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, • 	 FOREWORD 

• 

• 'Within the general scope of a 1971 agreement between Canada and the Federal Re- 

	

a 	 public of Germany (FRG) on scientific and technical cooperation, a Memorandum of Un- 
• 
• derstanding was signed in 1984 by CANMET and the Ministry of Research and Technology  

• (BMFT) of the FRG concerning the study of coal-slurry systems. 

• 
•

This report represents a significant output of that study on the Canadian side. In it, 

the authors study some aspects of the Wilson model for slurry flow, including its connection 

• with the formulae of Durand and of Newitt et al. Some comparative calculations are giVen 
• to illustrate the equivalence of Wilson's and Shook's use of the force balance equations, as 

• well as short studies of sonie theoretical and practical topics relating to the Wilson model. 
• 
• Moreover, a plan of data accumulation, based on dimensional analysis, is also proposed. 

• Because it may be of interest to many professionals, it  lias  been decided to issue the 
• 
•

report in a form which is suited to a broad distribution. 

• The authors are to be commended for their efforts in writing the document. In the • 
•

case of Dr. Gray, this has represented a post retirement labour of love. We, at MRL, are 

• grateful for this commitment. 

Director 

Mining Research Laboratories 
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AVANT-PROPOS 

Dans le cadre d'un accord de coopération scientifique et technique conclu 

en 1971 entre le Canada et la République fédérale d'Allemagne (RFA), un 

mémoire d'entente a été signé en 1984 entre le CANMET et le ministère de la 

recherche et de la technologie (BMFT) de la RFA concernant l'étude de sys-

tèmes de transport des bouillies de charbon. 

Le présent rapport constitue une part importante de la contribution cana-

dienne à cette étude. Il comprend une étude de certains aspects du modèle de 

Wilson( pour l'écoulement des bouillies, y compris sa relation avec la formule 

de Durand et celle de Newitt et al. Les auteurs donnent certains calculs 

comparatifs afin de démontrer que les équations de l'équilibre des forces 

utilisées par Wilson et par Shook sont équivalentes et exposent des études 

sommaires sur des sujets théoriques et pratiques relativement au modèle de 

Wilson. De plus, ils proposent un plan d'accumulation des données fondé sur 

l'analyse dimensionnelle. 

Étant donné que le rapport pourra intéresser de nombreux professionnels, 

il sera publié sous une forme qui permettra une grande diffusion. 

Les auteurs du rapport méritent des félicitations pour leur travail de 

rédaction. En ce qui concerne M. Gray, ce document représente une oeuvre 

chère à laquelle il s'est dévoué après sa retraite. L'équipe des Labora-

toires de recherche minière lui est très reconnaissante de son engagement. 

John E. Udd 

Directeur 

Laboratoires de recherche minière 
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ABSTRACT 

O  
• This report is part of the contribution by the Canada Centre for Mineral and Energy. 

• Technology (CANMET) under a Memorandum of Understanding on Scientific and Technical 

•
Cooperation signed in 1984 by Canada and the Federal Republic of Germany. 

The model proposed by K.C. Wilson for coarse-slurry pipelining is central to the 

work reported on. A study of some aspects of the model, including its connection with the 

• formulae of Durand and of Newitt et al., concludes that the model should be treated as a 

• nevv formulation for the empirical correlation of data. Difficulties involved in considering 

• the parameters of the model as physical properties are discussed. 
O  
• Comparative calculations relating to the Wilson model illustrate the equivalence 

• of two different systems of equations for the model, presented by K.C. Wilson and by 
0 	C.A. Shook, under the same basic assumptions. A connected study elucidates a difference 

between the treatments by K.C. Wilson and by L.L. Eyler et al. of the interfacial friction 

• factor in the model. It is also shown that a correct solution of the equations of the model 

• is highly sensitive to the value of the interfacial friction factor, although the value of the 

• hydraulic gradient is not. A simple means is given for fitting Wilson's parameter ( to a set 

• of data, if all other parameters are known. 

A plan for data accumulation, based on dimensional analysis, is proposed. An intro-

duction to dimensional analysis for slurry flow in pipes is appended. 

O 
0 

The results of short studies of some theoretical and practical topics encountered in 

• the literature relating to the Wilson model are presented. 
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RÉSUMÉ 

Le présent rapport constitue un des éléments de la contribution du Centre 

canadien de la technologie des minéraux et de l'énergie (CANMET) dans le 

cadre d'un mémoire d'entente de coopération scientifique et technique, signé 

en 1984, entre le Canada et la République fédérale d'Allemagne. 

Le modèle, proposé par K.C. Wilson concernant le transport par pipeline 

des bouillies de charbon, forme la partie centrale des travaux décrits dans 

ce rapport. Une étude de certains aspects du modèle, y compris sa relation 

avec la formule de Durand et celle de Newitt et al, permet de conclure que le 

modèle devait être traité comme une nouvelle formulation pour faire la 

corrélation empirique des données. Les auteurs discutent des difficultés 

soulevées lorsque les paramètres du modèle sont considérés comme des 

propriétés physiques. 

Des calculs comparatifs se rapportant au modèle de Wilson démontrent que 

les deux différents systèmes d'équations sont équivalents pour le modèle 

présenté par K.C. Wilson et par C.A. Shook, à partir des mêmes hypothèses 

fondamentales. Une étude connexe fait ressortir une différence entre la 

façon de K.C. Wilson et celle de L.L. Eyler et al de traiter le coefficient 

de frottement interfacial dans le modèle. Il est également établi qu'une 

solution correcte des équations du modèle est fortement influencée par la 

valeur du coefficient de frottement interfacial: bien que la valeur du 

gradient hydraulique » ne le soit pas. Le rapport offre un moyen simple de 

faire correspondre le paramètre de Wilson à une série de données, si tous 

les autres paramètres sont connus. 

Les auteurs proposent un plan d'accumulation des données fondé sur 

l'analyse dimensionnelle. Une introduction à l'analyse dimensionnelle de 

l'écoulement des bouillies dans les canalisations figure en annexe. 

Le rapport présente les résultats d'études sommaires sur certains sujets 

théoriques et pratiques qui ont été traités dans les ouvrages relativement ai 

modèle de Wilson. 
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a 	A 1  /A dimensionless area of sector 1 

C, C1 	average volumetric concentration of particles in a mixture 

flowing in a pipe in situ (Wilson and Brebner write C„) 

average volumetric concentration of particles in sector 1 

C2 	average volumetric concentration of particles in sector 2 

= C1 12 /C1; a factor due to the effect of particles saltating on the surface 

of the bed (Eyler writes C1) 

Cb 	the average in situ volumetric concentration of particles 

in a loose-packed bed 

Cv 	contact-load in situ, the part of C that is supported by the pipe invert 

CD 	drag coefficient of a particle in fluid, far from any boundary or other particles 

Cd 	average volumetric concentration of particles in a delivered mixture 

(Condolios and Chapus write C,t ; Wilson and Brebner write C; 

Babcock; Zandi; Hayden and Stelson write Cv ) 

Cd  c 	delivered contact-load, the part of Cd that is supported by the 

pipe invert in transit 

Cdh 	delivered suspended load, the part of Cd that is supported 

hydraulically in transit 

Cf 	total hydraulic friction factor (Fanning) of flow in a pipe 
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• c10 	hydraulic friction factor for a flow of clear water 
• 
• Cf 	hydraulic friction factor characteristic of pipe wall roughness for flow in sector 1 
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• Cf  2 	hydraulic friction factor characteristic of pipe wall roughness for flow in sector 2 

• C112 	effective fricion factor of the bed surface 

•
lb 

C11 	friction factor of the bed surface, with all  particles fixed to the bed (Eyler) 

Cr  

average concentration by weight, corresponding to volumetric concentration C 
• 

local volumetric concentration of particles in a mixture flowing in a pipe (in situ), or 

= 	= N./8/f, a dimensionless variable representing V 

• D 	inside diameter of pipe 

•  d 	characteristic particle diameter of a class of particles 

• di 	characteristic d of particle fraction i 
• 

4 Cf hydraulic friction factor (Darcy-Weisbach), or 

friction factor given by the Nikuradse formula 

• f' 	friction factor for a flow of water in a clear pipe at the same mean velocity 

•
as a slurry flow in the same pipe (Wilson model) 

• fA (...) a function that determines the property A 

acceleration due to gravity 

• hydraulic head gradient of a fluid, or slury, in metres of water per metre of pipelength 

• , i2 	hy- draulic gradients applying to sectors 1 and 2, respectively (Wilson model) 
• 

hydraulic gradient of a flow of clear water 

ip 	2 ri (s —1) Ch minimum hydraulic gradient required to maintain plug flow 

• of a loose-packed bed of particles that fills the pipe (Wilson model) 

roughness height characteristic of a pipe wall  linier  surface • 
• m 	moisture concentration (by weight) in a water-saturated solid, or a positive constant 
• 

number of size fractions of a particle-size distribution 

pressure, in fundamental units 

• Re p 	= w d/v Reynolds number for terminal fall velocity 

• 
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area of pipe wall, per unit length of pipe 

area of pipe wall, per unit length of pipe, 

(also used to designate the surface) 

S2 

	

	area of pipe wall, per unit length of pipe, 

(also used to designate the surface) 

Si 2 

	

	area of interface between sectors 1 and 2, 

(also used to designate the surface) 

ratio of solid-to-carrier fluid densities 

(fluid is usually water) 

,S 

time 

= Ji g D/4 shear, or friction, velocity of a flow in a pipe 

average velocity of carrier fluid and of particles (in the whole pipe) 

average velocity in sector 1 

average velocity in sector 2 

velocity at the minimum i of an i — V curve 

= V2 /VI  

the velocity at which partial suspension of particles 

=-- * 

= X 4 

weight of free water in a sample of a slurry 

weight of saturated particles in same sample as for “71  

terminal fall velocity of a particle in water 

fall velocity characteristic of a particle of size-fraction i 

ill)  

( S — 1) Cd 

=X1  

= X =  v.  dIV dimensionless variable (see Appendix B Table (B-2)) 

bordering sector 1 

bordering sector 2 

per unit length of pipe 

= PB/P 

S s  

u* 

V 

12.1 

V2 

vc 

VR

vi  

WI 

V 4, 

IV, 

X 

X 

XI  

commences as V is increased 



2 
X2 	= Y = 	dimensionless variable (see Appendix B Tables (B-2) and (B-3)) 

X3 	= Z = Dld dinlensionless variable (see Appendix B Tables (B-2) and (B-3)) 

X4 	= W = p,lp dimensionless variable (see Appendix B Tables (B-2) and (B-3)) 

X5 	= C dirnensionless variable (see Appendix B Tables (B-2) and (B-3)) 

X6 	= k Id dimensionless variable (see Appendix B Tables (B-2) and (B-3)) 

X 7 	= ri  dimensionless variable (see Appendix B Tables (B-2) and (B-3)) 

= 	— 	„-y D 3  X 	— - — -- — -- 	dimensionless variable (see Appendix B Table (B-3)) 
1)112 

Y 	= X2  

Z 	= x3  

(x, y, z) Cartesian co-ordinates, z in direction of flow, y directed vertically up 

0 	value of 0 for the intersection of the pipe wall with the surface of the bed 

"Y 	= g p specific weight of fluid (usually water) 

`'Y 8 	= g (p .— p) specific net weight of a particle submerged in fluid 

e 	roughness height of a bed surface (Eyler) 

( 	= C112/C10 (Wilson) 

ri 	coefficient of mechanical sliding friction between particles and pipe 

0 	angle in cylindrical co-ordinate system centred on a pipe axis, 

measured from the negative y-axis 

AA 	= Au /A1  scale factor for property A 

p 	viscosity of a fluid (usually water) 

iti 	viscosity of a slurry consisting of a fluid and suspended particles 

v 	= pl p kinematic viscosity of a fluid 

7-- 	
. 

= x  

=Cf j /Cfo (Eyler) =  

HA 	dimensionless version of property A, with basic parameters d, p, v. 
=_- 
11A 	dimensionless version of property A, with basic parameters d, p, -yg, 

xi 



P)  PI 

Pl P2 

Pd 

Pm, Pal 

Pa 

P88 

Pw 

o.  

ar8 

To 

7-1 2 

T2  

T2 f 

72 n  

11) .4(• • 

4) .4(• • •) 

density of a fluid (usually water) 

average densities of mixtures in sectors 1 and 2, respectively 

average density of a total delivered mixture of water and particles 

average density of a slurry or mixture 

density of non-porous solid particles, or average density of 

of porous solid particles when saturated with water 

true density of the non-porous solid material forming part of a porous material 

density of water 

normal stress, or characteristic width of a particle-size distribution 

pressure normal to surface S2 at the level specified by 0, 

due to the submerged weight of contact particles 

shear stress 

shear stress at the pipe wall, due to a flow of clear water in the clear pipe 

shear stress on surface S1  

shear stress on surface S12 

shear stress on surface S2 

component of 7f2 , due to fluid flow 

component of 7r-2, due to mechanical s liding friction 

function of the characteristic dimensionless variables of a flow 
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=- 
that determine IIA and HA, respectively 

(I) .111  

Cd w  

Oi i — iw  
= Ci  i w  

oi (0) 	..__ sin 0 - fi cos 0  (Wilson model) 7r 

V 2 \/CD  V) 	= 
g (s — 1) 

x i 
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Selected Theoretical and Practical Aspects of Studies 

Made in Conjunction with the Joint Canada/FRG Research 

Project On Coarse-Slurry, Short-Distance Pipelining 

by 

L.B. Geller* and W.M. Gray** 

BACKGROUND 

An agreement was signed in 1971 by Ministers Jean-Luc Pepin and Walter Scheel, 

for the governments of Canada and the Federal Republic of Germany (FRG), respectively, 

on scientific and technical cooperation (see Appendix A of Geller and Prof. Geller, 1984). 

Its purpose was: 

— to broaden the scope of all aspects of scientific and technological 

cooperation between the two countries, for peaceful purposes and 

for their mutual benefit; and 

— to facilitate and to encourage scientific and technological coope-
. 	- 

ration and exchanges of information. 

One special field of cooperation agreed to under the terms of this document was that 

of coal-slurry systems. Details of the proposed cooperation are covered by a Memorandum 

of Understanding (MOU), signed in 1984 by Dr. W.G. Jeffery for CANMET in Ottawa, and 

by Dr. Finke for the Ministry of Research and Technology (BMFT) in Bonn (see Appendix 

A of Geller, 1985). The four specific areas referred to in this MOU are: 

* Research Scientist, and ** Senior Scientific Officer (retired), Mining Research Laborato- 

ries, CANMET, Energy, Mines and Resources Canada, Ottawa, Ontario. 

current address is: General Delivery, Tantallon, Nova Scotia, BOJ 3J0, Canada 

1 
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— dense coal-slurry systems, including their preparation, transpor- 

tation, combustion, and marketing and commercial aspects; 

— hydraulic transportation of coking coals; 

— Coarse-slurry, short-distance pipelining; and 

— preparation of an engineering manual on the design of slurry 

pipelines. 

The project leaders, identified by the MOU for the slurry pipelinin.g research area, 

are L.B. Geller of CANMET's Mining Research Laboratories in Ottawa, and Professor 

F.J. Geller of the Westfâlische Berggewerkschaftskasse's (WBK's) Mining Engineering De-

partment in Bochum. They were charged with preparing a report detailing the objective, 

methodology, costs, and timetable of a mutually acceptable, joint R&D project on coarse-

slurry, short-distance pipelining. Such a program was duly developed and reported on 

(Geller and Prof. Geller, 1984). It was submitted to the Canadian and German coordina-

tors designated by the MOU (Dr. T.D. Brown and F. Fiseni, respectively), and accepted 

by them. To paraphrase Professor Shook, the goals, rationale, and approach adopted for 

this program were, essentially, as follows: 

Goals  : 

To provide a method for determining the hydraulic performance of 

run-of mine coals 

cleaned coals 

washery wastes 

when transported by pipeline for comparatively short distances. 

Rationale  : 

In con.trast to long-distance transport of fine-particle slurries, pipelines for short-

distance movement of coarse solids cannot justify the heavy expenses of thorough 

testing programs, before they are designed. Instead, designers must rely on a model, 

and on a minimal amount of data. 
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Approach  : 

In an independent US Department of Environment study (Eyler et al., 1982), empi-

rical models were shown to be less satisfactory than mechanistic ones. In particular, 

the force/mass-balance model of Wilson (itself an elaboration of that of Newitt et 

al., 1955) was identified as the most suitable one for use. Wilson's model was derived 

for use with coarse-slurry flow, but the data upon which it was based involved only 

coarse sand in small pipes, at low concentrations. Also, the values of d/D were no 

greater than 0.03. The range of operating conditions must, therefore, be extended, 

before it can be adopted for a full range of design purposes. 

Because western Canadian coal is very friable, the effect of particle diameter in the 

model is of obvious interest in Canada. Therefore, in its first phase, the Canadian 

study needs to address this problem, with particular attention to such parameters as 

pipe diameters and slurry viscosities. 

As for the situation in West Germany, it is known that a number of studies have 

already been conducted there with very coarse coal and waste materials. However, 

it is impossible to incorporate these data in the model, unless the conditions of the 

relevant experiments can be fully established. In particular, the viscosity of the fines-

containing fraction, as well as the coefficient of particle-to-pipe wall friction must be 

established. It is also desirable that additional tests be conducted in Germany, to 

complement the ones scheduled for Canada. This is of particular interest in areas 

for which the test equipment at the StBV laboratory in Essen is better suited for 

certain of the experiments, than is SRC's in Saskatoon, e.g., in the particle range 

above about  G mm. In summary, it is hoped to set up a combined Canada/FRG 

research effort that will yield a model, which can then be confidently used for a full 

range of design purposes. 

The opportunity provided by the Canada/FRG joint research agreement is an un-

usually auspicious one for setting up an in-depth test series with coarse solids, on a carefully 

controlled scientific basis, in a range of pipe sizes, with various types of materials. Such 
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conditions usually are not possible in testing, when only practical, short-term results are 

sought. The resulting data, then, cannot be included, with any degree of confidence, in the 

data bank of others. Moreover, the test results may be of a proprietary nature, and cannot, 

therefore, augment general knowledge. Under the Canada/FRG agreement it is possible to 

ensure that all relevant results are widely disseminated, for the benefit of both research and 

industrial interests in general. 

As a consequence of this joint research agreement, an appropriate test contract was 

devised and initiated by CANMET, as Canada's initial project contribution. Preliminary 

results achieved from this contractual effort, and their evaluation with a mechanistic model, 

have been given elsewhere (Gillies et al., 1985, 1986; Shook et al., 1986). Moreover, the 

relevance of these test results, within the overall framework of the cooperative project, 

as well as their immediate practical significance, was also documented elsewhere (Geller, 

1985). This documentation includes both specific operational control problems, as well as 

general implications regarding the overall industrial relevance of slurry research. 

Besides the previously mentioned laboratory test results, Canadian members of the 

joint Canada/FRG `Coarse-SlUrry Working Group' contributed a number of theoretical 

essays to the program. These reports deal, in particular, with the modelling aspects of 

interest, including several prepared by Professor C.A. Shook (Shook, 1980; 1981; and 1983). 

CANMET scientists also contributed reviews of several theoretical aspects, primarily by 

means of live discussions and through unpublished communications. This report is intended 

to serve as an appropriate documentation of the latter and as a contribution to a useful 

• exchange of ideas. 

Although German members  of the cooperative project have, so far, been unable to 

proceed with any of their own laboratory work, because of funding problems, they too have 

tabled essays dealing with some of the modelling aspects in question (e.g., Hartbrich, 1984 

and 1985; Nacke and Verholen, 1984). 
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INTRODUCTION 

Hydraulic systems have been used for many years to transport solids, usually in the 

form of fine-particle slurries, but some installations have also been used to move rock in 

large-sized pieces. Bain and Bonnington (1970) mention examples in which sizes ranged 

up to 12 cm in diameter, as well as one case in which phosphate rock 1,vas moved in 20- to 

25-cm pieces, for distances of several kilometres. However, experimentation relative to the 

improvement of efficiency is more difficult in case of coarse particles, than in case of fine 

slurries. Consequently, the knowledge of how to improve large-particle transportation lias 

 not developed quickly. Reviews of the general subject have been published by Zandi (1971) 

and by Shook-  (1976). 

Apart from theoretical-cum-laboratory work with smooth-bore pipes, two rather spe-

cial endeavours were also described in the literature, undertaken in an effort to come to 

grips, in pragmatic terms, with the transport of coarse-solids slurry. In one case, a he-

lical rib is installed on the inner surface of the pipe, to give the slurry a rotary motion 

as it is pumped through the pipe. Experimental investigations at the Saskatchewan Re-

search Council's Pipeline Development Centre have indicated that substantial savings in 

the transportation energy (of the order of 42%, according to one particular set of data) may 

be possible (Shriek et al., 1974; Shook, 1976). 

In the case of the second special approach, the particulate material is encased in a 

cylindrical capsule, to be carried through the pipe as a unit. Experiments in the laboratories 

of the Alberta Research Council showed that, in this case also, savings in transportation 

energy might be realized. Numerous papers and reports have been issued; the results have 

been summarized by Shook (1976). 

Other special solutions to slurry pipelining have also been studied, e.g., the method 

known as Pulsing Flow (Round, 1974, 1981, 1986). Despite a number of claims, to have 
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achieved savings in transportation energy by means of special methods, none have, to date, 

been accepted in general practice. 

A new theoretical approach to modelling of hydraulic transport has been described 

recently by Roco and Shook (1981, 1982). The authors attempt to solve basic problems 

semi-empirically by extensive use of computer calculations. Results reported on initial 

applications of the method indicate that much improved accuracy and reliability may be 

achieved in the prediction of field performance from laboratory pipeline tests. However, 

by the very nature of hydraulic theory, various difficulties have not yet been solved in this 

a,pproach. The ability to obtain results economically from a limited amount of data on a 

new particulate solid remains to be established. 

Much of the work for the present report has been concentrated on developments, 

stemming principally from the introduction by K.C. Wilson (1976) of a, so-called, mechanis-

tic approach to the mathematical modelling of slurry transportation. This method aroused 

considerable interest because of the conclusion that the Wilson model promised to be more 

satisfactory than previous empirical models (Eyler et al., 1982; Eyler and Lombardo, 1980; 

Lombardo and Eyler, 1980a, 1980b). To a certain extent Wilson and others (who will 

be mentioned later) achieved a better qualitative understanding of the mechanics of the 

transport process. However, progress in improvement of the model has proved to be difficult. 

The first section of the report reviews some ideas, used for empirical correlations, 

that have influenced the development of the Wilson model. The second section discusses 

the general nature of the model. Close consideration of the divergence of the conditions 

of . a real flow from the basic assumptions of the model leads to the conclusion that its 

parameters cannot be treated as physical properties that can be measured independently. 

The hope remains, however, that, as an improved formulation, it may perform more reliably 

on a minimum amount of data for a given area of interest, than earlier correlation systems. 

The third section describes the basic assumptions of a simple version of the Wilson 

model. Equations are given in accordance with Wilson's approach (referred to as Model A) 
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• and in accordance with the approach of Shook et al. (referred to as Model B). Calculations 

• illustrate the equivalence of the two models. Some differences between these models and the 

•
• 	approach of Eyler et al. are also discussed. A simple method of solution of the model is given 

• for the case where the interfacial shear stress parameter, Wilson's (, is to be determined, 

all other parameters being fixed. 

• 
•

it is generally agreed that suitable data are sorely needed for further development 

• of the scientific basis for coarse-particle slurry transport. In this context see Eyler et al. 

•
• (1982), Shook (1976, p. 21), Shook et al. (1981, p. 91), and Shook (1983). It is also 

• generally accepted that accumulation of such data is a difficult and expensive undertaking • 
• and that, even when support is available, it normally applies only to the investigation of 

• a given material under specific conditions. Appropriate harmonization of basic research 

• and of field operations (including a careful scrutiny of the overall economic picture) must, 

• 
•

therefore, never be overlooked. 

• Because of this situation a discussion is included, in the fourth section of the report, 

• of the value of dimensionless analysis in planning experiments required to establish, as 

• efficiently as possible, the data required for the development and use of any model. An 

• exploratory proposal is made for a plan for aceumulating a bank of data that would be 
1111 
111 	suitable for reliable communication between laboratories. 

411 
• It is also shown that dimensionless analysis can assist in providing short-term results 

• before a good model is available. Due to the extreme complexity of the physical processes 

• involved in hydraulic flow, an approach may have to be adopted that circumvents presently 

• unsolved problems of modelling, if practical goals are to be achieved. • 
•

The fifth section of the report treats a number of varied topics encountered in the 

• literature relating to the Wilson model. It includes discussions of theoretical problems, 

• including applications of dimensional analysis, problems of practical experimentation, and 

• problems of definition of symbols. 

• 
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Appendices A, B, and C, respectively, present a very brief sketch of some basic 

features of fluid flow, an introduction to dimensional analysis for flow in pipes, and an 

application of dimensional analysis. 
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DISCUSSION OF EMPIRICAL CORRELATIONS 
USED IN PIPELINE DESIGN PROCEDURES 

The Wilson model for slurry flows was developed to overcome defects in empirical 
equations, found by data correlation, for use as bases for pipeline design. Because some 
concepts used for the development of ernpirical correlations were adapted for use in later 
models, these are reviewed briefly. Certain observations, made in connection with the 
experimental work reported, have interesting implications for modelling. 

Bain and Bonnington (1970) give a concise account of the development of the Durand 

equation, probably the best-known relation used for the correlation of slurry flows. Zandi 

(1971) reviews empirical relationships. 

The Durand equation can be written as 

= KO' 

with 
i — i ti, 

= 	,; 

and 

= g(s — 1)D 

where: 

i is the hydraulic head gradient in terms of water density, 

for a slurry flow with mean velocity V, 

iw  is the hydraulic gradient in terms of water density for a 

flow of clear water with mean velocity V, and 

K, m are constants. For other symbols, please refer to the sym-

bol list, and to the referenced articles. 

This correlation was developed for slurry flows in which the particles are not wholly 

held in uniform, or homogeneous, suspension. Such flows are termed heterogeneous. For 

sands and gravels (s= p9 /p= 2.65) particles greater than about 0.15 mm in diameter are 

subject to heterogeneous flow conditions. 

Sizes less than 0.15 mm in diameter are referred to as fine sizes; sizes greater than 

1.5 mm, as coarse sizes; and sizes between 0.15 and 1.5 mm, as intermediate sizes. The 

Durand equation is an attempt to deal with slurries involving particle sizes greater than 

about 0.15 mm. 
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Durand and his associates determined m = 3/2. Various values of K have been 

attributed to Durand, but values of K and m have both been subjects of discussion and 

uncertainty in the literature. However, the importance of the equation lies in its general 

form. The Durand equation need not be considered as a model with fixed values of K and 

m. If the latter are determined to fit the data for a specific particulate material, a useful 

model can be found, within the ranges of parameters tested. 

In Situ Concentration, Ct, as a Parameter 

As a variant of the Durand equation, Shook et al. (1981)t have substituted the in 

situ concentration of particles in the pipe, C , for the delivered concentration, Cd. The 

modified equation may be written as 

Of = KIrm 

with 
i — i v)  
Cjiw 

Shook et al. (1981) found that this equation can express reasonable agreement among 

the results observed with one single type of coal, using different pipe sizes. They found 

different K values with two different types of coal, and found m = 1 to fit their results. They 

carried out runs by recirculating the slurry. As the mean velocity was varied, Ct  remained 

constant, and Cd varied with V. As V decreases, 	increases, and Cd decreases. Thus t e, 
0 increases at a greater rate than 0/ , which was offered as an explanation for the value of 

m.= 1, rather than the Durand value of m = 3/2. 

The use of Cd for correlation is widespread, and often is taken for granted, without 

an explicit definition of concentration. In an interesting paper, Babcock (1971) almost 

certainly uses Cd (represented by him as Ce ), obtained by sampling of the slurry flow; 

recirculation is not mentioned. Babcock found that the original Durand equation, with 

m = 1, gave excellent fits to his experimental observations with intermediate and coarse 
sands. This result seems to imply a discrepancy between Babcock (1971) and Shook et al. 

(1981), because both found m = 1, although one used Cd, and the other  C.  Differences 

between the parameters of the flows in the two cases, not taken into account by the Durand 

equation, may be the cause of the discrepancy. 

t Note that in Figures 6, 7, 8, and 9 of the referenced paper, the axis of abscissae should 

be labelled ti), and not 0 -1 , according to the common definition of 0. 
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Coefficient of Mechanical Friction, n , as a Parameter 

•
• 

Mechanical friction is used to indicate friction resulting from sliding displacement 

between solids in contact, as distinct from viscous friction. 
• 
• Investigators have, for a long time, realized that, when particles were not carried 

• in homogeneous suspension, mechanical friction between the particles and the wall of the 
• pipeline could contribute to the head losses of the  flow, in addition to viscous friction. (i — z)  

• was seen as the increment of the gradient due to solids in the flow (where i w  is the gradient of 

• clear water having the same mean velocity as the slurry), but no detailed mechanism could 

• be proposed. A basic difficulty in the division of the total gradient between mechanical and , • 
viscous friction causes is that there is no assurance that i n, accurately represents the part 

• of the head losses in the slurry flow that results from viscous friction. 

•
• 

Newitt et al. (1955) introduced a mechanical friction coefficient in the case of hete-
4111 	rogeneous flows, but only if a moving bed of particles existed in contact with the pipe wall. • 
•

The following equation was found: 

• 
• i — i n, 	..,gD • . 	= K3(3 - 1)- 	 Eq 5 

CciZtv 	 V2  • 
where K3 is proportional to the friction coefficient n . The drag coefficient, CD, does not 

• vary with size when particles are large enough (greater than about 1.5 mm in the case of 

• sand or gravel). Then the Durand equation, with m = 1, takes the same form as Equation 

5. With particles in that category, Newitt et al. (1955) found a good fit to this equation. • 
•

Their work thus agrees with that of Babcock (1971), in finding that in = 1. 

If a bed of particles was not allowed to form, because of lift forces of the flow, Newitt • 
•

et al. (1955) apparently did not regard mechanical friction as a factor in (i — 40 ), even 

• though the flow were not homogeneous. But work by Bagnold (1954, 1955, 1957) shows 

• that the submerged weight of the particles separated from the bed can be transmitted to the 

• bed, or directly to the pipe wall, under some conditions (see later discussion, commencing 

on p. 57). Mechanical friction could contribute to the head loss. 

• 
Delivered Concentration, Cd, as a Parameter 

O  
• 
• Results reported by Babcock (1971), involving only one pipe diameter, D = 1 inch, 

• will be summarized here diagrammatically, in order to present compactly some of the im-

portant deviations from the Durand correlation that he described. His work also bears on 

O 
• 
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the Wilson model in a way that does not seem to have been noticed before. Figure 1(a) 
shows one type of plot of (i — i) against Cd (linear scales), obtained with a series of runs, 
Using a particular closely graded sane of intermediate size (20/30 quartz sand — passing 
sieve No.20, not passing No.30 — mean size d = 0.72 mm, apprœdmately). The points 
represent slurry flows at a constant velocity, VA, at concentrations between 0.0 and 0.4. 

Figure 1(b) shows another type of plot in which the plotted line is curved in the 
region of lower concentrations. This plot results from slurry flows with the same sand at a 
higher velocity, VF • 

Fig. 1 — Head-loss as a function of Cd, with V constant: 

(a) V = 1.22 m/s; (b) V = 3.88 m/s 

Figure 2 shows the resulting plot of 0 against 0 (to logarithmic scales). All the 
points in Figure 1(a) coincide in point A in Figure 2. Similarly, points B, C, and D result 

This sand was called coarse by Babcock. 
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from straight line plots for velocities Vg, Vc  and VD. The straight line A B CD satisfies 
the Durand equation for ni = 1. 

The points E and F, resulting from the straight line parts of plots for higher ve-

locities, VE and VF, also satisfy the Durand equation. But let us now consider the points 
lying on the curved part of the plot for TIF  in Figure 1(b). Points 5, 4, 3, 2, and 1 become 

F5, F4, F3, F2, and F1  in Figure 2. Their  q values descend in order of the Cd values. 

Fig. 2 — Correlation plot using the Durand equation 

The saine  effect is shown for points E4, E3, E2 and El  . Thus, the results for lower 

concentrations of intermediate sand cannot be represented by the Durand equation at the 

13 



20 

10 

higher velocitiest. 

Similar results with an intermediate sand of smaller particle size (30/45 quartz sand 

— d 0.45 mm) are shown in Figure 3. At higher concentrations the results coincide in 

point B',  representing the same velocity VB as in Figure 2. 
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Durand equation 

Points representing runs at lower concentrations, however, fall below point B',  with 

Babcock did not publish a plot similar to Figure 1(b) for velocity VB. Thus, the Cd 

values are not known for points E4 , E3, E2, and El . However, Figure 1(b) is given as 

typical and, therefore, E1 represents a concentration of order 0.05 to 0.10, whereas E2, E3, 

and Ei are in ascending order of the Cd values. 
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0 values decreasing in order of the Cd values. Thus, the Durand correlation fails at a lower 

velocity, when the size of an intermediate sand decreases. 

Results for the 20/30 intermediate sand, and for a 10/16 coarse sand, are also plotted 

in Figure 3; it may be seen that the points for identical velocities do not coincide when the 

particle sizes are different. Babcock (1971) found, by plotting 0 against V 2 /gD instead of 

0, that the points for a given velocity did coincide. The drag coefficient, CD, included in 0, 

did not appear to compensate for particle size, as intended by Durand. In fact, CD spoiled 

the correlation under the conditions described. 

Babcock (1971) also tested slurries with a sand sized near the border of fine and 

intermedia,te sizes (80/100 quartz sand, with d 0.16 mm). In this case lie  found that the 

results could be correlated by the Durand equation. However, he found in = 0.25. Thus, 

these results could not be well correlated with those of the coarse sands. 

Figure 4 shows one plot of (i — i tu )li,a, against Cd for this 80/100 sand, at velocity 

VB. In this case the plot is linear at lower Cd values, and curves upwards at higher values. 

Figure 5 shows the corresponding plot of 0 against 0, for velocities VA, VB, Vs , and 

VD• The results for lower Cd values coincide in points 'A, 'B, 'C, and 'D, for velocities 

VA,  VB, Vs, and VD, respectively, as marked in Figure 2. But, it may be seen that points 

in the curved part of Figure 4 result in points 'B5 , 'B6 , and 'B7 , in order of increasing 0 

values. This effect is opposite to that shown in Figures 2 and 3, for the intermediate sands. 

From the point of view of a model attributing the difference (i — i zo ) to mechanical 

friction between particles and the pipe wall, the frictional force must depend on the net 

difference between submerged weight and hydraulic lift forces per unit volume of particles. 

Qualitatively, a straight plot of (i — i) against Cd can be interpreted as indicating that 

the net frictional force is constant per unit volume, because of constant lift forces per unit 

volume. 

A curved plot, such as in Figures 1(b) and 4 can be interpreted as a change in the 

hydraulic lift forces per unit volume with a change in Cd. For both the intermediate sands, 

and the fine/intermediate (80/100) sand, the net frictional force increases as Cd increases, 

i.e., lift forces per unit volume decrea,se. But for the fine/intermediate (80/100) sand this 

only occurs at higher values of Cd. For the intermediate sand it occurs at lower values of 

Cd, 

For the fine/intermediate (80/100) sand the lift forces seem to be maximal throughout 

the straight section of the plot of (i — i to ) against Cd, i.e., when Cd iS lowt. 	For the 

t i.e., when Cd  < 0.23, per Figure 4. 
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Fig. 4 — Head loss as a function of Cd, with V constant 

intermediate sands the lift forces seem to be minimal throughout the straight section, i.e., 

when Cd is hight. Two different flow regimes, that' need not remain unchanged as the 

value of Cd changes, are indicated. An important consequence for the Wilson model will 

be discussed later. 

Taken together, Figures 3 and 5 illustrate the properties of the Durand equation very 

-well. When is used on the axis of abscissae, points representing intermediate sands of 

different diameters are spread apart as mentioned previously, but points representing the 

fine/intermediate (80/100) sand line up somewhat better, very approximately, than when 

V 2 IgD is used instead of.  0. In the latter case the point 'A, for example, has the saine  value 

i.e., when Cd > 0.4, per Figure 1(b). 
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Fig. 5 — Correlation plot using the Durand equation 

for V 2  I gD as points A, A". The Durand correlation can only be approximate, unless it is 

applied within restricted ranges of parameters, when correlations can be good. 

In conclusion  some remarks are perhaps also in order regarding the sometimes con-

fusing use of the symbol 0 in the literature. As an example, it may be noted that Zandi 
v2 „Vc 

(1971) employ-s the symbol 0 = gD( 
	  as a dimensionless squared velocity group§ 

s — 

D 

1)'  
The commonly found use of 0 agrees with Zandi (see for example Babcock, 1971). This 

§ The square root is omitted in error in Zandi's "Notation List." 
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symbol is also used by the authors in this report (e.g., Equation 3). 

Shook (1976) indicates agreement with Zandi, in his Equation (13). He refers to 

in the Nomenclature List as the "dimensionless velocity"; it is, in fact, a dimensionless 

squared velocity. Moreover, Shook et al. (1981) also agree with Zandi in their Equation 

(1). Yet, in their Figures (6), (7), (8), and (9), the abscissa axis appears as 0 -1 , when it 

should actually be labelled as O. Similarly, Shook et al. (1982a) use tp--1 on their Figures 

(5), (7), and (9). Again, Shook (1981) uses 0 -1  on his Figure (12). All these figures, as 

plotted, should actually have the abscissa axis labelled as O. Anomalous usage of V) by 

Haas et al. (1980,  P.  29), and by Gillies et al. (1981, p. xiii), may also be noted. 

It appears, that no particular reason has been given for the use of 0 -1 . Consistent 

use of ît) will contribute to clarity. should clearly be identified as a dimensionless squared 

velocity group. It is neither the reciprocal of a velocity, nor of a Fronde number. 

The Durand Empirical Correlation; Comments Based on 

Consideratiens of Dimensionless Analysis 

It is of interest to consider the structure of the Durand equation in the light of the 

principles of dimensional analysis, as an application of Appendix B. 

	

The expression 	V2 	can be written as: gD(s —1) 

	

V 2 	pV 2   ( 	pV 2  ( 	 z _ i  

	

gD(s 	—1) g(p„— p)di ) 	-y 8 dD ) 

= 
where, Z is the dimensionless variable D/d representing D, and lIv is the dimensionless 

variable representing V. These two variables belong to the complete set of dimensionless 

variables for representing the slurry flow, when the parameters p, d, and -y, are chosen as 

basic parameters (see Table (B-3) and Equation (B-25) of Appendix B). 

Pt' 
referred to p, d, and -y„ as basic parameters. E represents the fluid viscosity  i. For a given 

particulate solid (with parameters -y,„ d), and a given fluid (with parameters p, 	E is a 

constant. 

As shown in Appendix C, the drag coefficient CD, for particles similar in shape, is a 

function of E only, i.e., CD = 	(Z.,) (see Equation (C-4)). Thus 

1 V2  N/C7) 	(riv) 2  z-1 F-77w (E)] 2  -= 	(111/, Z, FL) gD(s —1) 

The dimensionless variable E d3  (see Table (B-3)) is also part of the system 
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= 
where q5,/, is a dimensionless function, that expresses 0 in terms of Ilv, Z, and E. 

=_ 
In other words, tp can be expressed in terms of valid dimensionless variables fly, Z, 

and E, all of which are formed with the same group of basic parameters. However, the 

function 0' w (z) that is incorporated in 0, is not a function relating to the slurry flow, but 

is a function relating to the terminal fall velocity of a representative particle with diameter 

d, in still water far from any boundary or other particles. 

The right side of Equation 2
1  i 
	— 	is also anomalous, because i t, does not relate to 

 Cd2 w 
the slurry flow; i t, relates only to a flow of clear water, having the same mean velocity as 

the slurry flow. 

It is seen that the Durand equation unites parameters from three independent flows, 

or types of motion. This type of mixture of parameters is not a promising approach theo-

retically, but its partial empirical suçcess has left its mark on other models. 
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DISCUSSION OF THE WILSON MODEL 

The Wilson model was developed in stages, through a series of papers*. A detailed 

description of two forms of the resulting model is given in the next section. In this section, 

however, we discuss the nature of idealized concepts that are implied by the mathematical 

equations through which the model is expressed. Some inconsistencies and shortcomings 

of these concepts are discussed, as a contribution to a clearer understanding of the issues 

involved. 

Shook (1983, pp. 2 and 3) refers to the difficulties in defining recognizable real phe-

nomena characteristic of certain flow regimes. Definitions should be restricted to recognizable 

phenomena, and idealizations that facilita,te modelling should be clearly identified. We at-

tempt the second part of his recommendation. We compare some aspects of real phenomena 

with idealized concepts, without trying to define any real phenomenon completely. 

Shook (1983, p. 2) also objects to any loose use of such terms as sliding bed. As the 

term has entered the jargon we suggest that the best way to deal with it is to adopt it. It is 

a useful term if it is used only to indicate the corresponding concept that is actually used 

in the model, as will be seen. 

The Wilson model has been referred to as being the product of a 'unified physically-

based analysis, and as a mechanistic model. These terms are acceptable, if applied only to 

the model, but it must be clearly understood that certain pararneters and relationships of 

the model have not been established as representative of real hydraulic flows on a strictly 

physical, or mathematical, basis. 

Nevertheless, workers in the field have reported that the model has been fitted suc-

cessfully to some sets of experimental data. It does provide a model framework, developed. 

by Wilson with the aid of certain general physical principles, that is an improvement on for-

mer data correlations. But the fact remains that the parameters needed to apply the model 

must be established through data correlation, and the limits of the range of application 

must be explored. 

The Durand equation was alSo the product of the physically based thought that 

introduced CD and it then became a basis for data correlation. The Wilson model is 

situated Similarly and must be approached with an appreciation of its real nature. Some 

idealized concepts employed in the Wilson model are discussed in the following sub-sections. 

* Wilson (1970, 1973, 1975, 1976, May 1976, 1979, October 1982); Wilson and Brown 

(1982); Wilson and Judge (1977, 1978); Wilson and Watt (1975). 
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Sliding Bed 

The sliding bed of solids upon which the Wilson model is based must consist of 
particles that all move together as a unit. The shear force exerted by the pipe wall on the 
bed is assumed to result from mechanical sliding friction between the wall and the particles 
that touch it. No terms are included to take account of any rotation of the particles, or any 
relative motion among them. 

Furthermore, when the bed does not fill the pipe it is assumed to have a well-defined 
horizontal upper surface (in a horizontal pipe). The fluid, or slurry, flowing above the bed 
exerts a shear stress on the upper surface of the bed. 

A flow in which the bed fills the pipe lias  corne to be known as plug flow. At loi,v 
velocity the hydraulic gradient required to maintain plug flow is represented by ./ 8 . An 
important justification of the value for j 8 , calculated from the Wilson model, was given in 
a paper by Wilson et al. (1973). 

But in a closely related paper Bantin and Streat (1973) reported on the velocities of 
particles in a plug flow. Their Figures (8) and (9) clearly show that particles in plug flow 
travel at different velocities , in general, depending on their distances from the pipe wall. 

Since the distortion of the bed must require energy, the calculation of j, that forms 
part of the Wilson model cannot be regarded theoretically as a sound use of a normal 
friction factor. The agreement of the calculation with experiment should be regarded as an 
empirical coincidence. 

Televantos et al. (1979) report on particle velocities in beds that did not fill the pipe. 
In their Figures (10) and (11) it can be seen that the particles in the bed did not travel at 
one single velocity. 

The friction factor, ri, as used in the model, is not a physical property that can be 

evaluated with confidence, independently of a flow including a bed. The applicability of an 
17-value (or function) must be established empirically by some process of fitting the model 
to sets of measurements made on the flow, as discussed later (see p. 69, 1. 3, et seq.). 

Eyler (1981) and Shook et al. (1982b) constructed an apparatus for measuring the 
sliding coefficient of friction experimentally. 

Interfacial-Friction Factor, C112 

The effective friction factor,  C1 , of the flow  above the bed of particles (assumed here 

to be stationary) is related, presumably, to the friction factor of the pipe wall, Cfi, and the 
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friction factor of the bed surface, Cf 12,  by the equation 

Cfl S1 +Cf12 S12  

where: 

S1  is the area of the pipe bounding the flow, per unit length, and 

512 is the area of the bed surface per unit length. 

This equation rests on the following assumptions**: the cross-sectional area of the 

flow, A 1 , is assumed to be divided into A„„ influenced by the wall only, and Al2, influenced 

by the bed only. The same pressure gradient, i, must exist in the flows through both areas, 

and it is assumed that the same average velocity, V, exists in both. 

For flow in a clear circular pipe, we can write 

V2 	V2  
i 2 uf 	Cf 	 

g D 	2g Rh 

where Rh is the hydraulic radius, given by Rh = 4, where A is the area of the flow cross 

section, and S is its perimeter. It is then assumed that the second expression for i can be 

used for a flow of any cross-sectional shape. 

Thus we can write, in general, 
„ V2  S 

= f 	 
' 2g A 

Or, 

A=—C1 S.  
2 g 

For the areas A1, }lip, and Al2, we can write 

	

V2 	fa 	\ 

	

Ai = — 	+ 2 g i 
V 2 

 2 g i 
and, 

V2  ,.., 
Al2 = 	(-112 512 2g 

assuming that the surface that separates A u, and Al2 does nut affect either flow, because 

the velocities at this surface are the same for both flows. 

From these equations it follows that 

Cfl S1 + Cf12 S12 	Aw + -Al2  

Cf (S1+ S12) - 	Al 

Wilson (1971, p. 1667); Eyler et al. (1982, Appendix  F) 

• Cf = 	(Si  + S12) 
Eq 6 

* * 
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which reduces to Equation 6. 

It appears that this relation has been used to allow for differences between Cf values 

assigned to different areas of a tunnel or pipe. But, if a rough bed fills a substantial part 
of a pipe, use of the relation is more dubious. 

The assumption, that the mean velocities through A u, and Al2 are the same, restricts 
the choice of the location of the hypothetical surface that separates them. The assumption, 
that it is neutral, is equivalent to the asumption that no net momentum, or shear stress, 
is transferred across it. Given the high asymmetry of the flow channel relative to its shape 
and surface roughness, it seems unlikely that both assumptions can be fulfilled. 

Eyler et al. (1982, Section 4.1) conducted several series of experiments to measure 
Cf directly using beds with /3 = 60°, 90°, or 120°, and d/D = 0.05, 0.10, or 0.20. Knowing 

Cf and Cf (from the known pipe roughness), they calculated  C112,  but they found that 

results for a given surface roughness were not consistent. 

The values of C1 12  corresponding to a particular Reynolds number, 2.5 x 10 4 , with 

= 0.0243, were read by us from Eyler's Figure (4.7) to illustrate the nature of the 

results succinctly. The various values of Cf 12 are shown in Table 1. 

TABLE 1 
Values of the Interfacial-friction Factor, C., 12 

C112  

d/D 	/3 = 600 	/3 = 90° 	/3 .--- 	120° 

0.05 	0.096 	0.108 	0.069 
0.10 	0.103 	0.166 	0.105 
0.20 	0.203 	0.244 	0.330 

If Equation 6 were correct, Cf  12 values corresponding to e  given value of d/D should 

be the same, because they are meant to characterize the surface of beds of particles of 

similar size, i.e., of similar roughness. The discrepancies in all three lines appear to be 

much greater than experimental error. 

Acceptance of the rough average values of C1 12  shown in Eyler's Tables (4.3) and 

(5.3), together with his formula (5.41), elD = 1.72 (d/D), indicates a low standard of 

accuracy in the model, unable to match the measurement accuracy of the data on the 

average friction factor, Cf, of the flow. 

23 



••
••

••
••

••
••

••
••

■
••

■
■
••

••
••

••
••

••
••

••
•■

■
••e

ss
••

••
•s

e e
e•

  

** 

It is unfortunate that the discussion* on the "Effect of Interfacial Shear Modelling" 
is not on sound ground with respect to values of C112. In this context it should also be 

noted, that Wilson and his coworkers have recently reexamined the flow conditions in the 
interfacial shear layer**. 

Formula for Threshold Suspension Velocity, Vt 

Wilson (1973, Figure 4) employs a plot of 	i iw against V on log scales, to 

determine VI , expressing the threshold velocity for initiation of suspension due to turbulence 

for a particular set of pipe and particle sizes. The significance of two different contact-load 

relationships in which Vi  (or V.) is employed is discussed in the next subsection. Here the 

authors discuss Wilson's establishment of V.  

Let X represent 	 for convenience. 
Cd (S — l)' 

Wilson (1973, p. 31) shows that the results of Babcock (1971) and of Newitt et al. 
(1955) both support the finding that X is independent of V for cases in which the immersed 
weight of the particles is presumed to be carried by the pipe wall, not by suspension in the 
fluid. Wilson proposes that if X decreases as V increases above a certain velocity  V ,  this 

velocity marks the commencement of a partial suspension of the immersed weight of the 

particles by the fluid. 

Wilson's (1973) Figure (4) provides one value of VI , and he proposes that the data of 

Babcock (1971) provide another. Using these two values he is able to derive a preliminary 
relation for calculating  V. Wilson and Watt (1975) use these two cases, combined with 
four further cases, to derive the final relation (their equation 6, on p. D1-7): 

= 0.6 w VE» exp (45 dID) 

where: 

w = terminal fall velocity of single particle, 

d = diameter of particle, 

D = diameter of pipe, 

f' = Darcy-Weisbach friction factor for equivalent discharge 

of clear water. 

Returning to Wilson's (1973) use of Babcock's data, it is of interest to take a close 
look at Babcock's (1971) results. Wilson uses the results (see Figure 2 of this report) relating 

See Eyler et al. (1982, Section 5.7). 
Wilson (1984); Wilson and Tse (1984); Gardner (1985). 
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to the series of runs with 20/30 quartz sand. To facilitate a comparison with Wilson's Figure 
(4), the data of our Figure 2 have been replotted in terms of X = 	 and V, as 

shown in Figure 6. 

The points corresponding to velocities VA, VB, Ve, and VD lie on the horizontal line 

ab' with X = 0.56, referred to by Wilson as approximately 0.6. For all of these velocities 
X is independent of Cd. 

But for higher velocities, such as VE and VF, X is dependent on Cd (see Figure 6). 

With each velocity (for example VF), a critical value Cid  (in this case 0.4, approximately) is 

associated. Values of Cd less than Cid  lead to values of X less than the value 0.56 mentioned 

above. X decreases uniformly with Cd. 

Fig. 6 — Replot of our Fig. 2 in form of Wilson's (1973) Figure (4) 

In making use of Babcock's results, Wilson ignores any dependence of X on Cd. 

He notes that the results at VD indicate no suspension, but that  those at VE indicate 
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Fig. 7 — Copy of Wilson's (1973) Figure (4) — for easier reference 

suspension. He therefore chooses the mean of VD and VD, 3.12 m/s, as V/  for this case. 

On Figure 6 the position of VI  is indicated, and the point b represents the critical 

point in a plot similar to Figure (4) of Wilson (1973)*. A plot such as abc would be 

expected, where the slope of bc is chosen arbitrarily as equal to the slope (-1.7) of the 

right side part of Wilson's Figure (4). If V.  were independent of Cd, such a plot would be 

expected to represent all of the data. 

But a single plot cannot represent ail of Babcock's data. Each value of Cd requires a 

different plot. For example, Cd = 0.4 requires a plot such as ab' c' , with V/  = VF = 3.88  mis.  
On the other hand, Cd = 0.08 requires a plot such as ab"c" , with VI  Vc = 2.45 m/s. 

Clift et al. (August 1982, p. 92) state that the slope, —M = —1.7, has been typical 

of a number of tests. Consequently, the positions of the lines bc, , and b"c" should be 

apprœdmately realistic. It is, therefore, interesting to note that bnc" (drawn through point 

F1 ) passes close to •.E1 . The latter point represents data given by Babcock for the lowest 

value of Cd at velocity VD, but this value cannot be estimated from the published data. It 

is likely to be close to 0.08. 

We also note that bc passes close to the point F3, representing Cd =  0.15 at V = 

3.88 m/s. This indicates that Vi  = 3.12 rals (for point b) corresponds to Cd of; the order 

* See Figure 7: 
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of 0.15, but that it is not the correct threshold suspension velocity for any value of Cd that 
differs appreciably from 0.15. 

Because of these results it is difficult to understand the relative lack of scatter in 
the inclined section of the plot in Wilson's (1973) Figure (4), except by assuming that the 
range of Cd values is rather small. 

In the discussion relating to their formula for V , Wilson and Watt (1975) make no 
mention of the values of Cd in the data used. The formula must represent a sort of mean 
value for V , but a certain distortion could have entered into it, if the sets of data used to 
develop it correspond to different mean values of Cd. 

Eyler and Lombardo (1980, p. 3.9) note that the Wilson and Watt (1975) formula 
for Vi  predicts an unreasonably high value, giving one particular example with D 0.07. 
They remark that the formula is based on data for which d/D < 0.03. Use of the formula 
with d/D greater than this limit may be one factor in a questionable result. But the neglect 
of Cd in establishing, and in using, the formula may also be an important factor. 

Shook et al. (1981, pp. 88 and 89) report satisfactory predictions by the Wilson 
model with high concentrations of solids, but less satisfactory results with loi,v concentra-

tions. Aside from any other sources of discrepancy, the Vi  formula may be a factor. 

It is noteworthy that no development has taken place in the Vi  formula since Wilson 

and Watt (1975). Let us write the formula in the general form 

A w 	exp (B dID). 

In view of Babcock's work it would be desirable to determine A and B as functions of 

Cd (or Ci  if the model uses this). A large amount of experimental work would be required 

to cover a wide range of Cd values, and to extend the d/D range above 0.03. 

In principle, however, this is a relatively simple way of making a possible improvement 

to the Wilson model. 

Contact-load to Total-load Relationships 

In the literature the following equations can be found to express the above relation- 

ships: 
cc 	 ) a 
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(see Wilson May 1976, Eq 2) 
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and, 

R = (-21  
V V I  
V7-„, 

Wilson (May 1976) states that his equation 

Cc (VI )  a  
C V 

would appear to represent approximately the relation between contact load and total load 

of particles. In Wilson's notation Cc  and C represent contact and total volumetric loads, 

respectively, as delivered. Also, 

= threshold velocity for initiation of turbulent sus- 

pension; and 

V = slurry throughput velocity. 

In the notation used in this report, the relation becomes 

a 
Cdc (Vi 

= —Cd  

Clift et al. (August 1982) introduce the stratification ratio, R, — defined to be the 

fraction of the total conveyed solids moving as non-suspended load. In the context of the 

paper it is clear that the total conveyed solids must be regarded as delivered load, Cd, and 

the non-suspended load (contact load) as a fraction of delivered load, i.e., Cd,. Therefore, 

Cdc R= — 
Cd  

Clift et al. (August 1982) write 

V ) 
11= 	

" 
 

In the notation of this report this becomes 

R = (171)m 

and it follows that 
C 	 " dc 	( .1/1  

	

7 	• 

On comparing Equations 8 and 11 we would expect a and M to be identical. However, 

Wilson (May 1976, p. 4) states, without explanation, that the exponent a has a value slightly 

less than 2. In fact, a = 2 is commonly assumed in the literature concerned with thq. Wilson 

model. 
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The plot is then interpreted in terms of the reduced form of Equation (5), i.e., 

(i — i)  = R ( Y!"\ 
—1)Cd 
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On the other hand, Clift et al. (Aug. 1982,  P.  92) report typical test results giving 

a value of M close to 1.7. The authors (in their notation) determine M as the absolute 
in,  

value of the slope of a plot of c 	against V,„ on logarithmic scales. Figures (4), (5), 
•-'774 — 

and (7) of their paper, in fact, show M values of 1.54, 1.68, and 1.68, respectively. 

Figure (4) of Wilson (1973) also shows a similar plot with an M-value of 1.73. Wilson 

(May 1976) makes reference to this work, but clearly he did not determine a directly from 

plots like those in the four figures mentioned above. He, therefore, must have determined a 

in some manner different from that given by Clift et al. (Aug. 1982). It will be shown here 

that an explanation for the relation between a and M cart be drawn from a consideration 

of the two papers — namely of Wilson (1973), and of Clift et al. (Aug. 1982) — taken 

together. 

Equation (15), of Clift et al. (August 1982), states that 

(inz — if) 	A t 

( 5 m 1 ) 	ef  

where*, (sni  — 1) = (s, — 1)Cvd• 

In the notation of our report this becomes 

11,1 
itv)  = 	[1— ( 1- ')-) 1+ B (-117 ) 

—1)Cd 

s = pR/P.• 

This equation is assumed to hold only for V >  V , and it is stated that whenever 

a significa.nt part of the solids is moving as a stratified load, the term in B dominates the 

equationt. The text indicates that under these conditions the term in their Equation (5) 

that contains A' can be ignored, and that M can be determined by plotting X = 
 (
(i iw )  

against V on logarithmic scales. 

which is true only for V >  V.  

Figure 8 gives an example of such a plot, represented by the line trrt, part of the line 

Ltni. Point L corresponds to VL, the critical deposit velocity. At velocities less than VL  a 

* Per Equation (5) of Clift et al. (August 1982). 
Stratified load means contact load. 
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Fig. 8 — Plot, as per Equation 13 

stationary deposit of particles exists at the bottom of the pipe. Concepts treated in the 

paper by Clift et al. (August 1982) do not apply at velocities less than VL . 

Point t corresponds to Vi , the velocity at which the fluid begins to exert a dynamic 

support force on the particles. At velocities between VL and Vi  the particles in the flow all 

travel as contact load, and the value of X is B. At increasing velocities (greater than Vi ) 

dynamic support acting on the particles causes X to fall progressively below B. 

t Normally a minimal quantity of stationary particles, that can be observed, is required 

to define VL; in the literature a number,of expressions can be found for the critical deposit 

velocity, such as those by Durand-Condolios, and by Zandi-Govatos. 
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B and V. are determined by the observations mentioned above. M is determined by 

the slope of the mean straight line  tin  that best fits the data. 

If the size, shape, and density of the particles are such that the particles cannot 

travel totally as contact load at any observed velocity, no horizontal section Lt of the line 

Ltm can be observed. Point t then becomes simply the upper end of the mean straight line 

through the plotted points. 

Under these circumstances, B and V/  cannot be defined. The product B Vim  in 

Equation 13 must be replaced by K, a constant, to give 

(i —  iw ) 
— 1) Cd 

= 
VM 

for which K and M can be determined from the line tm. 

Now let us substitute a for M in Equation 12 to obtain 

X =
(1) 

(i  — i
w
Cd

) 
= iw  [1 — ( 

v 
 :2-) 	B 

s — 	 V 	 V 

w )  
S 	Cd 

The line Lta in Figure 8 is a plot of X — 
(— 1)

against V, based on the complete 

Equation 15. The assumptions used in calculating points on the line are given in Table 2, 

together with data for plotting the points. This line is similar to that shown in Figure (2) 

of Clift et al. (August 1982). 

The assumptions are intended to provide a basis for simulating approximately some 

of the data plotted in Figures (6) and (7) of Clift et al. (August 1982), in particular the 

data taken with C = 0.11 and D = 0.20  nt,  and plotted with open triangles. 

The assumption, a = 2.0, is made in accordance with Wilson's practice. 

The assumptions, A' = 1.0 and f i,„ = 0.0125, relate to the use of Equation (12) of 

Clift et al. (August 1982), which can be written (with 31 replaced by a), as 

D V \ (f - f.)  = A t fw 	( VI rl 4 - B 2 	g 	t ) (s — 1) Cd 	L 	 V 2 	V 

where, i = f V 2  
and i w  = -fu'  v2 

 In these equations f and f„, are Darcy-Weisbach ' 
friction factors for the mixture and for clear water, respectively. 

A plot of Y = (f fw )  against V on linear scales is shown in Figure (1) of Clift 

et al. (August 1982). As V becomes large, Y approaches A' f„„ and Equation 16 can be 

approximated by 
Cf — f.)  = A f. 

— 1) Cd 
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TABLE 2 

Data for Line Lta in Figure 8 

V < : X = 0.500 

?_ 	: 	X = A' i [1 (-,1 ) er  +B  

A' = 1.0, B = 0.5, a = 2.0, Vi = 2.0 m/s, i, = 12u'gV.  

D = 0.2 m, g = 9.81 m/s2 , and ft„ = 0.0125. 

V 	A' i ii, [1- .ITI /V) 2] 	B (Vi /V) 2 	X 

	

2.000 	 0.0000 	 0.5000 	0.500  

	

2.222 	 0.0030 	 0.4050 	0.408  

	

2.500 	 0.0072 	 0.3200 	0.327  

	

2.857 	 0.0133 	 0.2450 	0.258  

	

3.333 	 0.0226 	 0.1800 	0.203  

	

4.000 	 0.0382 	 0.1250 	0.163  

	

4.500 	 0.0518 	 0.0988 	0.151  

	

5.000 	 0.0669 	 0.0800 	0.147  

	

5.500 	 0.0836 	 0.0661 	0.150  

	

6.000 	 0.1020 	 0.0556 	0.158  

	

7.000 	 0.1434 	 0.0408 	0.184  

	

8.000 	 0.1912 	 0.0312 	0.222  

	

10.000 	 0.3058 	 0.0200 	0.326  

	

20.000 	 1.2617 	 0.0050 	1.267  

	

40.000 	 5.0848 	 0.0012 	5.086  

	

100.000 	31.8473 	 0.0002 	31.847 

NOTE: fill  varies with V. Estimates show that this variation 

has a negligible effect on the curve Lta with respect to the 

matter discussed. 

In Figure (6) of Clift et al. (August 1982) a horizontal line is shown as the estimated 

limit  value, A' f„„ of the data shown with open triangles. The line is marked ff (f ii,  in 
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present notation), indicating that A' = 1, as mentioned in their text (see p. 97). The 

position of the line ff on the plot shows that ff  = f li, =  0.0125. 

The assumption, B =0.5, is made so that the minimum in the curve Lta will occur 

in the neighbourhood of V = 5 mis, because the open triangles in Figure (7) of Clift et 

al. (August 1982) depart from the mean straight line near that value of V. A minimum 

consistent with the data should occur at a velocity not much greater than 5 m/s. Clift et 

al. (August 1982) say (see p. 93) that "Newitt et al. (1955) found B = 0.8, but lower 
values have often been found." 

It is finally assumed that Vi  = 2.0 m/s, because X = B = 0.5 occurs at V = = 2.0 

on the mean line of Figure (7) of Clift et al. (August 1982) The point (B, Vi ) so defined 

is not inconsistent with the open-triangle points. 

If Equation 15 represents concepts that are useful, the line Lta should_simulate the 

mean line through experimental data from an experiment in which the assumptions of Table 

2 were fulfilled. Because of experimental scatter, a mean straight line, similar to tm, would 

be drawn, with a slope of about —M = —1.7. 

But if Equation 15 were reduced to 

— 1) Cd 

B  (Vi r 
Eq 18 

as Equation 12 was reduced to Equation 13, the line Ltb would be expected as an approxi-

mation, with the section tb having the slope —a = —2.0. 

Thus tb is not a linear approximation to the data, whereas tm is. Conversely, the 

full Equation 12 with M =1.7 does not represent the data, whereas Equation 15 does. 

M and a have distinctly different rôles. M is associated with a straight line interpre-

tation of data (Equation 13), whereas a is associated with a more complicated interpreta,tion 

(Equation 15). 

It seems likely that Wilson (May 1976) had an equation such as Equation 15 in mind 

when he stated that a = 2.0 (approximately), knowing that plots such as that of Figure 

(4) in Wilson (1973) showed slopes in the neighbourhood of —M = —1.7. However, the 

connection between a and M has not been published, to the knowledge of the present 

writers. Clift et al. (1982) give the basis for Equation 15 but their derivation of the 

approximate equation is incorrect and misleading. 

It can be seen that, in relation to given data, M must be less than a, and its value 

will depend on the range of velocities treated. A theoretical basis for a has not been given, 

nor has a reason been stated for assuming that its value is a constant, and equal to 2. 
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COMPARATIVE CALCULATIONS RELATING TO 

A SIMPLE WILSON MODEL 

In this section the authors make use of the results of an illustrative example of an 

application of the Wilson model (see Wilson, May 1976, p. 8), to compare these results 

with those that would follow if the equations given by Shook (1981, pp. 16 to 19) were 

applied to the same basic flow data. 

It will be seen that Wilson's Figure (3) (May 1976, p. A1-14), basic to the illustrative 

example, provides results that differ greatly from calculations given here. Unfortunately, 

Wilson did not give equations to handle cases with a moving bed, or with a part of the solids 

in suspension. Therefore, it has been impossible to discover a reason for the discrepancy. 

However, it is useful to use Wilson's example as a basis for a discussion of the equations 

given by Shook. 

It may be mentioned that the equations given for a sliding bed by Eyler et al. (1982, 

p. A.15) as an extension of Wilson's fixed-bed equations, also do not treat cases with 

suspended particles in the slurry. • 

In carrying out the comparative cakulations here, the authors intend to incorporate 

the main idea behind Shook's equations, as well as those advanced by Eyler et al. (1980, 

1982). However, only the simplest model, of the type discussed by the latter authors, is 

adopted. It is intended that the parameters chosen should agree as closely as possible with 

the estimates made by Wilson. The model used by Wilson will be called "Model A," and 

the one by Shook, "Model B." 

The basic difference between the models is that Model A uses the two force balance 

equations (A3) and (A4) (see Shook 1981, p. 17) to derive only the additional head loss 

due to contact-load, whereas Model B uses these equations to calculate the total head loss 

of the flow. This approach was introduced by Televantos et al. (1979). The full set of 

equations can not be solved; Shook (1981) and Shook et al. (1981) give a simplified version 

that can be solved by an iterative process (see Shook, 1983, p. 15, and Eyler et al., 1982, 

Appendix A). 

Basic Assumptions 

Figure 9 summarizes the main parameters of the Wilson model. 

A flow in a pipe of diameter, D, consists of a compact bed of particles with interstitial 

fluid moving through area A2, and a slurry of suspended particles moving through area Al. 

S12 is the area of the interface between bed and slurry, per unit length of pipe. Similarly, Si  
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(a) Parameters in situ 

(b) Parameters as delivered 

Fig. 9 — The parameters of the Wilson model 

and S2 are the wall areas, per unit length, bounding the slurry and the bed, respectively. 

Angle 0, measured in the sense shown, specifies the level of the top of the bed. Angle 

0 similarly specifies a variable level in the bed. C1  is the in situ concentration of the 

solids suspended in the slurry. C1  applies only to area A 1  (see Discussion on p. 67). All 

concentrations are stated in volumetric terms. 

C2 = Cb is the constant in situ concentation of the solids in the bed. The submerged 

weight of these solids is assumed to be supported by the pipe wall. No dynamic hydraulic 

support is provided by the fluid. Note that these assumptions, regarding C 1  and C2, differ 

from those of Shook (1981), represented by his equation C2 = Cmax —  C1 [A161. His equation 

numbering is given here in square brackets. 

The average velocity of the slurry is VI , which applies both to particles and fluid. 

The velocity of the bed is V2; the fluid and all particles in the bed have the same velocity. 

The foregoing in situ parameters are shown in Figure 9(a). 
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Figure 9(b) illustrates the delivered parameters, as if a fully mixed flow occurred 

in the pipe. The total cross-section is A = A 1  + A2. V is the average velocity of the 

flow. Cd is the total delivered concentration of the solids (total delivered load). Cdc  iS 

the delivered concentration of the solids that travelled in the bed (delivered contact load). 

Cdh is the delivered concentration of solids that travelled in the slurry (delivered suspended 

load; subscript h indicates homogeneous flow in the slurry, in situ). 

The in situ density of the slurry in A1  is 

Pl = Pw[1 (s — 1)C 1] 	 [A6] Eq 19 

where: 

p„, is the density of water, and 

s 	pal p„„ where,  Pa  is the density of the solids when satu- 

rated with water (i.e., the "effective" density). 

The in situ density of the bed in A2 iS 

P2 = Pw[1 -I-  (8 — 1)Cb]. 	 Eq 20 

The density of the delivered mixture is 

Pd = Pw[1 (s — 1)C d]. 	 Eq 21 

The equations given by Shook (1981) are adapted to Models A (Wilson), and B 

(Shook), and to the notation of this report, as follows: 

AV = A.1171 A2V2 

CdAV 	 CbA2V2 

T1 S1 + T12S12  
ilPwg = 

T2S2 — Ti2S12  

When a solution is obtained, the head losses (in metres of clear fluid per metre of 
pipe) are all equal, i.e.,  j 1  = i 2  =  i. As for the other symbols in the foregoing equations: 

T1, T12, and 71--  2 are the shear stresses across the areas S 1 , S12 , and S2 With 

= C1 1V12 P1/2 	 [A5] Eq 26 

T12 = C112(V1 V2) 2 P1 /2 	 [A.10] Eq 27 

7 2 = T2 f 	 [A14] Eq 28 

where: 
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T21 =  C1 1V22 1,1/2 	 [A151 Eq 29 

T277  = 11(D I S2) f cr„(18, 	 Eq 30 
(3 

and, 

„ = (p, — pill )Cb(D 12)(cos9 — cos/3)g 	 [A131 Eq 31 

C11, and C112 are Fanning friction factors. 

crrs  is the pressure, at depth y = (D/2)(cos0 — cosi3) below surface S12, due to the 

submerged weight of the contact solids. This pressure is assumed to act normally on surface 

S2, as a liquid pressure would. The term ru/tan is omitted from Equation 31, because, 

as is discussed later (see p. 57) its inclusion is shown to be untenable. 

The equation derived by Wilson for calculating Cdc , is written for each size fraction 

as  

(Cd,i/Cdi) = 0.36 (w 1 /u.) 2  exp (90d1 I D) 	 Eq 32 

where: 

Cdi 	is the total delivered concentration of particles 

in the ith size fraction, 

Cdci 	is the part of Cdi that is in the contact-load, 

WI 	is the mean terminal fall velocity- for the particles, 

di 	is the mean particle diameter, and 

tt. 	= (igD14), is the friction velocity of the flow. 

Then, 

Cdci 
1=1 

where, N is the number of size fractions. 

It should be noted that the constants, 0.36 and 90, in our Equation 32, follow from 

Equations (1) and (2) of Wilson (1976). All concentrations used in the equations, and in 

the experimental results on which the constants were evaluated, were expressed as delivered 

concentrations. Although it would be more satisfactory, on general grounds, to express our 

Equation 32 in terms of in situ concentrations, the authors are not aware of any logical 

justification in the referenced literature for simply substituting in situ concentrations in the 

saine relation. Shook's equation [A171 in terms of in situ concentrations can only be looked 

upon as a speculative attempt to find a new empirical relation that gives better results than 

Wilson's original relation (which, of course, is also largely empirical). 
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therefore, 

From Equation 23, 

Eq 33 

Eq 34 

Eq 35 

Eq 36 

Eq 37 

Eq 38 

Eq 39 

Eq 40 

Eq 41 

Eq 42 

Eq 43 
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Relations Useful for Solving the Model Equations 

S 	+ S2 = 71-D 

S2 = 

= — f3)D 

S12 = D sin/3 

A 	+ A2 = rD2 /4 

A2 = (D2 /4) — sin [3 cos 0) 

A1 = (D 2  14 )(7  — ( 0 — sin cos /3)1 

(cos 0 — cos f3)d 9 =  I  d(sin 0 — 9 cos [3) = (sin  /3 - 13 cos p). 
0 

Cdc  V 
V2 = 

Cb (1— a) 

where: 	a "11- and A2  A  14, A1  — 	 (1 — a). — A ' 

From Equation 22, 

V — (1 — a)V2 V (1 — Cd, V 
= 	  

a 	a 	a 	Cb (1— a) 

, 
—c

l V e ) 
= ( C 1 — —• 

Cb a 

cl = 
CdV — Cb(1 — a)V2  

•  a VI  

By substituting for V1  and V2, from Equations 41 and 42, we find that 

= Cd 1 
( 1  — Cdc/Cd)  

« 
( 1—  CdclCb) 

Equations 24 and 25 may be written as follows: 

T1 S1 	712 S12 i i g = 
P w 	P w A1 

Because Cb represents contactIload particles in situ (i.e., in the bed), arid  Cd  c  repre-

sents contact-load partides as delivered, CbA2V2 = Cdc AV. Therefore, 

and, 
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72q _ 
P w 

D 1P 

7  7572Pw  f 1  — o rad 0 
0-   

D2 	 0 
-=.- 77 	 Cb (S — 1) g f 	(cos 0 — cos [3)cl 0 

2S2 	 o 
rD2 /4 (sin  /3 — [3 cos  )3) 

= 277 5,2 	(s 1) g Cb 
7r 

, —1 

= g ip ( -74-) 95 1(1-3 ) 
a2 

where, 

and, 

Eq 52 

E q 53 

E r' 54 

ip  = 271(S — 1) Cb 

(sin — /3 cos [3)  
01(0) = 	Ir 

T2 S2 	712 S12 
i2g = 

PW P1.2 	Pw A2 

The following relations are derived from Equations 34 to 39: 

• 4 	7r— /3 
• D — (0 — sin 13 cos 0)1 

S2 	4 
A2 	D (0 — sin /3 cos 0) 

S12
= 

 S1 sin /3 
7-

1 
 
Ai(ir —  0) 

512 	S2 sin /3 

-A2 	A2 

S2 OD 	4 f3 = 	= — 	— — 

A 	D2  :Tr 	D 7r 
and, 

a) 
A2 	/3 — sin cos /3 = — = 	  

7r 

Eq 45 

Eq 46 

Eq 47 

Eq 

Eq 49 

Eq 50 

Eq 51 

From Equations 30, 40, and 50, 

Parameters for Wilson's Model A and Shook's Model B 

The basic parameters given by Wilson (May 1976, pp. 8 and 9), are as follows: 

D -= 0.4 ni; 	s = 2.65; 	7/ = 0.40; 	Cd = 0.18; 	Cb =  0.6.; 	g = 9.81 rn/sec2 ; 
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a,nd 	= 4.4 (see Wilson 1976,  P.  Al - 9). 

The following assumptions, made by Wilson, have been adopted. Wilson stated, that 

f' = fo  = 0.013 was a suitable Darcy-Weisbach friction factor for the flow of clear water in 

a D = 0.4 m diameter pipe of commercial roughness, in the velocity range considered. The 

equivalent Fanning friction factor is C1 0  = f0/4 = 3.25 x 10 -3 . 

Wilson also assumed that, in Equations 26 and 29, C1  =  Cp. This is an empirical 

assumption, dating back at least to Newitt et al. (1955, Equation 7), that is commonly 

made for slurry flow. It replaces the following equations given by Shook: 

= C11[De1V1P11 	el D 	 [A6] 

C1 i = C11[DV P11111, e D] 

De1  = 4 A.1/(Si + S12) 

Izi 
= exp [ 	

Cl  

/If 	(0.2692 - 0.2254C 1 )] 

The foregoing equations represent a more sophisticated approach to the problem, 

but all variants of the Wilson model are, by sheer necessity, so simplified theoretically, that 

hope for improvement is speculative. The added complexity tends to obscure the properties 

of the basic model, the discussion of which is the purpose of the present authors. 

Wilson also assumed that CD2 = (C10, where ( is a function depending on the 
characteristics of the flow, including wall roughness, sizes of particles in the bed, and in the 

slurry, as well as the shape of the cross-section A. 1 . The equation 

2 
Cf12 

[4 log (D e i/dm ) + 2.281 2  

is used to calculate C. On the basis of his calulations, Wilson simply assumed that, in 
relation to his Model A, ( = 4.4. Its use in Shook's Model B is the same. 

Thus, using Equations 19, 26, 27, and 29, the shear stresses (in units of (N I m 2 ), are: 

= C10  V12  P 1 / 2  = Cf0 V12  Pw[1  (s —1)C1112 	 Eq 56t 

712 = (Cf0 (V1 — V2) 2  p. [1 + (s — 1) C1 [/2 	 Eq 57§ 

See also Eq 75. The value 3.36 in Shook's Eq [A11] is replaced by 2.28. 
Since C11= C fo• 
Since C112 	C10. 

40 

Or, 

where, 

and, 

[A71 

[As] 

[A9 ] 

1A.11]t 	Eq 55 
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T2 1  = C f0 V22  P w [1 (s — 1) C1}/ 2  

C10 =  3.25 x 10 -3  

= 4.4. 

Wilson's Model A requires an additional equation, appropriate to the flow of the 

slurry, defined for A1, when it is assumed to be flowing at velocity V in the full area A of 

the pipe, in the absence of contact load. The shear stress is calculated as 

To + Th  C10 V 2  Pdh /2 = C 10V 2  P w [1 + (s — 1) C dh] /2 	 Eq 59 

with ro indicating the shear stress due to clear water and Th the additional shear stress 

due to suspended particles. Note that: 

with (i0  ih) as shown in Eq 61. 

Wilson made the calculations for determining Cd c /Cd for values of V between 1 and 

8 m/s. The results are given in Wilson's Figure (6), and the mean line (Cc /C in Wilson's 

notation) is accepted, after some checking by the authors. 

Calculations reported here are for the velocity V = 5.0 m/s. The parameters that 

are constant throughout the calculations were determined as follows: 

From measurements made on Wilson's Figure (6), Cdc /Cd was calculated as 0.2338 

at V =- 5.0 in/s.  Then*: 

Cd c  = (Cdc 1Cd) X Cd = 0.2338 x 0.18 = 0.04208 

Cd,,  = Cd — Cdc  = 0.18 — 0.04208 = 0.1379 

Cdc /Cb = 0.04208/0.6 = 0.07013 

1 — (Cdc /Cd) = 0.7662 

1 — (Cdc /Cb) = 0.9299 

= 0.1483 

th/Pw = 1.2447. 

* 	Not all the digits given are significant. 
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Eq 58 

(io ih) Pw g A  
Th = 

(see Eq 43) 

(see Eq 19) 



Calculations of the Force Balance Equations, for V = 5.0 m/s 

At the outset of the calculations the least possible value of 0 can be determined from 

Equation 41, because V2 must be less than, or equal to, V, by assuming that V2 = V, i.e., 

by assuming that  Cdr  = 1. (1-a) Cb 

It follows that 
— sin 0 cos 0 , 	, 	Cdc  = a) =  	0.07013. (1  

7r 	 Cb 

By successive trials, or interpolation from a graph, it can be determined that 0 = 0.72 

is slightly greater than the least possible value. 

For 0 = 0.72, widely different values of j1 and i2 were found. By successive trials, 

and i2 were found to be approximeely equal for 0 = 1.23. The values of if and i 2  that 

were determined, are shown in Table 3. 

TABLE 3 

Values of j 1  and i 2  at V ------ 5.0 m/s, 
for a range of 0 values 

0 (deg) 	/3 (rad) 	il 	i2 	i = [ai i  + (1 — a)i2 ]  

	

41.3 	0.72 	0.043 	0.576 	 0.081 

	

45.8 	0.80 	0.050 	0.449 	 0.088 

	

57.3 	1.00 	0.092 	0.271 	 0.123 

	

67.0 	1.17 	0.155 	0.211 	 0.169 

	

68.8 	1.20 	0.170 	0.203 	 0.179 

	

70.5 	1.23 	0.186 	0.196 	 0.189 

The results of a set of calculations, made with 0' = 1.230, and V = 5.0 m/s, are 
summarized in Table 4. Henée i = ail + (1 — a)i2 = 0.189 (Z) with values of j 1  and i2 
obtained from Equations 44 and 45, respectively. 

To sufficient accuracy the computed result, on the basis of Shook's Model B, is 

ip = 0.190 (—n1 )• 
in 
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0.29125 

0.70875 

0.16914 

8.5852 ( t÷i ) 

13.4428 ( 

4.2328 (,÷) 

10.3006 ( 

3.9152 () 

see: 

Eq 51 

Eq 54 

Eq 46 

Eq 47 

Eq 48 

Eq 49 

Eq 50 

1.2039 (in/.$) 

6.5599 (m/s) 

5.3560 (ni /s) 

87.041 x 10 -3  (:`, 1 ) 2 

 255.303 x 10-3 (-?) 2 

 2.932 x 10-3 () 2 

 333.650 x 10-3 ( 123-8  ) 2 

 336.582 x 	) 2  

see: 

Eq 41 

Eq 42 

Eq 56 

Eq 57 

Eq 58 

Eq 52 

Eq 28 

1 - a = 

a= 

SI 

 451(0) 

_ 
A1 - 

S9 _ 
A2 
5'12  - 
A1 - 
si. 9  — 
A2 
S9 

V2  = 

vi — 172 

Pw 

T12  
Pw 

Pw - 
T9 

Pw 

Pw 

TABLE 4 

Results of sample force balance calculation, with el 1.230 and V = 5.0 m/s 

Due to the uncertainties inherent in both the theory, and the data, no further calcu-

lations are needed. 

* * * * * * 

The head losses  j0 and ih correspond to the shear stresses ro and Th, respectively, in 

Equation 59; also noting that both ro and Th act along S, we obtain: 

A(io + ih )Pwg = s(To + Th) 
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where: 

The basis for Wilson's Model A is to write 

io 	ih 

io is the headloss for clear water, flowing in the whole pipe 

at velocity V, 

ih is the increment of head loss due to the concentration Cdh 

of suspended particles (as delivered), when the slurry is 

flowing in the whole pipe, and 

i n  is the increment of head loss due to sliding friction be-

tween the contact-load (in situ, in the bed), and the pipe. 

Eq 60 



• 
• 
• 
• 
• from which it follows that • 

JO + ih
2

CfoV2 [1 A- (8 — 1)C dh] 
gD 

2  
X  3.25 x 10 -3  x 5.02 [1 -I- (2.65 — 1)0.1379] = 0.051 	Eq 61 	• =

9.81 x 0.4 

	

Note that j = o h = i0 i0(8  — 1)(C — Ce ) per page A1-4 of Wilson (1976), with 	• 
fov2 2cf0 v2 	 • = 2gD = g D • 

• 

	

Similarly the head loss i n  corresponds to the shear stress 7.2 n , calculated from Equa- 	• 

tion 52. Hence, from basic considerations, 	 • 

Aiewg = S2 7211 	 Eq 62 

since i n  is a normal stress acting over the total area A of the flow, and 72 n  is a shear stress 	e 
e acting only over the area  52 of the pipe wall. 
• 

Thus, 	 • 
• 52 1-2r, 	3.9152 	 e = 	x 333.650 x 10 -3  = 0.133. 	 Eq 63 
'1 	gA p ii, 	9.81 	 • 

il 
Then, by Equation 60, using 0 . 1.230, 	 te 

• 
iA = 0.051 -I- 0.133 = 0.184 (—

m
) 

ïn  • 
on the basis of Wilson's Model A. 

	

The component i n  is actually calculated from exactly the same factors for both 	• 
models. The difference between i A and i B is due only to terms dealing with hydrau lic flow. 

te In Wilson's Model A they are io and i11 ,  and their sum may be designated as 	+ih)A,  

whose value was calculated through Equation 61. 

The counterpart of this sum, according to Shook's Model B, may be designated as 

(i0+ ih )B, although the individual terms that make it up are not directly related to io  and 

ih of Wilson's Model A. 

Because a solution of Shook's Model B is independent of 712 , as shown later in this 

section, and because (i() ih )B depends only on 71 and 72  (which is only part of 7. 2), one 41 
may write • si , „ 	72 f S2 

	

g(io  ih)B = a— 	—aj-- 	 Eq 64 

	

Pw Al 	 Pw A2 • 
• Using the values given in Table 4, we find (io -Fih )13 = 0.055, which is to be compared 
• 

with (io ih )A = 0.051. The difference between (i0 ih )A and (io  ih )B accounts for the • 
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difference betwen iA and ig •  The differences referred to here are not exactly equal, but this 

lack of equality results solely from inaccuracies in the calculations. 

By using Figure (7) of Wilson (May 1976), the value of i for V = 5 m/s is found to 

be (7) = 0.108. 

The value found by the authors, by following the procedure used by Wilson from liis 

Figure (3) (May 1976, p. A1-10, para. 4), is i(3) = 0.113, a value close to i'(7), as expected. 

We adopt the mean as i(7) = 0.110 

The reason for the discrepancy between i(7), and Wilson's iA(= 0.184), or Shook's 

iB (= 0.190), is not known, as indicated earlier in this section. Several possible sources of 

error, either on the part of the present authors, or of Wilson, were explored, but to no avail. 

In the course of this work a study was made of the exact meaning of Wilson's pa-

rameter  Ç,  and a divergence between Eyler and Wilson was recognized. Some of the results 

of the study may be found to be instructive. At the least, a few sources of confusion in the 

literature may be neutralized. In addition, a simple method was found for determining (", 

an important parameter of both Model A or Model B, when fitting Shook's Model (B) to 

data. 

Parameter CI 

Eyler and Lombardo (1980, p. 3.36), and Eyler et al. (1982, p. 5.42) introduce the 

parameter C 1 , which will be referred to here as CI , to avoid confusion with our concentration 

parameter C 1 . Equation (5.44) of Eyler et al. (1982), can be written as 

T12 =  Ti  = 	— V2) 2 p1/2 

because, as noted earlier, fi = 4C1 i and Va  becomes (V1  — V2 ) in the case of a moving bed 

(see Eyler et al. 1982, section 5.7.3). For Pi,  note our Equation 19. 

Eyler et al. (1982) regard Cf; as the friction factor of the bed surface, with all 

particles fixed relative to each other. They intend the factor CI to take care of the effect 

of particles saltatingt on the surface. 

Wilson, on the other hand, has clearly intended C112 to be the total effective friction 

factor of the bed surface. Thus, Cfi C112. For Wilson 

Cf12 - (C10 

t Saltation refers to particles that are dislodged from the bed surface by forces exerted by 

the flow  above it. 

45 

Eq 65 

Eq 66 



for Eyler et al. (1982), 

C112 = Cif;  CC 10 	 Eq 67 

where Eyler's definition of e is 

C11= C.f.o. 	 Eq 68 

'Thus, 

( =C. 	 Eq 69 

That Eyler et al. (1982, p. A.15) use Equation 68 is confirmed by their Equation 

(A.17), which reads 

=  C(1  — VR) 2  sin ,6 	 Eq 70 

Since the 1980 and 1982 reports of Eyler and his colleagues are not completely 

consistent, the following points should be noted: 

The 1980 Equation (4.2) reads 

fi = 2f = 2 [2logio (D Id) + 1.14]-2 	 Eq 71 

where f is the factor given by the Nikuradse formula. Thus, Wilson's factor 2 has been 

adopted, but CI is also used as an additional multiplier. 

The 1982 Equation (5.38) reads 

1/1--17= —0.86 In, (el D) + 1.14 

which is equivalent tot 

= f = [2 logio (D I e) + 1.14 1 -2  

The factor 2 has been dropped, but also (D/d) has been replaced by  (D/€),  where* 

(el D) = 1.72 (dID) 

Equation 72 is equivalent to 

Eq 72 

Eq 73 

f i  =  y  [2/og i o (D/d) + 1.14 1 -2 	 Eq 74 

where  y  = y(dID) is a variable function of (dID) that replaces Wilson's factor 2. 

Eyler and Lombardo (1980, p. 3.36) say that they could reproduce the results of 
Wilson (May 1976) by using CI = 1.25, but that Judge (1979) reported tha.t, ill their 

I Since 0.43 In a =  log io  a, and — ln( {5 ) = ln( i)v i  
* Eyler's 1982 Equation (5.41). 
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• words, "the original model developed by Wilson effectively used CI = 1." Since Eyler and 

• Lombardo included an equation equivalent to our Equation 71 in the saine paper, the total 

• multiplier of f would be 2C1 = 2.50. The remark attributed to Judge can only mean: 

• — either, that the "original model" dealt only with a fixed 

• bed with no saltation; Wilson (1971, p. 1667, following 

• Equation 6) notes that, even with a "fixed" bed, an in- • creased friction factor occurs if saltating particles move 

• over the surface; or 

• — that Judge assumed that Eyler's equals Wilson's (", for 
• 
• a mobile bed surface, which leads to CI = 1, by Equation 

• 69. 
le 
• However, it can be seen that Eyler et al. (1982, Section 5.8.2, p. 5.51). only treated 

• flow with suspended particles in a tentative way, unsuccessful in its results. It is highly 

• unlikely that Eyler and Lombardo (1980, p. 3.36) include Wilson.'s illustrative example, 

• treated here, in the remark concerning CI = 1.25. 
• 111 	It may be mentioned, by the way, that Shook (1981) gives 

• Cf12 = 2/[4 log io (D e ild„,)+ 3.361 2 	 1A111 • 
• which includes Wilson's factor 2 in the numerator. But our Equation 71, with f i  replaced 
• by f1 9, is equivalent to 
41 C112 = 2/14 log io (D c ild,„) + 2.281 2 	 Eq 75 
le 
• since C1 12 = f1 214. This is the form given here in Equation 55. The difference between it 

• and Shook's 1A111 appears to be the result of an error. 

• 
•  
• Returning now to our calculations, it is possible, by including a parameter C1. , to 

• find a solution for Shook's Model B that will make i B agree with i(7) of Wilson's Model A. 

• As a motivation for doing this, let us suppose that • i(7) represents an experimental result, 

• with which we want the result from Shook's Model B io agree. We are prepared to change 

the factor 2 used by Wilson in calculating C112 to a factor 2C1 (in the sense in which Eyler 

•
and Lombardo introduced CI in 1980). 

• From Equations 63 and 52, we find that 

• . 	s2 7.211 	• 
• xoi(o). 

P 	
Eq 76 

• 
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0.14144 
0.85856 

0.07701 

8.2180 

20.8163 (,--}-2 ) 

2.9609 

17.9722 (;n-) 

2.9444 (if,) 

see: 

Eq 51 

Eq 54 

Eq 46 

Eq 47 

Eq 48 

Eq 49 

Eq 50 

v2=  
= 

v' -v2=  

Pw 
712  _ 
Pw 

f  
Pw 

7.2,7  _ 
Pw 

_ 
Pw - 

2.4791 (m/s) 

5.4153 (m/s) 

2.9362 (m/s) 

59.317 x 10 -3  (?) 2 

 76.729 x 10-3 (?) 2 

 12.431 x 10-3 ( 1:1 ) 2 

 203.210 x 10-3 ( 11;1 ) 2 

 215.641 x 10-3 (?)2  

see: 

Eq 41 

Eq 42 

Eq 56 

Eq 57 

Eq 58 

Eq 52 

Eq 28 

1 - a = 

a -= 

.01(0) = 
.S1 
A1 

A2 
S12,  _ 
A1 - 
S12  - 
A2 - 
.99 

TABLE 5 

Results of a trial solution for Model B, with el = 0.925 and V = 5.0 m/s 

Thus, 	01(e)=à• 3p 

For the purpose of this exercise we lett 

= 	= i( 7 ) - (io + ih)A -= 0.110 - 0.051 = 0 : 059. 

Then 
i 	0.059 

cb(./3') = 	
=

= 0.0745 
jp 	0.792 

or, from Equation 54, 
sin - [3' cos [3' 
	  = 0.0745. 

By a linear interpolation in the series of values of q51([3) already calculated, we find 

that [3 1  = 0.925 (•.›...1 53°), which is accepted as sufficiently accurate for the purpose, since 

01(0.925) = 0.770. 

This means that the hypothetical experimental value i 1  = 0.059 is compatible only 

with pi = 0.925 53°), according to Equation 76 (note that Equation 76 applies to both 

Model A and Model B). A trial solution was calculated for Model B, using ,3 ' = 0.925; the 

quantities that differ from those given in the previous example are shown in Table 5. 

For (i0 ih )A see Equation 61; for 7) see Equation 64. 
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• 

• 

Hence . 7-12 S12 
• 103 i 1 g 103  p. -71-1- —p. 	= 487.467 + 227.187 = 714.654 

• thus, 

•
= 0.0728. 

• Also 

[ T12 512 • 103  i29 = 10 3  071e: S  ,422  — 	= 4488.848 — 1378.989 = 3109.859 
• 
• thus, 

• i2 =- 0.3170 • 
• and, 

• i =- ail + (1 — a)i2 = 0.1073. 
• 
• This value of j  is expected to be close to i(7) = 0.110, because of the- way that al 

•
• 	was chosen. However, the trial solution is not correct, since  j1 and i2 are not equal. 

• The above solution effectively uses CI = 1 in Equation 65. From this equation we 

• 
see that if a different value, x, is used for CI, then T12 will become (x 7 1 2). Thus the above 

•
numerical equations for calculating  j1 and i2 will become 

•
• 	 10 3 i1 9  = 487.467 + 227.187 x 

•  and, 

• 
• 10 3 i 2 g = 4488.848 — 1378.989 x 

• By equating  j1 and i2 we obtain an equation for x, i.e., 
• 
• 4488.848 — 487.467 = (1378.998 + 227.187) x 
• 
• which gives 

• x = 2.49125. 	 Eq 77 

• When we use this value of x in the equation for  j 1  and i,  we find that 
• i l  = i 2  = 0.1074. 

• 
•

This is the same value as the original one, found with CI = 1. In fa,ct it may be 

• noted that i is independent of r1 2; this can be shown as follows: 

• 
i • g = aii g + (1 — a)i2g = a --A  1-  

T1 	 s12 , T12 
+ (1 	a) [ 	'- 

	

79 S9 	T19 S12 

• • • 

PW 	PW Al Pt° A2 Pw A2 
..., 
•

[flu, —1 	pw ,, , 	' 	' Lp.,.-2 	Pw A2 

• = a Ti .91 
	 + (1 a) - + 	— A  

	

79 S2 	Ti9Sp-, [ a 	(1 — a)] 

• Pu, Ai. 	Pu,  A2 	Pi,' 	1-1 1 	A2 

• 
•
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consequently, 

i.e., 

But, 

hence 

A 1  
A = a and A2 A — A 1  

A 	A 	
(1 — a) 

a 	1 
and ( 1  — a) _ 1 

A2 

[ a (1 — a)1 

LA, 	A2 	A Ai 

i is independent of r12 . 

Shook (1981, p. 10) notes, with reference to his Figure (13), that "the interfacial 

friction factor Cf 12 [to which, per Equation 57, 712 is proportional], is of secondary im-

portance," as far as the value of i is concerned. For a given  3  this is true, but an i-value 

is only acceptable to the model, if the balance condition (i l  = i2 ) is fulfilled, and this is 

determined by r12 . If the condition is not fulfilled, and 712 is fixed, then 0 must change, 

and thus i. In that sense an acceptable value of i is strongly dependent on 7-12, or on C112. 

But as shown above, a fixed value of 0 can be derived from experimental results (see 

Equations 76, et seq.). If other parameters (excepting r1 2) are also fixed, the model can 

only fit the data if a new value of r12  is adopted. 

Sincet -112 = (C10, and since our original (-value is 4.4, the end result of the 

foregoing exercise is that, to fit Shook's Model B to Wilson's i(7) = 0.110, it is necessary 

to uset 
= (x = 4.4 x 2.5 = 11 

Also:  C112=  (IC10  WhiC11 is the value required for calculating a nel,v value for T12 11 . 

The procedure for finding x is very simple, once a calculation has been done, using 

any arbitrary starting value of (. It could be useful for calculating (-values appropriate 

to a series of sets of data, assuming that all the other parameters of the model are well 

known (or arbitrarily chosen). Thus, an empirical function of V could be found for (, i.e., 

= ((V). 

Because, in fact, several parameters are not well established theoretically, in a model 

that does not closely mirror the physical reality of the flow, this relation simply elimi-

nates one degree of freedom in the adjustment of parameters. It might help the empirical 

development of the model. 

See Equation 66. 
With x = 2.5, per Equation 77. 

11 See Equations 27 and 57. 

= 0  

50 



• 
• 
• 
• DISCUSSION OF A PLAN FOR DATA ACCUMULATION 

• ON THE BASIS OF DIMENSIONAL ANALYSIS • 
• 

Shook (1976,  P.  21), Shook et al. (1981,  P.  91) and Eyler et al. (1982, p. 2.9) 
• express the need for experimental data on large-particle slurry flows in large pipes, which 

• are essential for the testing and development of design equations and, in particular, of the 

• Wilson model. As other models may also merit testing, and as the experimental work is 
111 	expensive, a generalized approach to any opportunity for such work should be discussed and 

developed in anticipation, by members of the joint Canada/FRG 'Coarse-Slurry Working 

•
Group'. 

Because of the complexity peculiar to hydraulic flow, indicated very briefly in Ap- 
• pendix A, any mathematical flow model is likely to be semi-empirical for the foreseeable 

• future. For this reason practical work on a particulate solid (whose slurry flow properties 

• are not already well known) is likely to continue to be essential to the planning of any 

• pipeline installation. 
411 
• Nevertheless, it is proposed that a fruitful approach to the preliminary work may 

• consist in an attempt to provide physical models that fulfil, as accurately as possible, 

• similarity to the proposed prototype flow. 
• 
• It is common, when investigating the slurry flow properties of a given particulate 

• solid, to compare runs of the same material in pipes of different sizes. If d is the characteristic 

• size of the particles, and D is the pipe diameter, a change in D involves a change also in • D/d. Since D Id is a characteristic variable of the flow, a condition of similarity between 

•
the flows is violated. It should be noted that the significance of D Id must increase as the 

• ratio decreases, i.e., when larger particles are of interest. 

The mathematical model under test represents an attempt to deal with both the 

• scale change in D, and the change in D/d, but when some effects of the changes are not 

• fully understood, interpretation of results may be difficult. The effects are confounded. • 
• By scaling d (by crushing or sieving, or both) to provide the same D/d ratio in the 

• pipe flows compared, the corresponding criterion of similarity is fulfilled. This gives more 

• specific information on the effect of the change in D (and d), unaffected by a change in 

• Did. • 
• As shown in Appendix B, the variable E (or equivalently X, a Reynolds number, 

• depending on the group of basic parameters chosen), cannot be kept constant if the criterion 

• associated with the variable Y is fulfilled. The same applies to X6 = kid (proportional to 411 	pipe roughness ratio), unless extraordinary measures are taken. • 
51 
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However, the effects of E and X6 may not be of major importance under flow con-

ditions with large particles in large pipes. A direct measurement of the combined effect of 

these variables, when D changes, would appear to provide useful experimental information. 

If only a minor effect exists, the results can allow an extrapolation to the prototype scale, 

approximately, as follows. 

Large-diameter pipelines are now available for laboratory work. Two different pipe 

sizes, as close as possible to the prototype size, should be chosen for the model work. 

Let the diameter of the prototype pipe be D', and let the diameters of the two model 

pipes be Di', and M, where D' > 	> D'2'. Let C' = 	 and D'ic/' = 	= 

M/c/ 121 , i.e., Z' = 	= 4', since Z = Did. 

Suppose that the data are plotted as in Figure (B-5) (see Appendix B), where D' 

and D I' in that figure now become  D , and D'2'. If Y is plotted against D for  some chosen 

fixed value of Hy, the plotted points a and b are shown as in Figure 10. The line a — h is 

extrapolated to c, and b — d is drawn parallel to the D axis. 

The point e represents the coordinates (JD', Y') for the prototype, with 

= f 	 f 

= (I
:Z.-- V)II 

( 11 V) "=" ( 11 01 :1  2 

If there were no significant e ffect of E and of X6 (a case represented by Figure (B-4), 

rather than by Figure (B-5) in Appendix B), line a — b — c would be parallel to the D axis, 

lines b— d and b— c would coincide, and point e would lie on line a — b— c. This represents 

conditions of a fully turbulent flow, in which case Y' = Yi" = Y2" (see Appendix B). 

If a significant effect of E and of X6 exists, as represented in Figure 10, then the 

relative effect should decrease, as D increases. Therefore, the point e is placed as shown, 

somewhere in the interval of the ordinate through D', defined by the lines b — d and b — c. 

The uncertainty range of point e represents the uncertainty of 

./ 
Y' = 	

1) (D') 
= K 

4(s — 	d' 

where, K is a calculable constant. This range of uncertainty does not seem to have been 

determined, in any previous work, by the direct experimental process described, for com-

parison with the uncertainty of extrapolation by a mathematical model. 

Aside from the direct practical benefit of extrapolation, as described in Figure 10 
(a hypothetical benefit, subject to investigation), a second important consideration also 

Because Y would be the same for D', DÇ,  and D 12'. 
Because the flow becomes more turbulent, as D increases. 
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provides a strong motive for this proposal (i.e., to use similarity criteria). This consider-

ation involves the fact, that it is always hard to compare results from di fferent laboratories, 

and quite especially so when the particulate solids involved are not identical. A model 

can be subjected to a much more searching test of accurac y  when it is applied to two (or 

more) sets of data, between which only a single, controllable variable differs. Therefore, the 

reliabi li ty  of a model should first be established in the simplest situations, before a wider 

versatility is sought. 

Adoption of the approach described would encourage generation of well-defined, 

closely related sets of data, that would be most valuable for the testing of any model. 

Moreover, an improvement of the comparability of data from different laboratories could 

53 



V' = V" D" / D' criterion (X) 

thereby also result. This would be a bonus of particular importance in cases like the present 

one, where cooperation not only of different laboratories, but also of different countries is 

involved. 

Notes 

In connection with the foregoing study, a crude test was made of the relative im-. 

portance.of the variables X and Y as criteria of similarity between flows in pipes of large 

diametei. Under the conditions of the experiments proposed above, the criteria reduce to 

and, 

V' = V" N/13' / D" 	 criterion (Y) 

Some data listed by Eyler et al. (1982, Appendix B) were used for the test. 

Data due to Worster and Denny are shown in Table 6. Here VC is critical velocity, 

corresponding to the minimum i of the i — V curve. 

TABLE 6 

Data due to Worster and Denny, as listed by Eyler et al. 

d 	 D 	 Cd 	d/D 	 Vc 
(mm) 	(mm) 	% 	 (nus)  

38.0 	 150 	5.0 	0.25 	1.067 
38.0 	 150 	10.0 	0.25 	1.31 
38.0 	 150 	15.0 	0.25 	1.46 
12.5 	 76 	5.0 	0.167 	0.76* 
12.5 	 76 	10.0 	0.167 	0.85* 
12.5 	 76 	15.0 	0.167 	0.92* 

* = .1/.  

Source: Eyler et al., 1982, Appendix B, p. B.3. 
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These data consist of two sets, using similar coarse solids for transport in two large 
pipes. Unfortunately, the values of dID, belonging to the two sets are not as nearly equal 
as one would wish, but it is interesting to calculate i 7 ;, values for the larger pipe on the 
basis of 1/8 measured in the smaller pipe. 

Vc  is the velocity at the minimum i of an i — V curve, and we assume that Vc  values 

occur at similar flows, when conditions for dynamic similarity are fulfilled. Calculations 

were done, using the above equations in the following forms 

V' (X) ------ 17  D" I D' 	 criterion (X) 

and, 

(y) 	1,1 ! D' I D" 	 criterion (Y) 

To compare V' (X) and V' (Y), values with the Vc  values observed in th c larger pipe, 

we present the results in Table 7. 

TABLE 7 

Comparison of V' values with Vc values 

.4"(X) 	Vi (Y) 	Vc 	Ve  -  171 (Y)  

	

0.38 	1.07 	1.067 	0 % 

	

0.43 	1.19 	1.31 	10 % 

	

0.47 	1.29 	1.46 	13 % 

It is seen that the prediction on the basis of criterion (Y) is good, but not on the 

basis of criterion (X). 

One further example can be drawn from data involving the largest pipes listed, due 

to Gi5dde (last item) and Weber and Giidde (first item). These data are shown in Table 8. 

It is noted that d I D values are almost equal. Results of calculations, similar to those 

undertaken earlier on the basis of data shown in Table 6, are shown in Table 9. Again, the 

prediction for criterion (Y) is better than that from criterion (X). 

The evidence comes from random selection, and is not very satisfactory, but the 

results are interesting all the same. Scaling in accordance with the Y criterion (Froude) 

seems to be good enough to encourage the use of the hypotheses stated in Appendix B 

(ahead of Eq (B-16) and following Eq (B-26)), and used in this section. 
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TABLE 8 

Data due to Giidde and Weber + G5dde, as listed by Eyler et al. 

d (mm) 	D (mm) 	Cd % 	d/D 	VG,  (m/s)  

	

8.68 	 150 	 15.0 	0.058 	1.79* 

	

12.50 	 200 	 15.0 	0.063 	 2.73 

*---=V" 

Source: Eyler et al., 1982, Appendix B, p. B.2. 

TABLE 9 

Comparison of V' values with Vc values 

V i (X) 	Vi (Y) 	Vc 	Vc — V i (Y)  

1.34 	2.07 	2.73 	24 % 
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STUDIES ON VARIOUS TOPICS 
RELATING TO THE WILSON MODEL 

Suggestion re. " Problem of the Applicability of the 

Vertical Transmitted Stress Component ri/ tan " 

Shook (1983, pp. 7 and 20) comments on the term ri / tan çb , equivalent to r12 / tan 

in equation (A13) of Shook (1981), for the vertical transmitted stress component. This 

term, r/ tan q5 , was introduced by Wilson (1970,  P.  3) with reference to Bagnold (1957). 

It is suggested here that the term in question resulted from a misinterpretation of 

Bagnold's work, and that it should not be included in the calculation of the pressure exerted 

by the bed on the pipewall. A brief justification is offered hereunder. 

In an experimental study of flowing mixtures of fluid and grains, Bagnold (1954) 

developed a concept of the grains regarded as a separate fluid. The experimental method 

involves particles equal in density to the fluid and the stress P (Figure 11) is measured in 

a horizontal direction. However, the concept is also applicable to particles whose density is 

greater than that of the fluid, and the stress P can arise in the vertical direction (Bagnold, 

1955). 

Suppose that the mixture undergoes simple shear, as illustrated in Figure 11. 

ce ce°  fe-e-re00O 000  	 g ce 	
0 0 01 0 0 0 0 0  or  

o 0 	00 n 

Be,d 

Fig. 11 — Schematic illustration of slurry flow in pipe 

It is assumed that some of the particles of the mixture exist above the bed, because 
they are dislodged by a shear force exerted by the fluid. The particles are in saltation. 
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In addition, collisions of particles returning to the bed may dislodge other particles. On 

the average, a population of separated particles is maintained above the bed. Collisions 

between separated particles also take place. 

When layers of particles (on the average) shear past each other, a shear stress T is 

conceived to be exerted between layers, due only to encounters between grains. Because of 

these encounters a vertical normal stress P is also exerted between the particles. Bagnold 
considered 

T/P = tan a 

as the dynamic analogue of a static friction coefficient, but not identical to the internal 

friction of the bed. 

The stress P illustrated in Figure 11 represents a vertical, expansive stress acting 

between particles only. The stress does not add a new load to the bed, but -transmits to 

the bed the net gravitational force acting on the particles, i.e., the total submerged load of 

the separated particles is applied to the bed just as if the separated particles formed part 

of the bed. 

Correct references have been made to Bagnold's concept, which explains that the full 

weight of separated particles can be carried by the bed. 

But, other refe' rences appear to assume that when a layer of particles (even of minimal 

thickness) is mobilized at the surface of the bed by a shear stress -r applied by a fluid, there 

exists an associated normal stress P applied to the bed. The relation P =  r1 tan 0, where 

0 is the angle of repose associated with the bed, çannot be justified. It is not the same 

relation P = TI tan a, as indicated above. 

A shear  stress  applied to the surface of a bed cannot exert a normal stress, other 

than the gravitational stress of separated particles. 

Notes 

(1) If an expansive stress P is acting in a pipe, and if the upper 

separated particles should collide with the upper wall, the 

reaction of the wail could cause an increased pressure on 

the bed. This type of reaction was the basis for Bagnold's 
(1954) experiment. 

(2) Particles are purely in saltation only when they are not 

partly supported by a dynamic process of the fluid. If the 
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(a) (b) 

fluid does support part of the submerged weight of the par-

ticles by turbulence, or by other effects, then the load of 

the bed is diminished to that extent. 

(3) The clearest statement of Bagnold's concept of the bed load 

due to dispersed or to separated particles, is given by Bag-

nold (1957, p. 250). 

(4) Wilson (1975, p. 5) makes the following statement: Since 

the intergranular pressure pa  will be zero at this surface, it 

can be used as the datum for z in Equation 2. This seems to 

be tantamount to withdrawal of the r/ tan çb term from the 

Wilson model. However, reference continues to be made to 

Wilson (1970) without comment, although the term does 

not appear again. 

Buoyancy Effect on Contact Particles 

Calculation of the pressure difference Pg — PA 

On examining Figures (6) and (7) of Shook (1981), and Figures (11) and (12) of 

Shook et al. (1982a), we find the situation illustrated in Figure 12(a). 

Fig. 12 — Schematic illustration of calculation techniques: 

(a) where y' is defined by Shook et al. 

(b) where primes are dropped for convenience 

At height y, the particles in transport have the following concentrations: 
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c 1  = local volume fraction of particles supported by water 

c2  = local volume fraction of particles supported by the pipe 

wall 

hence, 

cf = 1 — ci  — c2  =local volume fraction of water. 

The water, plus the particles supported by the water, is equivalent to a slurry occu-
pying the volume fraction 

Cf 	= 1 — C2 

hence the density** of the slurry is 

pf cf p a ci 	p f(1 —  c 1  — c 2 ) + pa c i  
P al 1 —c2 	 1 — C2 

p f (1 — c 2 ) + (p — p f)c i 	1 — c 2  + (s — 1)c i  

	

p f 	  
1 — C2 	 1 — C2 

=  PI [l + 

The pressure gradient at level y is given by 

ap 
[1 + (s 1)C1 ] 

1 — c2  

With reference to the top of the pipe: 

t 	 r 
	dy 
1•  c2  

Pi(g)+ P2(g) 

Thus the pressure difference component due to P2(y) between the top and the bottom of 
the pipe is given by 

D 
Cl  

P2 = P2(0) = +(*) g(s— 1)p f 	
1 
	dy. 10  — c2 

Let y = y'D, as used on Figure 12(a). Hence, dy = Ddyi , and 

P2 = g(s — 1)p fD 	1 	c2  dy' 
c l  

** p a  indicates the density of the solid particles. If coal (or some other porous material) 
is involved, p„ indicates the density of water-saturated particles. Also, s = p a l pf , and 
C f,  c i , and c2  are concentrations per unit volume of mixture. 
(*) -I- sign, because the f is from 0 to D. 
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thus, 

P2  = / = 	
cl  

dy' 	.11 + 12 + 13, 
y(s —1)pfD 	fo 1 _ C 2 

/1 is integrated from y = 0 to y2  

12  is integrated froïn y = y2  to y3  

13 is integrated from y = y3  to 1. 

y4  -0 
0 - x 1  

To calculate /  with reference to Figure (11) of Shook et al (1982a), we use: 

= 0 . 000  

Y2  = 0.300 

y3  = 0.352 

Y4 =  0.363 

y4 	1 	0.363 
rn = — = 	= 	= 0.518. 

x i 	1.93 	0.700 

To calculate  Ii  (Figure 13) 

Cl =X2 

C2 1 	= — 
Y2 Y 

Y2 
C.)  = — — 

m 	711 

2 Y Cl 	 X2  	d(1 Ii = I 	 = 
0  1 — c2

dy in 
fo 

Y2 

1. - 	+ 1L 	711 in 	in 
] 	

a., 
Y2 	

1  — e  = in x9 ln 1 — 	+ li- 	7-11 = 	,) ln 	. +  nm ( n 
ni ni 	o 	 1— . t2- tn 

, 	1 	0.120 	1 
= 712 X2 in 	 ln 	  

	

1 — 	1.93 	1 — 0.300 x 1.93 
In 
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in  = y4 = — 
S1 

xi = 0.700 

= 0.120 

= 0.020 

x4 = 0.000 

as defined below. 

On Figure 12(b), a: coordinates represent particle volume fractions (e i 	c2), and 

y coordina.tes (dropping the primes) represent scaled heights ly).  . Coordinates of critical 

points are marked: 

Let the slope of the lower part of the concentration distribution be mn (absolute 

value), i.e., 
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Fig. 13 — Schematic illustration of calculation techniques 

= 0.0538. 

cl = X2 

— X3 	1 
	= — 
Y3 

hence, 
___ y3 

C1  — — + X3 
712 m 

with 	e2 = 0, 	and 	x3 = 0.02 

thus, 

/2 = 
L2

Ys Cl  
1 e2  dY = y3  ( -Y-2  — 	+ 0.02) dy 

Y2 	rn 	rn 

= --y-1 (y3 —  Y2) 	(Y 	Y) o ' 132 (Y3  — Y2) 
Tn 2m 

, 	1 
= 	[Y3(Y3 — Y2) — —2 (y3 Y2)(Y3 Y2)] 0.02(y3 —  Y2)  

= 1.93 [0.352 x 0.052 — —
1 

x 0.052 x 0.6521 + 0.02 x 0.052 
2 

62 

henc'e, 

To calculate 19  (Figure 14) (Figure 14) 



X 

To calculate /a  

Cl = X3, and 	 e2 = 0  

Fig. 14 — Schematic illustration of calculation techniques 

hence, 

12 = 0.0026 + 0.00104 = 0.00365. 

	

1 	 1 
/3 = f Ci dy = / x 3  dy = 

	

Ys 	 Ys 

hence, 

and, 

--=  53 (1— y3) =  0.020 x (1 — 0.352) 

/3 = 0.0130 

= Ij + 12 + 13 =  0.0538 + (0.0026 + 0.00104) + 0.0130 = 0.07044 

given that: 

g = 9.81 (rn/s2 ); s = 2.65 (for gravel); pf  = 1000 (kg/m 3 ); and D = 0.263 (rn) 

P2 = g(s — 1)p f D I = 9.81 x 1.65 x 1000 x 0.263 x 0.07044 = 299.87 Pa. 

This value is to be compared with APc = 300 Pa in Figure (11) of Shook et al. (1982a). 
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Yi = 0 . 000  

Y2 = 0 . 3 80 

y3 = 0.450 

Y4 = 0.570  

= 0.800 

x2  = 0.266 

X3 = 0.172 

X4 = 0.000 

To calculate I  with reference to Figure (12) of Shook et al. (1982a), we use 
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Y4 	1  
xi 	1.40 

hence, 

	

1 	0.266 	1 
= m x2 ln     = 0.1443 

	

1 .= 	= 1.40 	1 — 0.380 x 1.40 

12 = -
m [ Y3 	 (lY3 - Y2) - -2 	— Y2)(Y3 + y2)] + x3(y3 - y2) 

= 1.40 [0.450 x 0.070 — —
1 

x 0.070 x 0.830] -I- 0.172 x 0.07 = 0.01544 
2 

13 = x3(1 — y3) = 0.172 x (1 — 0.450) = 0.0946 

and, 

= 0.1443 + 0.0154 + 0.0946 = 0.25434. 

Thus, 

P2 = 1082.74 Pa. 

This value is to be compared with APc = 1050 Pa in Figure (12) of Shook et al. (1982a). 

Buoyancy formulae 

As shown earlier in this section, the density of the slurry is 

(s —  1)cil 

 1 — c2 

By assumption, contact particles have no dynamic support by the fluid. The sub-

merged weight (per unit volume) of each  contact  particle in the slurry (containing only 
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Eq 78 

Eq 79 

Eq 80 
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suspended solids), is g(ps  — ps i), where 

PS P8I P8 Pf[1 + (8-1)C1 ] =  (Ps Pf) Pf(i51-2) —12C1  1-  C2 

[C1(8  — 	=_ pf  [(S 	1) 	(s 	1)C11 1— C2 L 1 — C2 

C1  I 
= 	

Cl 	c2 Ms 1) 
1— C2 	 1 —  C2 

The total submerged weight of the entire contact component, per unit volume of the 

whole mixture (hence use of c2 ), is 

g c2  (p s  — ,0 81) = g c2 pf 	— 
1)[1 — 	— c2] 

If us  is the vertical stress exerted by 'the contact component, then 

0 a- s 	 , [1 —  c 1  —  c2 1 	 [1 — c 1  — C21 
= g C2 P f (5  1) 	 g C2 (p s  pf) 

0 y 	 1 — c2 	 1 — c2 

Hence, the foregoing expression agrees with Equation (B7) of Shook (1981, p. 22), 

and with Equation (14) of Shook et al. (1982a, p. 15). These authors give a more sophisti- 
0o- cated derivation of the expression for based on separated equations for the equilibrium ay ' 

of forces in the vertical direction, for the fluid, the suspended particles and the contact-load 

particles. The solution of these equations is presented in a manner somewhat different from 

that used by Shook (1981), in that it is derived more directly from the equations of the 

problem. The equilibrium equations are as follows (we omit the subscript y that indicated 

the vertical direction): 

Vertical forces on the fluid: 
ap 

o = Dy +pfg+ ffs 

Vertical forces on the suspended particles: 

OP 
0 = --

ay  + 
 Pa g + 

Vertical forces on the contact-load particles: 

OP 
0 = — —

Dy 
+ p s  g + f su, 

where: 

ff. is the mean vertical force per unit volume of fluid, ex-

erted on the fluid by the suspended particles, 
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• 
• 

J.,/ is the mean vertical force per unit volume of solid mate- 	 • 
rial, exerted on the suspended particles by the fluid, 	 • 

• 
f„,, is the mean vertical force per unit volume of solid ma- 	 • 

terial, exerted on the contact-load particles by the pipe 	 • 
• wall and transmitted only by other contact-load parti- 
• 

des. • 

and the fluid, i.e., • 
faf -F(1— — c2) ff. = 	 Eq 81 	111 

	

The contact-load particles do not contribute to this equation, except through the 	9 

	

volume they occupy per unit volume of the mixture. From Equations 78 and 79, we obtain 	lb 
e 

ffa— fsf = ( PR — P1) g. 	 Eq 82 	II 
lb 
• 

Then, by eliminating hi, using Equations 81 and 82, we obtain • 
• C1 	 • 

ffR =, 	( PR— P f) g. 	 Eq 83 • . — C2 • 
Using Equation 82, • 

	

= —c2  ht„, 	 • ey 
• 

where o-y  is the vertical stress transmitted solely by the contact-load particles and supported • 
solely by the wall of the pipe. Thus, 	 • 

• 8o,(p5 — pf)  g C2  (1 —  e1  —  e2) 	 • Oy = 	 (1— c2) • 
Similarly the vertical pressure gradient in the fluid is, from Equation 78, • 

OP 	 el P 8 + ( 1  c1 c2) p f 	 • = Pf 9+ ha= g 	(1 — c2) 	 • 
66 	 • 

• I 

A further equation is derived from the balance of forces between the suspended load • 

1 — c1 — C2 	 , 	 e 

	

faf=ffs—(pa—pf)g= 	 wa— P f) g. 	 Eq 84 	• 1 — C2 • 
Then, from Equations 79 and 80, • 

1—Cl — C2 	 • 
fRw = fsf = 	1 	(P8 —  PI )  g. 	 Eq 85 	• — c2 

10 
110 

	

By the symmetry of the problem we can write, for points on the vertical diameter of 	— 
the pipe, • 
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Discussion 

• The foregoing theory seems to rely on an assignment of particles permanently to • 
either contact load or suspen.ded load. Its application also requires a knowledge of the • 

• distribution of e 1  and c2  according to horizontal levels in the pipe. Shook (1983, pp. 7, 8) 
• indicates that the purpose of the variable-composition distribution used in Shook (1981) 
• and Shook et al. (1982a) was simply to show that the model used could produce actual 

• measured head losses when using the actual total concentration distributions obtained by 

laboratory measurements. It was obviously an exploratory exercise, with interesting results. • 
•

But the model suffers from difficulties that will be discussed below. 

In the literature relating to the Wilson model discussions of contact- and suspen- 111 
• ded-loads usually refer to them as if they consist of separate and distinct populations of 

• particles. In other words, each particle in the suspended-load would remain in that category, 

• and similarly for the contact-load. If the two populations consisted of particles with radi- 
• cony different sizes, that apparent assumption would be easy to accept. But if all particles 

• belong to a closely sized set, the assumption would be hard to accept. • 
• it is not clear whether the assumption is tacitly accepted generally. If not, the ternis 
• suspended-particle and contact-load particle can only be justified by averaging effects that 

•
are not explained. 

When the particles are closely graded in size it is more reasonable to assume that, • 
•

on the average, they all are semi-suspended if suspension exists, rather than to assign some 

• particles to full suspension and the remainder to contact-load. 

411 
•

In the terminology of Shook et al., if all particles were to have the same size the 

• Equations 78, 79 and 80 would reduce to the following two equations applying to fluid and 

• to particles, respectively. 

• OP 
0 = Oy  Pf g ff 8 	 Eq 86 e  

• OP • 0 = --
ay 

+ P8 g f f fsw• 	 ET 87 
411› 
• If the local concentration of particles is c, the balance of forces between particles and 

• fluid is 

• c f s f + (1 C) f f 8  = 0 	 Eq 88 

• Equations 86 to 88  cari  be solved similarly to Equations 78 to 81, as follows: 
• 
• From Equations 86 and 87, 

• f f s 	f f = (As — Pf) g. 	 E 89 
• 67 
• 
• 
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Eq 90 

Eq 91 
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From Equations 88 and 89, 

Ifs=c [..fsw (p, — PI) g] 

Then, using Equations 89 and 90, 

1,1 = f f, — f sw  —  (Pa  — pf) g = —(1— c) [f sw  (ps  — p f ) g] . 

If all the particles are fully suspended, fs „, = 0, and 

fsf = —(1— c)(A, — p f ) g 

which is what Equation 84 reduces to when c2 = 0. 

If all the particles are unaffected by dynamic suspensive fluid forces, fs f = 0, and 

few  = -(P8  - p f ) g 

which is what Equation 84 reduces to when  e 1  = 0. 

lit  is clear that when particles are in an intermediate state of suspension, f, f and 

cannot be determined separately from Equations 89 to 91. It is therefore difficult, if not 

impossible, to incorporate semi-suspension into a two-level model. 

The Wilson model includes only full suspension or full contact. It assigns particles of 

each size partly to suspension and partly to contact load, according to Equation 32 of titis  

report. Particle size is involved, but after the separation has been made their diameters are 

irrelevant (in Wilson's original approach). 

Shook et al. do not use the Wilson model in the work discussed here, when deter-

mining C1  and C2. They adjust the latter concentrations (using an arbitrary system of 

distribution) to attain harmony between the measured hydraulic gradients shown in their 

Figure (10) and the measured total-concentration distributions shol,vn in Figures (11) and 

(12), using the same friction factor 718 , which is also adjusted to achieve the results shown. 

But, except for the separation of C1  and C9, the authors use a two-level model similar 

to the Wilson model. The position of the upper boundary of the bed is not stated, but it 

seems likely that it was placed at the level where  e2 , the local concentration of contact-load 

particles, vanishes. This would mean that the top level of the bed would consist largely of 

suspended particles. The transition from bed to slurry is gradual, but no modification to 

the interfacial friction factor is mentioned. 

The authors report that shearing was observed in the high-concentration lower layer 

and they suggest that the sliding-bed hypothesis is not an essential feature of the tvv-o-layer 
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• • • 
• model. This adds to previous evidence (see p. 21) of the unrealistic nature of the Wilson 

• model. The model used by Shook et al. must also be regarded as unrealistic. 

• The friction factor  ij , used in ail  models similar to the Wilson model, cannot bz 
• viewed as a simple factor of mechanical rubbing friction between particles and pipe wall. 

• Similarly, application of the buoyancy calculations to a two-layer model cannot be regarded 
• 
•

as being physically well founded, owing to the well-known extreme complexity of turbulence. 

or 	This is not to say that such exploratory work is pointless. Useful empirical formulae 

•
have been arrived at by such work. But the final test is whether a relatively simple, usable 

• formula is found, whatever its anomalies are. 

• 
One anomaly of the Wilson model is that the basic equation (Wilson, May 1976) 

• cdc  (17, 
• Cd 

• uses delivered concentrations, Cd and Cd,, whereas the force balance equations must use in 
411 	situ concentrations of solids. However, this equation was derived from data plotted in such 

•
a way that Cd, would represent, in Wilson's concept, the net resistance tha,t the contact 

• load exerts through the friction factor  îj. Thus, it is difficult to:see how a correspondence 

• could be found between the Wilson model and that used by Shook et al. There is no place 

• in the former for a buoyancy effect that would subtract from the resistant effect of the 

• contact load calculated by the model. 

• it is suggested here that buoyancy problems are so complex that buoyancy forces 

• other than static should be omitted from the sliding bed. Particles in the bed should 

be considered as contact load, whatever their sizes. It is questionable whether any such 

• particles, even small ones, can physically be in full suspension unless all  are. Similarly, 

• all particles above the bed should be considered in suspension, whatever their sizes. The 

• model is not realistic, but its employment must be consistent. 
• 
• The Wilson model can fit a series of runs with the same material and load value at 

• different velocities, using a constant value of the friction factor ri; but, because it requires 

• different values of ri for different load values, an empirical study should be made of ri as a 

variable. As ri does not represent a true physical friction factor, it need not be assumed to • 
•

be constant. It is a function of the parameters of the flow. Yet, a prime incentive for the 

• buoyancy cakulations seems to have been to preserve the constancy of 

• 
•

An empirical study of ri as a variable is suitable to the problem of improving the 

• Wilson model (see the discussion commencing on p. 47). The results of such work might 

• well allow the retention of the model's advantage in relative shnplicity, while extending its 

• area of application. 
• 
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Problem of the "Effective" Density of Porous Particles 

In general, p, represents the density of particulate materials, but if the material is 

porous, an ambiguity arises. 

Shriek et al. (1973) give a standard method for measuring the density of dry coal. 
The method clearly intends to determine the mass of a sample of coal from which water 

has been removed from the accessible pores. The volume of the sample is detemined in 
such a way that it represents the coal material only. It does not include the volume of the 

accessible pores. 

The ratio of the foregoing quantities, i.e., mass divided by volume, gives the density 
of dry coal, which has been represented by p 3 . 

Because the density of water-saturated coal occurs in problems of hydraulic transport 

(see Shen et al., 1976, p. 5; Eyler et al., 1982, p. 4.4), and because p, is generally used for 
the density of particles in this field, it is proposed that this symbol be used for the density 

of saturated coal, and that p„ be used for dry, coal, when the distinction must be made. 

Now, let m represent the moisture concentration (by weight, per unit weight) in 
water-saturated coal. Then, to obtain the wet volume of saturated coal, we can write 

1 1 — m m = 	+ — 

Ps 	Ps8 	P 

(e;) 
Eq 92 

(as on page 8 of Haas et al. (1980), for the case of coal with a dry density of 1.561 (g/cc), 
and a moisture content of 24.6%). 

Definitions of the following quantities are required: 

Pi  = density of water, 

= concentration by weight of particulates in slurry, 

W, = weight of saturated particulates from  a sample of slurry, 

Wf = weight of free water from same sample of slurry, exclud- 

ing moisture contained in particulates. 

Cu, =7: 

W s VV f 
appears to be the normal definition of C„„ in accordance with the usage 

of the Saskatchewan Research Council (e.g., see Gillies et al. 1981, p. 15). 

Thus, 

= 
1+ (W1/1478 ) 

and, 

1 

W 1 — 
= C,,, 
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Further, 

C„ = concentration by volume of particulates in slurry, 

V, = W8 /p3  = volume of particulates from the same sample, 

Vf = WflPf = volume of free water from the same sample. 

Thus, 

(w./p.) 	 1 C = 
 v 

= 
+ Vf (W 3 /p 5 ) + (W1/p 1 ) = 1+ (W f IW a )(p s lp f) 

Since C„ is a general term, it is suggested that this term should not be used for 

the concentration of a delivered slurry. Cd seems to be acceptable, as CD, for the drag 

coefficient, is easily distinguishable. Analogously, Ci  seems acceptable for the concentration 

of the slurry in transport (namely, for the in situ one, in the pipe). 

The significance of certain data from the Slurry Pipeline Development Centre of 
the Saskatchewan Research Council requires clarification, with reference to several reports. 

Haas et al. (1980) state clearly that the density for water-saturated coal, p a , is required 

for calculation of C,, from C„„ and for use in the determination of CD (from the terminal 

falling velocities, wi). Both densities, for dried and for water-saturated coal, are given for 
several coals (see Haas et al., 1980, p. 11, Table 2). In the related paper (Shook et al., 

1981, p. 86, Table 1), however, only pa , has been given for Sheerness and McIntyre coals. 

p s  was used for calculations, according to the text, but values of p a  were not given as an 

aid against misunderstanding. 

In this context the following papers must also be mentioned, because they too leave 

the reader in doubt as to the proper use of water-saturated coal densities. The texts do 

not, in fact, appear to be consistent with tabula,ted data, and with some of the figures. 

Shook (1980) and Gillies et al. (1981) deal with data for Judy Creek Coal, which is porous. 

Data for this coal are given as 

p s , = 1,727 (kg/m 3 ) 

in  = 0.235 (moisture concentration) 

pf --= 998 (T = 20°C) 

Then, from Equation 92, p s  = 1,473 (ken') = density of particulate material. 

Now, consider the runs summarized on p. A45 of Gillies et al. (1981); for example, 

C„, = 0.366 (concentration by weight), and 

p s i = 1,181, 

where, p a l represents the density of the slurry in transport. 
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Calculations give the following results: 

Wf 1 — C,„ 
W, 	Cy, 

from Equation 93, with  CIL,  = 0.366. 

Also, from Equation 94 

1 	 1 c1= 
 1 + (Wf/W8)(Pa/P1) = 1+ 1.732(1.473/0.998) = 0.281187  

with, ps i =  C1  p, + (1— Ci )pf = 1,131. 

This does not agree with the tabulated value of 1,181, for ps l. 

When we use p„, in place of ps , we find that 

p s i = 0.2502 x 1.727 + (1 — 0.2502) x 0.998 = 1.1804 

i.e., a value more or less in agreement with the tabulated value of ps i. We also find 0.250 for 

which is a value commonly quoted in association with Cy, =  0.366, a standard condition 

for numerous runs. Clarification of the data for Judy Creek coal is needed. 

Meagre information on the precise use of coal density is given in both relevant papers. 

No indication of the employment of ps  can be found in the data or the figures. Serious 

difficulties occur in Figure (3), p. 20, of Shook (1980), in which the top diagram includes a 

model fit and plots of gamma-ray gauge concentration measurements. Table (5), p. 22, of 

Gillies et al. (1981) gives the gamma-ray data, but lists C„ = 0.250, indicating that density 

measurements are not given with respect to water-saturated coal. Figure (77), p. 109, of 

Gillies et al. (1981) is similar to that of Shook. 

It is recommended that ps , the "effective" density of water-saturated coal, should be 

given explicitly in all  cases, and that C1  should clearly be calculated by the use of ps . 

Problem of the Calibration of a Gamma-Ray Concentration Gauge 

Gillies et al. (1981, p. 13) state that the absorption coefficient for coal could not be 

determined directly with sufficient accuracy. Consequently, a set of measurements made on 

a pipeline, run with a known constant volume fraction of coal, was used to determine the 

absorption coefficient for coal. 
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Measurement with: 
A-empty pipe 

B pipe containing 
slurry 

Fig. 15 — Schematic arrangement of test set-up 

The following calculations verify our understanding of the process in question. 

Let (see Figure 15) 

E represent the gamma-ray source, 

y be a known height of the beam, measured from the bot-

tom of the pipe, 

x be the length of path of the beam within the pipe, 

A be the gamma-ray measurement, obtained when the pipe 

is empty, 

B be the measurement under the same conditions as A, 

except that a run is in process with slurry in the pipe, 

k1 =0.0847 be the known gamma-ray absorption coefficient 

for water, 

k, be the assumed coefficient for coal, 

k m  be the measured coefficient, determined from measure-

ments at a height y, 

C be the mean in situ fraction of coal, by volume in a chord-

slice, at height y. 

By the exponential law for attenuation of the gamma-ray beam by the presence only 

of the slurry, we obtain the expression 

- = e x 

A 
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and, therefore, 

ln 
 (

—B ) — —k x 
A — m  

Knowing 	and x, k m  is calculated. But, by definition of the absorption coefficient, 

km 	
— k f 

= C k, + (1 — C)k f. Therefore, C = Ica  _ kf  , and C can thus be determined at each 

level of y. 

Let the levels of y/D, tabulated in Table (5) of Gillies et al. (1981, p. 22), be called 

i = 1, ..., 10 (Figure 16). Each y; represents a horizontal slice (i) of the pipe cross 

section. The boundaries of the slices, distinguished as Y/D, will be called 	i 0, ..., 10. 
Slice (1) is bounded by n  =  0.000, and Y1' = 0.106. Slice (10) is bounded by 0.906 and 

1.000. All slices (i = 2 to 9) have boundaries Y1_ 1  y; — 0.050 and Yi' = y: + 0.050. 

Yji  

vi i , 
 

Fig. 16 — Schematic illustration of calculation techniques 

Also: 

is the fractional area of the sector bounded  by 	and  
y = (D/2)(1 — cos3), 

y' = (y/D) = 1(1 — cos 3), 

cos8 = 1 — 2y' , 
A = (D2 /4) ( 3 — sin 3 cos /3) (see Figure 17), and 
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= 
k a  — kf 

10 

D  COSD  

D 
D  This oreo is 2x .74,  sing x  2 cos/3  

2 

, n 	D  
This oreo is g 2 xilf1/3 11 1 -2- / f3 

D 	 efsinacosa 
. sin /3 	 2 2 

oreo A  8( )2P -(D2sina cola s(D2( /3- sina cos/3) 

Fig. 17 — Schematic illustration of calculation of area A 
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A' = il/(r D 2 /4) =(f3— sin i3 cos e) 
The areas of the slices are given by 

L\i = 	Ali-1 • 

For each slice the measured solids volume fraction, tabulated in Table (5) of Gillies et al. 

(1981, p. 22), is given by 

= k
rn i —  k1 

— k f 

The product Ai x Ci gives the solids volume fraction contributing, by slice (i), to the total 

solids volume fraction of the pipe, C, 

— k f)A, = 	1 	X. 
k 8  — k1 

Results of the calculations, verifying C for the two runs of Gillies et al. (1981), are shown 

in Tables 10 and 11. 
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TABLE 10 

Concentration profile measurements 

with a gamma-ray instrument 

i 	Yil  = D 	p — sin 0 cos )3 	= Ali  - A; _ 1  = 	 (*) 11  
0 	0.000 	0.0000 

0.0567 
1 	0.106 	0.0567 	 0.056 

0.0918 
2 	0.206 	0.1485 	 0.156 

0.1108 
3 	0.306 	0.2593 	 0.256 

0.1217 
4 	0.406 	0.3810 	 0.356 

0.1266 
5 	0.506 	Q.5076 	 0.456  

0.1264 
6 	0.606 	 0.6340 	 0.556  

0.1207 
7 	0.706 	0.7547 

0.1090 	
0.656  

8 	0.806 	0.8637 	 0.756  
0.0888 

9 	0.906 	0.9525 	 0.856 
0.0475 

10 	1.000 	1.0000 	 0.956 

(*) as in Table (5), of Gillies et al. (1981, p. 22). 

The two values of C found, namely, C1 = 0.249 and C2 = 0.251, confirm the manner 

of calibration of k 3 , since they are consistent with the value, C = 0.250, given by Gillies 

et al. (1981). This value was not assumed in the foregoing calculations. Thus, we can 

determine the experimentally measured sum X = (k rn i —  k1)  di for each run as follows: 

Run 1  
= (k — k f)C = (0.141 — 0.0847) x 0.2491 = 0.01402. 

In a previous report-section (See p. 70) it was shown that the density of water-satu-

rated coal seems to lead to a different value for these runs, namely to Ci  = = 0.281187, 
i.e., CI  =  C = 0.281. 

To recalculate k„ we would repeat the calculation with the new C' value, i.e., 

X1 0.01402 

	

— k = —7 	 = 0.04986 

	

Ci 	0.281187 

hence, 

k i8  = — +  k 1  = 0.04986 + 0.0847 --= 0.1346. 
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X2 = (0.136 - 0.0847) X 0.2510 = 0.01288 

X2  (ks' -  k1)  = 	= 
0.01288 

= 0.0458 
u2 	0.281 

k: = 0.1305. 

TABLE 11 

Concentration profile measurement calculations 
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Then, 

Run 1 	 Run  2e  

i 	(Ci)(*) 	Ai.Ci 	(Cs) (*) 	A z .C; 

1 	0.568 	0.03220 	0.554 	0.03141 

2 	0.483 	0.04436 	0.441 	0.04050 

3 	0.377 	0.04178 	0.329 	0.03646 

4 	0.274 	0.03334 	0.257 	0.03127 

5 	0.206 	0.02608 	0.218 	0.02760 

6 	0.165 	0.02084 	0.197 	0.02488.  

7 	0.147 	0.01775 	0.173 	0.02088 

8 	0.140 	0.01526 	0.166 	0.01810 

9 	0.126 	0.01119 	0.142 	0.01261 

10 	0.133 	0.00632 	0.154 	0.00732 

Hence 	C1 = 0.24912 	and C2 = 0.25103 

• 	V = 3.41 ml s; k, = 0.141;  k 1  = 0.0847 (*). 

V = 4.06 mis; k s  = 0.136;  k1  = 0.0847 (*). 

(*) as in Table 5 of Gillies et al. (1981, p. 22). 

	

= 		 
k: k f 

= k
n1 1 - k f 

Ci 	 
k, - k f  

CI; 	k s -kf 
k:- kf C 
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and, 

hence, 

Thus, 
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TABLE 12 

Amended concentration profile, 

allowing for "effective" density correction 

i 	Run 1 — C: 	Run 2 — C: 

1 	0.638 	 0.623 

2 	0.543 	 0.496 

3 	0.424 	 0.370 

4 	0.308 	 0.289 

5 	0.232 	 0.245 

6 	0.185 	 0.221 

7 	0.165 	 0.194 

8 	0.157 	 0.186 

9 	0.142 	 0.160  

10 	0.149 	 0.173 

Consequently, the solids volume fractions given in Table (5), of Gillies et al. (1981, 
p. 22), should be multiplied by (C/C) = (0.281/0.250) -= 1.124, to give the results shown 
in Table 12. These appear to be the results that would have been calculated by Gillies et 
al. (1981) if the density of water-saturated coal, p,„ had been used, not that of dry coal, 
p„, (in the notation of this report). 

Comments on the Dimensionless Groups used by Gillies et al. 

C, Gillies et al. (1985, Section 3.2) have developed an empirical expression for 
ur 

(or L  in the notation of this report) in terms of the dimensionless groups: Cb 

V 2  d p. — p f 
g 	D' p f 

and, 

[ 4 I If \ /1  2 	4  g (P8 p1) d3  _ 4 	d3  4 g d3  Pf (P8 Pfll 	= 
3 

For reasons described in detail by Yalin (1977) and outlined in Appendix B of this 

report, as well as in the next report section, it would be advantageous, in a particular 

See Table (B-3), in Appendix B, and also see Appendix C. 
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• 
• 
• problem, to employ consistent dimensionless groups that are the dimensionless variables 

• based on a single set of basic parameters. 

• The dimensionless variable E is based on the set of basic parameters d, pf, and -y,„ 
• and it is of interest to express ail the groups employed by Gillies et al. (1985) in terms of 

• the same basic parameters. The related dimensionless variables are akin to those shown in 

• Table (B-3), in Appendix B. 

• Because the mean velocity V is employed by Gillies et al. (1985), V replaces the 

• friction velocity v.. This is quite legitimate because V and v. have the same dimensions • 
•

and can replace each other as a characteristic velocity of the flow. The dimensionless 

•
„2 	 0 V2  

variable Y = 	d 	 d 
is replaced by 11.1  = !-f--- 

-ys  	• • 
1111 	Then we can write 

1111 	 V 2 	pf V 2 	Pi X 	Pf  — 	V2  ( P8  1) =  
g d 	g (p„ — pf)d 	Pf 	-y„ d 	f 

• • c-± Z -1  
D 

O 
•

and, 
Ps - Pf  

• IV — 1. 
•

Pf 

• It follows that 
• 
or 	 A

ic
. 
 2 

(v2) k3  ( 	d 	\ k, pf\ les  

•
r 

g d 	 Pi ) 

41> 

• k a  

(

1 )

ka 
[Y 1  X ( W — 1)] Z —k4  (W — 

) k5 

3 

• = 	
k2 

(Y') k3  Z —k4  (iv  — i) k3+ks  • 3 

• This suggests that it would be better to write • 
Cc 	 K2 	K3 	K4 	K3 

•
ex p 	(E) 	 (Z) (11") 

• since Y' represents the total effect of gravity on (p, - pf), and IV represents the total 

• inertial effects of p„, i.e., the gravity and the inertial effects are separated. 

• If the effects of inertial forces of solid particles were negligible, s5  would be close 

• to zero, and the variable W could be dropped. No such conclusion could be drawn in 
• 
• 79 
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connection with the expression used by Gillies et al. (1985), because the term in P8— 	Pf 
Pf 

would be affected by both gravitational and inertial forces. 

Inclusion of an additional term, in X5 = C (see Table (B-3)), would be of interest(*). 
C Cd or C = CI  could be used. Of course, two further dimensionless variables, X6 

and X7 = 77, appear in Table (B-3). Terms in those variables should, strictly speaking, be 

included, if data warranted it. 

Discussion of the Effects of Particle Density, ps , and of Sliding Friction, 7-1  

In Appendix B, slurry flows are compared only in case of fixed particle parameters, 

except for a variation of diameter d, under the restriction that D/d be constant. It is of 

interest also to make comparisons between flows with differing particle densities. It will be 

appreciated that, in connection with natural materials, a variety of changes in parameters 

may be associated with a change in density. The possible consequences should be considered. 

Yalin (1977, p. 69) shows that p(s -b does not influence any steady particle velocity 

involved in a hydraulic flow (see also Appendix C). The parameter ps  only appears directly 

(i.e., through the variable W = p) in expressions for particle acceleration. According to 

\ralin , 

"it follows that the ratio W can be important only with 

regard to the properties associated with the 'ballistics' of 

an indvidual grain. Usually, in engineering practice, one 

is much more interested in the properties of the grain 

motion en masse  and, with regard to these properties, 

the ratio W appears to be the least important variable." 

The other variables considered by Yalin in connection with sediment transport are only 

X, Y, Z, or E, Y, Z, or equivalent. 

At first sight, slurry flow seems to be a case where W should have little importance. 

It would appear to be safe to ignore the variable W, especially in comparisons of sinlilar 
solids. However, serious difficulties can be foreseen, except under special circumstances. 

The mechanisms of sediment transport in open flows considered by Yalin and others 

do not include mechanical friction as an independent parameter. Losses of energy are 

(*) See the discussion of Babcock's results, in the section of this report entitled "Delivered 

Concentration, Cd, as a Parameter" (p. 11). 
(t) p s  = particle density kg/m 3  --+ ML -3 . 
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assigned, principally, to hydraulic processes; mechanical friction losses, if considered at all, 
are absorbed into empirical constants. The link between p s  and the "hydraulic processes" 
mentioned, is the steady attraction of gravity, acting through -e *) , that tends to make 
particles settle, whereas turbulence, or lift effects, tend to annul such settling. 

Newitt et al. (1955) mention mechanical friction as a cause of energy loss in a slurry 

flow in a pipe when a moving bed exists, but again the friction factor is absorbed into 

an empirical constant. The combination of parameters ri(p, — p) g =  ri -y, occurs in the 
constant. 

The Wilson model explicitly introduces mechanical friction and the expression for 
resistance due to a moving contact-load again includes 77 -y,. 

If the total effect of p s  acts through -y„, then 77  will be a component of any empirical 
function of -y,. This parameter 'y s  will remain a valid one, as stated by Yalin', w.hen only one 

particulate solid is concerned (since n  is then a constant multiplier of -y8 ). If different solids 
are concerned, ri may vary, with or without variation of -y 3 .  We see that only the product 
77 -y, can, in general, be considered as a single valid parameter, as far as the effect of contact 

load is concerned. If -y., is used on its own, an unaccountable scatter in the correlation of 
flow properties will occur, due to any differences in ?). 

In pipe flow we can also expect a second complication, that probably has little im-

portance in sedimentary flows in open channels. A brief summary of abrasion in pipes (Bain 

and Bonnington, 1970, p. 131) indicates clearly that even a fine abrasive solid carried in 
homogeneous suspension causes wear. Some mechanical friction loss must be associated 
with wear, due to rubbing on the pipe wall. 

Further, if the particles are thrown against the wall by turbulence, acceleration is in-
volved. As shown by Yalin, the parameter p, is concerned in this case, not -y s . Consequently, 
the product 77  p s  must be concerned with this source of energy loss. 

Summarizing, we find three distinct mechanisms for energy- loss involving particle 
density: 

— hydraulic losses depending on -y s , the principal loss re-

cognized by Yalin (1977); 

— mechanical friction associated with sliding contact-load 

particles, dependent on 77 -ys ; 

— mechanical friction associated with hydraulically sup-

ported particles, dependent on 71 p s . 

(**) -y, = (ps  — p) g = specific net weight of a particle submerged in fluid 

r-11 —

k

g- —  k g 	.111 L -2  T -2 . 9  3 - 2 	9  S -  772  
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Because complex sharing of energy loss is not understood theoretically, empirical 

studies will have to be made with these points in mind. It will probably be impossible to 

isolate all effects. In the simplest situation a conditional test of their significance can be 

made thus: let us assume that two different particulate solids (e.g., coals) are similar in 

all respects except in density. Also, let us assume, initially, that IV has no effect on slurry 

flows, so that the whole effect of p, is reflected in -y3 . 

Now, let flow tests be carried out under conditions of geometric similarity in the 

sanie pipe, with the same C values, and with the saine  characteristic particle diameter, i.e., 

D i  = D2 =  C2,  and di  = d2. Corresponding values of i 1  and of Vi  are then to be 

measured in a series of runs with the first material, of density p 8i , and similarly values of 

2:2 and V2 with the second material, of density P 3 2 

As a general rule, a parameter whose effect is to be tested should not be selected as a 

basic parameter, because basic parameters may appear in several variables. As an example 

from Table (B-3) of Appendix B, -y, appears in E as well as in Y, and also in the related 

variable IIv. 

Parameters, other than basic, each appear in one variable only, the variable that 

represents, or reflects, its effect. Note that in Table (B-2) of Appendix B, -y, appears only 

in Y, because Y represents -y a . We, therefore, choose the dimensionless variables based on 

the basic parameters d, p, and v. (see Table (B-2)) for analyzing the results of the present 

series of tests. 

By the previously stated hypothesis, the tl,vo flows should be similar when Y1  = Y2 

(with Zji  =  Z2,  and Ci  = C2). Therefore, Ilvi =  11 V2  also. 

From the first relation, 
2 	2 2  pv. 

=  	. Y2  
'y 8 1 d1 	'7,92 d2 

Since 	d1  = d2, 
y. 1   

2 
is2 

d Since  d1  — —2- D 	D2; and since v. 1 	g D114, and v,.2 	g D2 /4, D1 — D2 ' 1  

ii 	-ysi 	g (psi — P) 	( 8 1  —1)  
— 

i2 	-y3 2 	g ( 0 8 2 — P) 	(s2 — 1 ) 

where, 31 = psi' p, and 32 	p 82 1p, but si 	3 2 , 	because p31 	p82 . 

From the second relation above (i.e., from Ilvi = 11 1/2), 

1/2 = 	 
V*1 	V*2 
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hence, 

VI 	V*1 4  ii1 	\psi — 1)  

V2 	v,,2 V i2 	(32 — 1) 

If the data of both series of runs fulfil the latter relations, both sets of points will fall 

on a single line, if plotted as in Figure (B-2) of Appendix B. If, however, the latter relations 

are not fulfilled, two different lines will result. In either case no unambiguous interpretation 

can be made, unless  m-= 772. 

If ni  = 772 , a single line indicates that pa  has no direct effect upon the flow. In 

this case it is the other parameters, in particular -ys , that account for the results. In these 

special circumstances, a series of runs with materials of different densities could be similarly 

correlated, through the use of either Y and IIv (Figure (B-2) of Appendix B), or Y and 

IIv (Figure (B-4) of Appendix B), even if pipe diameters D 1  and D2 were differentI. 

If ni  = 	= 11, and two distinct lines occur, this must indicate the existence of a 

significant friction loss through contacts of suspended particles with the wall. The difference 

between the lines depends on the difference between ri  pal , and 77 p s2 . 

A correlation, such as that shown in Figures (B-2) or (B-4) of Appendix B, requires 

that differences due to the effects of X, W, X6, X7, and particle shape be relatively unim-

portant. Because two natural materials differing in density may differ in other parameters 

as well, say in shape or mechanical friction or both, it is likely that the actual effects of 

these variables will  lead to a scatter of points about the line. 

Problem of Defining Velocity V, and of Interpreting Equation (A.18) 

of Eyler et al. 

Shook (1983, p. 8) remarks on an apparent error in Equation (A.18) of Eyler et al. 

(1982, p. A.15), and suggests (see his Appendix (2)), that it appears to arise from the 

evaluation of Va  /V. 

It is shown here that the discrepancy is caused by different definitions for the symbol 

V, used by Shook and by Eyler et al. Other differences in notation are only minor. The 

notation of Eyler et al. (1982) is used, except that V Shook)  denotes V as defined by Shook. 

Shook (1983, p. ii) defines V; Shook)  as the average velocity, indicating the average 

velocity of fluid and of solids across the whole pipe. This is equivalent to Va,( Evier), defined 

by Eyler et al. (1982, p. xix) as mixture velocity, i.e.,V, -uShook) = Vm(Eyler)• 

4.  Because conditions for a single line are fulfilled; we do not, actually, have identical points 

from the pairs of runs, but they do fall on the sanie line. 
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• • • • 
Titus, A x Vm(Eyier) = Aa Va Ab Vb, which can be reduced to 	 • 

Vb 	 Va  

	

(1 a) T , 	=  1 - a , 	 Eq 95 	e 
V m(Eyler) 	Y ra(Eyler) 	 11> • 

	

The volumetric rate of delivery of solids* can be given by two equivalent expressions, 	• 
• ' i.e., • 

Cd A V tri(Eyler) = Cb Ab Vb 	 e • hence, • 

	

Cd Ab Vb 	f y 	, 	Vb 	 Vb  
	 = (1 a) , 	 e 

Cb 	A 	Vm, 	 vin(Ey ler) 	 V(Shook) 0 
Or, • 

Va  
C R = (1 	Vb 

a) Tr 	= 1 a , 	 (from Equation 95). 	e 
vm(Eyler) 	 Vrn(Eyler) • 

Hence, 	 • 
Va 	1 — C R 	 • 	= 	 Eq 96 

Vm(Eyier) 	a 	 • , 

as given by Shook (1983, p. 33). 
• 

Eyler et al. (1982, p. viz) define** V lEy/er) as equivalent throughput velocity. A 	• 
• 

discussion, commencing on their p. 5.6 makes it clear that V( Eyi„) represents a velocity • 
relevant to the fluid component only, if delivered through the whole pipe cross section. 

• 
In case of a fixed bed, Vb = 0, and V (E y /er) = a Va. 	 •  
For the case of a moving bed, an expression for V( Eyi„) is not given, and it is sim-

ply said (bottom of their p. 5.9), that " a more complex expression similar to Equation 

(5.7) results." As their Equation (5.7) gives an expression for V„,( Ey/er),  there is a strong 

indication that V( Eyi„) again refers to output of fluid only. • 
An exression for V(Eyier)  is found as follows. It is assumed that there are no suspended 

solids in the above-bed region, and that the volumetric concentration of solids in the bed 	• 
region is Cb, in accordance with the Wilson model. 

The volumetric rate of delivery of fluid only can be given by two equivalent expres- 	• 
sions, i.e., 

te 
A 17(E.  yler) = Aa Va  Ab Vb (1 — Cb) 	 • • (assuming that the fluid velocity is Vs). 

* Assuming full stratification ;  i.e., that no solids travel in suspension. 	 • 
** Note also their definitions of jo  and of jOs.  • 
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Hence, 

V(Eyter) = a V, + (1 — a) Vb (1 C 6) = a Va [1 +
1 — a 

a  V R ( 1  C b)] 

and thus, 
Va  _ 	 1 

E q 97 
V(E Y ier)  — a [1 + VR 1 —a  a  (1 _ Col 

V where, VR = 
Va 

Following Shook (1983, p. 33), we have the following equation, derived from the 

force balance for the lower layer: 

2 (s — 1) C  b ,a8 (sin — cos 0) -I- 	fo 	x 
Vb2  — 	(va  — yb )2 sin 

= (1 — a) r 	 2 
1r 

 D g 	 (1 — a) 

j 951 	fo Va2  x V
12  i(3 	( 1  VR) 2  Sin  

(1—a) 	2 D g 	 7r (1 — a) 

ip 01  4_ fo Va2  v  V?? 	fi52  

(1 — a) 	2 D g — 7r.  (1 — a) 

On re-arranging, we get, 

[jp 	— j (1 — a)} ir 

(952 — 	0) 
or, 

fo  Va2  
(where, Y = -j-). 

2D g jp 	( q5 2 	/3) 	 Jp 

By slightly re-arranging Equation (A.14) of Eyler et al. (1982), we can write: 

Jo 	03 	{q5 i  — (1 — a)Y] 
(where C2 -= 1). X a2  — 	  

(952 — Vi2v(3) 

By comparing the two previous equations, 

fo  Va2 	fo V(2E yler) 	jo 	953 	
va2 

— x — = 	 
jp  a2  2Dg jp 	2D g jp 	v.2 

(Eyler) 

V 2  e  Now, if jo 	
f (Eyl r)  

Therefore, 

va'  = 	 1 
2 17

( 2EYier) 	[1 + VR 1a  a  (1— C6)]  
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in accordance with Equation (A.18) of Eyler et al. (1982). 

On the other hand, by Shook's interpretation, Vn, (Eyi „) is to be substituted for 

V(Eyler). Then, 
0/3 	fo Va2 	f0  V2 (El) 

= 	 X 	
Va2 

— 	 2  
a2 	2 D g jp 	2 D g jp 	Vm(Eyier)  

fo Vm2bEI ter) 	 v„2  Now, if 	X°  = 	2 	, then -1- = 
V 2  a m(Eyler) 

Hence, 
Ast ,2 	= ( 1 — CR ) 2  (P3 — 	V2 m(Eyler) 

It should be noted that jo and j(!)  have different values in the two different cases, 

when referring to the same set of data*. 

In fact, 	jo  X 03 = jà X 03 , and 

i0 	03  = = 
v(2Eyler)  

iS 
 — —  

43V 2  m(Eyler) 

The relation between V(Eyi„)  and Vfl,(E y ler) iS SinaPlY 

V(E y ter) = Vin(Eyler) X ( 1  — Cd) 

since, 

A x Eyler) = A x Vin(Eyi„)  x (1 — Cd) 

gives the volumetric rate of delivery of the fluid. 

It follows that the results of computations reported by Shook (1983, p. 19) cannot 

be compared directly with those reported by Eyler et al. (1982, p. A.19). 

The concentration assumed is Cd = 0.40. Thus, 

17(Eyier)  = Vni(Eyi„) x (1 — Cd) = 0.60 Vni(Eyie ,. ) . 

For example, V(Eyler) = 3.35 m/s, reported by Eyler et al. (1982), corresponds to 

V,i(Eyi„)  = a--6--G* 35  = 5.58 m/s, whereas Shook (1983) compares this case with a case where 

17,7,(E y i er) = 3.35 ni/s. 

However, two approximate comparisons can be made, by matching the cases com-

puted by Shook with cases selected from those reported by Eyler et al., as indicated in 

* Because V(Eyler) 	Vnt(Eyler)• 
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Tables 13 and 14. An appropriate cornparison — as in Table (1) of Shook (1983, p. 19) — 

is given in Table 14. 

TABLE 13 

Selection of comparable cases 

on the basis of V(Eyler) 

Shook (1983) 	 Eyler et al. (1982)  

%hook)  = Vm(Eyler) 	V(Eyler) = (*) 	17(Eyler) 

	

3.35 	 2.01 	 2.45** 

1.76**  

	

0.87 	 0.52 	 0.49 

(*)= (1 — Cd) Vm( Ey/e ,.). 

** Use 2.10, i.e., the average of these two cases. 

TABLE 14 

Comparison of pipe-interface-angles, and of head losses, 
as computed by Shook and by Eyler, respectively 

	

Slurry velocity  (mis) 	Pipe-interface-angle (deg) 	Head  loss (m/m)  

.t 	i* V(shook) 	17(tEyier) §  v(Ey ler) 	fil 	 e* 	 z i 

2.45 	 118 	 0.216 

1.76 	 120 	 0.171  

	

3.35 	2.01 	2.10** 	120 	 119** 	0.182 	0.198** 

	

0.87 	0.52 	0.49 	131 == 	130 	0.143 == 	0.139 

See Table 13, Column 2. 

See Table 13, Column 3. 

As computed by Shook. 

* As computed by Eyler et al. 
** 	Average of the two prior cases listed in this column. 

I.e., compare the two values indicated (e.g., 131 with 130). 

Note: the agreement of the two sets of results shown above is considerably better than that 

in the comparison shown by Shook (1983, p.19, Table 1). 
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• • • • 
Discussion of the Use of the Durand Plot (With —1 Slope) 
as an Indication of the Applicability of the Wilson Model 

• 
As shown in Equation 4, when the slope of the Durand plot is —1, the following 

relation applies to the data: 	 • 
to 

	  K 0 -1 	 Eq 98 z w  
Or, 	 • 

i —i=KCib 1 . 	 Eq 99 	• 
Substituting the usual expression for r,b (see Equation 3), we find that 

. (g  s —  1) D 
i — i tt, = K 	 Eq 100 

O  
V2  fe---'D 

Since, • 
= fv,v2  • 

2 g D 

Equation 100 becomes 

	

K 	_ 	c, (.9 _ 1). 	 Eq 101 
2 /  

Since K is a constant and CD is also a constant (characteristic of any given solids in 

the slurry) and since f,„ varies by a negligible amount over the usual range of V, 1,ve may 

write • 
i — i„, = 	Ci  (s — 1) 	 Eq 102 

• ' 
where, K' is a constant. 	 • • 

Moreover, if the difference (i — i) is attributed to the frictional force exerted by a 

sliding contact-load, we may also write 	 • 

	

i t, K2 Cd (s — 1) 	 Eq 103 

as proposed by Newitt et al. (1955, Equation 18), and quoted by Shook et al. (1981, 
Equation 14), as well as by Clift et al. (1982, Equation 8). 

• 

	

Equations 102 and 103 are similar in form, but only when rn = 1, and when any 	• 
difference between Cd and CI  is ignored. It may be noted that Shook et al. (1981) ignore 

the effect of such a difference at this point, but on p. 90 they speculate on the difference 	• 
between values of ru  as between use of Cd, or C , for the Durand plot. 	 • • 

The remark by Shook et al. (1981, p. 88) in relation to m = 1, that "this indicates 

the sliding-bed model may be applicable for coal of the size used here", seems to accept 	• 
88 	 • 
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• • 

• agreement with the Newitt et al. (1955) equation as an indication of possible applicability 
• 
•

of an improved theory by Wilson. 

Wilson (1975, p. 34) refers to the Newitt et al. (1955) equation as an approximation 

•
to his own. His Figure (3) shows his curves for various values of Cr  = Cd/Cb, and the 

• corresponding straight lines of Newitt et al. (1955). At higher velocities, the curves and 

• lines approach parallelism. The term fully stratified in the title of his Figure (3) indicates 

• that no suspension is considered. • 
41 
• • 
•• Discussion of the Differentiation of the Quotient 

jo  2 
	, to Optimize the Value 

• of Concentration C, for Efficient Pipelining Operation 

• • • 
• SEC = 3  Eq 104 c s 
• where: 

• 5.2 is a constant, 

• j is the head loss in rn/m, and 

S is the specific gravity of the solids. 

• If a minimum of SEC exists, with respect to variation of C, then the value of C • associated with it is found by solving the equation • 
• d(j1C)  
• dC = 

O. 	 Eq 105 

• On p. 21 of the paper in question, the authors state that for efficient operation the 

• optimum value of C should be used, and that this can be obtained by solving the equation • 
• d 	jh  

	

= 	 Eq 106 
• dC 	

0 
 • 

to optimize the Specific Energy Consumption*. 

• * Note that in this case: 

• jh = hydraulic gradient due to the homogeneous component of the flow, 

• jo  = hydraulic gradient due to the carrier fluid alone, 

• C = delivered concentration of the solids, by volume. 
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Curiously, the remark in question by Shook et al. (1981, p. 88) occurs in relation to 

data on coals having substantial proportions of fine and intermediate sizes, where suspension 

must occur. The remark is not strongly based. 

The discussion relating to Equation (1) of the paper by Wilson and Judge (1980, p. 

15) introduces an expression for the SEC (specific energy consumption), that states 



• • • • 
Equation 106 is not established rigorously,.but the line of thought can be understood 

in light of the following points: 

(1) on p. 19 (second last paragraph) three types of optimum 

are described, and it is stated that any type, other than • 
type A, "will not be discussed further in the present ar- • 
ticle." 	 • 

• 
A clear statement is not made, but the authors appear to treat the type A case as 

if there were no significant contact-load when V is equal to, or greater than, VL,. It follows 	• 
that j = 

Ile 
(2) The definition of VL, is given in Equation (4) of the paper by Wilson and 	e 

Judge (1980), which states that 	 111 
111 

x,  ( 	._ fo 	( 	V2 

	

L 	 Eq 107 	
a 

II 	 11, 
m 11 8  Cb j 2 g (s — 1) D) 

1111 
e Note also the statement (fourth paragraph of p. 18): "The foregoing is intended 
111 

simply to indicate the background of the analysis of contact-load transport." In fact, the • 
only result of this analysis used in connection with type A cases is the value of VL, or ( 	• 

O  
FL 7="7- 	  given as a function of A 	,-, 	d  7-1 =Suspension Parameter in 	a v2 g (s — 1) D ' - 	 L,D 1... 

• 
Figure (4) of that paper. 41 

(3) Two paragraphs (last paragraph p. 19, and the follow- 
11 
e 

ing one p. 20), are confusing initially. First the authors • 
speak of X, as a function of X i , i.e., in terms of contact- 	 a 
load theory. In these terms there is an Optimum Operat- 	 il 
ing Velocity (say V,, associated with.  X 8 )  for each value 	 • 
of C, i.e., V, is a function of C. 	 • 

• 

	

But then they &witch to V', as the optimum velocity, independent of C. We can write 	0 
VL = Vs„„ by analogy with V, above. 	 • 

41 
In Figure 18, Y is plotted against  V,  for the curve defining the boundary of the 	11 

sationary deposit zone, similarly to Figure (1) of Wilson and Judge (1980). For any value • of C, say C1 , the Optimum Operating Velocity is considered to be V„, i.e., Y (or j) has a 

minimum at V,. 

But, as an approximation VL is used, instead of V., for the purpose of finding the 

value of C that gives the efficiency criterion SEC a minimum value. 
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In view of the foregoing points, and also noting that Crh, the Relative Concentration 

• of Solids in Suspension, is 

• 4111  
Cb Cb 	Cb 

• we can write Equation (13) of Wilson and Judge (1980) as 

• exp (-1.44 Crh)  exp (-1.44 Ch I Cb) 	exp (-1C 1  C)  

[1- (ChIC0]3 	[1- (C/C)]3 
Eq 108 • = (1 — Crhr  

• Cb is the volumetric fraction of solids in a loose-packed bed 

• (a constant), • C is the delivered concentration of solids, by volume, and 

• K, =1.44/Cb. 
We can also write Equation (11) of that paper as 

, • rn 	, 	 \ 	,-, 1 ( 	) 

•
11 	— 1.) 	L'rhJ 1-en  

Jo • 
• = 	[1 + — 1) C h ] (' m)  = 	[1 + (s — 1) 	In) 	Eq 109 

• where, jo , m and s are constants. It will be noted (from Equation 107) that jo , i.e., the 

• head loss for the carrier fluid alone, is associated with VL. 
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Fig. 18 — Y against V plot*  for curve defining boundary of stationary 

deposit zone 

• 
• where: 



C) 
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It follows that jhry is a function of C only, and that it can be differentiated as follows: 
30 

d II, 	d exp(-K 1 C)  
dC dC  fi - (C Cb)1 3  

1 	d d 	 1  
d C exP ( -K1 C) dc [  [1- (CIC6)]3 ]

+ 
[ 1 - (C I C 0]3 	

exp 
 

-3 exp (-K 1  C) ( 	exp (-K 1  C) 

[1- (C1C6)]4  k,  Cb) 	[1- (C1Cb)]3  

3 exp(-K1C) 	K1  exp (-K 1  C) 

cb  p.— (c/c6 ) i 4 	[1— (cycb )] 3  

and, 

d 	= 	d 
[1 + (s - 1) C](1-m) 	+ (s - 1) C1(1- m)  dit , 

d C jo 	dC 	 d C 

= 117 (1 m) (s - 1) [1 + (s - 1) 	+ m [1 + (s - 1) C1(1')  ( n-1) d ILr 
 

d C 

Then, ddc  (/'b)  can be expressed in terms of the above expressions, as follows: 

d (  3h  _ 	d ( 	+ 1 d (ii  

dC jo C 	jo dC VI) C dC 

1 d ( 	1 (i 
G-1  d C 	) - C2  jo 

Since jo is a constant, the solution of Equation 106 is equivalent to the solution of 

Equation 105. 

Note that the value of C found by solving Equation 106 is quite independent of the 

value C2 (shown on Figure 18) that is associated with Vsm  (or X.rn)• 

Discussion of the Ergun Equation for Flow Through Porous Media 

Shook (1983, p. 10) states that the Ergun equation for flow through porous media 

can be generalized as 

(V1 - V8 )IVf - V8  I 
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(h)f ::_—_Cfb Pf 
d 

(Shook, 1983, Eq 7) 



(Shook, 1983, Eq 6) 

(Shook, 1983, Eq 7) 

and f fb 0 
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where, 

C fb = friction factor for fluid flowing through contact load particles (i.e., through the bed) 

150,12fC 

dpf I Vf — 1 7.1 (1 — C)
]+ 1.75 

Similarly, Eyler et al. (1982, p. 4.12) give the form of the Ergun equation as follows: 

[ 150Cbil 	 C 	11-  G  1 
1.75G 

D + p 	 ][

b 

 (1— Cb) 3 .11. Dpp2 g 

where: 

(s kg  x m2 ) 

Dp  = equivalent particle diameter ------ 6 x 
particle surface area 

Also, 

Dp - d(Shook) 

Cb - C(Shook) = volumetric concentration of loose — packed solids, 

and, 
dP

=jxpxg. 
dz 

The question, therefore, arises as to the equality of the two different forms of the 

Ergun equations quoted, namely Shook's (1983) Equation (7), and Eyler's (1982) Equation 

(4.19). 

For Equations (6) and (7) of Shook (1983, p. 10), the assumptions are stated: 

(a) that 

C (h)f + ( 1  C) (.ff)s = 

and, hence, that (ff). — ( 1  C C)  

alSO (b), since VR 	0, that 

v 2 
(fs  ) f  = C fb Pf cif  • 

Moreover, (c) that 

at 	az 
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(Shook, 1983, Eq 8) 

(Eyler et al., 1982, Eq 4.19) 

G = superficial mass velocity 

particle volume 
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It should also be noted, that Shook (1983, p. 10) refers to vf as the true fluid velocity, 
while calling u1 (1 — C) the superficial fluid velocity, in (m/s). Eyler, on the other hand, 
refers to G as the superficial mass fiowrate, with dimensions 

(kg x m  x 1 2 ) = 	kg  2 ) 
S M" 	S X M 

kg 	1 	kg  The dimensions of 	G 	are thus, 	2 X — = 3  ; this expression, represents v1 (1 — C) 	 s x m m/s m 
the dimension of a density, in this case pi. Consequently, G = pi  V1  (1— C). From Shook 
(1983, p. 9, Equation 1) it follows that 

dP 
—dz 	= ff = (ff)8 

because, from Shook's Equation (3), b 1  = 0 (since 801z1  = 0 for a horizontal pipeline); 

also, from Shook's Equation (4), ff  (fi),,  since ffb =boundary force on the fluid = 0, 
(p. 10 of Shook), and also since, for steady flow (again, Shook, 1983, p. 10), 

ay, avi 

-Ft = Oz  
Now, from Eyler et al. (1982, p. 4.12), namely from their Ergun equation (Equation 4.19), 
with G= pi vi (1— C), we get the following expression for (fi),:  

dP 	. 
UP»  = z  = 3 X pi x g 

150Cp 	 p fv f(1.  — C)] = p 	 f  g ,{[ d 	+ 1.75 pi v (1 C)] x (1 	x [ 	dp2f g  

[
d (1 — 
150 C p 	 C 	[vf 1 

+ 1.15 pi vil x 
 C) 	 (1 — C) 	L d j 

[ 	 150  C p 	 v 
=pi vi 	 + 1.75] x 	 x — 

pp) id(1—C) 	(1 — C) 	d 

2 v f 

 (1 — C) x  d 

Hence, 

(1 — C) 	(1 — C) 	 p 2 

	

f 	
9 

Pi  V2
(f8)f = 	lins= 	X 1, fb X 	 X 	= Cfb 

(1— C) 	d 	 d 

Consequently, this proves the identity of Shook's and Eyler's expressions for the 

Ergun equation, because, aside from the negative sign, the foregoing equation agrees with 

Shook's (1983) Equation (7), for the case of V, = 0 (i.e., for the case of a stationary bed). 
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• • • 
• SUMMARY 

• A study of some aspects of the Wilson model for slurry flow, including its connection 

• with the formulae of Durand and of Newitt et al., concludes that the model should be 

• treated as a new formulation for the empirical correlation of data. Difficulties involved in 

• considering the parameters of the model, such as the mechanical friction factor 77 and the • interfacial friction factor Cf 12,  as physical properties are discussed. It is shown that values 

•
1111 

for the threshold velocity  V.  can be derived, as a function of the concentration of solids, 

• from experimental data, with a possible improvement to the model. 

• 
• Some comparative calculations relating to the Wilson model illustrate the equivalence 

• of Wilson's and of Shook's use of the force balance equations, to a good approximation, 

• under the same basic assumptions. Recognition of a difference between the definitions of 

• Wilson's ( and Eyler's emerged from a connected study. It is also shown that a correct 

• solution of the equations of the model is highly sensitive to the value of the interfacial • 
•

friction factor, although the value of the hydraulic gradient is not. A simple means for 

• fitting ( to a set of data, when all other parameters are known or assumed, is given. 

• 
•

A plan for data accumulation, based on dimensional analysis, is proposed. An in-

troduction  to dimensional analysis for slurry flow in pipes is appended. The value of an 

1111 	integrated approach to the construction of dimensionless variables is discussed. 

• The results of short studies of some theoretical and practical topics encountered in 

• the literature relating to the Wilson model are presented. The study of the Buoyancy Effect 
• on Contact Particles concludes that the Wilson model is open to improvement by research 

• to determine the friction factor, 77, not as a constant, but as a function, dependent on the • 
concentration of solids and on other variables. • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
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APPENDIX A 

Some Basic Features of Fluid Flow 
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Some Basic Features of Fluid Flow 

The theory of engineering fluid mechanics can be found in numerous standard text 

books, e.g., Jaeger (1956), Daugherty and Franzini (1977). An introduction to the results 

pf more recent work on the nature of fluid flow is given by Tennekes and Lumley (1972). 

These authors attempt to bridge the gap between standard texts, and advanced texts on 

turbulence. 

At a sufficiently low rate of flow in a straight unobstructed pipe, the particles of fluid 

move in laminar flow, i.e., in straight lines parallel to the axis. The velocity is a maximum 

at the axis, and is zero at the wall. Thus the body of the fluid is subjected to shear at 

various rates, depending on the distance from the axis of the pipe. 

The capacity of the fluid to dissipate energy under shear is represented by the coef-

ficient of viscosity, it. The pressure gradient, expressed as the gradient of head of fluid in 

metres per metre length of pipe is given by 

4. V2  
i=j  2gD 

where: 

V is the mean velocity of the fluid, 

D is the diameter of the pipe, 

g is the acceleration due to gravity, 

and 

64 
plp 	64 

f = 	= — 
D V R e  

where: 

p is the density of the fluid, 
Re  .DV p  DV . is the Reynolds number of the flow, 

y = u  I p is the kinematic viscosity, and 

f is the Darcy-Weisbach hydraulic friction factor. 

f must be regarded as a mean internal friction factor, because energy is dissipated 

throughout the body of flovving fluid as a function of the local rates of shear. 

When the rate of flow is increased (with increasing Reynolds number), the laminar 

condition is replaced by an unstable condition, and eddies are generated by the main shear 
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• 
• 
• 
• flow. For unstable, or turbulent, flow in a pipe of circular section, the friction factor for use 

• in Equation (A-1) is given implicitly by the Colebrook-White formula 

• 1 	 2.51  
• 
• —\ff = —2 log ( 3.7

k 
D Re 11 ) 	

Eq (A — 3) 

• where: 

k is the wall roughness size, and log indicates logarithm to base 10. 
When R e  is large enough to make the second term in brackets negligible, the energy 41 

•
loss depends only on the roughness ratio, k/D, and is independent of p. Such a flow is said 

• to be rough turbulent. 

• 
•

But k and R e  may have such values that the first term is negligible. Then, only 

• the second term remains, and the flow is said to be smooth turbulent. However, R e  must 

• be greater than about 1000, the upper limit of the range in which laminar flow is stable. 
• Otherwise laminar flow will prevail, and Equation (A-2) will apply. 
• 
• No matter how small  k/D may be (but not zero), R e  may be made large enough for 
• the flow to become rough turbulent, as indicated above. With increasing values of R e , f will 

approach a constant value characteristic of the value of kID, and the flow may be termed • 
•

to be fully turbulent. 

1111 	 A rhyme by L.F. Richardson, dating from the 1920's, showed a remarkable intuitive • 
•

insight into the nature of turbulent flows. It is quoted by Yalin (1977, p. 90) as follows: 

• "Big whorls have little whorls, 

• Which feed on their velocity; 
• Little whorls have smaller whorls, 

• And so on unto viscosity." 

• Only- years later was substantial progress made in mathematical treatments of 
41 	

the 

processes expressed in this rhyme. 

• Tennekes and Lumley (1972) describe the principal methods that have been used to • study turbulence. One of the most powerful methods is dimensional analysis, an application 

•
• 

of which is described in Appendix B. The rnethod is useful for planning experimental studies, 

• but it has also been used as the basis of complex theoretical concepts. 

411 	 The elements of some (if not all) theories are the sizes of the eddies in the flow, and 

111 	their rates of rotation, or their frequencies. According to ideas used by Prandtl and von 

• Karman, the size of an eddy is proportional to its distance from the flow boundary. But a 

• statistical approach views the size of such an eddy as the mean of a random distribution • 
• A-103  
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of sizes. A related approach studies the distribution of frequencies of rotation of such an 

eddy, including its standard deviation. 

In spite of the efforts that have been made to understand turbulence in detail, no 

adequate model of turbulence yet exists. Partial improved understanding has been achieved, 

but different approaches do not fully agree. 

However, an important feature of turbulent flow, recognized in the foregoing rhyme, 

can be illustrated by a result from the statistical approach. Accordingly, a description given 

by Tennekes and Lumley (1972) will be sketched here briefly. 

In an unstable condition (Re  > 2000), the main shear flow transfers energy to eddies 

with diameters of the order of the radius of the pipe. Some energy is dissipated by shearing 

in these eddies. A cascade process is set up, in which energy is passed on to smaller and 

smaller eddies, until it is all dissipated by the cumulative viscous loss. At high rates of flow, 

when the turbulence is vigorous, the larger eddies transfer most of their energy to slightly 

smaller eddies, dissipating only a small  part in direct shear. Most of the energy is dissipated 

in the smallest eddies (cascade process). When the rate of flow is increased, more energy 
goes into the largest eddies, and the eddies in which most of the energy is finally dissipated 

are even smaller than formerly. Under these conditions the rate of dissipation of energy is 

determined by the inertial coupling between the main shear flow, and the large eddies. The 

rate of energy loss becomes independent of viscosity, even though the energy is ultimately 

dissipated in viscous shear in the smallest eddies. 

Consequently, the state of turbulence is determined by the shape of the boundary 

walls, including their roughness, and not by the fluid properties directly. Turbulence is 
said not to be a feature of fluids, but of fluid flows. Turbulent flows in similar channels or 

conduits are similar, irrespective of the fluid, whether liquid or gas, if the Reynolds number 
is large enough.  AU turbulent flows have many characteristics in common, but they may 
differ in important ways when their boundaries are dissimilar. 

However, the cascade process is only the mean result of the actual physical process, 
which is not considered in detail. A brief summary by Yalin (1977, p. 204) describes some 
results of recent experimental work that provide some knowledge of the physical details of 
turbulent flow. This approach recognizes that some sort of short-term order must exist in 
the flow, rather than complete randomness. 

A mathematical area known as catastrophe theory (Kadanoff, 1983) is concerned with 
systems of equations that exhibit aspects both of regularity and of randomness. Simple 

equations that govern some processes deterministically under certain conditions can, under 
slightly different conditions, lead to a chaotic process. An underlying pattern may remain, 
however. Such systems offer a possibility of applications in studies of fluid flow. 
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This sample of formulae and theories as discussed, like others, deals only with fluids. 

The addition of solid particles to the flow compounds the complexities that must be dealt 
with. 

In case of large-particle transport, with the particles concentrated toward the invert 

of the pipe, and moving more slowly than the fluid, the solids become part of the boundary 

of the fluid component, albeit a moving boundary. The roughness of the boundary is then 

well beyond the range of roughnesses that has been studied extensively. The shape of the 

channel for fluid flow is far from that of a simple circle. 

Consequently, the adaptation of standard formulae for use with such flows presents a 
difficult challenge. Any proposals must be tested against experiment with great care, under 

all  ranges of parameters that are of interest. Much of the present report was written with 

such thoughts in mind. 
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APPENDIX B 

Introduction to Dimensional Analysis 
for Flow in Pipes 

B- 106 



• Introduction to Dimensional Analysis for Flow in Pipes 

Dimensionless expressions are frequently encountered in reports on theoretical and 

experimental studies of problems in hydraulics, but often they have not been used to best 

• effect through the lack of an integrated approach to their construction. Consequently, it 

• was of real interest to consider the basics of this concept within the framework of this 

• cooperative research project. • 
• Yalin (1977) gives an excellent account of the employment of dimensionless expres- 
• sions, principally in connection with the transport of sedimentary materials in open chan- 

• nels. What follows consists of an application of Yalin's system to slurry flow in pipes, as • interpreted by this report's second author. Yalin.'s notation is followed as closely as possible- , 

as it is assumed that readers will wish to make further references to his book, apart from • 
the information imparted by noting the following section of this report. However, some 

• changes are needed for the sake of compatibility with notations commonly used in slurry 

• transport. 

• 
• A minimum list of parameters characteristic of slurry flow in a straight horizontal 

• pipe is given in Table (B-1). The fluid is assumed to have the simple Newtonian properties 

• specified by p and p. Particle properties are specified by p3  and d. For simplicity, we 
• assume, for the present, that the particle size is closely graded, so that the length d is 
• sufficiently representative of the mechanical behavior of the particles. Additionally, the 
• volume concentration of particles is designated by C. • 
• The pipe properties are specified by D and k. The direct frictional interaction be- 
• tween pipe and particles is specified by  i.  

• The driving pressure of the flow is specified by i, the fluid head gradient in metre 
per metre. Alternatively, the rate of flow could be specified by V, the mean velocity, but it 
will appear that use of i is particularly convenient. • 

• The gravitational constant, g, does not affect the flow of clear fluids under pressure 

1111■ 	 All properties of the flow are determined by a complete list of characteristic parame- • ters. For example, the rate of flow, V, can be expressed as a function of the parameters, in • 
•

principle, i.e., 

4111 	 V = 	 Eq (B -1) 

• At this point it is advantageous to consider ways of combining some of the parameters 

• into groups that can be used as new parameters, to replace some of the original parameters. 

• B- 107  
•  
0 

• 

4111 
• 	in pipes, in general, but because gravity has a differential action between particles and fluid 

•
of different densities, g is a characteristic parameter of slurry flow. 



TABLE (B-1) 

Minimum list of characteristic parameters for slurry flow in pipe 

Characteristic Parameters 	Symbol 	Units 	Dimensions  

Fluid density 	 p 	kg/m 3 	ML -3  
Fluid viscosity 	 ii 	kg/ms 	ML-1T-1 

Particle density 	 p, 	kg/m 3 	MI,' 
Particle diameter 	 d 	 m 	 L 
Concentration of particles 	C 	

_ 	
1 

Pipe diameter 	 D 	m 	 L 
Pipe roughness 	 k 	m 	 L 
Friction coefficient, 

particle - pipe 	 1/ 	— 	 1 
Fluid head gradient 	 i 	— 	 1 
Gravitational constant 	 g 	in/s2 	LT -2  

The shear or friction velocity is given by 

\p
gD \IdP D 

= v - = — x — 
4 8 dz 4p 

Eq (B - 2) 

because APIL = dPIdz = igp. Also i = fV 2 12gD (with f = the Darcy-Weisbach friction 
factor). 

The pressure gradient, dPIdz, is normally created by pumping, and has nothing to 
do with gravity. Thus v. is not a function of gravity. Gravity appears in the expression 
v. = .VigDI4 only because it appears in the relation between i and dPIdz. This anomaly 
is due to the use of i for convenience, although it is not expressed in fundamental units. 
AU  other characteristic parameters are expressed in fundamental units. 

This point is emphasized, because another new parameter, -y„, is used to represent 
the submerged weight of particles, i.e., -y, = (p, - p)g. The action of gravity on the flow 
is completely represented by- -y.. No other combination of parameters with g is required. 
Thus, it - is convenient to replace g by y, in the parameter list. p„ and p remain in the list, 
because -y5  can replace only one of the parameters of which it is composed. 

Any such substitution must satisfy the conditions that the number of parameters 
remains the same, and that  ail  parameters in the new list be independent. 
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Similarly, v., is used to replace i, which is convenient, because v,,. is involved in 

fundamental relations of hydraulic theory. We may, therefore, re-write Equation (B-1) as 

V = fv(p,p,p„,d,C,D,k,n,v * ,-y s ). 	 Eq (B — la) 

But, it is shown by dimensional analysis that a function such as fif can be determined 

by a number of dimensionless variables, three less than the number of parameters. Any 

three characteristic parameters that are dimensionally independent can be chosen as basic 

parameters. We may choose, for example, d,p,v * . They are independent dimensionally, 

because no product of the form (dapbv) can be formed that is dimensionless. 

We can form a dimensionless product with another parameter, as indicated in the 

following example. Let 
[da p b v çw 	m0 LOT° 	1.  

p *c — This equation reads: the dimensions of [da b ,v  111
]  are zero in mass (M), zero in 

length (L), and zero in time (T). Then, 

La . (—M)b 

 

1L C
f 
	)-1 

L3 	 = 'err 

The equation given by the exponents of L is: 

(a — 3h + c +1) = 0. 

Similarly, for M, it is (b — 1) = 0; and similarly for T, it is (—c + 1) = 0. 

Hence, b =1; c = 1; and, a = (3b — c — 1) = 1. 

Therefore, the dimensionless product representing j.t is 

dpv = v * d 

Note that the choice of either +1 or —1 for p was quite arbitrary. 

We use the basic parameters to form a dimensionless product (called a variable) with 

each of the other parameters. Table (B-2) gives the revised list of parameters, with their 

dimensions, together with the dimensionless variables. 

It will be noticed that the dimensionless variables X5 and X7, representing C and 77  

respectively, are simply C and 77, because the latter are dimensionless in themselves. 
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TABLE (B-2) 

Revised list of characteristic parameters for slurry flow in pipe, 
with dimensionless variables and with basic parameters d, p, v *  

	

Characteristic Parameters 	 Variable 

Symbol 	Dimensions 	Product 	Symbol 

P 	 ML -3 	 basic 	 — 

	

v.d 	v.d ii 	 ML — 'T— 	 X(Xi) 

	

v 	TIT, 
Ps 	 ML- 3 	 PsIP 	 W (X 4 ) 
d 	 L 	 basic 

C 	 1 	 C 	 X5 

D 	 L 	 D I d 	 Z(X 3 ) 

k 	 L 	 k Id 	 X6 

n 	 1 	 n 	)c, 
v* 	 LT -1 	 basic 

79 	 ML-2  T-2 	 pv *2  
-r. d 	

Y(X2) 

The variable X = 	, representing p, is a Reynolds number, known as the grain-size 
or particle Reynolds number. It is appropriate for use in particle transport s .tudies. 

The variable Y is a type of Froude number, because it can be written as 

	

2 	 2 

	

y pv * 	pv * 	v! 	(F'.)2  
79d g(ps  — p)d gd(s — 1) 	(s —1) 

where, 

	

=  	
v. 

— 	
V 	v. 	ID 	v. \ D 

x x 	= x x 

	

N/P — fir) V 	d 	V 	d 

The variable Z is the ratio of pipe diameter to typical particle diameter; W is the 
ratio of particle density to fluid density; and X6 is the ratio of pipe roughness to particle 
diameter. The pipe roughness ratio is given by kID= X 6 /Z. 

As another example, we may again choose d, p, v. as the basic parameters, but -y as 
another parameter. In this case: 

mo LoTo . 
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Then, 

1' 	
\ i — -1 

[L a  (1-3-M ) G-11, ) ( LM2T2   ) 	mOLOTO .  

Hence, the equation given by the exponents of L is: 

(a - 3b c + 2) = 0 

Similarly, for M, it is (b -1) = 0; and again for T, it is (-c + 2) = O. 

Hence, b = 1; c = 2; and (a - 3 + 2 -I- 2) = 0, i.e., a = -1. 

Therefore, the dimensionless product representing -y, is 

IC1-1 PV1 	P1). 	y 

a 	-y.cl 

Now, any property A of the flow can, in the same manner as a characteristic para-

meter, be represented by a dimensionless expression of the form 

IIA = da P b V,cm A. 

Furthermore, it can be shown that any HA can be expressed as a function of the 

dimensionless variables of the flow, i.e., 

HA = (X, Y, Z, W, X5, X6, X7)• 	 Eq (B - 4) 

In the case of the mean velocity, V, of the flow,  llv = V/vt  and we can write 

ilv = ckv (X, Y, 	X51 X61 X7)* 

This type of expression has the following advantages: 

Equation (B-1), involving ten parameters, has been re- 

placed by Equation (B-5), involving only seven variables. 

Since fly and the seven variables are dimensionless, their 

numerical values do not depend on the system of units 

used. The relation in question is expressed in a universal 

form. 

The variables, Xi, are the criteria of similarity between 

systems operating at different size scales. 
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Eq (B - 3) 

Eq (B - 5) 



• 

• 
• 

• Let us now consider the problem of predicting the performance of a proposed slurry 

pipeline (prototype), on the basis of data obtained relative to a smaller-diameter slurry 0 
pipeline (model). Reference may be made to Yalin (1971), whose system of notation we • 
also follow in this area. 	 • 

• 
Let us distinguish the parameters of the prototype pipeline flow by a prime, e.g., D' • 

for diameter, and those of the model pipeline flow by double primes, e.g., D". Let the scale 	• 
factors relating the values of model parameters to those of protô,type values be designated 	• 
by AD, etc., i.e.,: 

AD = Du  I DI  

A p  p" I p' etc. 	 • 
• Complete dynamic similarity between the prototype and the model pipeline requires geo- 
te 

metric similarity,i.e., all linear dimensions, including particle diameter and pipe roughness, • 
must be reduced by the same factor. •Then, the necessary, and sufficient, conditions for full • 
dynamic similarity are that the corresponding dimensionless variables of the prototype, and 	5 
of the model pipeline, be equal, i.e., that: 	 • 

• 

	

, 4, 	with i = 1, 2,3, ...,  7. 	Eq (B — 6) 	• i 
• 

Considering each variable in turn, we obtain: 	 • I  1 , 
"E' 	' d' 	 • ' (a) 	

v  
v l =--- v 
	 relative to X (or X1 ) 

lb 
II Il 

	

v It 	 u 
Or 	--7-  X --T = T 	i.e., A i„. .A d  r= A,, ,.-_. --- 	 Eq (B-7) 	• v* 	d 	v 	 Ap 

• p"(v *") 2  _ p'  relative to Y (or X2) (h) 	 18  di • • i.e., ,\ 2 	. A . 
A P• v. 	-v. ci 	

Eq (B-8) 
• 
• D" _ D' 	 relative to Z (or X3) 	 41, (,) 
• 

i.e., 	 AD = Ad 	 Eq (B-9) 

• , 	.pf 
(d) 	 4  = relative to W (or X4) 	 • —1-  P 	P • • i.e., 	 Ap, = p 	 Eq (B-10) • 
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(f) 
k" 
d" = 

(g) = r1
I 
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C" = 	 relative to X5 

i.e., 	 Ac = 1 	 Eq (B-11) 

relative to X6 

i.e., 	 Ak = Ad 	 Eq (B-12) 

relative to X7 

i.e., 	 A n  = 1 	 Eq (B-13) 

Equations (B-9) and (B-12) arp the basic conditions for geometric similarity between 

the prototype and model flows, i.e., 

Ak = Ad = AD 

Equation (B-11) can be considered as an auxiliary condition for geometric similarity, 

because the particle distribution patterns in the prototype and model can only be similar 

if their total concentrations are the same. But all  conditions for dynamic similarity must 

also be fulfilled if this aspect of geometric similarity is to be assured. 

Equation (B-13) requires the coefficient of friction between the particles and the pipe 

wall to be the same in the prototype and model. 

Normally water is the fluid used in both prototype and model. Thus fluid density 

and viscôsity are identical in both, i.e., Ap= 1, and A i, = 1. It follows from Equation (B-10) 

that Ap. = Ap =  1. The particle densities in prototype and model must be identical. 

It also follows from Equation (B-7) that 

X  Ad = 1. 	 .Eq (B —.14) 

Since gravity is the same for both prototype and mod.el, Ag =  1. Since A p , 	Ap= 1. 

and since -y 8  = g(ps— p), 

= Ag X 	p) = 1 = A g  X A g  = 1. 

Thus it follows from Equation (B-S) that 

Av,?, = Ad. 
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Now Equations (B-14) and (B-15) cannot be satisfied simultaneously, unless A„ = 

Ad = 1. Therefore, AD = 1, which means that similarity of flows in prototype and model 

cannot exist, in general, under the assumptions made, unless the pipe sizes are identical. 

This situation is a common one relative to problems in hydraulics, but sometimes 

reduced-scale models can be operated usefully within a limited range of flow rates. Complete 

similarity may not exist, but if the value of a dependent variable, such as  V/v lli , is not 

a function of a given variable X within a certain range of X values, the equation X' = X" 

(see Eq B-6) may be ignored when X' and X" are within that range, i.e., the criterion of 

similarity,  X,  is not effective within that range. 

Furthermore the criteria of similarity, or dimensionless variables, are useful in plan-

ning to obtain data and to derive empirical relationships between flow systems at different 

size scales, even if a variable like X is only partially effective (i.e., only in a high R e  range, 

at nearly turbulent flow). To explain their use, however, it seems to be convénient to as-

sume, initially, that similarity can exist between prototype and model. Although the terms 

prototype and model will be retained in this report, both can refer to laboratory pipelines, 

the former with larger diameter, and the latter with smaller. 

Because the transport of large particles in large pipelines requires a strongly turbulent 

flow, and because friction between particles and pipe wall  is an important cause of energy 

loss, it seems reasonablé to commence with the assumption that turbulence and mechanical 

friction (as opposed to hydraulic friction) will account for all of the energy loss in the 

flow. Also, it will be assumed that the ratio between the diameters of prototype and model 

will not be large. Because large-sized laboratory pipelines are available, it appears that a 

limited scale-up factor may serve a useful purpose for studying realistic field prototypes, 

which should ease the requirement for similarity between pipe roughness ratios of prototype 

and model. 

The following initial hypotheses summarize the above assumptions: 

— The variable X, i.e., X1 , representing the direct contri-

bution of j  to energy loss, will be dropped from Equa-

tion (B-5), since Ilv does not depend on p in case of 

fully turbulent flow. 

— The variable X5 = 	will be dropped from Equation 

(B-5). 

— The size scale factor AD = Du ID' will not be less than 

the order of 0.7. Smaller factors would make the first 

two hypotheses less acceptable. 
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see Eq (B-13) 

see Eq (B-11) 

see Eq (B-10) 

see Eq (B-9) 

see Eq (B-15) 

An  = 1 

Ac = 1 
A p, = 	= 1 *  
A D = Ad 
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As a result of these hypotheses, Equation (B-5) may be written as follows: 

V 2 

11 V = —v* = q5V(Y, Z, W, X5, X7) = OV (—pv* -9— e—
a 

C 
-y„,d' d' p 	' 71) •  

To produce a flow in the model closely similar to the flow in the prototype, we must 

satisfy five criteria of similarity, as deduced above, namely that: 

Eq (B — 16) 

Eq (B —17) 

AD = Ado 

* A p  = 1 since the same fluid (water) is assumed to be used 

in both prototype and model. 

The simplest way to satisfy Ap, = 1 iS to use the same particulate material in the 

model as that intended for the prototype. By using the same particulate material and the 

sarne pipe material, we may also satisfy A n  = 1. The condition Ac = 1 is simply satisfied 

by employing the same particulate concentration in prototype and model. 

On the assumption that all series of runs will be carried out using similar materials, 

we may reduce Equation (B-16) to 

V 	pv *2  D 

Or, 

llv c = ckv(Y, Z, C) 1 . 	 Eq (B — 18) 

As mentioned earlier, the particles were assumed to be closely graded in size. If this 

is not the case, let us assume that the size distribution (Yalin, 1977, p. 7) must be specified 

by a number of sizes, say five, di, with i = 1,2, ..., 5. Then, the condition AD -= Ad becomes 

i = 1,2,...,5 

Since —vV*  =   	= c where: Cf = Fanning friction factor, and f =  Darcy- 

Weisbach friction factor; it is seen that c, used by Yalin, is also a friction factor. 
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-TA d2 	"3 	d5  4 D' 

In other words, the model sample of particles must have a size distribution similar 
to that of the prototype sample. In fact, any geometric particle characteristics, especially 
shapes and their distributions, must be similar for prototype and model. More generally, 
this condition must be assumed to be fulfilled in cases of all unspecified parameters (Yalin, 
1977, Sec.1.3 and 3.2). 

It is now necessary to consider a method for testing Equation (B-18). Let us assume 
that prototype and model pipelines of diameters D' and D", respectively, are available. We 
also assume that a particulate material, with characteristic particle diameter d', is available 
for use in the prototype. d' will be assumed to be some characteristic measure, such as d50 , 
but titis  need not be specified for out  purposes, as long as the saine  choice is 'always used. 

The particulate material for use in the model must be prepared from the original 
material by crushing or sieving, or both. Quantities in each size range must be adjusted 
to fulfil the requirements of a sample with characteristic particle diameter d", where d" = 
d' D" Di . The size distribution of the model sample should be identical with that of the 
prototype sample, taking account of the factor (Du /D i ) in size reduction. In other words, 

if dr  is any quantilet, such as d50  or d8 5 , we must ensure that d'/d'x  = D"/D 1 , for any 
value of x (Figure (B-1)). 

Now, we suppose that a double series of runs is carried out in model and prototype, 
in which particle sizes satisfy 

D' 	Di, 
Z = _ 

d' — 	= Z" = Z1 . 

We also satisfy C' 	= C1. 

For simplicity a,ve assume that each value of i in a model run is replicated in a 
prototype run, i.e.,  i  = 	=iik , where subsript k indicates the k-th run in each pipe. 

(This subscript need not be written explicitly, if understood, and will be omitted to simplify 
equations.) 

For a pair of runs with i =  j 1 ,  we measure the mean velocities V' and V". According 
to Equation (B-18) we should find 

Vi  V"  yn 

I.e., a value of d that separates two parts of a size distribution. 
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• • • 
Or, 

V' V" 	 • = _= _= 	 • v , 	v.„ 
and, 	 • 

V' v'* 	fr  ID' • • 
41, 

As Z, and C are constants in the series of measurements (with k same, i.e., for 	• 
constant C and Z, but with varying V ), we may plot c against Y. Each value of c is 	• 
calculated from the measured values of i and V, by the formula 	 • 

• V 	 
Eq (B – 20) 

	

.Vi i gD14 	 • • 
Each value of Y is calcula,ted by 	 • 

41, 
= 	= 	= pv! 	pilgD14 	il 	 (D .  i l Zi 	 • 1  — 	 Eq (B – 21) 

^f ad g(p„– p)d 4(.9 – 1) d j 	4(s –1) 	 0 • • , When c is plotted against Y, the result will be as shown schematically in Figure • 

	

(B-2). As full similarity is assumed, the results from both model and prototype will fall on 	• 
a common line. 	 e • i 

	

But to take a different point of view, if two different plotted lines are fotind, we may 	• 

	

be sure that the prototype and model flows are not similar. The lack of similarity must 	• 

• tically in Figure (B-3). • 
• Under the conditions of the tests, the differences between the curves are due solely • to the differences between X' and X", and between _4 and Xe. The latter differences can • 

be expressed in terms of (Di ID"), as follows (re. the terms v and (D'/D") 3 /2  see Note 1 	• 
at end of this section): • • 

= v,,' d' 	v,,,' D' (1' = v'› 	, (D') 312  d' 	v" (D") 312  ( D' 312  d" - 
	

• 
xi 	= 	__:....... _  * 	 • 

if 	v D' „Fly I/ 	D' eF" v 	. D" ) D" ----. 	 • 

= v"d" D' 

	

( \ 312 	312 	 • 
v D" j = X" (— D" 

D' ) Eq (B  – 22)  • 
. 

• 
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result from the effects of variables X = --*--vud , or X6 = kld, or both (these were the two 	• • variables dropped, according to the initial hypotheses). 
il • If such effects occur, the plots from the double series will appear as shown schema- 
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Fig. (B-2) — Similarity between tnodel and prototype, 

with fully rough turbulence in both 

kd" k D" y ( 
X6  = = 	 = d" d' = d" D' 	D' ) 

* * * * * * 

It is now useful to consider the types of results that may follow from choosing a 

different group of basic characteristic parameters for forming the dimensionless variable' s of 

the problem. Previously, the parameters d, p, v*  were chosen. As shown by Yalin (1977, 

p. 62), the critical variables, X and Y, that resulted, have been widely used in studies of 

two-phase phenomena, under various guises. X is a Reynolds number, and Y is a Froude 

number, familiar to many. 

Let us investigate a new choice of basic parameters, d, p,ls , a group offering a special 

advantage emphasized by Yann. This is also a set of independent parameters in the sense 
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and, 

Eq (B — 23) 
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Fig. (B-3) — Dissimilar flows in model and prototype: 

viscosity or wall roughness effects, or both 

that no product of the' form da , pb  -y;, can be formed that is dimensionless. Table (B-3) 
gives the new set of variables, corresponding to the new choice of basic parameters. 

It will be seen from Table (B-3) that Z ,W, X5, X6, X7, are exactly as before. They 

involve neither v. of the former set of basic parameters, nor 	of the new set. Y = 	 
1,(1  

occurs as before, but it,now represents v., whereas it formerly represented - is . v. and 
have interchanged rôles. 

x  _ v.d =  v * dp  — 	 which formerly represented , is now replaced by E(*), where v 

-y 8 d3 	-y 8 (13  p 
-7- = 	 9 

pv -  It - 

The unique characteristic of E is that it is formed only by the properties of granular 
material and fluid. (-y a  is classed as a material property, including the effect, of gravity). 

(*) See Note 2 at end of this section. 
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Eq (.13 - 24) 

Eq (B - 25) 

Eq (B - 26) 
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TABLE (B-3) 

Dimensionless variables formed with basic parameters d, p, ,y8  

	

Characteristic parameters 	 Variable  
Symbol 	Dimensions 	Product 	Symbol  

P 	 M L -3 	 basic 	 — 

	

lad' 	
ii 	 ML -1 T -1 	 E 

pv 2 

Ps 	 ML -3 	 P8IP 	 W 
d 	 L 	 basic 	 — 
C 	 1 	 C 	 X5 
D 	 L 	 D I d 	 Z 
k 	 £ 	 k Id 	 X6 

ri 	 1 	 ri 	 X7 
2 

V.I. 	 LT -1 pv * 	
Y 

'78 	 ML -2 T -2 	 basic 	 — 

does not contain v., and, hence, it is a constant throughout any series of runs in which  V. 
 is varied. 

To study any property A of the flow, we must now form the related dimensionless 
variable as 

11 .4 = Cla P b 'Y:A. 

In the case of the mean - velocity, V, we find $ 

VV 
= a 2p21,„ 'V = 	  

(p , p)] 1.2 = 	g i2 (s - 

V 	 V 	D 

-Vdg(s - 1)  N/Dg(s -1)V d 

Thus, the equivalent of Equation (B-5) becomes 

 1) 	
y, z, 147, X5, X6,  x7) .  

See Note 3 at end of this section. 
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Eq (B -- 27) 

Eq (B - 28) 
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This equation expresses exactly the same relationship as was previously expressed 

by Equation (B-5), but one equation may have practical advantages over the other, which 

will be indicated later. 

* * * * * * 

We now return to the double series of measurements intended to test Equation 

(B-18). The previously stated hypothesis (1) now becomes hypothesis (1), (on the basis of 

the set of  new parameters d, p, -y.), i.e.,: 

(1) The variable E, representing the direct contribution of R  to energy loss, will 

be dropped from Equation (B-26). 

Then, Equations (B-17) and (B-18) become 

V 	- (pv 2  D 
v =  	 — 

.Vdg(s -1) 	-y s d' d 

Or, 

z, c). 

Plotted in terms of IIv and Y, the sanie basic data shown in Figure (B-2) (in terms 

of IIv and Y) will now appear as shown in Figure (B-4). The first advantage of the new 

set of basic parameteis to be noted is that Figure (B-4) shows a simpler expression of the 

relation between i and V than does Figure (B-2). II v  involves only V and other parameters 

that are constant relative to the run, whereas IIv also involves i. 

Similarly, the data basic to Figure (B-3) will appear as shov,-n in Figure (B-5), when 

plotted in terms of IIv and of Y. The second advantage of the new set of basic parameters 

to be noted is that 	and El' are each constant in relation to the whole of each of the 

runs characterized by them. In contrast, X' and X" are not constants relative to their 

. associated lines in Figure (B-3), since X 	
dVi 

v
gDI4  

When experimental results show that the flows in pipes of different sizes differ (un-

der the conditions of particle size and concentration assumed), the following equation is 

appropriate in contrast to that of Equation (B-27): 

V 	71)ii  (-y3 d3  pv D 

.Vdg(s -1) 	pi, 	-y.d' d' 	d ) 
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Fig. (B-4) 	Data of Figure (B-2) expressed in terms of new basic parameters 

i.e., 

y , Z, )(5, x6). 

For each pipe size, D, all variables are constant, exceptI  11v  and Y. 

This should simplify  the problem of finding an empirical or theoretical expression to 

fit the experimental results. An illustration of the practical advantage of using p, d, 1, 

as basic parameters for forming all dimensionless variables is given in Appendix C of this 

report. 

Note 1 

re. Eq (B-22) : (a) the term --TDU is present because ,d'  = ----ud"  is true, and  * = ( 	
vI  

D' 	 D D  

. 
	 Is also true; (b) the term u  is a constant for both the model and the prototype 

Ilv is not constant, because V varies; Y is not constant because  j varies in vi. 
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Fig. (B-5) — Data of Figure (B-3) expressed in terms of new basic parameters 

Note 2 

re. p. (B-120), footnote * : to find E, let [da  pb 	M ° 	T° El. 

	

Then, [La (M\ 	
\ c (m\  —ii 

= 

	

L3 ) 	L2 T2 ) 	/r.7r) 	 71°. 

Therefore, the equations given by the exponents for L, M, and T, respectively, are: 
(a — 3b — 2c + 1) = 0; (b c — 1) = 0; and (-2c + 1) = 0. 

1 	1 Hence: 	c = • b = • and a = 3  2' 	2' 	2' 

Therefore, the dimensionless product representing E is equal to: 

E 	[d3 /2 , p /2 , 1,81  / 2 	 d3 /2 .7s1 /2  P1 /2 	d3 5  p 	d3 y 8  

12
2 	— 

(122/P
2
)P 
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Note 3 

re. p. (B-121), footnote : to find ifv, let [da pb 	= M° L° T°  1. 

[L .  CM' (e) 	L° To  
Therefore, the equations given by the exponents for L, M, and T, respectively, are: 

(a — 3b — 2c + 1) = 0; (b c) = 0; and (-2c + = 0. 

Hence: c 	b = 	and a = —4. 

Therefore, the dimensionless product representing Ilv is equal to: 

= [d-1/2 , P112 , 1,;--1/2 ,  v]. 

Then, 
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APPENDIX C 

Discussion of the Relation between the 

Variable, LE, and the Drag Coefficient, CD 
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Discussion of the Relation between the 

Variable E= 	= 	and the Drag Coefficient, CD 
Pv 2  

Haas et al. (1980, p. 29), as well as Shook et al. (1981, p. 87), refer to a convenient 

set of functions, relating experimentally determined values of drag coefficients, CD, for coal 

particles, to CDR 2,p , in which: 

R ep  is (wdphi), 

d is particle diameter, 

w is the terminal fall velocity in water, 

p is the density of water, 

it is the viscosity of water. 

The characteristic parameters of terminal fall velocity in water (far from any bound-

ary) are: 

p, ,u, ps , d, g 

If we replace g by -y, = g(p s — p) = gp(s— 1) (as shown in Appendix B), we may 

again eliminate p s . Yalin (1977, p. 69) shows that p s  does not influence any steady particle 

velocity involved in a hydraulic flow. p s  only appears directlyi in expressions for particle 

acceleration. 

Thus, the equation giving w in terms of the characteristic parameters is 

tv = 	d, '78). 

If p, d, and -ys  are chosen as the basic parameters (as was done in Appendix B. to 

develop Table (B-3)), only one parameter, ,u, is left on the right of the equation to form a 

13  
dirnensionless variable with them. This variable is, of course, = 

pv  

The dimensionless variable to represent w on the left of the equation is H u, = 
tt• . Since w is a velocity, 11,11  has the same form as Hv , representing the ve- 

locity V in Equation (B-25) (see Appendix B). 

I.e., through the variable W 
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Eq (C — 3) 

Eq (C — 4) 

Eq (C — 5) 
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Thus, the dirnensionless equation for w is  

Ow (E) 	 Eq (C — 2) 

Or, 

i=1 	w 	  _; -Ysd 3  „,  

N./dg(s -1) 	w p 2 ) 

Now, the usual formula for CD is, with k as a constant, 

CD. k
gd 	d  g (s —1)  k  -ys d k  1 	 k 
W2  p 	 pw2 	 )2 

Hence, 

C = -e7  8d3  w pv2 

where, 
1 	 1  

7157  (E) = k 	k 2 

 (ete) 	Pw  ('l8(123 2 

Further, 

CDRe2gd 
(p; p)  ( 	g(p,  — p)d 3 	. -y,d 3  

	

— k 2 	 k 	pv2 	k 	2  = k z 

	

w 	p 	 pv 

where, 	k 	[e.g., see Haas et al. (1980, p. 29)]. 

Thus. Equation (C-4) can be written as 

CD  = 	—1  CD R2e p ) 
\k 

This is the relationship between CD and CDeep  referred to above. The set of func-

tions given by Shook et al. (1981) are the empirical approximate expressions for Equation 
(C-5) in given ranges of CD R 2ep , or equivalently in ranges of E. 

The use of equation (C-5) is completely equivalent to Equation (C-3) in the standard 

form developed by 'Valhi (1977). Equation (C-5), in a simpler situation, is analogous to 

Equation (13-29), referred to in Appendix B. It is reasonable to expect that the use of the 

§ 	In equation (B-26), Hy, is a function of E and several other variables. The latter are 
not present here, because the parameters C, D, k, 	and v. are now missing. 
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basic parameters p, d, and -y., will also be advantageous in the more complex situation 

of slurry flow. Primarily, it may assist the development of empirical expressions from 

systematically obtained data. It should also facilitate theoretical analysis. 

Important limitations, regarding the specification of parameters, can also be illus-

trated here. In equation (C-5) coal particles are represented only by d. Shape parameters 

are omitted. Strictly speaking, Equation (C-5) must be used only in connection with coal 

particles having the same shape parameters possessed by the particles that provided the 

original data. 

In addition, the measurement of d must observe the same conventions as used in 

measuring d for the original data. These conventions, and the unspecified shape parame-

ters, are built into the resulting relations expressing Equation (C-5). 

If Equation (C-5) is used in connection with particles that may differ in shape from 

the particles for which the equation was developed, erroneous results may be given. Tests 

on the particles in question are required before the order of such errors can be known 

accurately. 
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