Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada

CANMET

Canada Centre for Mineral and Energy Technology Centre canadien de la technologia des minéraux et de l'énergie

RESEARCH PLAN PLAN DE RECHERCHE

REACTIVE ACID TAILINGS STABILIZATION PROGRAM (R.A.T.S.) SP88-3 PROGRAMMETOR RÉSIDUS ACIDES EN TRANSFORMATION ET STABILISATION (R.A.T.S.)

RESEARCH PLAN PLAN DE RECHERCHE

REACTIVE ACID TAILINGS STABILIZATION PROGRAM (R.A.T.S.)

PROGRAMME DE RÉSIDUS ACIDES EN TRANSFORMATION ET STABILISATION (R.A.T.S.)

CANMET Special Publication

Publication spéciale de CANMET

SP88-3

SP88-3

© Minister of Supply and Services Canada 1988 Cat. No. M38-15/88-3 ISBN 0-662-55942-8

.

.

© Ministre des Approvisionnements et Services Canada 1988 N° de cat. M38-15/88-3 ISBN 0-662-55942-8

THE REACTIVE ACID TAILINGS STABILIZATION (RATS) PROGRAM

Foreword:

The Canadian mining industry produces in excess of 500 million tonnes/annum of waste rock and tailings, the largest portion of which arises from sulphide ore operations. These sulphide-bearing wastes present a significant environmental problem in that, upon weathering, they produce sulphuric acid which in turn solubilizes residual heavy metals. This leachate has been termed acid mine drainage (AMD). Currently, treatment systems are required to ensure that effluents from tailings piles and waste rock sites do not adversely affect the surrounding environment.

The mining industry has long been concerned with the management of acid-generating sulphide wastes, particularly upon close-out of a mining operation. Efforts in the past decade have emphasized the use of vegetative covers for reactive tailings sites. While this approach improves aesthetics and surface stability, the sites have continued to generate AMD. Hence, it has been necessary to continue to operate treatment facilities long after the cessation of mining activities. In some cases, mine sites have been abandoned and the responsibility for care and maintenance has reverted to the province. Continued active treatment at these sites is not desirable since this presents an ongoing financial burden for an indefinite period of time.

Between 1984 and 1987, studies were conducted to determine the extent of the AMD problem in Canada. In total, some 14,000 hectares of AMD generating waste rock and tailings were identified. The rehabilitation of these sites could cost in excess of \$1.5 billion over the next 15 years alone. However, research is required to understand the problem more fully and to identify cost-effective solutions. Since the problem is compounded by site specificity and mineralogy, one solution may not be applicable for all sites, and predictive modelling techniques are thus also required. New cost-effective close-out technology will allow the mine operator to rehabilitate waste rock and tailings impoundments, and to "walk away" from these sites with the knowledge that the environment will be protected in the long term.

In response to the collective need to develop appropriate technologies for AMD prevention and control, the Reactive Acid Tailings Stabilization (RATS) program was initiated. A Steering Committee* and a Technical Working Group ** (TWG) were established to represent industry, and federal and provincial interests.

* Membership of Steering Committee - Table 1
** Membership of Technical Working Group - Table 2

The Steering Committee asked the TWG to prepare a research plan to meet the RATS objective. Those objectives were defined as follows:

- to provide a comprehensive scientific, technical and economical basis for the mining industry and governmental agencies to predict, with confidence, the long-term management requirements for reactive tailings and waste rock;
- to establish techniques that will enable the operation and abandonment of acid-generating tailings and waste rock disposal areas in a predictable, affordable, timely and environmentally acceptable manner.

Research Plan:

In order to meet these objectives, the RATS-TWG has developed a comprehensive plan of some 40 projects grouped under 5 major topic headings. These topics are:

1. <u>Prediction</u>: This group of 10 projects is aimed at improving techniques to determine whether a particular waste rock or tailings will in fact present an AMD problem. A number of techniques have been used but not all are reliable.

The second aspect of this work is to develop a mathematical model to simulate the behaviour of AMD generation, and to use the model to aid in the evaluation of remedial systems. Model development will draw heavily on other models such as those developed under the National Uranium Tailings Program.

- 2. <u>Prevention and Control</u>: This is the major task of RATS. The collective view is that the key to AMD prevention is the development of an effective and durable barrier to oxygen. Without oxygen, the sulphides will not generate acid. Research is required to develop, assess and optimize barrier systems such as water cover and synthetic membranes. Laboratory tests and field trials are required to fully evaluate a number of options under a variety of conditions.
- 3. <u>Treatment</u>: Currently, AMD is neutralized with lime before discharge to the open environment. Such systems are expensive but more critically require ongoing monitoring and maintenance.

With improved methods of prevention and control, the need for treatment will be substantially reduced, however, it is generally accepted that these methods will be less than perfect. Disposal areas will require some effluent treatment before final discharge. The research target is to develop passive treatment systems. One such system is the use of wetlands to ameliorate residual acidity, and precipitate and stabilize heavy metals. Research is required to better understand the natural systems in terms of capacity, sensitivity to upset, long term stability and costs.

- 4. <u>Monitoring</u>: In addition to tasks of prevention and treatment, there is a need to develop consistent and reliable monitoring techniques. One of the main items is to establish closure criteria, that is, what levels of acidity, heavy metals, etc., will be accepted by the regulatory agencies. Further to this, there must be agreement on methods of sampling and standards for analysis. Rapid indirect monitoring techniques could reduce such costs and new technologies in this area must be assessed.
- 5. <u>Technology Transfer</u>: The development of new technology is important. Good technology must also be used. The systematic documentation of the technology and communication with the users are essential. This task includes reviewing existing technology and developing easy access to available information. Coordination of efforts with all interested parties is a central part of this task.

Program Costs and Schedule

It is estimated that the research required to achieve the program objectives can be undertaken in five years at a cost of \$12,500,000. The breakdown by project topic is shown in Table 3. More detailed costs by sub-topic are provided in the summary sheet on page 1 and in the individual projects in the body of the report. The project ranking and total costs are given at the beginning of each section. An index for the individual projects can also be found.

The work will likely be performed approximately 50% by the participants and 50% by contractor . Specific details on funding mechanisms are currently being finalized.

This RATS research program summary has been published to inform participants, contributors, researchers, consulting groups, the general public and other interested parties of the scope of the program. Interested parties should contact Michel P. Filion, Co-ordinator - Environmental Technology, CANMET, 555 Booth Street, Ottawa, Ontario K1A OG1 (613) 996-7936, or any member of the RATS Steering Committee or Technical Working Group.

TABLE 1

REACTIVE ACID TAILINGS STABILIZATION PROGRAM

STEERING COMMITTEE

Mr. W.A. Bardswich Mr. V.E. Dawson B.C. Ministry of Energy, Mines & Petrol Resources	MILIA				
Resources	eum				
Mr. R. Duquette Ministère de l'Environnement du Québec					
Mr. W.C. Ferguson INCO Ltd.					
Mr. W. Fraser Hudson Bay Mining & Smelting Co. Ltd.					
	Ontario Ministry of the Environment				
Mr. G.J. Greer N.B. Department of Natural Resources	&				
Energy					
Mr. L.L. Sirois Energy, Mines & Resources Canada					
Mr. J.E. Udd Energy, Mines & Resources Canada					
Mr. D. Kelly Environment Canada					
Mr. J. LeBuis Ministère de l'Énergie et des Ressources	lu				
Québec					
Mr. D.R. McKay COMINCO Ltd.					
Mr. F.G. Pickard Falconbridge Limited					
Mr. J.A. McIntosh Ontario Ministry of Northern Development Mines	&				

•

TABLE 2

REACTIVE ACID TAILINGS STABILIZATION PROGRAM

TECHNICAL WORKING GROUP

Mr.	W.C. Ferguson	Committee Chairman, INCO Ltd.
	K. Wheeland	Deputy Chairman, Noranda
		Research Centre
Mr.	E.G. Joe	Secretary, Energy, Mines &
	2101 000	Resources Canada
Mr-	W. Scheding	Curragh Resources Corp.
	N. Davé	
		Energy, Mines & Resources Canada
	R.E. Michelutti	
	D. Cook	Manitoba Energy & Mines
Mr.	W. Fraser	Hudson Bay Mining & Smelting
		Co.Ltd.
Mr.	K. Ferguson	Environment Canada
	J. Errington	B.C. Ministry of Energy, Mines &
	,	Petroleum Resources
Mr.	R.T. Gardiner	COMINCO Ltd.
Mr.	R. Patterson	Equity Silver Mines Limited
	R.S. Siwik	Noranda Research Centre
	M.C. Campbell	Energy, Mines & Resources Canada
	J.S. Scott	Environment Canada
MI.	S. McEwan	N.B. Department of Natural
		Resources & Energy
Mr.	B. Bell	INCO Ltd.
Mr.	J.A. Hawley	Ontario Ministry of the Environment
Mr.	R. Tervo	Energy, Mines & Resources Canada
Mr.	J-M. Robert	Ministère de l'Énergie et des
		Ressources du Québec
		1000001000 au Sumoo

TABLE 3

SUMMARY OF RATS PROJECTS

	Total Program	\$12,500,00	ю
	Contingency	\$ 1,135,00	00
-	Technology Transfer	\$ 225,00	00
-	Monitoring	\$ 385,0	00
	Treatment	\$ 1,285,0	00
-	Prevention and Control	\$ 5,705,0	00
	Prediction	\$ 3,765,0	00

LE PROGRAMME DE RÉSIDUS ACIDES EN TRANSFORMATION ET STABILISATION (RATS)

Avant-propos

L'industrie minière canadienne produit chaque année plus de 500 millions de tonnes de stériles et de résidus dont la grande partie provient de l'exploitation des minerais sulfurés. Ces déchets, qui contiennent des sulfurés, soulève un problème environnemental important du fait qu'ils produisent, lorsqu'ils sont altérés, de l'acide sulfurique qui, à son tour, solubilise des métaux lourds résiduels. Cette lixiviation est appelée drainage minier acide (DMA). Pour s'assurer que les effluents provenant des parcs à résidue et de stériles ne polluent pas l'environnement, des systèmes de traitement doivent être mis en place.

L'industrie se préoccupe depuis longtemps de la gestion des résidus sulfurés acidogènes, en particulier lors de la fermeture d'une exploitation minière. La principale mesure prise à cet effet au cours de la dernière décennie consistait à implanter un couvert végétal sur les parcs à résidus réactifs. Bien que cette mesure ait amélioré l'aspect des sites et leur stabilité en surface, elle n'a pas pour autant éliminé le DMA. C'est pourquoi il a fallu poursuivre l'exploitation des installations de traitement longtemps après la cessation des activités d'exploitation minière. Dans certains cas, les sites miniers ont été abandonnées obligeant la province à prendre en charge leur entretien. Cependant, il est souhaitable de ne pas prolonger le traitement actif, car cela impose un fardeau financier pour une période de temps indéfini.

De 1984 à 1987, des études ont été réalisées pour déterminer l'étendue du problème du DMA au Canada. Quelque 14 000 hectares au total de stériles et de résidus à l'origine des DMA ont été localisés. La remise en état de ces zones coûterait plus de 1,5 milliard de dollars au cours des 15 prochaines années seulement. Toutefois, il faudra effectuer des travaux de recherche pour mieux cerner ce problème et pour trouver des solutions rentables. Comme les caractéristiques et la minéralogie de chaque emplacement diffèrent, it n'y a pas de solution unique et il faudra en outre mettre au point des techniques de prévision par modélisation. Une nouvelle technologie rentable de fermeture permettra aux exploitants miniers de remettre en état des bassins de stériles et de résidus et de les "abandonner" avec l'assurance, qu'à long terme, ils ne pollueront pas l'environnement.

Pour répondre au besoin collectif de mise au point de technologies appropriées pour la prévention et l'élimination du DMA, on a entrepris la réalisation du programme de Résidus acides en transformation et stabilisation (RATS). Un comité directeur* et un groupe de travail technique** (GTT) ont été mis sur pied pour représenter les intérêts de l'industrie et des gouvernements fédéral et provinciaux.

Le comité directeur a demandé au GTT de préparer un plan de recherche qui permette d'atteindre les objectifs visés par le RATS. Ces objectifs sont les suivants:

- Mettre sur pied une base de données scientifiques, techniques et économiques complète permettant à l'industrie minière et aux organismes gouvernementaux de prévoir avec assurance les besoins à long terme en matière de gestion des résidus acides réactif et des stériles;
- Mettre au point des techniques qui permettront d'exploiter et d'abandonner les parcs à résidus acidogènes et de stériles de façon prévisible, peu coûteuse, opportune et acceptable pour l'environnement.

<u>Plan de recherche</u>

Pour atteindre ces objectifs, le GTT du RATS a élaboré un plan global de quelque 40 projets regroupés sous les cinq sujets principaux suivants:

1. <u>Prévision</u>: Les dix projets de ce groupe visent à améliorer les techniques utilisées pour déterminer si une zone d'accumulation de stériles ou de résidus particulière causera en réalité un DMA. Un certain nombre de techniques on été utilisées à cette fin mais elles ne sont pas toutes fiables.

Le second volet de ces travaux vise à mettre au point un modèle mathématique simulant les processus à l'origine du DMA et d'utiliser ce modèle pour faciliter l'évaluation des systèmes permettant d'y remédier. La mise au point du modèle se fondera en grande partie sur d'autres modèles, tels que ceux élaborés dans le cadre du Programme national de recherche sur les résidus d'uranium.

- * Membres du comité directeur tableau 1
- ** Membres du groupe de travail technique tableau 2

- 2. <u>Prévention et élimination</u>: Il s'agit de la principale fonction du programme RATS. Du point de vue général, it ressort que pour prévenir le DMA, it faut d'abord mettre au point une barrière durable et efficace à l'oxygène. Sans oxygène, les sulfures ne produisent pas d'acide. Des travaux de recherche devront être réalisés pour mettre au point, évaluer et optimiser des systèmes de barrière telles que la mise en place d'une couverture aqueuse et de membranes synthétiques. Il faudra effectuer des essais en laboratoire et sur le terrain pour évaluer intégralement un certain nombre de possibilités dans diverses conditions.
- 3. <u>Traitement</u>: Actuellement, les effluents de DMA sont neutralisés avec de la chaux avant d'être déversés dans l'environnement. Les systèmes utilisés pour ce faire sont coûteux et nécessitent, ce qui est encore plus crucial, une surveillance et un entretien permanents.

Ces méthodes améliorées de prévention et d'élimination permettront de réduire considérablement les besoins en traitement; cependant, il est généralement accepté que ces méthodes ne sont pas parfaites. Dans les bassins de sedimentation, it faudra effectuer un traitement des effluents avant déversement final. Les travaux de recherche auront pour objectif de mettre au point des systèmes de traitement passif. L'un de ces systèmes consiste à utiliser des marécages pour diminuer l'acidité résiduelle et pour précipiter et stabiliser D'autres recherches devront être les métaux lourds. effectuées pour mieux comprendre les systèmes naturels en ce qui a trait à leur capacité, leur sensibilité aux changements, leur stabilité à long terme et leur coût d'utilisation.

En plus d'accomplir ces fonctions de 4. Surveillance: prévention et de traitement, il faudra mettre au point des techniques de surveillance fiables et cohérentes. L'un des principaux éléments de la surveillance est d'établir des critères de fermeture, c'est-à-dire déterminer les niveaux d'acidité, les métaux lourds, etc. qui seront acceptés par les organismes de Il faudra par la suite se mettre réalementation. d'accord sur les méthodes d'échantillonnage et les L'application de techniques de normes d'analyse. surveillance indirecte rapide pourrait réduire ces coûts de sorte que les nouvelles technologies dans ce domaine doivent être évaluées.

Transfert de la technologie: Il est important de mettre 5. au point une nouvelle technology qui soit aussi efficace. essentiel de documenter Il est systématiquement cette technology et de communiquer avec les utilisateurs. Cette fonction comprend l'analyse de la technologie existante et la mise au point d'une méthode d'accès facile aux information existantes. La coordination des travaux entrepris par toutes les parties intéressées constitue un élément central de cette fonction.

Coût du programme et calendrier

Selon les estimation, les travaux de recherche nécessaires pour atteindre les objectifs du programme peuvent être réalisés en cinq ans et au coût de 12 500 000 \$. La répartition par sujet est présentée au tableau 3. Des données plus détaillées sur les coûts par sous-sujet sont contenues dans le relevé récapitulatif de la première page et dans la description des projets individuels dans le corps du rapport. La priorité et les coûts totaux des projets sont indiqués au début de chaque section. On y trouve aussi un index des projets.

Les travaux seront vraisemblablement accomplis à parts égales par les participants et l'entrepreneur. On est à mettre au point les derniers détails des mécanismes de financement.

Le présent résumé sur le programme de recherche RATS a été publié pour informer les participants, les collaborateurs, les chercheurs, les groupes d'experts-conseils, le grand public et les autres parties qui s'intéressent aux répercussions du programme. Les parties intéressées devraient communiquer avec Michel P. Filion, coordonnateur à la Technologie de l'environnement, CANMET, 555 rue Booth, Ottawa (Ontario) KIA OG1 (613) 996-7936 ou tout membre du comité directeur ou du groupe de travail technique du programme RATS.

-xii-

TABLEAU 1

PROGRAMME DE RÉSIDUS ACIDES EN TRANSFORMATION ET STABILISATION

COMITÉ DIRECTEUR

F. Frantisak	Président du comité, Noranda Inc.
E.G. Joe	Secrétaire, Énergie, Mines et Ressources Canada
W.A. Bardswich	Énergie et Mines Manitoba
V.E. Dawson	Ministry of Energy, Mines & Petroleum Resources de la Colombie-Britannique
R. Duquette	Ministère de l'Environnement du Québec
W.C. Ferguson	INCO Lteé
W. Fraser	La Compagnie Minière et Métallurgique de la Baie d'Hudson Lteé
W. Gibson	Ministère de l'Environnement de l'Ontario
G.J. Greer	Ministère des Ressources naturelles et de l'Énergie du Nouveau-Brunswick
L.L. Sirois	Énergie, Mines et Ressources Canada
J.E. Udd	Énergie, Mines et Ressources Canada
D. Kelly	Environnement Canada
J. LeBuis	Ministère de l'Énergie et des Ressources du Québec
D.R. McKay	COMINCO Ltée
F.G. Pickard	Falconbridge Limitée
J.A. McIntosh	Ministère du Développement du Nord et des Mines de l'Ontario

-xiii-

TABLEAU 2

PROGRAMME DE RÉSIDUS ACIDES EN TRANSFORMATION ET STABILISATION

GROUPE DE TRAVAIL TECHNIQUE

W.C. Ferguson K. Wheeland	Président du comité, INCO Ltée Président adjoint, Centre de recherches Noranda
E.G. Joe	Secrétaire, Énergie, Mines et Ressources Canada
W. Scheding N. Davé R.E. Michelutti D. Cook W. Fraser	Curragh Resources Corp. Énergie, Mines et Ressources Canada Falconbridge Limitée Énergie et Mines Manitoba La Compagnie Minière et Métallurgique de la
K. Ferguson J. Errington	Baie d'Hudson Ltée Environnement Canada Ministry of Energy, Mines and Petroleum Resources de la Colombie-Britannique
R.T. Gardiner R. Patterson R.S. Siwik M.C. Campbell J.S. Scott	COMINCO Ltée Mines d'Argent Equity Limitée Centre de recherches Noranda Énergie, Mines et Ressources Canada Environnement Canada
S. McEwan	Ministère des Ressources naturelles et de l'énergie du Nouveau-Brunswick
B. Bell J.A. Hawley R. Tervo JM. Robert	INCO Ltée Ministère de l'Environnement de l'Ontario Énergie, Mines et Ressources Canada Ministère de l'Énergie et des Ressources du Québec

TABLEAU 3

RÉSUMÉ DES PROJETS RATS

	Coûts totaux du programme	12	500	000	\$
	Fonds de prévoyance	1	135	000	\$
-	Transfert de la technologie		225	000	\$
_	Surveillance		385	000	\$
-	Traitement	1	285	000	\$
-	Prévention et élimination	5	705	000	\$
-	Prévision	3	765	000	\$

TABLE OF CONTENTS

		Page
FORE	EWORD	i
AVAN	NT-PROPOS	viii
SUM	MARY OF RATS PROJECTS	1
1.	PREDICTION TECHNIQUES	2
	1.1 Chemical Prediction	3
	1.2 Modelling	18
2.	PREVENTION AND CONTROL	22
	2.1 Wet Barriers/Tailings	23
	2.2 Dry Barriers/Tailings	31
	2.3 Waste Rock	39
3.	TREATMENT	47
	3.1 Downstream Passive	48
	3.2 On site Treatment	50
4.	MONITORING	54
5.	TECHNOLOGY TRANSFER	67

TABLE DES MATIÈRES

- ---

			<u>Page</u>
FORE	WORD		i
AVAN	TI-PRC	POS	viii
RÉSU	MÉ DE	S PROJETS DE RATS	i viii 1 2 3 18 22 23 31 39 47 48 50 54
1.	TECH	NIQUES DE PRÉVISION	2
	1.1	Prévision des processus chimiques	3
	1.2	Modélisation	18
2.	PRÉV	ENTION ET ÉLIMINATION	22
	2.1	Barrières humides/résidus	23
	2.2	Barrières sèches/résidus	31
	2.3	Stériles	39
3.	TRAI	TEMENT	47
	3.1	Traitement passif en aval	48
	3.2	Traitement sur le terrain	50
4.	SURV	EILLANCE	54
5.	TRAN	SFERT DE LA TECHNOLOGIE	67

.

SUMMARY OF RATS PROJECTS

TOPIC/	TOTAL			1000 (01	1001 (00	1000 (0
SUBTOPIC	\$K	1988/89	1989/90	1990/91	1991/92	1992/9
1. PREDICTION TECHNIQUES						
1.1 Chemical Prediction	1835	335	320	730	350	100
1.2 Modelling	1930	140	465	690	485	150
TOTAL PREDICTION TECHNIQUES	3765	475	785	1420	835	250
2. PREVENTION BARRIERS & CON	IROL					
2.1 Wet Barriers/Tailings	2500	510	640	500	400	450
2.2 Dry Barriers/Tailings	1485	240	270	470	280	225
2.3 Waste Rock	1720	15	175	440	680	410
TOTAL PREVENTION/CONTROL	5705	765	1085	1410	1360	1085
3. TREATMENT						
3.1 Downstream Passive	435	50	135	190	60	0
3.2 On site Treatment	850	125	225	350	150	0
TOTAL TREATMENT	1285	175	360	540	210	0
4. MONITORING						
TOTAL MONITORING	380	155	125	85	0	20
5. TECHNOLOGY TRANSFER						
TOTAL TECHNOLOGY TRANSFER	225	125	25	25	25	25
LATOT	11365	1695	2380	3480	2430	1380
CONTINGENCY	1135	105	120	20	370	320
GRAND TOTAL FOR PROGRAM	12500	1800	2500	3500	2800	1700
						====

.

- -

Page

1. PREDICTION TECHNIQUES

PROJECT	RANKING	<u>TOTAL (\$K)</u>	L
1.1 CHEMICAL PREDICTION			
1.11 AMD from Waste Rock - Literature Review	I	50	3
1.12 Compile AMD Prediction: Tailings and Rocks	I	50	5
1.13 Evaluate Prediction Techniques - Rocks	I	200	7
1.14 Field Evaluation Rock Hydrogeochemistry	II	650	9
1.15 Field Evaluation AMD Production - Open Pits	III	300	11
1.16 Evaluation of Predictive Techniques - Tailings and Waste Rock	I	200	13
1.17 Hydrogeochemical Investigation of Waite-Amulet Reactive Tailings	I	235	15
1.18 Hydrogeochemical Characterization of the Faro Tailings and Sub-Site	I	150	17
SUBTOTAL CHEMICAL PREDICTION		1835	
1.2 MODELLING			
1.21 Model Development Tailings/ Verification of Tailings Models	s I	1380	18
1.22 Reactive Waste Rock and Open Pit Modelling	I	550	20
SUBTOTAL MODELLING		1930	
TOTAL PREDICTION TECHNIQUES		3765	

Date: Feb. 3, 1988 Page 1 of 2

TOPIC	PREDICTION	 SUB-TOPIC	CHEMICAL	PREDICTION	
		_			*****

PROJECT	r no <u>1.11</u>	BUDGET	\$ 50	_k (1988) \$	<u>50</u> k (Total)
TITLE:	AMD FROM WA	ASTE ROCK-LITERATURE	REVIEW		

OBJECTIVES: <u>To develop a state-of-the art understanding of the</u>

process of acid generation from waste rock.

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Evaluate recent CANMET literature reviews of bioleaching for applicability to AMD from waste rock.	88-89	-
2.	Conduct additonal literature reviews to fill identified information gaps	88 - 89	50

BACKGROUND:

The process of acid generation from tailings is reasonably well understood compared to the process in waste rock. Important differences between the two processes include oxygen and water transport and geochemical reactions rates. These differences will be reflected in prediction techniques, both chemical techniques and models, and in prevention/control strategies. This study will establish the state of understanding of acid generation from waste rock for future RATS projects.

OUTPUT	:
--------	---

State of the art understanding of AMD generation from waste rock.

PRIORITY:	I	II	III	Rationale: A thorough understanding of AMD
				from waste rock is required to develop solutions
				to the problem.

Date: Feb. 3, 1988 Page: 2 of 2

COPIC	PREDICTION	SUB-TOPIC	CHEMICAL PREDICTION

 PROJECT NO.
 1.11
 BUDGET:
 50
 k (1988)
 50
 k (Total)

 TITLE:
 AMD FROM WASTE ROCK-LITERATURE REVIEW

ADDITIONAL DETAILS:

1. Decision to conduct this literature review depends on whether CANMET review

of bioleaching is adequate to cover AMD from waste rock.

2. Review of the CANMET publications could be conducted by the chemical prediction subcommittee.

3. Relevant literature from coal mine sector should also be included (ie. USBM studies).

4. Computer databases and direct contact with leading researchers should be used.

5. A list of questions provided by the subcommittee for the literature reviewers would be useful to focus the search.

6. Key references are: Cathles, L.M. (1982) "Acid Mine Drainage" Earth and Minerals Sciences, Penn, State Univ., Vol. 51, No. 4, p.37-41.

Harries, J.R. and A.I.M. Ritchie (1985) "Pore Gase Composition in Waste Rock

Dumps Undergoing Pyritic Oxidation" Soil Science, Vol. 140, No. 2, p.143-152.

7. SRK has conducted a literature review for the American Mining Congress.

8. Project includes literature search for field procedures in waste rock (link

to project 4.5).

Date: Feb. 3, 1988 Page 1 of 2

TOPIC PREDICTION

SUB-TOPIC CHEMICAL PREDICTION

 PROJECT NO
 1.12
 BUDGET \$ 50
 k (1988) \$ 50
 k (Total)

 TITLE:
 COMPILE AMD PREDICTION:
 TAILINGS AND ROCKS

OBJECTIVES: To compile existing AMD prediction information for waste rock

dumps, open pits and tailings in Canada.

M	AJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Evaluate results of B.C. AMD Task Force compilation of AMD prediction and information for waste rock, open pits and tailings in B.C. (Go/No Go)	88-89	-
2.	Conduct a survey of AMD prediction information for waste rock, open pits and tailings across Canada	88-89	50

BACKGROUND:

The prediction of AMD for waste rock dumps and open pits is more difficult than for tailings due to the heterogeneity of rock dumps and pits. Comparison of pre-mine predictions to post-mining water quality for a large number of sites will be required to verify chemical prediction techniques for all waste types. This study will compile all available prediction and water quality information as a first attempt to verify prediction tests. Candidate sites for other projects (1.13 & 1.14) will also be identified.

OUTPUT:

State of pre-mine prediction for waste rock, open pits and tailings in Canada.

III

PRIORITY:

 (\mathbf{I})

II

Rationale: Defining state of art is first step in developing accurate predictions.

				Date: Page:		1988 of 2
TOPIC	ICPREDICTION	SUB-TOP	IC	EMICAL F	REDICTION	······································
	ROJECT NO. 1.12 BUI	DGET: \$	50k	(1988)	\$ ⁵⁰	k (Total)
ADDI	ITIONAL DETAILS:					
1.	Project is contingent on success o	f B.C. AMD T	ask Force	question	naire in	compiling
<u></u>	useful information on pre-mine pre-	diction data	. The as	sessment	c of the E	I.C.
	experience could be conducted by t	he chemical	predictior	u subcom	nittee.	
2.	Support from provincial agencies a	nd national	and region	al minin	ng associa	tions is
	required for survey.					
_3	B.C. AMD Task Force questionnaire	could be use	d as a gui	de in p	reparing s	survey
	documents.					
4.	B.C. Research have extensive files	on pre-mine	predictio	on but, a	authorizat	ion from
	companies and sample location info	ermation are 1	required t	o access	this inf	ormation.
5.	Results of this survey will be use					
6.	Environmental impact reports for n	·····				
7.	Key reference is the B.C. AMD Task					
	to the minutes of the 7th RATS-TWG		, a			
8.		arly interes	ted in sul	lphide /	carbonate	ratio
	and paste pH for samples of fresh					
<u> </u>			<u></u>	<u>_</u> .=,	<u></u>	

Date:F<u>eb. 3, 1988</u> Page 1 of 2_____

- -

TOPICPREDI	CTION	SUB-TOPIC_CHEMICAL	PREDICTION	1
PROJECT NO	1.13 BUDO	GET \$k (1988)	\$_ ²⁰⁰ _k	(Total)
TITLE:EVAL	JATE PREDICTION TECHNIO	UES-ROCKS		
OBJECTIVES:	To conduct a laborate	ory investigation of selected	AMD predic	ction
	techniques for waste	rock sites and compare test	results to	field
	water quality.			
MAJOR STEPS	(INCL. GO/NO GO DEC	CISION)	YEAR	\$k
	laboratory investigatio for up to 10 waste roc	n of selected AMD prediction k sites in Canada, and	89-90	75
comparison scale test		ld water quality or field	90-91	75
2. Compile re	sults and prepare repor	t	91-92	50
BACKGROUND:				
The survey of AM pits will likely	find only a few mines expand the data base for	on (Project 1.12) for waste r with comprehensive predictio or selected sites and will ve	n informati	on.
OUTPUT:				
Report describin and confidence	-	nd guide for sampling and tes	ting proced	ures
PRIORITY: (I II III	Rationale: Identifica prediction tests are nece Projects.	tion of eff ssary for f	•

Date:	Feb.	3, 19	88	
Page:	2	of	2	

TOPIC	PREDICTION
-------	------------

SUB-TOPIC (

 PROJECT NO.
 1.13
 BUDGET: \$____k (1988) \$_200_k (Total)

 TITLE:
 EVALUATE PREDICTION TECHNIQUES-ROCKS

ADDITIONAL DETAILS:

- Study follows project 1.16 that selects testing procedures, and project 1.12 that identifies candidate sites.
- Related non-RATS work includes verification studies by USBM and U. of West Virginia in coal fiels of Appalachia.
- 3. Selected sites should include those with a potential to produce AMD, but, also high carbonate content; sites containing a range of acid producing and consuming rock types; sites with a potential to produce acid, but, with low sulphur; and sites with acid production and consumption in near balance.
- Topic is a key goal of B.C. AMD Task Force. Research should be coordinated with that group.
- 5. Key reference is: Ferguson, K.D. and P.M. Erickson "Will it generate AMD? An Overview of Methods to Predict Acid Mine Drainage" Preceedings of Acid Mine Drainage Seminar/Workshop. Halifax, Nova Scota, March 23-26, 1987, p. 215-244.

Date: Feb. 3, 1988 Page 1 of 2

TOPIC	PREDICTION	SUB-TOPIC_	CHEMICAL	PREDICTION	

PROJECT	NO	1.14		BUDGET	\$	-	k	(1988)	\$_	650	_k	(Total)
TITLE:	FIELD	EVALUATION	ROCK	HYDROGEOC	HEM	ISTRY				·····		

OBJECTIVES: To improve understanding of acid production in waste rock dumps.

MAJ	OR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Conduct a field study investigating mechanisms of acid production at two waste rock dumps in Canada (Go/No Go)	89-90	400
2.	Continue field study of waste rock.dumps	90-91	200
3.	Compile results of field study into report	91-92	50

BACKGROUND:

The hydrogeochemistry of waste rock dumps is complex and not completely understood. This study will fill some of the information gaps by studying two dumps in detail. In particular, the complex interaction of rock mineralogy, bacteria growth, oxygen transfer, and water infiltration will be examined in several zones of the dumps. No similar study of this detail has been conducted at a waste dump in Canada.

OUTPUT: Report descr field technic	-			s, results and conclusions, and a manual of udies.
PRIORITY:	I	II	III	Rationale: Information gaps must be filled and effective field techniques developed to support prediction and control.

Date: Feb. 3, 1988 Page: _____ of ____

TOPIC	PREDICTION	SUB-TOPIC	CHEMICAL PREDICTION

PROJECT NO. <u>1.14</u> BUDGET: \$ - k (1988) \$ ⁶⁵⁰ k (Total)

TITLE: FIELD EVALUATION ROCK HYDROGEOCHEMISTRY

ADDITIONAL DETAILS:

1. Study should be initiated after completion of project 1.11 and 1.12 that identify information gaps and candidate sites respectively.

2. Should consider dumps with significant data and instrumentation to save resources

(e.g., Equity and Westmin).

3. Field procedures and results from Australia (Rum Jungle) and Scandinavia (Sweden

and Norway) waste dumps, and RATS tailings study (project 1.17) and USBM coal mine

research may be of value.

4. Key references include:

Harries, J.R. and A.I.M. Ritchie (1981). "The Use of Temperature Profiles

to Estimate the Pyritic Oxidation Rate in a Waste Rock Dump from an Opencut Mine"

Water, Air, and Soil Pollution, Vol. 15, p. 405-423.

Erickson, P.M. and K.J. Ladwig (1986) "Field Observations of Potential Acid.

Sources Within Surface Mine Backfills" W. Va. AMD Task Force Symposium

5. Field procedures to be identified in project 1.11 and monitoring topic projects.

	Date: <u>Feb. 8,1988</u> Page 1 of <u>2</u>
SUB-TOPIC	CHEMICAL PREDICTION

PROJECT NO	1.15	_BUDGET \$_		k (1	1988) \$	300	k (Total)
TITLE:	FIELD EVALUATION AM	D PREDICTION	- OPEN	PITS			····
OBJECTIVES:	To_develop_a	o_understandi	ng of a	icid produ	uction f	rom	
	open_pits						

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Conduct a field study investigating mechanisms of acid production at three open pits in Canada (GO/NO GO DECISION)	1990/91	150
2.	Continue field study of open pits	1991/92	100
з.	Compile results of field study into report	1992/93	50

BACKGROUND:

TOPIC PREDICTION

The state of knowledge of acid production from open pits is probably the poorest of all mining sources. Control techniques are also poorly developed. This study will fill some information gaps. If combined with studies in project 1.14, will develop empirical relationships for acid production in open pits and waste rock dumps. The study will identify the relative contribution of AMD from pit walls, berms, slide material etc. in open pits. Results will be used to calibrate/verify models.

OUTPUT: Report descr for future s	-		-	, conclusions, and manual of field techniques
PRIORITY:	I	II	III	Rationale: Information gaps must be filled and empirical models are important tools for prediction

Date: Feb. 8, 1988 Page: <u>2</u> of <u>2</u>

•

TOPIC	PREDICTION SUB-TOPIC CHEMICAL PREDICTION
İ	DJECT NO. <u>1.15</u> BUDGET: \$ - k (1988) \$ 300 k (Total) TLE: FIELD EVALUATION AMD PREDICTION - OPEN PITS
ADDIT	CIONAL DETAILS:
1.	Study should be initiated after project 1.11 and 1.12 that identify
	information gaps and candidate sites respectively.
2.	If possible, the same sites for project 1.14 should be used allowing
	comparison of acid production rates and mechanisms for open pits and
	waste dumps.
3.	Non-RATS work includes studies conducted at the Mt. Washington mine in
	B.C. by provincial Ministry of Environment and Environment Canada and at
	several open pits including Brunswick No. 6 by Noranda.
4.	Some data exists for B.C. open pits (Equity, Westmin and Noranda Bell).
5.	Sites selected should include both abandoned and operating mines.
6.	Sampling of pit walls in both fractured and unfractured zones is suggested
	to determine the depth of oxidation.
7.	Possible link to project 2.12A Underwater Disposal in Flooded Open Pits.
8.	Must be careful in site selection to differentiate between AMD from other
	sources i.e., tailings ponds and waste rock.

						-	e: <u>Feb</u> e 1 of	. 8, 1988 2
TOPIC	PREDI	CTION		SUB-'	TOPIC	CHEMICAL	, PREDIC	TION
PROJECT 1	NO	1.16	BUDGET	\$70	k (1	988)\$	200 }	k (Total)
TITLE:	EVALU	ATION OF PR	EDICTIVE TECHN	IQUES - T	AILINGS AN	ND WASTE I	ROCK	
OBJECTIVE	5: _	potential	fy and evaluate for tailings and seepage					<u>aminat</u> ed
MAJOR ST	TEPS (I	INCL. GO/N	IO GO DECISI	ON)			YEAR	\$k
	_		tion technique ck samples (GO	-			1988/89	70

1989/90

100

30

3. Develop test protocols and confidence limits for prediction 1990/91

Test selected methods on wide range of tailings across

BACKGROUND:

Canada

2.

AMD prediction tests have been used in Canada for over a decade, but, no comprehensive program to evaluate their effectiveness has been conducted. Researchers have recently developed new approaches for prediction that may enhance existing well used techniqes. This study will both evaluate all current techniques and verify the most promising tests for tailings and waste rock to produce contaminated run off and seepage.

OUTPUT:

A manual describing recommended AMD testing procedures, advantages, disadvantages, and confidence limits for tailings prediction.

PRIORITY:	I	II	III	Rationale: Effective prediction techniques
				must be developed if new mines are to avoid generating AMD

RATS	PROJECT	SUMMARY

				Date: <u>Feb.</u> Page:	8, 1988 of 2
TOPIC	PREDICTIO)N	SUB-TOPIC_	CHEMICAL PRED	ICTION
PROJ	ECT NO1.	.16	BUDGET: \$70	k (1988) \$ 20	0 k (Total)
				INGS AND WASTE ROCK	
ADDITI	ONAL DETAILS	:			
<u>1. Co</u>	ntract issued t	o Coastech Rese	arch of B.C. by CA	NMET for step 1 of pr	oject.
2. Ly	simeter study h	being conducted	by CANMET in paral.	lel to Coastech work.	
3. Re	lated non-RATS	studies include	EPA contract to F	. Caruccio (U. of S.	Carolina),
an	d Ontario MOE	(Hawley) and EP-	Pacific Region (Fe	rguson) ongoing studi	es.
	••••••••••••••••••••••••••••••••••••••			quired to complete st	ep 2
			AMD prediction te		
<u>5. Sa</u>	mples tested m	ist span a wide	range of mineralog.	ies and potential to	
ge	nerate AMD.				
<u>6. st</u>	ep 2 of project	t could be coord	inated by subcommi	ttee	
	····				
<u></u>					
					<u></u>
•/					
• • • • • • • • • • • • • • • • • • •					
· <u> </u>			<u></u>		

Date: Feb. 8, 1988

Page 1 of 2

TOPIC PREDICTION

SUB-TOPIC FIELD TRIAL HYDROGEOCHEMICAL

OBJECTI	VES:	Develop	a better understanding	g of hydrogeochemica	al processes	
TITLE:	HYL	ROGEOCHEMICA	L INVESTIGATION OF WA	ITE AMULET REACTIVE	TAILINGS	
PROJEC	T NO	1.17	BUDGET \$ 9	0k (1988)	\$ <u>235*</u> k	(Total)

and changes which occur in an acid-generating tailings area.

MAJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k				
1986/87 completed *	1986/87	*				
1. 1988 Field season Piezometer sampling Flow monitoring, seepage overland flow Sampling seegage and overland flow Monitor water table fluctation with rainfall events Infiltration and permeability tests Gaseous O ₂ profiles along the bench	1988/89	90				
2. 1989 As above	1989/90	70				
3. 1990 As above	1990/91	75				
* Based on Noranda Research outline proposal to RATS TWP 6-7 Oct. 1987 \$235k required for 1988/90 program						

BACKGROUND:

This is a five year project (1985/89) to develop a hydrogeochemical baseline field study which will improve long-term tailings management practices. The results of this baseline field study project will provide data to develop predictive models and assess engineered covers for control technology.

-			chemical conditions, for reactive tailings with tailings management practices.
PRIORITY:	I	II	III Rationale: Baseline essential to further studie * plus \$405k spent 1985/87, equalling \$640k total.

			Date: <u>Feb. 8, 1988</u> Page: <u>2</u> of 2
TOPIC	PREDICTION	SUB-TOPIC	FIELD TRIAL HYDROEOCHEMICAL
		BUDGET: \$ INVESTIGATION OF WAITE AMU	k (1988) \$ 235 *k (Total
ADDITION	NAL DETAILS:		
		investigation of reactiv	
		anda Quebec 1985 program.	
	· · · · · · · · · · · · · · · · · · ·	ant S., Hydrogeochemical i	
tai	lings at Waite Amulet	tailings site, Noranda, Qu	ebec Phase 2 - 1986
pro	gram Noranda Research	Centre, July 1987.	
<u>,,,</u> ,			
* pl	lus \$405k spent 1985/87	, equalling \$640k total.	······································
	· · · · · · · · · · · · · · · · · · ·		
<u> </u>			
		·····	

TOPIC		PREDICTION		Page 1 of <u>1</u> (See also Report 60602) SUB-TOPIC <u>CHEMICAL PREDICTION</u>							
PROJEC	T NO	1.18	BUDGET	\$	75	k	(1988)	\$	150	k (Total)
TITLE:		HYDROGEOCHEMIC	AL CHARACTERIZA	FION	OF THE	FARO	TAILINGS	AND	SUB-S	SITE	
OBJECTI	VES:		ermine the hydrod							ndmer	1t

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Preliminary characterization of tailings and sub-site (already completed by Curragh and EPS)	1986/87	-
2.	Phase I detailed hydrogeochemical characterization of Faro tailings deposits and sub-site (GO/NO GO DECISION)	1988	75
3.	Phase II detailed hydrogeochemical characterization of Faro tailings deposit and sub-site	1989	75

BACKGROUND: Acid generation has been developing in the Original and Second tailings impoundments at Faro since placement was stopped in 1982. Preliminary acid generation evaluations have been done in 1986 and 1987 by Curragh and EPS respectively. A detailed characterization study allows natural acid generation and transportation to be determined. This forms the base conditions for the evaluation of effects of alternative covers (sub-topics 2,12, 2.13 & 2.21) and modelling of their effects over the long term (sub-topic 1.23). This study examines a tailings facility in the early stages of acid generation and therefore, is different from project 1.17 which involves a well established acid generating tailings

OUTPUT: Tailings acid generation characterization and tailings and sub-site AMD transportation and geochemical retardation characterization for use as base case data for assessment of effects of alternative covers and modelling of both acid generation and acidic product migration. PRIORITY: II III Rationale: Allows effects of alternative

covers to be modelled.

Date: Feb. 8, 1988

Date: Feb. 4, 1988

					Page 1 of 2				
TOPIC	PRED	ICTIVE MODELLI	ING	SUB-TOPIC	MODEL DEVELOPMENT TAILS				
PROJEC	T NO	1.21	BUDGET \$	90 k	(1988) \$ <u>1380</u> k	(Total)			
TITLE:	MODE	L DEVELOPMENT	TAILS/VERIFICAT	TION OF TAILING	S MODELS				
OBJECTI	VES:	To develop	a mathematical	model to predi	ct acid generation i	n			
		sulphide t	ailings and to e	evaluate the ef	fectiveness of vario	<u>us</u>			
		<u>control te</u>	<u>chnologies</u>		······				

M	AJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Phase 1 1.1: Develop Objectives and specifications - Prepare draft document - Hold meetings/workshops industry/Govt. - Finalize document	1988/89	90
	<pre>1.2: <u>Review and Select Models</u> - Identify Models - Identify Deficiencies</pre>	1989/ 90	7 0
2.	GO/NO GO DECISION <u>Phase 2 Model Development</u> - Develop/Modify component modules - Calibrate model and identify important parameters	1989/90 1990/91 1990/91	295 100 240
3. 4.	Phase 3 Measurements and model validation Phase 4 Technology Transfer	1990/91 1991/92 1992/93	335 100 50

BACKGROUND:

Currently there is no unified model for reactive tailings. Models such as RATAP, CANECT etc., to be evaluated. A singular model having modules for varous sources and transportation terms to be developed to effectively predict various tailings management options.

OUTPUT:		<u></u>					
Predictive options.	model	capable	of	evaluating	the	effectiveness	of various tailings disposal
PRIORITY:	. [ī	II	III			Model development is an essential gral part of RATS program.

		IS PROJECT SUMMARY	. .	Feb. 4, 1988		
			Date: Page:	2	of 2	
TOPIC	PREDICTIVE MODELLING	SUB-TOPIC		T.OPME		
				u		
PROJ	ECT NO. 1.21	BUDGET: \$ 90	k (1988) s	1380	k (Total	
TITL		S/VERIFICATION OF TAILIN	•			
		DYVERTICATION OF TAILER	IGS MODELS			
			·····			
ADDITI	ONAL DETAILS:		*****			
<u>1. Mo</u>	del to be calibrated at two	sites, possibly at Waite	Amulet and		 	
Fa	ro tailings.	······································				
2. Mc	del validations at three add	litional sites.				
3. CI	NMET has a contract (\$50k -	1988) with SENES titled	, "Adaptation	of		
RF	ATAP Model For Base Metal Tai	lings"				
4. Ir	ncluded above are funds for F	'aro's tailings model de	velopment and		-	
	valuations					
	evelopment 1989 - 100 k				······································	
Ex	valuation 1990 140 k		······································		<u>. </u>	
		· · · · · · · · · · · · · · · · · · ·				
			<u></u>			
		······				
			· · · · · · · · · · · · · · · · · · ·			
+			··			

Date: Feb. 4, 1988 Page 1 of 2

 TOPIC
 PREDICTIVE MODELLING
 SUB-TOPIC
 MODEL DEVELOPMENT, WASTE ROCK/OPEN PIT

 PROJECT NO
 1.22
 BUDGET \$ - k (1988) \$ 550 k (Total)

 TITLE:
 REACTIVE WASTE ROCK AND OPEN PIT MODELLING

 OBJECTIVES:
 To develop a mathematical model to predict acid generation and

associated metal loadings in reactive waste rock and open pit

and evaluation of various control technologies.

MA	AJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Phase 1		
	<pre>1.1 Develop objectives and specification - Refer to phase 1 Project 1.21</pre>	1988	-
	<pre>1.2 Review and select model - Identify models - Identify deficiencies</pre>	1989	20 30
	GO/NO GO DECISION		
2.	 Phase 2 Model Development Develop/modify component modules Calibrate model and identify important parameters Refer to 1.14 and 1.15 	1990 1991	100 100
3.	Phase 3 Measurements and validation	1991/92	250
4.	Phase 4 Technology Transfer	1993	50

BACKGROUND:

Currently there is no model for waste rock and open pits. Because of the extreme, heterogenity of waste rock piles this project will be re-evaluated during phase 1 of project 1.2 1 for a Go/No Go decision.

OUTPUT: Model capable of predicting the effectiveness of various waste rock and open pit management options.

PRIORITY:

I

II

- III R
 - Rationale: Model development is an essential and integral part of RATS program

					RAT	S PRC	JECI	r sum	MAR	Y						
												Date	:	Feb.	4, 1988	
												Page	:	2	of <u>2</u>	
TOPIC	τ τ	סטבטבט		ากราวา	NG		SUE	3-TOP	TC	MODET	נשמ		MENUD	ຆຉ໑ຠ	E ROCK/	
				100000					- ~-	HODEL			PILLIVI		PIT	
																-
PRC	JECT NO		1.22			BUDG	ET:	\$	_	k	(1	988)	Ś	550	k (Total)
											(-	200,	Ť		. (10041	• /
TIT	rle:	REACTIV	JE WAS	re roc	K AND	OPEN	PIT M	ODELL	ING						·····	-
ADDIT	FIONAL E)ETAI	<u>'s</u> :													
<u>1.</u>	At the en	nd of	Phase	l task	1.21	, it s	hould	l be e	val	uated	whe	ther	the			
	Reactive	Taili	ngs Mo	del co	ould be	e tran	sport	ed fo	or w	aste r	ock	/oper	n pit	•		
2.	A Go/No	Go dec	ision	should	l also	be ma	ide ea	arly (end	of Ph	ase	1, t	ask	1.21)	_	
	whether	waste	rock/o	pen pi	lt scer	nario	shoul	ld be	mod	elled,	fo	r in	prac	tice		
	there is	extre	me het	eroger	neity :	in ter	ms of	f cont	ent	s, par	tic	le si	ze a	nd	<u></u>	_
	distribu	tion e	tc.		······································											-
•••••••		. <u> </u>													·	
	······································															
										,-		<u> </u>		···		
<u></u>																
										·					·	
	<u> </u>															
						<u> </u>										
									<u> </u>							

2. PREVENTION AND CONTROL

PROJECT	RANKING	TOTAL (\$K)	
2.1 WET BARRIERS/TAILINGS			
2.11 Existing Underwater Disposal Sites	I	460	23
2.12 Underwater Disposal in Flooded Open Pits	I	700	25
2.13 Flooding of Existing Tailings Areas	I	650	27
2.14 Establish Vegetative Wetlands over Tailings	I	550	29
SUBTOTAL WET BARRIERS/TAILINGS		2500	
2.2 DRY BARRIERS/TAILINGS			
2.21 Engineered Dry Covers Tailings (and Waste Rock)	I	800	31
2.22 Assessment of Hardpan	III	600	33
2.23 Documentation of Disposal Methods for Tailings and Waste Rock	III	50	35
2.24 Vegetation Manual	I	35	37
SUBTOTAL DRY BARRIERS/TAILINGS		1485	
2.3 WASTE ROCK			
2.31 Field Evaluation of Dry Covers on Waste Rock	I	600	39
2.32 Laboratory Insitu Blending/ Segregation of Waste Rock	I	300	41
2.33 Cellular Dump Construction	I	670	43
2.34 Alkaline Trenches	II	150	45
SUBTOTAL WASTE ROCK		1720	
TOTAL PREVENTION/CONTROL		5705	
• • •			

<u>Page</u>

Date: Feb. 4, 1988 Page 1 of 2

TOPIC PREVENTION AND CONTROL SUB-TOPIC WET BARRIERS

PROJECT NO 2.11 BUDGET \$ 160 k (1988) \$ 460 k (Total) TITLE: EXISTING UNDERWATER DISPOSAL SITES Establish feasibility of underwater disposal of reactive tailings OBJECTIVES: - Evaluate representative existing sites - Establish general criteria for disposal - Propose demonstration projects MAJOR STEPS (INCL. GO/NO GO DECISION) YEAR \$k Review potential sites, define evaluation parameters, 1. conduct preliminary assessment of ~ 10-12 sites 160 1988 2. Conduct more detailed examination of 3-4 sites 1989 250 з. Evaluate and report results. Propose disposal criteria and evaluation projects. Includes consideration of in-lake, in-pit, in-pond and under-water wetlands systems 1989 50

BACKGROUND:

Water cover should minimize the transport of oxygen, hence limit acid generation.⁻ Systematic evaluation of existing sites (Buttle Lake in B.C., Mandy Lake in Manitoba, etc.,) will provide a basis of a) assessing benefits b) developing design criteria.

OUTPUT: An evaluation report with a) an assessment of effectiveness, b) proposed disposal criteria, c) recommendations for demonstration projects. PRIORITY: I II III Rationale: Required for guiding a) technique development and b) interim disposal practise.

RATS	PROJECT	SUMMARY

Date:	Feb. 4,	1988
Page:	2	of _2

TOPIC PREVENTION AND CONTROL SUB-TOPIC WET BARRIERS

PROJECT NO. 2.11 BUDGET: \$ 160 k (1988) \$ 460 k (Total)

TITLE: EXISTING UNDERWATER DISPOSAL SITES

ADDITIONAL DETAILS:

1. Literature review of sites in other countries should be conducted.

2. This project should precede the other "Wet Barrier" studies.

Date: Feb. 4, 1988 Page 1 of 2

PREVENTION AND CONTROL TOPIC

SUB-TOPIC WET BARRIERS

PROJE	ECT NO	2.12	BUDGET \$	100	_k (198	8) \$ <u>70</u>	00 k	(Total)				
TITLE	E: UNDER	WATER DISPOS	AL IN FLOODED OPE	N PITS								
BJECI	CIVES:	Evaluate d	Evaluate disposal in open pits, related to									
		- properti	- properties of waste material									
		- hydrolco	jical and other ch	aracterist	ics of p	it						
		- benefits	s of inert covers,	dense wat	er zones	, etc.,	over wa	.ste				
MAJO	OR STEPS	(INCL. GO,	/NO GO DECISION	N) vired)		Y	EAR	\$k				
1.	Conduct laboratory and bench evaluation of characteristics							50				
l.(a)	Review e	xisting open	pits *					50				
2.			stics of pit (con Install piezometer		,	19	988/89	100				
3.	Deposit liquid c		al (with solid or	modified		19	989	50				
4.	Monitor	changes in wa	ater chemistry in	pit and ad	ljacent	1	989/92	300				
4.(a)	Need to	evaluate fur	ther - ongoing stu	udies.				100				
5.	Issue evaluation report with design criteria. Include data from previous studies , BMS No. 6, Equity etc. 1992							50				
		ined could in merchic l	nclude (solid) org	ganic or al	lkaline							

BACKGROUND:

The deposition of reactive materials in a flooded open pit may opportunistically eliminate acid generation and transport, particulary if further steps are taken to minimize oxygen transfer (solid inert covering material, meromixic layers....)

OUTPUT:

A comparison of laboratory and full-scale results for alternative disposal design and recommendations for designing effective in-pit disposal systems. [I] III

PRIORITY:

- ΙI
- Rationale: Should parallel Project 2.11 &

2.13

Date:	Feb.	4,	1988	
Page:	2		of _	2

TOPIC	PREVENTION & CONTROL	SUB-TOPIC	WET BARRIERS
-------	----------------------	-----------	--------------

PROJECT NO. 2.12 BUDGET: \$ 100 k (1988) \$ 700 k (Total) TITLE: UNDERWATER DISPOSAL IN FLOODED OPEN PITS

ADDITIONAL DETAILS:

- 1. Conduct literature search to determine what other countries have done
- e.g. Sweden and Norway.
- 2. Should have high priority to capitalize on work to be performed in

Quebec during 1988.

3. Heath Steele also will be dumping waste rock into an open pit, as well as

ongoing work by Equity Silver.

These experiments should be properly designed from the outset; i.e.

this ongoing work needs to be coordinated or guided right now.

Date: ______ Feb. 4, 1988

Page 1 of 2

TOPIC PREVENTION AND CONTROL

SUB-TOPIC WET BARRIERS

 PROJECT NO
 2.13
 BUDGET \$ 50
 k (1988) \$ 650
 k (Total)

 TITLE:
 FLOODING OF EXISTING TAILINGS AREAS

 OBJECTIVES:
 Evaluate disposal in flooded tailings deposition areas.

MP	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Characterize material(s) geochemically and via column leach test, etc.	1988/89	75
2.	Establish and monitor several field plots with varying depths of water.	1989/92	200
з.	Flood a large existing tailings area, (with baffles, etc. to minimize transport of oxygen and/or particulates) and monitor changes in water and tailings chemistry. *	1989/92	300
4.	Issue an evaluation/design recommnedations report.	1992	75
*	presumption that structural costs incurred by owner		

BACKGROUND:

Storing of deposited tailings underwater in a tailings structure may be attractive, if the relatively shallow water depth is sufficient to control oxidation, taking into account the risk of solar and wind mixing, changes in water depths seasonally etc.

	-	•		and full-scale t ee of reaction o	-	viding de:	sign		
PRIORITY:	II	II	III	Rationale:	Should	parallel	Project	2.11	8

TOPI	C PREVENTION AND CONTROL SUB-TOPI	Date: Page: C WET BARRIERS	
	OJECT NO. 2.13 BUDGET: \$ 50 TLE: FLOODED TAILINGS AREAS	k (1988) \$	650 k (Total)
ADDI	TIONAL DETAILS:		
1.	Literature search for work in other countries to	be done first.	
2.	Curragh Resources will be attempting these tests	s, and should be su	apported.
3.	Flooding of old oxidized tailings versus fresh u evaluation.	noxidized tailing:	s needs
4.	Method of operation needs to be determined i.e.	are tailings disch	narged
•••••••	into low lying wet areas during life of operation	on and kept constan	ntly wet,
	or are tailings discharged as normal practice an	nd flooded upon aba	andonment.

Date: Feb. 4, 1988 Page 1 of 2

TOPIC PREVENTION AND CONTROL SUB-TOPIC WET BARRIERS

 PROJECT NO
 2.14
 BUDGET \$ 150
 k (1988) \$ 550
 k (Total)

 TITLE:
 ESTABLISH VEGETATIVE WETLANDS OVER TAILINGS.

 OBJECTIVES:
 Establish feasibility of establishing wetlands over tailings

 to control oxygen/water transfer, enhance control of acid

generation

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k			
1.	Review on-going projects and literature; recommend what further project(s) and/or extension or support of ongoing projects should be undertaken.	1988/89	50			
2.	Concurrently, provide interim support to one or more ongoing projects (e.g. Curragh, Inco, Falconbridge)	1988/89	100			
3.	3. Based on (1) proceed with justified field studies (No/Go)					

BACKGROUND:

Some work has been undertaken by Inco, Falconbridge and others.

OUTPUT: PRIORITY: I II III Rationale:

Date: Feb. 4, 1998 Page:									Joininan.	±.				1000
TOPIC PREVENTION AND CONTROL SUB-TOPIC WET BARRIERS PROJECT NO. 2.14 BUDGET: \$ 150 k (1988) \$ 550 k (Total TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: . 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be											Date:	Feb		
PROJECT NO. 2.14 BUDGET: \$ 150 k (1988) \$ 550 k (Total TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be											Page:	2_	0	f
PROJECT NO. 2.14 BUDGET: \$ 150 k (1988) \$ 550 k (Total TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be	TOPT	C		DDEVIEN	יא וארדיתיו	UD CONTRAT.		SIL	ODTO	WF	TTRAKE T	S		
<pre>TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be</pre>	1011	۲.		PREVER	ITION A	ND CONTROL								
<pre>TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be</pre>														
<pre>TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be</pre>		-												
<pre>TITLE: ESTABLISH WETLANDS ON TAILINGS. ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be</pre>						···-								
 ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 	PR	OJ	ECT	' NO.	2.14		BUD	GET: \$_	150	k	(1988) \$;550	<u>k</u>	(Total)
 ADDITIONAL DETAILS: 1. Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 			_					-						
 Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 	TI	тL	Ľ:_	ESTABI	LISH WE	TLANDS ON 1	ALLING	<u>S.</u>	<u> </u>					
 Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 														
 Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 														مرزواني ميرونايا ابردي
 Work done at Kamkotia should be closely followed. (Wetlands are proposed to be built over 2/3 of the tailings area). Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 	ADDI	TIC	DNA	L DET	AILS:									
 built over 2/3 of the tailings area). 2. Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. 3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 						tia chould	bo alo	celv fol		(Math)				
 Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 	·····	WC	ork	done a					TOwed.	(wet.	Lands are	propo	sea u	90.0
 Work is ongoing along these lines by other groups i.e. Falconbridge, Inco. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be 		bu	ilt	over	2/3 of	the tailing	is area	υ.						
3. If funding is limited, this project could be given lower priority presuming Kamkotia will be proceeding - proper monitoring design must however be										·				
Kamkotia will be proceeding - proper monitoring design must however be	2.	Wo	ork	is ong	oing al	ong these :	lines b	y other	groups	i.e. 1	Falconbrid	ige, Ir	100.	
Kamkotia will be proceeding - proper monitoring design must however be														
	з.	If	fu	inding	is limi	ted, this g	project	could b	e given	lower	r priority	' pres	uming	ſ
		v-	mka	tia wi	11 bo p	recoding			ning do	cian .	must hours			
Installed at Kamkotia.	<u> </u>				TT De b	roceeding .	- prope		ring de	sign i	must nower	/er be		
		ir	ista	lled a	t Kamko	tia.								
						·	···							
						· ····································				· · · · · · · · · · · · · · · · · · ·				
					•									
									······································					
	- <u></u>					<u></u>					·······			
														_
	<u></u>		<u>-</u>											
								<u>.</u> *				<u> </u>		
	<u></u>				<u> </u>							<u></u>		

Date: Feb. 5, 1988 Page 1 of $_2$

TOPIC PREVENTION AND CONTROL SUB-TOPIC DRY BARRIERS TAILINGS

PROJECT NO 2.21 BUDGET \$ 155 k (1988) \$ 800 k (Total)

TITLE: ENGINEERED DRY COVERS TAILINGS (AND WASTE ROCK - See also 2.31)

OBJECTIVES: To develop methodlogies for testing, designing, placement and

evaluation of various engineered dry covers for tailings and

waste rock for control of acid generation and contaminant discharge

MAJOR	STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1. Pha 1.1	<pre>se l Laboratory testing, Design and Modelling Laboratory studies - Development - Fabrication - Methods testing - Materials testing</pre>	1988	130
1.2 1.3	Modelling	1989 1988/	100 25
<u>G0/</u>	NO GO DECISION	1989	
2. <u>Pha</u>	se 2 Field Trials (incl. \$210k for Faro trials)	1990/92	520
3. <u>Pha</u>	se 3 Technology Transfer		25

BACKGROUND:

Various dry covers such as clay, soils, till, polymer/synthetic membranes and cementitious materials are to be evaluated for their effectiveness in control of oxygen penetration and water percolation rates. Design and placement of a suitable cover on tailings and waste rock to control oxidation and containment migration.

 OUTPUT:
 Laboratory methodologies for testing and design of engineered covers, their

 placement and modelling their effectiveness both for reactive tailings and waste

 rock.

 PRIORITY:
 II

 II
 III

 Rationale:
 Evaluation of various covers for

Rationale: Evaluation of various covers for oxidation and contamination to migration is essential for many existing sites. See also 2.3

		RATS PRO	JECT SUMMARY	Date: Page:	Feb. 5, 1988
TOPIC	PREVENTION AND CON	NTROL	_SUB-TOPIC	DRY BARR	IERS, TAILINGS
PRO	JECT NO	BUDG	ET: \$155	_k (1988) \$	800_k (Total)
TIT	LE: ENGINEERED DRY CO	VERS TAILING	S (AND WASTE RO	CK - See also	2.31)
ADDIT	IONAL DETAILS:				
1.	This project will provide	laboratory	testing and desi	gn procedures	to both
	projects 2.21 "Dry Engine	ered Covers"	for tailings an	d 2.31 for "W	aste Rock
	Field Trials"				
2.	Likely areas for field ev	aluation			
	- Waite Amulet				
-	- Faro				
	- Kam Kotia				
<u></u>	<u> </u>				
3.	Kam Kotia site may be usi	ing a cement	itious dry cover	on exposed t	ailings and
	a system of dykes and wet	lands on wat	er saturated tai	lings areas.	
<u> </u>					

į

					Date: Fe Page 1 o		
TOPI	C PREVE	NTION AND CONTROL	SUB-TOPIC_	DRY	BARRIERS,	TAI	LINGS
PRO. TITI	JECT NO	2.22 BUDGET \$_ SMENT OF HARDPAN	<u>50</u> k	(1988)	\$_600*	k	(Total)
OBJE	CTIVES:	To assess use of hardpan a Methods to characterize an			to oxidati	Lon.	
MA	JOR STEPS (INCL. GO/NO GO DECISION)		YEAR		\$k
1.	Complete mine from 4 Manito	eralogical studies on selecto oba sites (not incl. MDA fu	-	25,	1988		150 *
2.	Investigate (chemical or other treatments	to stablize 1	nardpan	1988		100 *
3.	Lysimeter wo:	rk on pilot scale			1988/89	9	50 *
4.	GO/NO GO DEC				1988/9	0))))	150
5.	Monitor Effly	uents)	
6.	Field treatm	ent on site			1990/9 1991/9 1992/9	2	200 150 100

BACKGROUND:

Hardpan exists at 2 feet below surface insulphide tailings at four Manitoba sites. Sheridon site has the most adverse effect on the environment - hardpan associated with proximity to water table.

OUTPUT: Methods deve	lopment	to stabli	zed hardpar	n as a protective cover to prevent oxidation
PRIORITY:	I	II		Rationale: Naturally existing barrier
				* Plus additional \$300 MDA in 1988/89

-33-

RATS	PROJECT	SUMMARY

	INTO TROOLET SOMMART
	Date: <u>Feb. 5, 1988</u>
	Page: of
TOPIC	C PREVENTION AND CONTROL SUB-TOPIC DRY BARRIERS, TAILINGS
F	
PRC	DJECT NO2.22 BUDGET: \$ 50 k (1988) \$ 600 k (Total)
TIT	ILE: ASSESSMENT OF HARDPAN
L	
ADDIT	FIONAL DETAILS:
1.	Samples are now in testing laboratory.
2.	Core samples selected to characterize four different hardpans.
<u> </u>	Water table at one site to be stabilized to determine its relationship
3.	water table at one site to be stabilized to determine its relationship
	to hardpan formation, its growth and permanence to be evaluated on a
	yearly basis
<u></u>	Yearry Dasis
4.	Department of Environment, Manitoba will monitor corrective measures.
	Contractor will monitor hardpan formation, sampling of hardpan over the
	period of 1989/91
	
<u>.</u>	
<u> </u>	

Date: Feb. 8, 1988 Page 1 of 2

TOPIC	PREVENTION AND CONTROL	SUB-TOPIC	DRY BARRIERS TAILINGS
-------	------------------------	-----------	-----------------------

PROJECT NO ______ BUDGET \$ _____ k (1988) \$ 50 k (Total)

TITLE: DOCUMENTATION OF DISPOSAL METHODS FOR TAILINGS AND WASTE ROCK

OBJECTIVES: <u>To document and evaluate existing tailings and waste rock disposal in</u>

terms of their effectiveness in controlling AMD and permitting

walkaway closure

MJ	AJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Review of existing methods (via project 5.1)	1988	-
	GO/NO GO DECISION		
2.	Document and evaluate disposal methods	1990	50

BACKGROUND:

Disposal manuals for uranium tailings (NUTP), base metal and coal spoils (for American Mining Congress) prepared by SRK will soon be available. Documentation of other terminologies tried during field trials should be done at a later date.

OUTPUT:

Prepared disposal methods manual and test effectiveness for reactive tailing and waste rock - Reference Manual.

PRIORITY:

Ι

III

II

Rationale:

Evaluation after other field trials.

		RATS PR	OJECT SUMMARY	Date: Feb. 8, Page: 2	
TOPIC	PREVENTION AND CONT	TROL	SUB-TOPIC	DRY BARRIERS TAILIN	1GS
PROJEC	T NO. 2.23	BUD	GET: \$	k (1988) \$_50k	(Total)
TITLE:	DOCUMENTATION OF D	ISPOSAL MET	THODS FOR TAILINGS	AND WASTE ROCK	
ADDITION	AL DETAILS:				
1. Refer	cence:				
"Canad	lian Uranium Mill Wast	e Disposal	Technology" - St	effen, Robertson and	
Kirst	en (B.C.) Inc. CNUTP	Contract	Report IS.SQ. 2331	76 - 1730 [.] (1987)	
			·····		<u></u>
.					
<u></u>				·····	
	·····				
					<u></u>
		<u></u>			
					·

-36-

TOPIC _	PRE	EVENTION AND) CONTROL		 ຣບອ-ງ	TOPIC_	DRY	Pa	ge 1	Feb. OÍ TAIL	······
PROJEC	-	2.24		BUDGET	\$ 35	k	(198	B) \$	35	k	Total
TITLE:	VEC	SETATION MAN	NUAL		 						
OBJECTI	VES:			establish	 	•					

tailings, and waste rock

MAJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	Şk
1. Literature review and preparation of the methods manual	1988	35
BACKGROUND: CANMET'S Pit Slop Stability Manual (1977) describes vegetation tec and reactive tailings. Since then considerable work has been don	e on revegeta	
reactive tailings. The manual will compile the state of the art	techniques.	
OUTPUT: Vegetation Manual - Reference Document		
Vegetation Manual - Reference Document		
PRIORITY: I II III Rationale: Useful me	thods manual	

TOPIC PREVENTION AN		ROJECT SUM		Page:	2	8, 1988
PROJECT NO. 2.24 TITLE: VEGETATION MA		DGET: \$ <u>35</u>	k	(1988)	\$_35	_k (Total)
ADDITIONAL DETAILS:						
"Reclamation by Vege	tation" - Pit S	lope Manual s	upplement	10-1,2,	CANMET	Report
					·····	

			Date: Fe Page 1 of	$\frac{2}{2}$
TOPIC	PREVENTION AND CONTROL	SUB-TOPIC	WASTE ROCK	
PROJEC			(1988) \$ <u>600</u> k	(Total)
DBJECTIV	FIELS_EVALUATION_OF			
	waste rock oxidation r			
MAJOR	STEPS (INCL. GO/NO GO DECI	SION)	YEAR	\$k
	ed upon engineering design in Proj d trials are to be established	ject 2.21	1990	400
2. Moni	toring of performance		1991	100
	itoring and summary of field test Luding recommendations for optimum		1992	100

BACKGROUND: Natural covers should minimize the transport of oxygen and water into waste rock. Although covers of waste rock have been used to prevent and control ADM, their effectiveness is often difficult to assess.

A separate program is warranted for waste rock field trials because of potential chimney effects resulting from a variety of different topographies.

OUTPUT:						
Performa barriers		ation rep	ort descri	ibing the effecti	veness of dry	
PRIORITY:	I	II	III	Rationale:	Will follow Project 2.21	

-39-

		RATS P	ROJECT SUMMARY	Date: Page:	Feb. 4, 1988
TOPIC	PREVENTION AND C	CONTROL	SUB-TOPIC	WASTE RO	
	T NO. 2.31 FIELD EVALUATION				k (Tota
	L DETAILS:	eered covers	is undertaken in 1	Project 2.21.	
	selection of sites s		<u></u>	·	1990.
	will, however, be	······································			
	990, and could be in				
	ible sites will be				estmin
	At. Washington.		<u>,</u>		
	ic. washington.				
·					
<u></u>					
					<u>. </u>
·			·		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
•••••	<u></u>				
				<u></u>	

ı

-40-

Date:			1988
Page :	l of	2	

TOPIC PREVENTION AND CONTROL

SUB-TOPIC

WASTE ROCK

PRO	JECT	NO _	2.	32	I	BUDGET	\$	15	k	(1988)	\$	300	k	(Total)
TIT	LE:	LAI	BORATOR	Y INSITO	J BLEND	ING/SEC	RAT	ION OF	WASTE	ROCK				
OBJE	CTIVE	es:		zaluate o blendin leachal segrega acid p	ng with bility ation c	acid c of calc of acid	ons are gen	uming w ous and erating	aste n silic waste	naterial <u>cate mate</u> es				
MA	JOR S	STEPS	(INC	L. G0/1	NO GO	DECIS	ION)			Y	EAR		\$k
1.	Defin searc		ms of :	referenc	e for t	estwor	c al	ong wit	h lite	erature	19	88		15
2.	segre	gatio	n and a	tory tes sizing. s for li	Study	proper	ctie	s on no			19	89		150
3.	Monit	or wa	ter ch	emistry							19	90		50
4.	Monit	or wa	ter ch	emistry							19	91		50
5.			uation ECISIO	report N	with de	esign re	ecom	mendati	ons.		19	92		35
6.	Field	l tria	ls.											

BACKGROUND: Technically the blending of acid generating waste with alkaline wastes should be adequate to suppress acid generation processes. However, acid generation processes may contribute to the formation of secondary materials (jarosite) blinding material surfaces hence reducing the leachability of alkaline material. Test scenerios should evaluate this. Segregation of acid producing wastes may alleviate this problem however may accelerate the process unless properly sealed. Surface area exposure is directly proportional to oxidation rates of pyritic wastes. This rate should be evaluated on sized material.

OUTPUT:

An evaluation report listing results of the test and recommendations for blending, segregation, and preferential blasting to size material.

III

PRIORITY:

[I]

II

Rationale:

			WUTO EI	RUDECI SUMMA	ILI			
						Date: Page:	Feb. 4, 19	
							of	2
TOPI	C PRE	VENTION AND CONT	I'ROL	SUB-TOPIC	•	WASTE ROO	x	
					·	····	······································	
						·····		
DB		ຳ ວົ						
PR	DJECT NO.		BUI	DGET: \$ <u>15</u>	K (1988) Ş	<u>k (?</u>	Cotal)
TI	rle:							
				·····				
			·····					
ADD1	FIONAL DET	AILS:	···					
1.	This progra	m is for a labo	ratory st	udy only. Fi	eld tria	ls have n	ot been	
	<u> </u>							
	budgeted fo	r at this time.						
								
2.	This progra	m must be co-or	dinated w	ith Project 1.	13: Pre	diction -	Rocks.	
3.	Potential e	xamples should	be drawn	from existing	operatio	ns as wel	l as mines i	n
	the plannin	g stage of deve	lopment.					·
	F							
4.	Relevant li	terature from t	he coal m	ining sector s	hould al	so be inc	luded.	
					·			
	·····		······································				······································	
			······			·		
		······································			<u></u>			
								_
								······
<u>``</u>	······································				÷		······································	
					_			
							<u></u>	

Date: Feb. 4, 1988 Page 1 of 2

TOPIC _____ PREVENTION AND CONTROL _____ SUB-TOPIC WASTE ROCK

 PROJECT NO
 2.33
 BUDGET \$ - k (1988) \$ 670 k (Total)

 TITLE:
 CELLULAR DUMP CONSTRUCTION

 OBJECTIVES:
 To test and report on the practicality and effectiveness of

segregated waste with separated cells in a waste dump.

MAJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
 Define terms of reference along with literature search. Reference should be made to test 2.31 covers and 2.32 step 3 	1990	20
 Select four sites to establish test plots with 3-4 tests/ site (i.e. control, oxidized waste, unoxidized waste). 	1991	*400
3. Monitor quantitative changes in water chemistry with time	1992	100
4. Monitor quantitative changes in water chemistry with time	1993	100
 Report comparison of tests and effectiveness of cellular arrangement. Recommend construction costs and logistics of construction method and cost benefits * Labour and equipment to be supplied by companies. 	1994	50
. Faront and eduthment to be subbited by combanies.		

BACKGROUND:

Encapsulating techniques should assist in reducing acid generation although none have been demonstrated to be a fail-safe method. The concept of multi-isolated chambers should introduce barriers to oxygen transfer. Proposed testwork offers an optimistic approach to establishing a state-of-the-art remedy for reducing the kinetics of acid generation.

OUTPUT:

The report should evaluate test results and make recommendations regarding construction costs and logistics.

PRIORITY:

II

I

III Rati

TOPIC	RATS PROJECT SUMMARY Date: Feb. 4, 1988 Page: 2 of 2 PREVENTION AND CONTROL SUB-TOPIC WASTE ROCK
	ECT NO. 2.33 BUDGET: \$ - k (1988) \$ 670 k (Total) E: CELLULAR DUMP CONSTRUCTION
ADDITI	ONAL DETAILS:
<u>1. s</u>	nould be co-ordinated with prediction work 1.12.
2. M	ist await design of engineered covers in program 2.21.
<u>3. E</u>	puity Silver is currently utilizing a modified cellular dump design.
4. S	nould also be integrated with program 2.31.

		113561		4, 1988				
TOPIC PRE	VENTION AND C	CONTROL	_ SUB-TOPIC_	WACTE DOCK	_2			
PROJECT NO		BUDGET \$_	k	(1988) \$	50_k	(Total)		
OBJECTIVES:		and report on ef						
MAJOR STEPS	(INCL. GO/	NO GO DECISION	3)	Yea	AR	\$ k		
1. Define terms of reference and assessment of 8-10 sites 1988 10								

2.	Detailed assessment of 3-4 sites	1989	15
3.	Implement testwork	1990	70
4.	Monitor chemistry changes at sites.	1991	30
5.	Evaluate data, report and make recommendations as to applicability	1992	25

BACKGROUND: Alkaline trenches and introduction of alkaline runoff has been tested in the coal fields of eastern U.S.A. Hydrogeochemistry changes have been noted in the effluent. Testwork should be performed within abandoned pits where acid generation processes are known to exist.

OUTPUT: An evaluation of alkaline trenches for preventing acid generation as well as slowing down established processes. Construction techniques required.

PRIORITY:

I

II

III Rationale:

Combine investigation with research Item 1.15.

RATS	PROJECT	SUMMARY

				Feb. 4, 1988		
			Page:	1	_ of .	2
TOPIC	PREVENTION AND CONTROL	SUB-TOPIC	WASTE ROC	к.	<u></u>	
PROJ	VECT NO. 2.34	BUDGET: \$	_k (1988) \$	150	_k (T	otal)
TITI	E: ALKALINE TRENCHES	······		<u></u>		
ADDITI	ONAL DETAILS:					
<u>1. </u>	his program involves open pit a	und not waste rock.				
<u>2. T</u>	he use of alkaline trenches pla	aced above zones of ox	idation may be	an 🔤		
e	ffective technique for controll	ing acid mine drainage	e on some pit	walls,		
w	here the zone of oxidation is s	shallow and exposed sur	cface area is	not to	0	
g	reat.			<u> </u>		
<u>3.</u> T	renches are likely to be used	on very few areas and	, as a result,	, this	÷	
P	rogram is not a high priority a	at this time.			<u></u>	<u> </u>
<u>4.</u> P	rogram should be co-ordinated v	with Project 1.15.				
5. E	quity Silver is considering the	eir use.				
		<u></u>		<u> </u>		<u> </u>
					<u> </u>	
						······································
<u> </u>						
<u></u>			<u> </u>			
·····			<u> </u>	······································		
			·····			

<u>Page</u>

3. TREATMENT

<u>P</u>	NOJECT .	RANKING	TOTAL (\$K)	
3.1	DOWNSTREAM PASSIVE			
3.11	Existing Natural Wetlands Affected by low pH/Metal Contaminated Seeps	II	135	48
3.12	Constructed Wetland	III	300	49
	SUBTOTAL DOWNSTREAM PASSIVE		435	
3.2	ON SITE TREATMENT			
3.21	Upgraded Chemical Treatment	II/III	500	50
3.22	In Situ Treatment using Chemicals/Bactericides	II	350	52
	SUBTOTAL ON SITE TREATMENT		850	
TOTA	L TREATMENT		1285	

Date: Feb. 5, 1988 Page 1 of 1

TOPIC	TREATMENT	SUB-TOPIC	DOWNSTREAM PASSIVE

							_							
PROJECT NO)3.	.11	BUI	OGET	\$	50		k	(198	38)	\$	135	_k	(Total)
TITLE:	EXISTING	NATURAL	WETLANDS	AFFI	ECTED	BY	LOW	pH/M	ETAL	CON	CAMIN	ATED	SEE	PS
OBJECTIVES:	E	valuate (existing	seep	-affe	cted	l wet	land	s re	. via	abili	ty as	a	
	pa	assive t:	reatment	syste	em.									

MAJOR STEPS (INCL. GO/NO GO DECISION) \$k YEAR 1. Identify candidate areas, define evaluation criteria and conduct preliminary assessment of ~10 areas 40 1988 2. In parallel, review ongoing research projects re. biological polishing of effluent (Kalin, CANMET, Condor...) 1988 10 GO/NO GO DECISION 3. Conduct detailed examination of v3 areas 1989/90 75 4. Issue evaluation report and recommendations 1991 10

BACKGROUND:

The capacity of wetlands to cope with relatively low loadings of Fe, Mg and pH has been well documented, particularly re. USA coal areas. The practicality of treating low pH heavy metal contaminated seeps from reactive tailings areas is uncertain, and a check of existing situations should preceed any other studies.

OUTPUT:						
An evaluatio	on of :	•		-	ected areas and further work	
PRIORITY:	I		II	III	Rationale:	Chance of success and/or general application is small.

-48-

			111001	et bounding				
						Date: Page 1 o		
TOPIC	TREATI	ENT		_ SUB-TOPIC	DOWN	STREAM PAS	SIVE	- <u>+</u>
	KGW		···	-				
PROJECT	NO	3.12	BUDGET \$	k	(1988)	\$	_k ('	Fotal)
TITLE:	CONSTR	UCTED WETLAN	1D					
OBJECTIV	ES:	Evaluate co	onstructed wetla	ands for trea	tment of	seeps		
	-							
MAJOR	STEPS (I	NCL. GO/NO	O GO DECISION	1)		YEAR		\$ k
1. (Wou	ld <u>not</u> be	initiated u	nless outcome o	f 3.ll is fav	ourable)			
								i
								-
								ĺ
L	· · · · · · · · · · · · · · · · · · ·						······	
BACKGRO	UND:							
of contar	minated a		zed in USA to t conditions are is dubious.				er, de nadiar	
OUTPUT:]
·								
PRIORITY	: I	II	(III) Ra	tionale:	Would fo warrante	ollow 3.ll ed.	, if	

Date: Feb. 8, 1988 Page 1 of 2

TOPIC TREAT	MENT	SUB-TOPIC	ON SITE TREATMENT				
PROJECT NO	3.21BUDGET \$; 75 k	(1988) \$ <u>500</u>	(Total)			
TITLE: UPGRA	DED CHEMICAL TREATMENT						
OBJECTIVES:	a) Document and improve	state-of-the-ar	rt of lime neutraliza	tion			
	process and sludge di	sposal					
	b) Evaluate alternative	treatment proce	esses				

MA	AJOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Complete state-of-the-art review of AMD treatment methods	1988/89	25
2.	Complete inventory and description of Canadian AMD treatment plants	1988/ 89	25
3.	Prepare an effluent treatment procedures manual for lime neutralization plants	1988/89	25
4.	<pre>GO/NO GO DECISION Complete laboratory and plant studies to: (a) improve lime sludge characteristics (densificiation, settling, stability, disposal) (b) evaluate alternative treatment methods (NaOH & sulphide precipitation, ion exchange, reverse osmosis, biotech, others) & characterize sludges produced.</pre>	1989/91 1989/91	100 200
5.	Prepare a procedure manual for effluent treatment and sludge disposal	1990/91	25

BACKGROUND:

Lime neutralization is the standard method for treating AMD in Canada. Lime costs are high, equipment scaling and sludge disposal are problems, particularly the latter. Sludge stability can present a problem in the long-term when alkalinity drops.

OUTPUT: State-of-the-art report on treatment of AMD Report describing AMD treatment plants in Canada (lime neut.) Treatment plant & sludge disposal treatment manual (1989 & 1991)						
PRIORITY: I III * III *Sludge Studies ** Effluent Treatment methods need to be developed to prevent re- Studies dissolution of metals from sludges						

Date:	Feb. 8	, 1988	
Page:	2	οŕ	2

TOPIC	TREATMENT	SUB-TOPIC	ON-SITE TREATMENT	

PROJECT	NO. <u>3</u>	.21	BUDG	ET:	\$ 75	k	(1988)	\$ 500	k	Total
TITLE:	UPGRADED	CHEMICAL	TREATMENT							

ADDITIONAL DETAILS:

Relevant reports and current contracts:

1.	Treatment of Acid Mine Water and the Disposal of Lime Neutralization Sludges
	by Vachon, Siwik, Schmidt and Wheeland (Halifax AMD Seminar)
2.	Description of Wastewater Plants at Seven Mining and Metallurgical Operations
	in Eastern Canada (Mar./85, M. Wasserlauf report to Environment (Canada).
3.	Generation and Stability of Canadian Mine/Smelter Effluent Treatment Sludges
	(July 7/87, M. Wasserlauf report to CANMET).
4.	Follow-up contract (1988) to Wasserlauf on recommended research studies to
	address sludge disposal problems, including alternative effluent treatment
	methods.
5.	methods. Environment Canada IPB reports on some AMD mechanical type treatment plants.
5.	
	Environment Canada IPB reports on some AMD mechanical type treatment plants.
	Environment Canada IPB reports on some AMD mechanical type treatment plants.
	Environment Canada IPB reports on some AMD mechanical type treatment plants.
	Environment Canada IPB reports on some AMD mechanical type treatment plants.

Date: Feb. 8, 1988 Page 1 of 2

TOPIC	TREATMENT	SUB-TOPIC	ON SITE TREAT	FMENT

PROJECT	NO _	3.22	BUDGET S	\$_50	k	(1988)	\$ 350	k	(Total)
TITLE:	IN	SITU TREATMENT	USING CHEMICAL	S/BACT	ERICIDES		 ·····		

OBJECTIVES: To evaluate the effectiveness of chemicals and bactericides in

preventing or controlling the generation of AMD from both tailings

and waste rock.

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	Şk				
1.	State-of-art review of these methods	1988/89	25				
2.	Support of tests continuing by Noranda (lab, field)	1988/90	100				
	GO/NO GO DECISION						
3.	Test chemicals and bactericides at two other mine sites. Prepare a procedures manual	1 990/91	200				
			:				
BAC	KGROUND:						
Chemicals/bactericides are not viewed as a long-term control method but may prove effective during the operational life of a mine to prevent or control AMD until permanent mine abandonment measures are put in place. Also it may prove cheaper to apply chemicals/bactericidesduring the operational phase than treating AMD by current liming practices.							
OUT	PUT: State-of-the-art Report						

Reports on testwork Procedures manual (if the method proves out)

III

PRIORITY:

II)

Ι

Rationale: Although this techniques does not offer a long-term solution, its usefullness during the operational phase of a mine should b evaluated.

TOPI	C TREATMENT	SUB-TOPIC	Date: Feb. 8, 1988 Page: <u>2</u> of <u>2</u> ON SITE TREATMENT
	DJECT NO. 3.22 TLE: IN SITU TREATMENT US		: (1988) \$ <u>350</u> k (Total
ADDI	TIONAL DETAILS:		
1.	Studies have been carried ou and metal sulphides ores (la		
	presented in a paper by A.A.		
	AMD in Coal Refuse and Base	Metal Tailings (AMD Halifax	Seminar).
2.	Westmin Mines are currently	doing a literature survey an	nd plan to run field tests
	on the use of surfactants to	prevent the generation of a	AMD at their copper-zinc
	operation on Vancouver Island	1.	
3.	Noranda have tested the suit	ability of 16 surfactants an	nd have carried further
	testing down to 3. One of	E their conclusions is that	the cost of treatment with
	bactericides is roughly equi	ivalent to the cost of treat.	ing the AMD, that would
	result without bactericide t	creatment, by lime neutraliza	ation.
		······································	
		·····	
•••••••			

<u>Page</u>

4. MONITORING

P	ROJECT	RANKING	<u>TOTAL (\$K)</u>	
4 M	ONITORING			
4.1	Field Methods Manual: Tailings	I	20	55
4.2	Analytical Methods Manual	I	-	57
4.3	Standard Reference Materials	I	15	59
4.4	Closure Criteria	I	150	61
4.5	Field Methods Manual: Waste Rock	I	100	63
4.6	Monitoring Technology Evaluation	III	100	65
TOTA	L MONITORING		385	

					Date: Feb Page 1 of	
FOPIC MONI	TORING		SUB-TO	PIC		
PROJECT NO	4.1 D METHODS MANUAI	BUDGET	·	_k (198	8)\$ <u>20</u>	k (Total)
BJECTIVES:		nduct and as			guidance in th	
MAJOR STEPS	G (INCL. GO/NC	GO DECISI	ON)		YEAR	\$k
	well indexed gu				e 1988/89	20
techniques are reliability, on the methodo but need to be from users sho OUTPUT:	g studies of tail e used in samplin reproducibility plogies employed e assembled for e puld be encourage field methods	ng and monito and comparal in the field easy access a ed.	oring of imp pility of da d. Many te and use by a	ooundment a hta will do chniques a ll partic	areas. The q epend signific are well estab ipants. Feed	uality, antly
PRIORITY:	I II	III	Rationale	•	ssary guide fo d RATS work.	or all fie

TOPIC MONITORING SUB-TOPIC				Date:	Feb. 4, 1988
PROJECT NO4.1 BUDGET: \$ _20k (1988) \$ _20k (Total) TITLE:FIELD METHODS MANUAL:TAILINGS ADDITIONAL DETAILS: 1CANMET has prepared a proposal to compile this manual and a contract				Page:	2 of 2
PROJECT NO4.1 BUDGET: \$ _20k (1988) \$ _20k (Total) TITLE:FIELD METHODS MANUAL:TAILINGS ADDITIONAL DETAILS: 1CANMET has prepared a proposal to compile this manual and a contract	TOPIC	NONTHODING	SUB_TOPIC		
ADDITIONAL DETAILS: 1. CANMET has prepared a proposal to compile this manual and a contract	10110	MONTIORING			
TITLE: FIELD METHODS MANUAL: TAILINGS ADDITIONAL DETAILS:					
TITLE: FIELD METHODS MANUAL: TAILINGS ADDITIONAL DETAILS:	·				
ADDITIONAL DETAILS: 1. CANMET has prepared a proposal to compile this manual and a contract	PROJ	ECT NO4.1	BUDGET: \$ 20 k	(1988) \$	20 k (Total)
ADDITIONAL DETAILS: 1. CANMET has prepared a proposal to compile this manual and a contract	TT TT				
1. CANMET has prepared a proposal to compile this manual and a contract		- FIELD METHODS MANUA	AL: TAILINGS		
1. CANMET has prepared a proposal to compile this manual and a contract	L,				
1. CANMET has prepared a proposal to compile this manual and a contract	ADDITI	ONAL DETAILS:			
					······································
is currently under negotiation.	<u> </u>	CANMET has prepared a p	proposal to compile this manual	and a cont	tract
		is currently under nego	otiation.		
	<u> </u>		······································		
		······································			
	<u> </u>	······································			
	<u> </u>				
				······································	
		· · · · · · · · · · · · · · · · · · ·			
		······································			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<u></u>	
	~~~~~				

İ

						Date: Feb. 2 Page 1 of 3	
TOPIC	MONITO	DRING		SUB-TOP	°IC		
PROJE	ect no	4.2	BUDGET	\$	_k (1988	8)\$ <u> </u>	(Total)
TITLE	E: ANALY	FICAL METHON	DS MANUAL				
OBJECI	rives:	To outline	e guidelines for	the select	ion of che	emical analysis	methods
		for tailin	ngs, waste rock	and related	material	s such as pore	water, and
		decant wat quality co	ter and to estat	olish criter	ia for qua	ality assurance	and
MAJO	OR STEPS		/NO GO DECISIO	ON)		YEAR	şk
a a	compile a b	ibliography	class of materia of analytical criteria for se	methods for	analysis		
2. 1	Detail a qu	ality assur	ance and quality	y control me	thodology	1988/89	
	Prepare a g rock analys		ith above items	for tailing	s and was	te 1988/89	

BACKGROUND:

The use of reliable and reproducible data will depend on the quality of chemical analysis. Common practices should be documents for RATS participants.

OUTPUT:

A manual for chemical analysis of tailings, waste rock and associated materials.

III

PRIORITY:

I

			Date: Page:	Feb. 4, 1988 2 Of 2
TOPIC	MONITORING	SUB-TOPIC		
		BUDGET: \$		
ADDITI	ONAL DETAILS:			
<u>1. D</u> :	r. H.F. Steqer of CANME	TT has advised that this p	roject is unnece	ssary.
L.	aboratories use their c	<mark>own familiar methods of an</mark>	alysis. RATS p	articipants
s	hould, however, take st	ceps in submitting samples	to establish qu	ality
a	ssurance (QA) and quali	ity control (QC). Typica	lly QA and QC wi	ll cost
1	0-20% of the analytical	l costs, Standard refer	ence materials i	n
P	roject 4.3 aid in QA ar	nd OC.	<u></u>	
	·····			
<u></u>				
		······································	·····	
			<u> </u>	
- <u></u>				
<u></u>				
- <u></u>				
				-

Date: Feb. 4, 1988 Page 1 of 2

TOPIC	MONITORING			SUB-	SUB-TOPIC				
PROJECT	NO	4.3	BUDGET	\$_15	k	(1988)	\$_50	k	(Total)
TITLE:	STA	NDARD REFEREN	CE MATERIALS						
OBJECTIV	ES:	<u></u>	lsh a number of th can be used as					anđ	waste

MA	JOR STEPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Identify and sample a representative number of tailings and waste rocks for use as standards.	1987/88	5
2.	Prepare samples for round robin analysis.	1987/88	10
3.	Undertake round robin analysis and report results.	1987/88	20
4.	Complete assessment of results and establish accepted analytical standards.	1988/89	10
5.	Incorporate standards into CCRMP system	1988/89	5

BACKGROUND:

The key to reliable and reproducible analytical results is the availability of good relevant standard reference materials. CANMET has an established Canadian Certified Reference Materials Program (CCRMP). This is an appropriate vehicle for the selection, preparation and certification of tailings and waste rock standards.

0	UΊ	P	U	т	:
---	----	---	---	---	---

Reference materials samples and certified analysis for a series of selected samples.

PRIORITY: II II Rationale: Relevant analytical standards for quality assurance.

							Date:	Feb 4,	1988
TOPIC	MONITORI	'NG		SUI	3-TOPIC		-		
	DJECT NO			-	\$	k (:	1988)	ş_50	_k (Total
ADDIT	IONAL DETA	AILS:							
1.	Samples of t	tailings fro	m Noranda	a, Inco an	d Falconbr	idge ha	ve been	select	ed
·	and identif	ied as RTS-1	to RTS-	4 by Clint	Smith of	CANMET.			·······
2. 9	Samples have	been prepar	red for a	nalysis by	participa	ating la	borator	ies.	
3.	Commercial	laboratories	have be	en contrac	ted to per	form ar	alysis.		
4.	RATS member:	s have been	asked to	participa	te in the	round r	obin an	alysis.	
5.	Memo: C. Si	mith of CANM	ŒT to di	stributior	, December	c 31, 19	987.		
									<u> </u>
	,								
					·····		······		
	<u> </u>								
******* <u>******************************</u>					·····				
						~	·		
				<u></u>				<u> </u>	····
<u>. </u>							<u> </u>		
	· · · · · · · · · · · · · · · · · · ·		····		<u> </u>				
<u> </u>					<u></u>				
				<u> </u>			·		
									<u> </u>
•				······································					

						Date: Feb Page 1 of	<u>4, 1988</u> <u>2</u>
TOPI	C MONIT	CORING	<u></u>	SUB-TOPIC			
ł	JECT NO	4.4 JRE CRITERIA	BUDGET \$_	100 k	(1988)	\$ <u>150</u> k	(Total)
L OBJE	CTIVES:	To review c	riteria for tai	lings and was	ste rock	impoundment	closure
MA	JOR STEPS	INCL. GO/NC	GO DECISION	1)		YEAR	\$k
1.	Prepare a dr and federal		criteria to me	et provincial	L	1988/89	50
2.	identify ser	ious problems	s the draft crit with respect to cechnology and 1	o measurement	,	19 88/89	50
3.	Finalize RAT targets	'S guidelines t	to establish su	itable resear	ch	1989/90	25
4.) regulatory aq ble criteria	gencies any nec	essary change	s to	1990/91	5
5	Issue final	guidelines bas	sed on technolo	gical improve	ments	1992/93	20

BACKGROUND:

The overall objective of the RATS work is to achieve "walk-away" closure of tailings impoundments. This assumes that certain agreed criteria are met. There is therefore the need to establish what those criteria will be. The final decision will rest with the regulatory agencies but these should reflect the capability of operating companies to define, achieve and measure these criteria. Such guidelines are essential in defining meaningful research projects.

OUTPUT:			<u> </u>		
A set of clear and waste root			guidelines	for closure and	/or abandonment of tailings
PRIORITY:	I	II	III	Rationale:	Common targets for research are required.

0 1 1 2	DDOIECH	CITMMEN 1937
LUU 2	PROJECT	SUMMARI

				Feb. 4, 1988
			Page:	2 Of 2
ropic _	MONITORING	SUB-TOPIC		
_				
PROTE	CT NO	BUDOPH A		
	CI NO. <u>4.4</u> : CLOSURE CRITERIA	BUDGET: \$	K (1988) Ş	<u> 150 </u> k (Total)
ADDITIO	NAL DETAILS:			
1. Johr	Hawley of the Ontario	M.O.E. has much of the data	required for	the
firs	st draft prepared as pa	rt of other Ontario work.		
2. Regi	<u>latory agencies set th</u>	ne legal guidelines.		
3. RATS	<u>5 needs quidelines as t</u>	argets for R & D projects		
4. NUT	e did not address this	issue		
5. Pro	ject 2,23 will document	placement methods.		
				·····
<u> </u>			11	
	· · · · · · · · · · · · · · · · · · ·			
			. <u></u>	
<u></u>				
·				
<u>_</u>				

Date	:	Feb.	4,	1988	
Page	1	of	2		

TOPIC	FORING	SUB-TOPIC		
	4.5 BUDGET \$ D METHODS MANUAL: WASTE ROCK	<u> </u>	\$ <u>100</u> k	(Total)
OBJECTIVES:	To compile a field methods	menual to provide gui	dance in the	
	planning, conduct and asses	sment of sampling and	l monitoring	projects
	of waste rock.			
1	(INCL. GO/NO GO DECISION		YEAR	\$k
Assemble ava	ilable methodologies, monographods for waste rock.	hs and literature	1989/90	20
	ll indexed guidebook for use t ing and assessment for waste r		1989/90	80

BACKGROUND: In undertaking studies of waste rock in Canada there is a need to ensure that sound techniques are used in sampling and monitoring. The quality, reliability, reproducibility and comparability of data will depend significantly on the methods employed in the field. Uniform and reliable techniques should be established and assembled in the compendium of some type. Feedback on problems with any methods should be encouraged since waste rock sampling is very different from tailings sampling and experience is limited.

OUTPUT: A guidebook of field methods for waste rock sampling and monitoring PRIORITY: I II III Rationale: Comparable methodologies for field test work

	-	Dominication of the second sec	
		Date: Feb. 4, 1988	
		Page: of	
TOPIC	MONITORING	SUB-TOPIC	
PROJ	ECT NO. <u>4.5</u>	BUDGET: \$k (1988) \$ 100 k (Tot	tal)
TITL	E:FIELD METHODS MANUAL	.: WASTE ROCK	
L			
ADDITI	ONAL DETAILS:		
<u>1.</u> B	BT, Saskatoon has reported	in an Appendix to the report on Gunnar tailings	
o	n unsuccessful attempts to	sample waste rock. National Uranium Tailings	
P	rogram Report Requisition N	lo. 23241-4-1674, Serial No. 05084-00195.	
<u>2.</u> R	ATS Project 1.11 on literat	cure review will include a review of waste	
r	ock sampling experience.		
· · · · · · · · · · · · · · · · · · ·			
			<u></u>

-64-

Date: Feb. 4, 1988

					P	age i or	2
TOPI	C MONI	IORING	<u></u>	_ SUB-TOPIC	·····		
PRO	JECT NO	4 6 TORING TECHN	BUDGET \$	k	(1988)	\$_ <u>100</u> k	(Total)
C OBJE	CTIVES:	To identi	fy and assess mo	nitoring techn	iques and	instrument	.s
			luring the operat	ion and closur	e of tail	ings and wa	<u>ste</u>
MA	JOR STEPS	(INCL. GO/	NO GO DECISIO	N)		YEAR	Şk
1.	Identify the rock control		meters for tailin	igs and waste		1988/89	5
2.	Identify ava and techniqu		rement and monit available	oring devices		1988/89	5
3.	Establish a	priority lis	st for monitoring	needs		1988/89	10
4.	Conduct furt	her work if	warranted			1989/89	80
}							

BACKGROUND:

The procedure of core sampling, pore water, decant and seepage analysis, fish kill, etc., are time consuming, expensive and at times inadequate to determine the environmental impact of tailings and the effectiveness of remedial measures. There is a need for rapid and effective devices which can monitor the entire waste management system either indirectly or with a minimum of time and labour. Techniques such as tracers, biosensors, and thermography have been suggested but none have been well developed or tested.

OUTPUT: Evaluation reports on methods and instruments for monitoring of tailings and waste rock control measures. PRIORITY: Ι II /III) Rationale: Monitoring technologies general: poorly developed.

				Feb. 4	, 1988
			Page:	2	of 2
TOPIC	MONITORING				
IUFIC	HONEFORCENS	SUB-TOPIC		<u> </u>	
					······································
PRO	JECT NO. 4.6	BUDGET: \$ 20	_k (1988) \$	100	k (Total)
TTT	LE: MONITORING TECHNOLO	OGY EVALUATION			
L		······································			
ADDIT	IONAL DETAILS:				
1.	Initial field trials using	thermography have given m	ixed results.		
					<u></u>
2.	Memorial University of Newf	foundland in cooperation w	ith NRC has		
			from DD Color	1.0	
	undertaken work to develop	a biosensor for effluents	ITOM BP SelCo		
	Hope Brook Mines.				
3.	Expectations are not high f	for effective monitoring a	nd sensing		
	devices in the short term.				
	devices in the short term.				
<u> </u>	······	······································			
<u> </u>		······································			
·	······································				
<u> </u>					
_					
					
			<u></u>		

Page

5. TECHNOLOGY TRANSFER

<u>P</u>	ROJECT	RANKING	TOTAL (\$	<u>K)</u>
5.	TECHNOLOGY TRANSFER			
5.1	Review of NUTP Documentation	I	50	68
5.2	General Review and Distribution of RATS and other reports	I	50	69
5.3	Information acquisition from other key services	I	50	70
5.4	Liaison	I	25	71
5.5	Program Overview Report	I	50	72
TOTA	L TECHNOLOGY TRANSFER		225	

							Date: Page l		8, 1	1988
TOPIC	TECHN	NOLOGY TRANSP	FER	SUB	-TOPIC	PROGR	AM PLAN			·····
PROJECT	' NO	5.1	BUDGET	\$ 10	k	(1988)	\$_50	k	(To	tal
TITLE:	REVII	EW OF NUTP DO	CUMENTATION							
OBJECTIV	ES:	Review of	NUTP Reports f	or sign	ificance	to RATS	program			

	MAJC	OR STEPS	(INCL.	GO/NO GO DECISION)	YEAR	\$k
1	• R	eview NUTI	reports	on acid generation mechanisms	1988/89	20
	2. R	eview NUT	e reports	on tailings disposal modelling	1988/89	10
:	8. R	eview NUT	? reports	on analysis and field sampling	1988/89	10
4	1. R	Review NUT	? reports	on tailings disposal methods	1988/89	10

BACKGROUND:

NUTP program costs \$8.6 x 10 over 5 years producing approximately 100 reports. Thirty-five of these reports were classified (R. John) as significant to the RATS Program

OUTPUT: Abstrac	cts of	each	report	(35)	to	be	included	in	Min.	Proc.	 	
PRIORITY:	I]	II		IIJ	[Ratio	na]	le:		 	

Date: Feb. 8, 1988 Page 1 of 1

OPIC	TECHNOLOGY TRANSF		_ SUB-TOP						
	5.2								
PROJECT NO	GENERAL REVIEW AN	BUDGET \$			(1988)	·	50	_k	(Tota
			r RAIS AND						
BJECTIVES:	<u>Review_of_</u>	RATS program out	put report:	<u>s an</u>	<u>d allied</u>	publ	icati	ons	
			<u></u>						
						·····	<u></u>		
MAJOR STE	PS (INCL. GO/N	O GO DECISION	1)			YI	EAR		Ş k
Davis -	U. of Man), Consu Waste Rock) Ontar			olar	L				
(Waterlo	ck (Heath Steele W bo, U.B.C., the La ian U. etc.)	Maste Rock), Univ	versities	lan.					
(Waterlo Laurent BACKGROUND Major p informa	ck (Heath Steele W bo, U.B.C., the La ian U. etc.) : roject reports rel tion transferred t tion. All report	lated to the RATS	S Program m project ma	ust	ers to av	void		he	
(Waterlo Laurent BACKGROUND Major p informa duplica manuals DUTPUT: Abstrac	ck (Heath Steele W bo, U.B.C., the La ian U. etc.) : roject reports rel tion transferred t tion. All report	Lated to the RATS to the mines and t data will be re	S Program m project ma equired for	ust inge ing	ers to av	void		he	

Date:	Feb.	8, 198	8
Page	1 of	1	

TOPIC	TECHNOLOGY	TRANSFER	SUB-TOPIC	PROGRAM PLAN

PROJECT NO	5.3	BUDGET \$	5	k	(1988)	\$	25	_k	(Total)
TITLE: IN	FORMATIONACQUI	SITION FROM OTHER	KEY	SERVICES					
OBJECTIVES:	Key sourc	es of information	on i	Acid-gener	cating wa	stes	from		
	others, s	uch as A.E.C.L.,	U.S.1	в.м., А.м	.C., over	seas	work		
	I.M.M.' I	.A.E.A' I.E.A., e	tc.						

MA	JOR STE	CPS (INCL. GO/NO GO DECISION)	YEAR	\$k
1.	Compile	other sources of information by :		
	a)	Reviewing technical publications from mining, environmental and water treatment organizations such as A.I.M.E. etc.		
	b)	Aquire copies of signficant papers		
	с)	Review and abstract for Min. Proc. catering and access.		

BACKGROUND:

Other agencies and potential technical organizations have acid generating problems from waste (i.e. Norway, China, Chile, etc.) and their work on this problem should be compiled for the RATS program.

OUTPUT: Abstracts to Min. Proc. for computer storage and access - information noted and credited to source in final RATS manuals.

PRIORITY: [] II II.I Rationale:

-70-

	1	RATS PROJEC	T SUMMARY		Feb.	8, 1988
					te: ^{reb.} ge 1 of	
TOPIC TECH	NOLOGY TRANSFER		SUB-TOPI	PROGRAM	PLAN	
	<u> </u>			~	<u> </u>	
PROJECT NO	5.4	BUDGET \$	5	k (1988) \$	k	(Total)
TITLE: LIAI	SON					
OBJECTIVES:	Ensure complet	e communicat:	ion between	the project :	implimentor	I
	and the client	s (Mining Cor	npanies, Gov	ernments, Un	iversities	and
	Consultants)			<u></u>		
MAJOR STEPS	(INCL. GO/NO (GO DECISION	·)	<u></u>	YEAR	\$k
			·			
i i opore und	distribute period					
2. Prepare and	present results of	of past and c	urrent work.			
3. Maintain control to interest	nstant mail, teleg ed parties.	phone, telex	and fax info	ormation		
BACKGROUND:						
most efficient u	k must be transfe se of project res and effective man	ources. Th	ining compar is reporting	nies and regu g mechanism c	lators to can be impl	ensure emented
OUTPUT:	ical and informat	ional morest	ations C	onsistent and	l regular	
	lical and informat elephone calls, le				a regurar	

I PRIORITY: II III Rationale:

TOPI	C TECHN	OLOGY TRANSFE	RATS PROJEC	<u>sub-t</u>			8, 1988 1
	JECT NO	5.5 GRAM OVERVIEW	BUDGET \$	25	k (1988)	\$ <u>50</u> k	(Total
	CTIVES:	a) the k	le and distribute ey program compone cipants' support	· · · · · · · · · · · · · · · · · · ·		lon of:	
MA	JOR STEPS	(INCL. GO,	NO GO DECISION	1)	NAME	YEAR	\$k
1.	r muarane br		es, tabulation an Present to steer		C. Ferguson E. Joe	Feb. 1988	
2.	elements of re sites, f	support by a	ee to individual companies and agen of information, nd services	cies	F. Frantisak and RATS S.C Members	Feb. 1988	
3.		and widely of and support	listribute a recor	đ	E. Joe Volunteers*	Mar. 1988	25

BACKGROUND:

K. Ferguson, J. Errington, R. Michelutti, R. Siwik, * Proposed volunteers are : M. Campbell and N. Dave with support from G. Feasby

OUTPUT: A brief, definitive and timely documentation of both the technical program elements and the participants' support. PRIORITY: I II III Rationale: Critical