the remaining rock, and induced displacements, 
strain, and stress changes in the rock may be calculated by the finite element 
analysis. The state of stress subsequent to excavation is determined by adding 
the stress changes at any location to the initial stress values for that 
location. It should be mentioned that the initial horizontal and vertical 
stresses Sh  and Sv  are not calculated by the conventional formulae (Sv  = -yh, 
and Sh = KSv ), because the topography may be irregular and the material hetero-
geneously distributed. Instead, it is generated by the finite element method, 
using the model without excavations and taking account of the inhomogeneous 
materials. Comparison of these two approaches for homogeneous, regular models 
yields the same result. 
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2.4 Finite Element Computer Programs  

Two computer programs have been used for this analytical work. 
The original finite element programs, developed by Wilson (4) and Dunham and 
Nickell (5), have since been modified for.simulating excavation sequence to 
obtain excavation displacements. The results obtained from the two individual 
programs have been checked, each against the other (10). 

Supplementary computer programs have been developed to interpret the 
massive output of the finite element analysis. With the use of a computerized 
plotter, the results can be displayed in several different ways. These include 
principal stress plots (direction, magnitude, and their numerical values) and 
displacement plots (direction and magnitude). 



8 

3. RESULTS OF ANALYSIS OF ROCK SLOPES  

In this section, the analytical results for elastic analysis of rock 
slopes are given. In these analyses, the influence of initial stress con-
ditions, the influence of slope angles, the influence of slope geometries, and 
the influence of three-dimensional effects on the stress distributions are all 
evaluated. 

The stress distributions within several slope models for a variety 
of loading conditions, in either two-dimensional or three-dimensional axi-
symmetry, were determined using the finite element technique. A summary of 
loading conditions is included in Table 1. 

3.1 Comparison between Finite Element Method and Photoelasticity  

The photoelastic procedure using a highly deformable material has 
been previously dexcribed (8). The photoelastic models were made from Mirelite 
with a fringe value of 0.312 psi. Figure 3 shows the photoelastic model with 
the testing frame. The geometry was 25.75 in. x 11.50 in. x 2.00 in. It 
contained an opening to simulate an open-pit mine with a slope angle of 60 ° . 
The bottom width of this opening was 2.25 in. and the slope height was 4.25 in. 

A finite element model was also constructed. The slope was also 
cut at 60 0 , and approximately the same ratio of slope height to the bottom 
width was maintained. But the overall dimensions of the mathematical model 
were much larger than those of the photoelastic one. It was judged that the 
mathematical-model dimensions should be at least four times the size of 
opening so that the end effect would be minimized. Because of symmetry, only 
half of the pit was considered. The physical properties of the model were 
more or less arbitrarily assumed;  te  elastic modulus E ed the dennty y were 
taken as 7.03 x 10 5  kg/cm2  (10 x 10 °  psi) and 2.7 gm/cm (168 lb/ft'), 
respectively. Poisson's ratio of 0.47 was used to simulate the photoelastic 
model. 

The results determined from the finite element method and the 
photoelastic model, both being subjected to a gravity loading only, are shown 
in Figures 4a and 4b. 

Figure 4a shows the variations of vertical stress with depth along 
a vertical section away from the cut. For both methods, the stresses seem 
to be in very good agreement with the calculated values. For the finite 
element solution, relatively larger errors were introduced at the boundaries. 
The vertical stresses at bottom boundary are approximately 7 7. and 67.  lower than 
the calculated values respectively for the solutions by the finite element 
and by photoelasticity, which are probably less than the degrees of accuracy 
of the models. 



TABLE 1. Summary of Loading Conditions for Slope Model Study  

Geometry and  Loading  

CASE 	Slope 	 Two-dimensional 	 Three-dimensional 
Configuration 

Plane Strain* 	 Axisymmetric Loading 	Non-axisymmetric Loading 

	

1 	 K = 1/3, gravity only 

	

2 	 60° 	 K = 1, Pr  = 81 

	

3 	 K = 3, Pr  = 243 

	

4 	 K = 1/3, gravity only 

	

5 	45° 	 K = 1, Pr  = 81 

	

6 	 K = 3 3 Pr = 243 

	

7 	' 	 K = 1/3, gravity only 

	

8 	30° 	 K = 1, Pr  = 81 

	

9 	 K = 3, Pr  . 243 

	

10 	 K = 1/3, grayity only 

	

11 	 90° 	 K = 1, Pr  = 81 

	

12 	 K = 3, Pr  = 243 

	

13 	 K = 1/3, gravity only 

	

14 	. m 	No. 1 	K = 1, Pr  = 81 
o 

	

15 	a 	 K = 3, Pr  = 243 o ,--I 

	

16 	m 	 K = 1/3, gravity only 

	

17 	-a 	No. 2 	K = 1, Pr  = 81 
o 

	

18 	a 	 K = 3, Pr  = 243 
a 	  

	

19 	,e m 	 K = 1/3, gravity only 1 

	

20 	a 	No. 3 	K = 1, Pr  = 81 ,-1 

	

21 	o 	 K = 3, Pr  = 243 
4:1 a 

22 14  
a 	 K = 1/3, gravity only 
a.. 

	

23 	 No. 4 	K = 1, Pr  = 81 

	

24 	 K = 3, Pr  = 243 	 . 

* Stress units are : kg/cm
2

. Continued - 



Table 1 - Cont'd. 
- 

Geometry and Loading 

CASE 	Slope 	 Two-dimensional 	 Three-dimensional ._ 
Configuration 

Plane Strain 	 Axisymmetric Loading 	Non-axisymmetric Loading 

	

....__ 	 

25 	 No. 5 	K = 1/3, gravity only 
26 	1 	No. 5 	K = 1, Pr  = 81 

cd  27 	 K = 3, 	Pr  = 243 	 .1 ,--1-c, 	m 

28 	'cnd i"' ô 	 K = 1/3, gravity only 
29 "Fe c",-; 	No. 	6 	K = 1, 	Pr  = 81 
30 	r:14 	 K = 3, 	Pr  = 243 

31 	 K = 1/3, gravity only 
32 	

30o 	 K = 1, P 	= P, = 81 
ID. 	t.  = 	P.' 	= 243 

34 	 . 	 K = 1/3, gravity only 
35 	 K = 1, P 	= P, = 81 
36 	 K = 3, 	l' 	= P‘t-  = 243 

— 	  
37 	 K = 1/3, F 	= 27,  pt  = 0 r 
38 	60° 	 K = 1/3, 	Pr 	0, 	Pt  7-7 27 
39 	 K 	1, Pr 	81, Pt = 0 

40 	 K  = 1,  Pr ' °, Pt e 81_ 
41 	 K = 3, Pr  e 243, Ft  = u 
42 	 K = 3, Fr  = 0, Pt  = 243 

43 	 K = 1/3, gravity only 
o 

44 	 K = 1, Pr  = Pt  = 81 90 
45 	 K = 3, Pr  = Pt  = 243 



Figure 3. Photoelastic model with testing frame. 
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As expected, larger stress concentrations occur around the toe area. 
A maximum stress concentration of 1.5 near the toe was obtained by the finite 
element method, as compared to that of 1.6 by photoelasticity. The difference 
is only 7%. The stress concentration factors of major and minor principal 
stresses are plotted along a horizontal section at a distance of 0.1H below 
the pit bottom as shown in Figure 4b. Again, the results indicate that the 
agreement between the solutions is good. 

The photoelastic model work cannot determine the displacements in 
the model, so that no comparison can be made between the displacements re-
sulting from a slope cut by the two different techniques. 

Although the two different approaches produced similar results, 
the finite element method is more flexible and economical than the photo-
elastic technique and it is completely gênerai with respect to geometry and 
material properties. Therefore, all subsequent work was carried out using the 
finite element method. 

3.2 The Influence of Residual Horizontal Stress on Slope Stability  

Residual stresses, parallel to the earth's surface, will be different 
in different locations around the world. Vertical stresses existing in the 
medium in the undisturbed state are due to gravity and, in a uniform medium, 
will vary linearly with depth. The horizontal component of stress is due 
partly to gravity and Poisson's effect but can also be due to the residual 
stress arising from tectonic origin. No matter what its cause, it is usual 
to relate the horizontal component of stress to the vertical component. 

Two types of lateral stress have been considered in this primary 
study. First is "constrained lateral stresses", i.e., during the loading 
history of the rock, if the lateral displacement is constrained, then a 
horizontal stress of 	 times the vertical stress will be developed where g 

-g 
is Poisson's ratio. 	tEl other words,  the horizontal stress is developed by 
Poisson's effect only; the factor K has the value of  1-g 

The second type of lateral stress is "constant lateral pressure". 
It is assumed a constant horizontal stress exists across the depth. This 
would be a close approximation when the tectonic stress is several times the 
gravity stress at a depth, a case that has been verified by measurements in 
several instances. In this case, the factor K will be defined as the ratio 
of the horizontal tectonic stress to the vertical gravity Stress at the toe 
of the pit. 

Now, when an open pit is cut in either a homogeneous or an aniso-
tropic rock formation which is subjected to a form of regional horizontal 
stress, the stress and displacement patterns are altered in the vicinity of 
the cuts. The resulting changes will depend on the geometry of the pit and 
the magnitude of the horizontal stresses. It is believed that the presence 
of regional tectonic stress will affect the stability of rock slopes; there-
fore, some knowledge of these effects will be beneficial for rational design 
of any open-pit mine. 
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A finite element model was constructed. The slope was cut at 600  
with 4 depth of 300 metres (900 ft). The fie/d stress condition consisted of 
vertical gravitational stresses arising from an average density of 2,7 gm/cm3 

 (168 lb/ft3 ) and a variety of uniform (constant) horizontal stresses, Sh. 
• The ore and wall rocks were assumed to be.perfectly elastic with deformation 
properties of E = 7.03 kg/cm2  (10 x 10 psi) and g = 0.2. 

In order to study the influence of the Poisson's ratio, g, on the 
stress and deformation pattern, g values varying between 0 and 0.47 were 
examined under the loading of gravity only. 

3.2.1 Stresses 

Under gravitational loading with different Poisson's ratios, the 
stress distributions are essentially identical although the magnitudes of 
horizontal components are larger for higher g values. In Figure 5, the final 
principal stress directions are indicated by the orientations of the crossed 
lines; the shorter of the two lines indicates the direction of the major 
principal stress (compression negative). It may be noted that the principal 
stress trajectories vary significantly with the magnitude of the residual 
horizontal stress (Figures 5 and 6). The principal stress directions are 
either approximately parallel or perpendicular to the surfaces, the pit walls, 
and the crest. This would be expected since these faces are principal planes. 

It is clear that the introduction of the horizontal tectonic stress 
to a gravity-loaded rock mass containing an open-pit mine, produces results 
which differ considerably from that of an open-pit mine which is subjected to 
gravity stress only. The stresses in the vicinity of the opening are signifi• 
cantly increased, as shown in Figure 6. Figure 7 shows that the average tan-
gential stress near the toe is proportional to the factor K. Figure 8 shows 
the horizontal stresses acting near the ground surface. For increasing K 
values, the horizontal stresses gradually approach the field stress. Perhaps 
it is important to point out that tensions have not been developed along the 
ground surface. 

3.2.2 Excavation Displacements 

The displacement of the slope face and the crest of slope varies to 
a considerable degree with the value of K. When the value of K equals or is 
less than 1, the crest is displaced upwards. Figure 9 shows excavation dis- 
placements for K = 1/3. There are two effects which affect the crest displaoe-
ment. The first is the relief of the vertical stress by removing the pit 
material, which will cause upward displacement; the second is the relief of 
horizontal stress which causes horizontal, inward movement together with some 
downward movement due to Poisson's effect. As shown in Figure 9 for g = 0 
(K = 0), there is no relief of horizontal stress during excavation and there-
fore there is no tendency for inward displacement of the slope face; however, 
Poisson's effect associated with release of vertical stress produces some 
outward movement at the crest. 
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Figure 7. Tangential stress near the toe of a 60 0 . 
slope as a function of the parameter K. 
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Figure 10 shows that the excavation displacement of the slope crest 
for a 600  slope increases proportionally with increase in K or the magnitude 
of the horizontal stress. The magnitude of displacements developed along the 

slope  face,  particularly near the crest, should be measurable with an appropriate 
type of instrument. These measurements might be a valuable guide to the 

reactions occurring in the ground. 

3.3 The Influence of Slope Angle on Stress and Displacement Distributions  

Four finite element models were constructed to simulate open-pit 
mines with slope angles of 30 ° , 45 ° , 60 °  and 90°  respectively. All models 
had a slope height of 300 m (900 ft) and approximately the same width of 

excavation, except the vertical slope (900 ) which was wider. All models 
satisfied the boundary criteria that the distance to the boundary be approxi-
mately four times the height of the opening. 

The field stress conditions consisted of gravitational  stresses  
arising from an average density of 2.7 gm/cm3  (168 lb/ft 3 ) and uniform 
horizontal stresses Sh of 81 kg/ cm2  (K = 1) for one case and 243 kg/cm2  
(K = 3) for a second case. The ore and wall rocks were the same as assumed 

previouslx, i.e., perfectly elastic with deformation properties of 7.03 x 
105  kg/cm (10 x 10 6  psi) and g = 0.2. 

Stresses and deformations were determined in the models for plane 

strain conditions. 

3.3.1 Stresses 

Figure 11 is a composite graph of the variations of the tangential 

stress acting along the slope faces for various slope angles and under a 

variety of loading conditions. The tangential stresses are normalized by 

dividing the stresses by (-yH). Since the sign convention adopted in this 

report is that compressive stress is negative, all the positive values in 

this figure and some of the subsequent figures will indicate compression. 

It is seen that there is little change of tangential stress over approximately 

the upper third of the slope height under gravity loading (Figure 11c). 
However, large variations occur near the toes; the tangential stress concen-

tration factors are 0.15, 0.40, 0.90 and 2.05, respectively, for the slope 
angles of 30 ° , 45 0 , 60 °  and 90 ° . 

As the residual horizontal stress increases, the tangential stresses 

are also increased along the slope face. With a moderate horizontal stress, 

say K = 1, the tangential stress near the toe still increases with slope angle. 

As K increases to 3, the difference between the tangential stresses for the 

various slope angles become relatively small. 

Under high residual horizontal stress field, the tangential stresses 

seemed to be larger for the upper portion of slope faces with lower slope 

angles as compared to those of steeper slopes, as shown in Figures lla and 11b. 
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Figure 10. Excavation displacements in a 60 0  slope 
model; plane strain, K = 3. 
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Figure 11. Tangential stress distributions along slope walls 
for various slope angles and a variety of loading 
conditions. 
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Figures 12, 13 and 14 are plots of horizontal stress, orx , along a 
horizontal section below the toe for the loading of K = 1/3, 1, and 3 respec-
tively. For the case of K = 1/3, the stresses are substantially the same wih 
only a small variation under the toe for all slope angles, i.e. 30 0 , 45 0 ,  600  , 
and 90 0 . Tensile stresses occurred near the bottom of the pit for the slope 
angles of 60° and 90 ° . The relief of the vertical stress by removing the pit 
material causes upward displacements; this upward displacement could be 
associated with tensile stresses. 

The horizontal stresses, orx , along the same section under the toe, 
follow the same pattern for all the slopes investigated. That is, it increases 
from the centre section of the model to a maximum directly under the toe and 
then decreases rapidly to the field stress at a distance approximately equal 
to the slope height, as shown in Figures 13 and 14. For K = 3, the tangential 
stress components under the toe can be as much as 8.1, 10.8, 12.3, and 12.6 
times the gravity stress at the toe respectively for the slope angles of 30 0 , 
.45 ° , 60 ° , and 90 ° . 

Figures 15, 16 and 17 are plots of horizontal stresses along a 
vertical section behind the crest. The variations of the horizontal stresses 
for the different slope angles under the same loading are small except for the 
vertical slope where the horizontal stresses illmiediately behind the slope face 
(vertical) are and should be equal to zero; it increases in the toe area as 
shown in these three figures. These horizontal stresses decrease to the field 
stress value at a depth equal to approximately the pit depth. 

As mentioned previously, the sign convention adopted in this report 
is that tension is positive; therefore the minor principal stress, as, will be 
the largest compression. Figure 18 shows the variations of the minor principal 
stress near the toe with slope angle and K. The minor principal stress, as, 
is normalized by dividing by the factor (-yH). The compressive stress near 
the toe increases rapidly with increase of the horizontal stress. Under the 
same loading, the rate of increase of the minor principal stress near the toe 
is almost linear for the slope angles between 30 0  and 60 0; the rate of increase 
decreases as angle increases from 60 0  to 90 0  except for gravity loading as 
shown in Figure 18. 

3.3.2 Excavation Displacement  vs  Slope Angle 

Figure 19 is a plot of horizontal excavation displacement at the 
slope crest versus slope angles for a variety of the loading conditions, 
i.e. K = 1/3, 1, and 3. The horizontal excavation displacement, 8hc , is 

 also non-dimensionalized by dividing by the slope height, H. As it is'shown 
in Figure 19, the horizontal displacement at the crest is almost proportional 
to the slope angle. Also, a linear relationship exists between Eli e  and the 
parameter K. 
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8hc 

33 

Under gravity loading, the horizontal displacements, 811.c , 
slope angles, were directed into the walls; with the addition of the 
tectonic stress, the displacements were directed toward the opening. 
following equations can be used to approximate the horizontal displa  

for all 
horizontal 
The 

cement, 

hc 
- 0.03029 - 0.00071

o + 0.000010
2 

. . . . for K = 1/3 H 

H - -0.00435 + 0.013600 	 . . . . for K = 3 

where H is the pit depth in centimetres and 0 is the slope angle in degrees, 
and bile  is the horizontal excavation displacement in centimetres x 10 -J . 

3.4 Slope Configurations in Relation to its Economy of Operation and Its  
Stability  

It was thought that the volume of waste excavation might be reduced 
by changing the slope configuration. Therefore, the stress distributions were 
examined in a series of models with parabola outlines in contrast to the con-
ventional constant slope. Results were compared with that of a typical 45° 

 slope. 

3.4.1 Slope Configurations 

A series of six two-dimensional mathematical models were prepared: 
three were concave and three were convex. The details of the slopes are shown 
in Figure 20. The distance between the crest of the modified slopes and that 
of the original 45 0  slope is 30, 60,ànd 90 m either to the right or to the left of 
crest of the original 45 0  slope, depending upon whether it is concave or convex. 
These modified slopes can be considered as slopes with varying angles at 
different depths of the pit. The dips of the chords, or equivalent slope 
angles, at several depths are shown in Table 2. 

3.4.2 Excavation Volume 

For simplicity, the orebody is assumed to be vertical; the width 
Qf orebody is assumed to be 150 metres. At a pit depth of 300 metres (900 ft), 
the total volumesof excavation for a 45 0  slope and for the modified slopes 
were calculated. The differences of the volumes excavated between the 45

0  

slope and the modified slopes are shown in Table 3. A reduction of approxi-
mately 70,600, 52,900, 35,300, and 17,600 tons of waste rock per linear metre 

on 392,000 tons would occur from the four modified slopes No. 1, No. 2, No. 3 
and No. 6, and there are increases in waste excavations with slopes No. 4 and 

No. 5. 

hc 
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TABLE 2 

Dips of the Chords, or Equivalent Slope Angles, at Various Depths  

Equivalent Slope Angle* 	 . 
Modified Slope Depth - Metres 	Slope Angle -  Degrees 

No. 1 	 0-35 	 25 

	

35- 75 	 35 

	

75-140 	 46 

	

140-300 	 56 

No. 2 	 0- 40 	 23 

	

40- 75 	 35 

	

75-140 	 45 

	

140-300 	 54 

No. 3 	 0-38 	 22 

	

35-70 	 32 

	

70-140 	 42 

	

140-300 	 51 

No. 4 	 0-75 	 75 

	

75-120 	 59 

	

120-175 	 47 

	

175-230 	 40 

	

230-300 	 32 

No. 5 	 0-75 	 75 

	

75-130 	 62 

	

130-181 	 48 

	

180-230 	 43 

	

230-300 	 37 

No. 6 	 0-80 	 75 

	

80-130 	 66 

	

130-185 	 52 

	

185-230 	 47 

	

230-300 	 40 

* Dip of the chord. 
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TABLE 3 

Differences of the Volumes Excavated between the 45°  and Modified Slopes  

Excavations 	Total Volumes to be 	Difference Between 
Excavated 	 Volumes Compared with 

Cases 	 per Linear Metre 	 45°  Slope 	• 

(133,500) 	 -- 
45°  Slope ((392,647)) 

No. 	1 	 (109,500) 	 (-24,600) 

	

((322,058)) 	 (( 70 , 588 ))  

No. 	2 	 (115,500) 	 (-18,000) 

	

352)) 	 (( 35,294)) 

No. 	3 	 (121,500) 	 (-12,000) 

	

' ((445 , 588 )) 	 ((52 , 941 ))  
' 
No. 4 	 . (151,500) 	 (+12,000) 

	

((410,290)) 	 (( 17,647)) 

No. 	5 	 (139,500) 	 (f 6,000) 

	

((375,000)) 	 (( 	17,647)) 

No, 	6 	 (127,500) 	 (- 6,000) 

( ) 

(( )) 

tt+11 

Volumes in cubic metres 

Volume in short tons 

means less excavation as compared with the 45
0  slope 

means extra excavation as compared with the 
45°  slope 

1 ton = 0.34 m3 (12 ft
3

) 
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3.4.3 Experimental Results 

Three different loadings were examined for each slope model, i.e., 2  
with simple gravity (( = 1/3) and with residual horizontal stress of 81 kg/cm 
(K = 1) and 243 kg/cm (K = 3). The increases of stresses are approximately 
proportional to the parameter K. Displacements are directed more in the 
horizontal direction and toward the openings with increases in K. 

3.4.3.1 Compressive Principal Stress along Slope Faces 

Figures 21, 22 and 23 are the plots of the minor (compressive) 
principal stresses acting along the slope face of a 450  slope and those of 
the modified slopes for the loading conditions K = 1/3, 1 and 3 respectively. 
The differences of stress distributions between the 450  slope and the six 
modified slopes are clearly indicated in these figures. 

Under gravity stress field, the stresses developed in modified 
slopes Nos. 1, 2 and 3 are smaller than those of the 45°  slope, except near 
the toe where they are larger. The minor principal stresses developed along 
the slope faces for the modified models Nos. 4, 5 and 6 are considerably larger 
at the middle height of the pit walls, as shown in Figure 21, although at the 
toe they are less-than those for the 45 0  slope. 

With residual horizontal stresses, the minor principal stresses 
along the slope faces for the modified slopes Nos. 1, 2 and 3 are also smaller 
than those of the 45 0  slope except near the toe. For the case of K = 1, the 
minor principal stress near the toe of No. 1 slope is only 10% higher 
than that of the 45° slope and this difference becomes smaller with the 
increase of K. The stresses developed in the models Nos. 4, 5 and 6 are 
somewhat larger, as shown in Figures 22 and 23, than for the 450  slope except 
in the toe. 

3.4.3.2 Stresses along a Horizontal Section under the Toe 

A horizontal section under 'the toe was chosen as close to the.pit 
bottom as possible. The horizontal stress components, ux , along that section 
are plotted as shown in Figures 24, 25 and 26 respectively for K = 1/3, 1, and 
3. As can be seen, the stress variations are small. 

3.4.3.3 Excavation Displacement vs Excavation Volume 

The term "excavation displacement" at the slope crest has frequently 
been used as a measure of slope stability. The idea is that the larger the 
displacement at the crest the greater the probability of the instability. 
However, the limiting value of displacement which would cause instability cannot 
yet be determined. Figure 27 shows the horizontal excavation displacement at 
the crest of each slope versus the volume of excavation per linear metre. 
Since the orebody is assumed to be vertical, the larger the excavation volume, 
the more the waste rock will be excavated. It can be seen that the excavation 
displacements at the crests of the modified slopes Nos. 1, 2 and 3 are approxi-
mately 18% lower than that of the 450  slope and that the crest displacement 
does not seem to be much different for the three cases although the reduction 
would be quite different, i.e., 70,600, 52,900 and 35,300 tons of waste rock 
per linear metre respectively for slopes Nos. 1, 2 and 3. For the convex slopes 
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Nos. 4, 5 and 6 the excavation displacements are about 12% higher than that 
of the 45 0  slope and the volumes of waste rock were increased except for the 
model No. 6. 

3.4.3.4 Minor Principal Stress near the Toe vs Excavating Volume 

The minor principal stresses or maximum compressions, near the toe, 
show very little difference for these modified models as compared to that of 
the 45 °  slope (Figure 28). Owing to the difficulty in reproducing the mesh 
details adjacent to the toes of each model, these values are less significant 
than the patterns of stress differences throughout the faces of the various 
models. However, the conclusions follow those based on crest displacement. 
Generally speaking, the toe stresses are smaller for models Nos. 1, 2 and 3, 
and larger for the models Nos. 4, 5 and 6, compared to that of the 45° slope. 
Thus, there are some indications that economic benefit might be obtained from 
using the shape of the modified models Nos. 1, 2, and 3. 

3.5 The Investigation of Axisymmetric Geometry with Axisymmetric or  
Arbitrary Loading  

To supplement the result from two-dimensional study, the finite 
element method as applied to axisymmetric geometry has been used (4, 5). The 
solutions of plane strain and of axisymmetric geometry with axisymmetric and 
arbitrary loadings are compared. 

Three models with slope angles of 30 0 , 60 0 , and 900  were used for 
the axisymmetric study. The two-dimensional finite element moçiel shown in 
Figure 1(b) becomes a section through a cylinder when the axisymmetric 
programs are used. The stress distributions around he slopes were deter-
mined, for g = 0.25 and E = 7.03 x 10 5kg/cm2 (10 x 10 °  psi) unless mentioned 
otherwise. The loading conditions were: first, with a gravitational stress 
only; second, in addition to gravity stress, axisymmetric horizontal boundary 
pressure, i.e.,  Pr = pt ; third, with only uniaxial radial (Pr)  or tangential 
pressure (Pt).  The details regarding the loading conditions are included 
Table 1. The magnitudes of p r  and pt  were also varied from 27 to 243 kg/cm , 
i.e., one-third to three times the gravity stress Sv  at the toe of the slope. 

3.5.1 Horizontal Stresses along Sections under the Toe and behind the Crest 

The horizontal stresses along two sections, one under the toe and 
the other behind the crest, were examined. 

Figures 29, 30 and 31 are the plots of horizontal stresses along a 
horizontal section under the toe for axisymmetric loading of K = 1/3, 1 and 3. 
Figures 32, 33 and 34 are similar plots but for the vertical section behind 
the toe. Comparing Figures 29 and 32 with Figures 12 and 15, the stress 
patterns are seen to be almost identical for plane strain and axisymmetric 
solutions in a gravity stress field. With the addition of residual horizontal 
stresses, as expected the horizontal stresses under the toe are increased; 
but the magnitudes of these horizontal stresses are smaller than those of 
the plane strain solutions. For K = 1, the stress concentration factors under 
the toe are approximately 1.2, 1.9 and 2.0, respectively, for slope models of 
30 0 , 600  and 90 0 , as compared with factors of 1.7, 3.2, and 3.8 for the same 
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models with plane strain solutions. Similar results were observed for K = 3: 
the stress concentrations are approximately 6.1, 6.4, and 6.0 for axisymmetric 
solution as compared to that of 8.1, 12.2, and 12.6 for plane strain respec-
tively for slope angles of 30 ° , 60 0  and 90 0 . The results of two-dimensional 
and three-dimensional solutions can thus deviate by as much as 1007. or more 
near the toe areas. In both cases, in a high horizontal stress field the hori-
zontal stresses immediately under the toe are not affected much by the increase 
of slope angle. 

Similar conclusions can be made for the horizontal stresses along 
the vertical section behind the toe for both plane strain and axisymmetric 
geometry as shown in Figures 32, 33 and 34. 

3.5.2 Tangential Stresses along the Slope Walls 

Figures 35 and 36 are the plots of tangential stress concentrations 
versus depth along the slope walls (actually the stresses are acting at a 
depth of 0.026H into the slope wall) respectively for 30 °  and 90°  slopes. 
Plane strain solutions were replotted on the same graphs for comparison. Once 
again, it is clear that the solutions of plane strain and of axisymmetric 
geometry, under a gravity field, are almost identical (Figures 35(c) and 36(c)). 
The maximum tangential stress concentrations near the toe of the 30 0  slope are 
0.3 and 0.4 respectively for the plane strain and for the axisymmetric loading. 
For the vertical slope, it is 1.85 for axisymmetric loading versus 2.05 for 
plane strain. 

With the introduction of tectonic stress, the tangential stresses 
along the slope wall of the 30 0  slope, for both solutions, do not deviate 
much over a large portion of the slope face, as shown in Figure 35. Near the 
toe, differences occur; the stress concentrations are 1.2 and 4.9 for axisym-
metric analysis as compared to those of 1.5 and 6.6 for plane strain respec-
tively for loadingsof K = 1 and 3. 

For the vertical slope, the tangential stresses for plane strain 
are higher than those from the axisymmetric solution over approximately the 
lower third of the slope. Near the toe, the tangential stress concentrations 
are 2.5 and 3.5 for the axisymmetric analysis, and 3.9 and 8.8 for plane 
strain for K = 1 and 3 respectively. 

Only the 60 0  slope model was used to examine the effect of non-
axisymmetric loading on the stress and displacement distributions around 
excavations. The residual horizontal stress was applied either in the radial 2  
direction (r) or in the tangential directio9. (t) with magnitudes of: 27 kg/cm 
(K = 1/3), 81 kg/cm

2 (K = 1), and 243 kg/cm (K = 3). 

Figure 37 is a composite plot of tangential stresses along the wall 
of a 60 0  slope for a variety of loading conditions (refer to Table 1, Cases 
37 to 42). Plane strain and axisymmetric solutions with either axisymmetric 
or arbitrary loadings were compared. Under non-axisymmetric loading, for the 
Cases 37 (K = 1/3, Pr  = 27 kg/cm2 , Pt  = 0) and 38 (K = 1/3, Pr  = 0, Pt  = 27 
kg/cm2 ), there is only a slight variation in tangential stress concentrations 
along a large portion of the slope wall when a low horizontal stress is applied, 
with the exceptions that the stress concentrations near the toe are 11 7.  higher 
and 39 7.  lower respectively for Case 37 and Case 38 as compared to that of the 
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axisymmetric loading (Case 34), as shown in Figure 37(c). Again the plane 
strain solution (Case 1) is identical to that of the axisymmetric solution 
(Case 34). 

From Figure 37 it is clear that the deviationsbetween the different 
solutions become more pronounced with increases in the residual horizontal 
stress. For instance, the stress concentration near the toe for plane strain 
can be approximately 50% and 1007  higher respectively for K = 1 and K = 3 
compared to that of the corresponding axisymmetric loading (Cases 35 and 36). 
But under non-axisymmetric loading, the stresses at the toe are 72% and 85 7.  
lower respectively for the Case2 40 (K = 1, Pr  = 0, Pt  = 81 kg/cm2 ) and 42 
( K = 3, Pr  = 0, Pt  = 243 kg/cm ), compared to that of the corresponding 
axsymmetric loading (Cases 35 and 36). F9r the Cases 39 (K = 1, Pr  = 81 kg/ 
cm , Pt  = 0) and 41 (K = 3, Pr  = 243 kg/cm- , Pt  = 0), the differences in 
stresses near the toe are very small compared to that of the corresponding 
axisymmetric loading cases. In other words, when an open-pit mine is under 
a uniaxial horizontal stress field, the stress concentrations near the toe 
area in a cross section perpendicular to the direction of the residual 
horizontal stress would be much lower than would be expected for the cross 
section parallel to the direction of the residual stress. 

3.5.3 Minor Principal (Largest Compressive) Stresses near the Toe 

Figure 38 shows the stress concentrations of the minor principal 
stress near the toe as a function of the parameter K. It is clear that the 
stress concentration of the minor principal stress under any assumptions, 
i.e. plane strain, axisymmetric or non-axisymmetric loading, is approximately 
proportional to K. 

Again, the stress concentrations of the minor principal stress 
deviate little between the plane strain and axisymmetric solution in a gravity 
stress field. However, the stress concentration can be 100 7.  higher or more 
for plane strain compared to axisymmetric geometry when a high horizontal 
stress field is encountered, e.g., K = 3. The stress concentration for 
axisymmetric geometry depends on the orientation of the compressive principal 
horizontal stress. For instance, when the compressive principal stress is 
acting at a direction of 90 °  to the rz-plane (Pr  = 0, Pt 	0), the stress 
concentration increases very slightly as K increases as shown by curve 4 in 
Figure 38; under K = 3, the stress concentration is only 1/12 of that for 
plane strain. 

Figure 39 shows a plot of minor principal (largest compressive) 
stresses near the toe as a function of slope angle for both plane strain and 
axisymmetric solutions. The results for plane strain have been already dis-
cussed in a previous section. Once again, the axisymmetric solution is identi- 
cal to that of the plane strain under only gravity stress. As shown in Figure 39, 
the deviations between the two solutions become wider as K increases. Generally 
speaking, the stress concentrations near the toe increase with the increase of 
slope angles, except for the case of K = 3, for which the stresses remain 
approximately equal when the slope angle is increased from 60 0  to 90 0 . 
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3.5.4 Circumferential Stress Along the Slope Face 

Figures 40 and 41 show the circumferential stresses acting at the 
toe and at the crest as a function of K respectively. For both cases, the 
circumferential stresses are proportional to K. All stresses are compressive 
under the axisymmetric loading Pr  = "l 	34, 35, 36) and in the selected 
plane under non-axisymmetric loading Pr  . 0 (Cases 38, 40, and 42), but the 
circumferential stresses become tensile in the selected plane for the non-
axisymmetric loading Pt  = 0 (Cases 37, 39, and 41). 

Figure 42 is a composite plot of circumferential stresses for a 
variety of loadings, which indicates that the largest magnitudes either 
tension or compression occur at about one-third of the slope height up from 
the toe. The stresses are tension for the Cases 37, 39, and 41, which are under 
non-axisymmetric loading with Pt  = 0 and Pr  = 27, 81, and 243 respectively. 
Relaxation of surface rock, either by tension fractures or other means, was 
simulated by reducing the modulus of deformation of the layer of elements 
adjacent to the slope face; this reduced the maximum stresses as shown in 
Figure 42. The effect of circumferential stress on the stability is not well 
known, but it can be stated that compressive stress would be favourable for 
stability and tensile stresses would be unfavourable. 

3.5.5 Excavation Displacement at the Crest 

Figure 43 is a plot of the horizontal excavation displacement 
normalized by dividing the displacement by the slope height (H) at the crest 
of a 60 0  slope as a function of the parameter K. The results indicate that 
the displacement for plane strain is greater than the axisymmetric cases 
except under gravity stress. For instance, the excavation displacement at the 
crest for plane strain is 3.03 and 3.44 times higher than that of the axisym-
metric loading solution respectively for K = 1 and K = 3. Under a gravity 
stress field, the displacement at the crest in plane strain is directed toward 
the wall; the movement is negligible for the axisymmetric geometry. Under non-
axisymmetric loading, the displacement at the crest in the direction of the 
residual horizontal stress did not déviate much from that of the axisymmetric 
loading as 'shown by the curves 2 and 3; but the horizontal movement in the 
direction at 90 °  to the . residual horizontal stress is directed into the wall 
instead of toward the opening as curve 4 indicates. 

Figure 44 is a plot of excavation displacement at the slope crest 
as a function of slope angle for a variety of loadings. .Only solutions of 
plane strain and axisymmetric loading are compared. When an open-pit mine is 
cut under gravity stress only, the displacement at the crest is generally 
directed into the walls, and the magnitudes of the movement (into the wall) 
decrease as the slope angle increases. With the addition of horizontal stress, 
the displacements are toward the opening and the magnitude of movement is 
approximately proportional to the slope angle. Also, in plane strain the dis-
placements are greater than those for axisymmetric solutions for K = 1 and 3. 
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for the solution of axisymmetric geometry with 
arbitrary loading. 



62 

Pr  =0 (non-axisymmetric) 

cr 

— 1H  

= P t  (axisymmetric) 

3 

P t =0 (non-axisymmetric) 

Figure 41. Circumferential stresses near the crest of a 600  
slope for the solution of axisymmetric geometry with 
arbitrary loading. 



600 500 
--r-- 0 • 0 

0 • 8 

K=3,Pr =0(E r =E s ) 

0.2 

0 • 4 

Dv/H  

0.6 

1 
1 

• 

1.0 + 

f 

K = 1/3 , Pr  = 0 

K= 1/3, Gravity only 

Fri 

CIRCUMFERENTIAL 

400 	300  

. 	b&---K=3,Pr =Pt  
+ 	

K=3, Pr=0 (Es=0-1E r ) / 

K=1, Pr =0 

K=1, Pr =Pt 

K=1, Pt =0 

cr 
STRESSES 8 IN KSC 

—«--- Compression 	 Tension ---).- 

200 	100 	 0 	+100 	+200  

P ' 1- 	f' 
 

/...-K=3,P t =0 (E s=0-1E r ) 

t +  

1 	g 1 it.s/1 1  

1 	I 	1 

1 	11 	1 	i 	le 	t  *t  + 
1 	i 	 1 

1 	i 	8 

I 	--- - - - - I 	I  1 	I  i 	I 

1 

.._i 1 	' 	
1 
I 	1 	1 

I 
1 

i +■-.4 f f 
: 	1 	I 	1 

1 	r 
1 --- 1 - 

	

I 	—1._ ___ 1 	1 
1 ---..1 	1 

1 
t 	1 - 
I 

I
fil } i 	I 	 i 	I 	I 	

i 

I 

I 

f 	+1  
, 

 
+41 

  4 i i 
1 1 

	

i 	
1 i i 	

'

1 i s 	1 
1 
I 

k 	4" 	4 	A— 	+.i I 2' . 	1 I . 	Il 	1 	I 1 / 	, 1 

	

\ 0 ± 	1 	, 	.--- — 

—1 --1„ 1 I 

+1-  
.----- g 

I 	1 ; 

Figure 42. Circumferential stresses along the slope wall of a 60 0  slope for a 
variety of loading conditions. 



64 

0 • 8 

H 

0.6 

Plane strain 

0 • 4 

8Hc 	-3 x 10 
H 

0.2 

AxIsymmetrIc (PtmPr) 

Non-axlsymmetrIc (P r  0) 

Non-axlsymmetrlc (Pr.:0) 

-0.2 

Figure 43. Comparison of excavation displacements of a 60 °  
elope as a function of the parameter K between the 
solutions of plane strain and of the axisymmetric 
geoMetry with arbitrary loading, 
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3.6 The Development of Tensile Zones  

It might be significant that tensile zones seem to be developed near 
the face of the pit walls in the section parallel to the direction of the 
maximum compressive horizontal field stress. This tensile zone was shown to 
penetrate into the wall about 70 metres (200 ft) at approximately the middle 
portion of the slope wall for K = 3. With K = 1, the tensile zone would pene-
trate approximately 30 metres (90 ft) into the walls. As shown in Figure 45, 
the penetration of this tensile zone into the pit wall seems to be proportional 
to the factor K. 

The development of tensile zones in the t-direction (perpendicular 
to the uniaxial horizontal stress) is quite different. A large area of this 
cross-section around the toe and extended downward is in a state of tension 
with the highest concentrations near the boundary, as shown in Figure 46. 
This phenomenon seems to occur even under low uniaxial horizontal field stress 
(i.e. K = 1/3). By resorting to the classical solution for a sphere, it seems 
that tensile stresses could be developed but that they are very dependent on 
Poisson's ratio. 

4. FRACTURE CRITERIA 

The failure of materials differs according to their physical pro-
perties and the stress field to which they are subjected. It is not unreason-
able to use the maximum principal stress theory for predicting tension fracture 
and Mohr's strength theory for predicting shear failure. 

Tension fracturing of rock would occur on planes where the principal 
stress reaches the tensile strength of rock; however, with the presence of 
numerous joints and fissures, most rock masses are probably incapable of sus-
taining tensile stress. 

The stress conditions at points around the 60 0  slope under several 
loading conditions were analysed for'sliding conditions. In order to handle 
the numerous calculations of Mohr's circle, a computer program was developed; 
the output is in a form of numerical plot. If any Mohr's circle touches or 
cuts the assumed failure envelope, the symbol of a filled square (11) is 
plotted at that point along with the numerical value of the maximum shear 
stress. If a stress circle does not touch the envelope, a cross (+) is plotted, 
and the maximum shear stress is also printed. 

By assuming the rock under investigation has values of 50 kg/cm2 

and 400  respectively for c and 0, the analysis based on the Mohr's strength 
theory indicated that a large area around the toe and near the pit bottom would 
be in a state of plastic equilibrium, as shown in Figure 47 for Cases 41 and 
42. There is a slight difference in the zones of plastic equilibrium for the 
plane parallel to uniaxial horizontal stress, as shown by the dashed lines, 
and for the plane perpendicular to the uniaxial horizontal stress, as shown by 
the dotted line. 
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Figure 45. Development of tensile zones around a 60 °  slope under 
compressive horizontal field stress (Pr  II to the rz plane, 

Pt = 0)• 
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Figure 46. Development of tensile zones around a 60 0  slope under compressive 
horizontal field stress (P t 	to the rz plane, Pr  = 0). 
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Figure 47. Potential failure zones around the toe of a 600  slope under 
compressive horizontal field stress (based on Mohil strength 
theory, c = 50 kg/cm2, 0 = 400 , E = 7.03 x 10 5  kg/cm , 	0.2). 
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An alternate analysis was made to plot the contours of the ratio 

Tmaxierh where Tmax  is the maximum shear stress and un  is normal stress acting 
on the maximum sriear plane. The contour lines of Tmex  iun  might provide some 
information regarding potential zones of failure. These potential zones of 
failure are located around the toe, in the pit bottom, and along the pit wa11s. 
Figures 48 and 49 show that the zones with high ratios of Tmaxian  are also the 
areas where Mohr's circle touches or cuts the assumed failure envelope. 

5. CONCLUSIONS  

On the basis of the results presented herein, the following con-
clusions, concerning analysis of stresses and displacements around open-pit 
mines using the finite element method, have been drawn: 

1. The finite element technique seems to be a very flexible and economical 
tool compared to any conventional model work for stress analysis with the 
complex geometry of open-pit mines. With this method, the inclusion of aniso-
tropic properties does not unduly complicate the problem. In addition, 
arbitrary loadings can be readily analyzed. 

2. If in an elastic, competent, and gravity-loaded rock mass, the mining of 
an open pit with slope angles up to 600  and a depth of 300 metres (900 ft) 
would not be expected to create large stresses around the opening. The 
presence of horizontal tectonic stresses could increase the expected stresses 
and displacements greatly. 

3. The stresses and displacements depend to an important degree upon the 
initial state of stress. In a gravity stress field, the displacement along 
the slope face will be directed into the walls but, with the addition of 
residual horizontal stress, the displacement will be directed toward the 
opening. The movement at the pit floor can be either upward or downward 
depending on the initial stress field and Poisson's ratio of the rock mass. 
Furthermore, the stress and displacement patterns are affected by the orien-
tation of the residual horizontal stresses. Therefore, a knowledge of the pre-
mining stress field is required to predict stresses and deformations. 

4. The excavation displacements at the slope crest are approximately propor-
tional to the factor K and to the slope angle. With an appropriate type of 
instrument, the magnitude of these movements or change in movement at or near 
the crest and along the slope face should be detectable. These measurements 
might be a valuable guide to the reactions occurring in the ground. 

5. The initial result of geometry studies has been encouraging, since economic 
benefit could result by changing the slope configuration from conventional 
constant slope into a parabola-shaped slope, because there is no significant 
increase of stress in some of the modified slopes compared to the stresses in 
a typical 450  slope. On the contrary, the stresses developed in these modified 
slopes in some cases are even smaller. Therefore, these modified configurations 
of slopes seem to be favorable for the design of open-pit mines. 
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Figure 48.  Contours of  Tmax/un  around a 600  slope under unidirectional 
horizontal field stress. K = 3, Pr  = 243 kg/cm2 , Pt  = 0. 
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Figure 49. Contours of Tmax/un  around a 600  slope under unidirectional horizontal 
field stress. K = 3, Pr  = 0, Pt  = 243 kg/em2. 
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6. Tensions seem to occur along the slope face under some loading conditions, 
particularly in axisymmetric models when loaded with uniaxial horizontal 
stresses. Evidence of tectonic stresses several times greater than the gravity 
stress, at depth, has been verified by measurements in several instances. 
Therefore, the development of such tension or expansion zones may actually 
occur and this would influence the slope stability as well as the use of 
artificial supports which is supposed to stabilize and to increase slope 
angles. Hence, the anchors of such an artificial support system, should be 
located beyond these tension zones. 

7. In the presence of residual horizontal stresses, it is important to select 
either a plane strain or axisymmetric solution to simulate the actual geometry, 
because these cases can deviate by as much as 100% or more near the toe areas. 

8. The tensile circumferential stresses that might be developed in axisymmetric 
models under non-axisymmetric loading would be unfavorable for stability. 

9. The areas of critical stresses and deformations may be located in the pit 
bottom, around the toe of slope, and in the slope face, depending on the 
orientation of the residual horizontal stresses. 
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