Energy, Mines and Resources Canada Énergie, Mines et Ressources Canad

CANMET Canada Centre for Mineral and Energy Technology

Centre canadien de la technologie des minéraux et de l'énergie

ada

Underground Metal Mining

Estimating Preproduction and Operating Costs of **Small Underground** Deposits

> CANMET LIBRARY FEB > 1989 C.2

HELIOTHEQUE

622(21)

Sp.

212

0

555 roe BOOTH ST. OTTAWA CANADA KIA OGT

444

UNIL UD

11E

SP86

Canadä

50m

100m

150m

ESTIMATING PREPRODUCTION AND OPERATING COSTS OF SMALL UNDERGROUND DEPOSITS

by

J.S. Redpath Limited 710 McKeown Avenue North Bay, Ontario P1B 8K1

Work on this project was conducted under the auspices of CANMET Energy, Mines and Resources Canada.

DSS FILE NO. DSS CONTRACT SERIAL NO. CANMET PROJECT NO. SCIENTIFIC AUTHORITY :092Q.23440-5-9128 :1SQ85-00199 :140901 :R.W.D. CLARKE P.Eng.

November 1986

© Minister of Supply and Services Canada 1987

Available in Canada through

Associated Bookstores and other booksellers

or by mail from

Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada KIA 0S9

Catalogue No. M38-15/86-11E ISBN 0-660-12247-2

Price subject to change without notice

Disponible en français

Reprinted 1988

FOREWORD

Small mines, defined as those with productions of less than 500 tonnes per day, are a vital component of the Canadian mining industry. Often, they are the result of exploration activities carried out by junior mining companies, prospectors, developers, and syndicates of independent entrepreneurs with limited financial resources. Recognizing that the principal vocation of many of those groups is the discovery of new deposits, it was considered of value to them, and to the Canadian economy, if these costs associated with the carrying out of preliminary assessments of the economic viability of promising finds could be minimized.

With this objective in mind, CANMET awarded a contract to J.S. Redpath Ltd., to develop a manual in respect of the estimation of pre-production and operating costs for small underground deposits. The cost information and preliminary engineering analytical procedures contained in this manual are based on their wide experience. To ensure that it meets industry requirements, the manual was reviewed regularily during its preparation by experienced members of the mining industry. Their comments and suggestions have been incorporated as much as possible into the final text.

The manual is not intended to replace professional feasibility studies of mining properties. Rather, it is to assist the finders of deposits in their decisions to proceed to such studies. We believe that the manual prepared by J.S. Redpath Ltd., admirably meets this objective.

John E. Udd Director

John E. Udd Director Mining Research Laboratories

TABLE OF CONTENTS

SECTION	DESCRIPTION
1.0	INTRODUCTION
2.0	OPERATING COSTS
3.0	CAPITAL COSTS
4.0	REGIONAL COST FACTORS
5.0	MINERAL DEPOSIT VALUE
6.0	PRELIMINARY CASH FLOW SUMMARY
7.0	EXPLORATION PROGRAMMES

APPENDICES

А	WORKED EXAMPLES
В	BLANK CALCULATION FORMS

NOTE: A detailed Table of Contents is presented at the beginning of each section.

1.0 <u>INTRODUCTION</u>

Section	Description	Page
1.1	Introduction - Purpose and Limitations	1 - 1
1.2	How to Use This Manual	1 - 3
1.3	Four Basic Steps to Producing the Cost Estimates	1 - 5
1.4	Description of the Calculation Forms	1 - 6

ſ

SECTION 1

1.1 INTRODUCTION - PURPOSE AND LIMITATIONS

The object of this manual is to provide a step-by-step approach to estimating capital and operating costs for small underground mines producing 500 tonnes per day or less.

The manual is applicable only to hard rock mines within Canada. Minerals that require special consideration such as potash, or coal are not addressed. The manual concentrates on those costs associated with mine development and mining. The capital and operating costs of milling are included but these items are dealt with in a more general manner.

The information presented in this manual is based largely on J. S. Redpath Limited's extensive operating experience in every Canadian province and territory. Much of the cost information was developed from first principles and verified against actual project records. Some cost data was also obtained from active Canadian mining operations.

The simplified cost estimating procedures used in the manual are not meant to replace a professional feasibility study. They will, however, provide a preliminary indication regarding the viability of a small mineral deposit. The accuracy of the cost estimates developed by the user is expected to be in the range of plus or minus 30%. The accuracy will be significantly influenced by the quality of information provided by a user.

While the main purpose of the manual is to provide cost information, sections 5.0 and 6.0 assist the user in estimating the value of the mineral deposit thus leading to a preliminary indication of economic viability. The user should now read Sections 1.2, 1.3 and 1.4 which explain the use of the manual and describe the forms. The remainder of the manual can then be used as a reference document to assist in developing estimates of costs.

Note:

It is assumed that the user comes to the manual with information regarding tonnes, grade and ore definition and requires capital and operating costs in order to make a future production decision. Those who do not have this information should establish the 'geological tonnes and grade' by completing Forms 5 a) and 5 b). Guidelines for the completion of these forms can be found in Section 5.2. This information is required before starting Section 2.0.

1.2 HOW TO USE THIS MANUAL

There are six sections in the body of the manual:

- 2.0 Operating Costs
- 3.0 Capital Costs
- 4.0 Regional Cost Factors
- 5.0 Mineral Deposit Value
- 6.0 Preliminary Cash Flow Summary
- 7.0 Exploration Programmes

The four basic steps to producing the cost estimates are outlined on page 1 - 5.

Sections 2.0 to 5.0 cover the two basic elements required for the economic analysis of any project ie. costs and revenues. The preliminary cash flow summary is developed in Section 6.0.

The order in which information is presented follows the decision making process as opposed to the chronological order in which work would be carried out. Many decisions made regarding the operation of a mine will influence the design of capitalized mine plant and excavations and, for this reason, operating costs are presented first.

The user may, from time to time, deviate from the sequence presented in the manual. Decisions relating to operating and capital costs are inter-related and some movement between Sections 2.0 and 3.0 may be required to optimize costs. All of the Sections, 2.0 to 5.0 however, must be completed to assess the viability of a project. The user may not have all the information required to carry out this analysis and may wish to use the manual simply to develop preproduction capital costs for an exploration project. The manual has been formatted to accommodate this need. Section 7.0 outlines how to develop capital costs for an underground exploration programme.

Worked examples and calculation forms are included in the appendices. These lead the user through the steps required to complete an economic analysis of a project.

In general, estimates are completed using "fill-in-the-blank" type forms found in Appendix B.

The forms, numbered 1 to 6, should be completed in that order as estimates sometimes refer to a previous calculation or decision. Sections 2.0 to 6.0 contain guidelines and cost information to assist in filling in the forms.

Most information is presented in either graphical or tabular form. The user is often required to make a selection from a range of costs or to adjust a calculation to suit the specifics of a particular site.

In each subsection, cost information is preceded by a description of the items included. The manual attempts to include those items 'typical' of small underground mines but naturally, specific requirements will vary. The user must evaluate the content and, if necessary, adjust the costs presented.

The cost information has been compiled based on the conditions prevailing in north-central Ontario. To account for the variations in costs from one area to another, regional cost factors have been developed and are presented in Section 4.0.

Several worked examples of the complete estimating process are included in Appendix A for clarification.

<u>STEP_ONE</u> <u>STEP_TWO</u> <u>STEP_THREE</u> <u>STEP_F</u>	
It is assumed that the user has some basic knowledge of the property.With the basic information from STEP ONE, other key decisions must be made.The user can now complete the estimates of capital & operating costs.Totals of cap operating cost to allow for differences b differences b differences bThis should include:These decisions include:Operating costs should be entered on Form 2a) using information contained in Section 2.0.Totals of cap operating costs should be entered on Form 2a) using information contained in Section 2.0.Totals of cap operating costs should be entered on Form 2a) using information contained in Section 2.0.Totals of cap operating costs to allow for differences b differences b different par Canada.° location ° production rate ° means of mine access shape and depth of ore body° mining methodCapital costs should be entered on Forms 3a) and 3b) using information contained in Section 3.0.The cost fact found and exp in Section 4.° rock and ground water conditions° source of milling these decisions is provided in Section 2.0. Enter these decisions in the appropriate space on Form 2a).Capital cost should be entered on Forms 3a) and 3b) using information contained in Section 3.0.	ts are ed by a factor cost etween ts of ors are lained

.

Р Т വ

1.4 DESCRIPTION OF THE CALCULATION FORMS

Each form is briefly described below:

FORM ONE <u>BASIC INFORMATION</u> Summarizes information concerning project location, site description and geological conditions.

- FORM TWO <u>OPERATING COSTS</u> Develops operating costs on a step-by-step basis. Key decisions regarding mine access, mining method, etc. are made.
- FORM THREE <u>CAPITAL COSTS</u>

Develops capital costs in two sections:

- a) Preproduction capital costs;
- b) Ongoing capital costs.
- FORM FOUR <u>REGIONAL COST FACTORS</u> Develops factors for both operating and capital costs to adjust estimates for site location.
- FORM FIVE <u>MINERAL DEPOSIT VALUE</u> Outlines calculations of geological and mineable tonnages and grade. Recovery and dilution factors are then applied and by estimating the product selling price, a value per tonne milles is obtained.
- FORM SIX <u>PRELIMINARY CASH FLOW SUMMARY</u> Compares costs to revenues to arrive at a preliminary indication of the project's financial viability.
- NOTE: The form numbers relate directly to the sections containing the appropriate information.

1 - 6

SECTION 2

2.0 <u>OPERATING COSTS</u>

Section Description

2.1	Introduction and Criteria 2					
2.2	Selection of Production Rate	- 2				
2.3	Selection of Mining Method					
	.1 Blasthole Stoping	- 4				
	.2 Cut and Fill Stoping	- 5				
	.3 Shrinkage Stoping	- 6				
	.4 Room and Pillar Stoping	- 7				
2.4	Stoping Costs	- 8				
	.1 Blasthole Stoping	- 8				
	a) Description	- 8				
	b) Costs	- 9				
	.2 Cut and Fill Stoping	- 10				
	a) Description	- 10				
	b) Costs	- 11				
	.3 Shrinkage Stoping	- 12				
	a) Description	- 12				
	b) Costs	- 13				
	.4 Room and Pillar Stoping	- 14				
	a) Description	- 14				
	b) Costs	- 15				
2.5	Selection of Mine Access and Haulage Method	- 16				
2.6	Hoisting and Ramp Haulage	- 18				
2.7	Level Haulage					
2.8	General Mine Expense	- 24				
2.9	Surface Plant and Mine Services	- 27				
2.10	Staff and Administration	- 31				
2.11	Milling	- 32				
2.12	Manpower Schedule	- 36				
2.13	Summary of On-Site Operating Costs	- 37				
2.14	Transportation of Mine Product	- 38				

2.1 INTRODUCTION AND CRITERIA

<u>General</u>

Operating costs and manpower loadings compiled using information contained in this section should be entered and summarized on Forms 2(a) and 2(b).

The costs presented in this section are based on specific layouts and parameters, descriptions of which accompany the cost information. While the parameters and costs presented are "typical" of small mines, each property is unique and costs will vary accordingly. The user must compare the parameters described in the manual to those anticipated for the property being evaluated, and adjust cost information accordingly.

Cost Criteria

The following criteria have been used in developing Operating Costs:

- 1) Costs are in first quarter 1986 Canadian dollars.
- 2) Operating costs are presented for a base case property located in north-central Ontario. Operating costs selected by the user must be adjusted to suit the actual geographical location of his property through the use of Regional Cost Factors found in Section 4.0.
- 3) All units are metric.
- 4) Costs assume road access is available.

2.2 SELECTION OF PRODUCTION RATE

There are a number of formulae available in the industry for determining the optimum mine production rate. None are perfect for all conditions. The formula presented here is "Taylor's Rule" for determining mine life. It is purely an empirical relationship based on Mr. Taylor's work records and experience accumulated during his lengthy career in mine evaluation, planning and operation. It claims no more than to make a preliminary selection of the range within which an economic and attainable rate is likely to lie, and it is not a substitute for detailed study.

```
Mine Life (years) = 0.20 (expected ore tonnes)<sup>0.25</sup>
```

In order to determine production rate, the following formula is derived from Taylor's Rule.

Production rate (to	nnes/day) =	5(expected ore tonnes) ^{0.75} working days per year
	mic s/ day /	working days per year

"Expected ore tonnes" should be interpreted broadly as a reasonable expectation of mineable ore which may be somewhat greater than a declared and proved ore reserve.

Expected	Mine Life	250	300	350
Ore	in	Working Days	Working Days	Working Days
Tonnes	Years	/Year	/Year	/Year
100,000	3.6	112	94	80
150,000	3.9	152	127	109
200,000	4.2	189	158	135
250,000	4.5	224	186	160
300,000	4.7	256	214	183
400,000 450,000	5.0 5.2	288 318 347	240 265 290	206 227 248
600,000	5.3	376	313	269
	5.6	431	359	308
	5.8	484	403	346
800,000 900,000	6.0 6.2	535 584	446 487	382 417 452
	Ore Tonnes 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 600,000 700,000 800,000	Ore in Tonnes Years 100,000 3.6 150,000 3.9 200,000 4.2 250,000 4.5 300,000 4.7 350,000 4.9 400,000 5.0 450,000 5.2 500,000 5.3 600,000 5.6 700,000 5.8 800,000 6.0 900,000 6.2	OreinWorking DaysTonnesYears/Year100,0003.6112150,0003.9152200,0004.2189250,0004.5224300,0004.7256350,0004.9288400,0005.0318450,0005.2347500,0005.6431700,0005.8484800,0006.0535900,0006.2584	Ore Tonnesin YearsWorking Days /YearWorking Days /Year $100,000$ 3.6 112 94 $150,000$ 3.9 152 127 $200,000$ 4.2 189 158 $250,000$ 4.5 224 186 $300,000$ 4.7 256 214 $350,000$ 4.9 288 240 $400,000$ 5.0 318 265 $450,000$ 5.2 347 290 $500,000$ 5.6 431 359 $700,000$ 5.8 484 403 $800,000$ 6.2 584 487

Daily Production Rate

2.3 SELECTION OF MINING METHOD

Four basic mining methods, suitable for mining small ore bodies in the 100 to 500 tpd production range, are described in this section. The selection of the mining method is largely dependent on the following criteria:

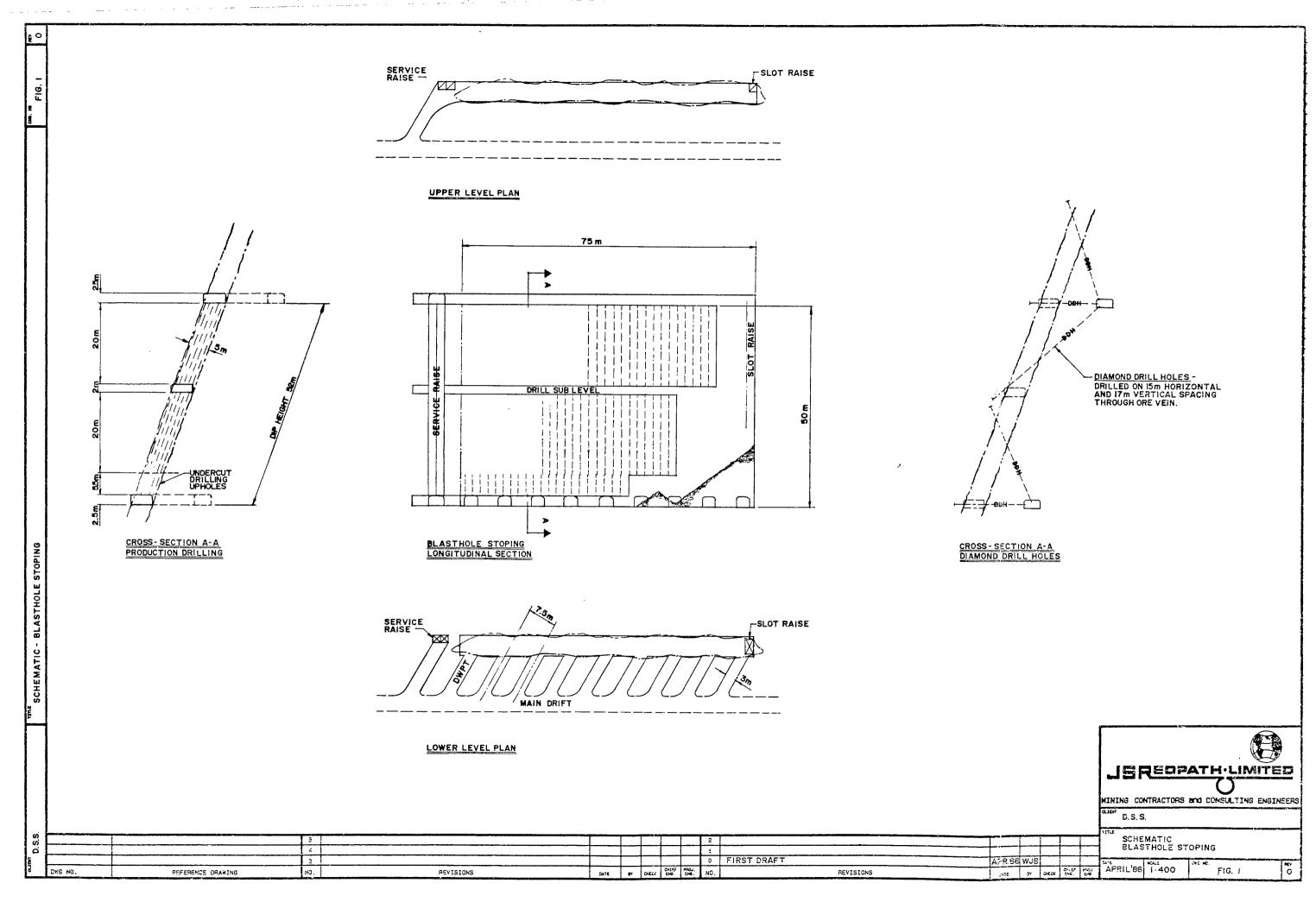
- 1. Geometry of ore body (dip, thickness, etc.)
- Rock competence nature of ore, hanging wall and footwall rocks.
- 3. Definition and continuity of ore body.
- 4. Production rate required.
- 5. Recovery and dilution considerations.

Consideration should be given to all of the above factors as well as any site specific considerations that may need to be addressed.

The four mining methods are described on the following pages. Each includes an outline as well as a list of advantages, disadvantages and essential criteria where applicable. The user should review each mining method as presented and select the mining method(s) best suited to his mineral deposit.

General

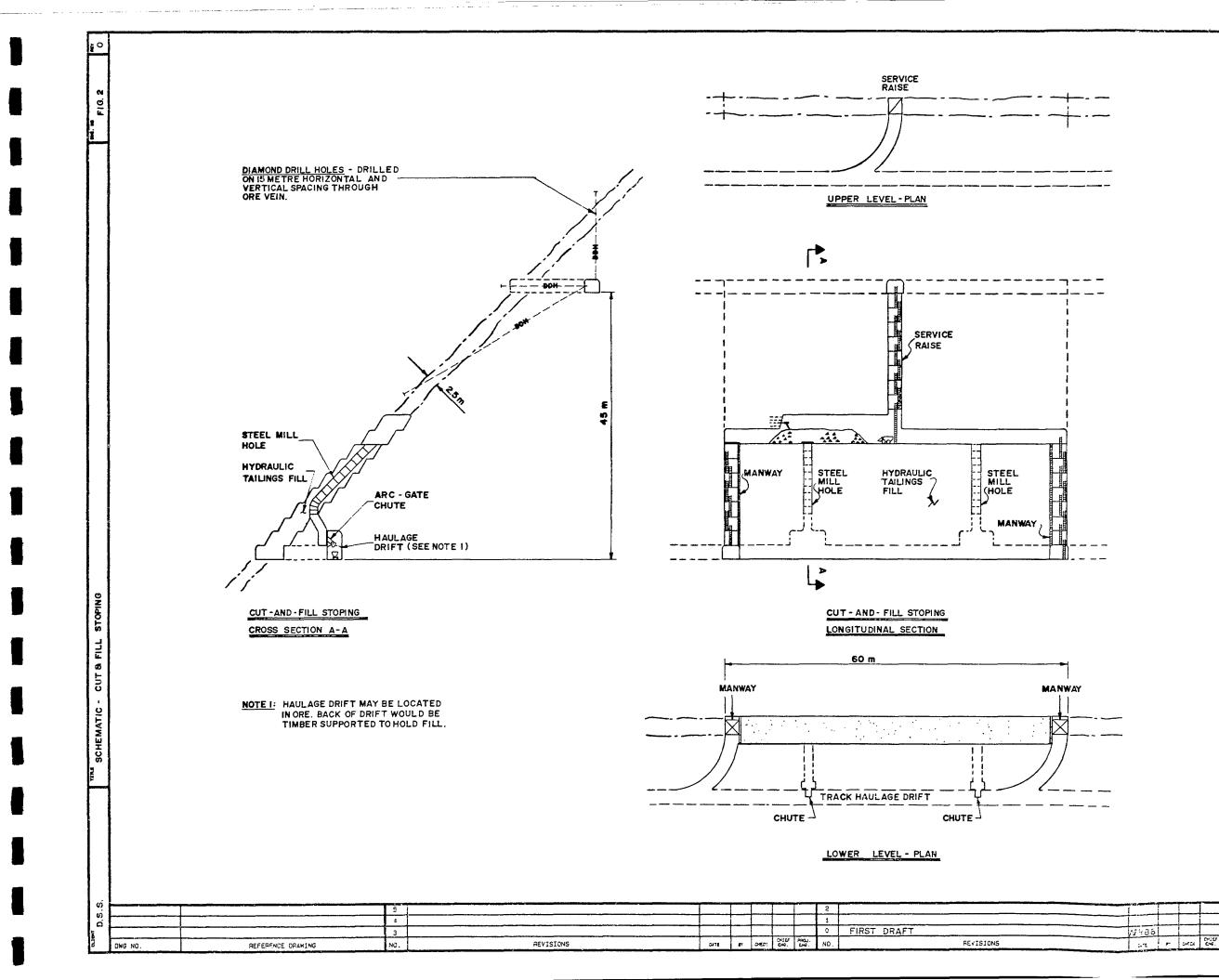
Blasthole stoping is an open stoping method that is normally confined to fairly regular ore bodies where both the ore and country rock require little support during mining activities. The method is characterized by a comparatively high development to stoping ratio, which is compensated for somewhat by the fact that the majority of development is in ore. (See Fig. 1)


Essential Criteria

- Dip must be greater than the angle of repose of broken ore or 50°.
- Thickness must be greater than 3 m.
- Ore and country rock must be competent with well defined footwall and hanging wall contacts.

Advantages

- ° Good recovery, moderate dilution
- ° Excellent productivity
- ° Safe method
- ° Low cost/tonne method
- ° Good ventilation
- Amenable to mechanization
- ^o Moderately flexible method.


- ° Considerable preproduction development
- ° Secondary blasting costs can be high
- Poor recovery of ore shoots
- In poor rock conditions dilution will be high.

- -

- -

5

				ATH-LIMI				
		алип D.S.S						
_		SCHEMATIC CUT & FILL STOPING						
	82. 829	APRIL 86	NALE 1:300	ынанс FIG. 2	ARV. O			

2.3.2 Cut and Fill Stoping

General

The cut and fill mining method extracts small horizontal slices of ore, which are partially or completely filled before the next slice is extracted. Supported openings are extended through the fill for access, ventilation, drainage and ore removal. The most common application for filled stopes is in ore bodies with a moderate to steep dip, with restrictive dimensions and weak walls, where high recovery or selective mining is desirable. (See Fig. 2).

Essential Criteria

- ° There must be an available source of fill.
- ° Dip must be at least 40°.
- ° Steeper dip is required for very narrow veins.
- ° Grade must be above average because mining costs are high.

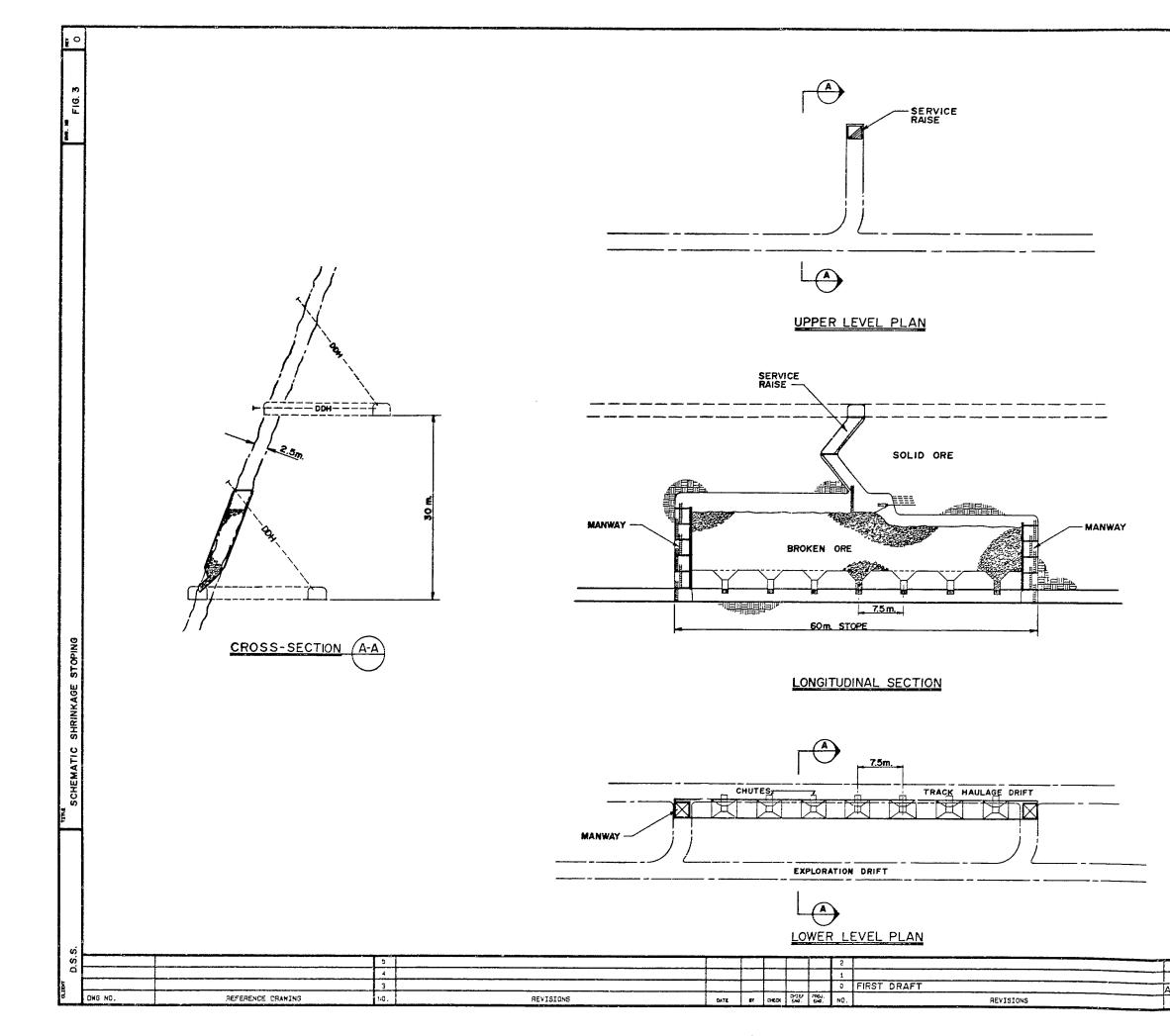
Advantages

- High recovery, low dilution
- Waste can be left in stope as fill
- ° Good regional ground support, subsidence inhibited
- ° Good ventilation
- Relatively safe method
- ° Very flexible and selective method
- ° Amenable to mechanization
- Easy mining of parallel veins and shoots

- ° Costs of using fill
- ° Filling cycle slows down mining
- [°] Must mine from the bottom of the ore body up to avoid sill pillars
- Low productivity

General

Shrinkage methods are most often used in steeply dipping vein-type deposits, where the ore and walls are competent enough to stand with little or no support. Slabbing and minor weakness in the country rock can be tolerated as long as resulting dilution is not a serious problem, but severe slabbing will plug the chutes and squeezing will bind the broken ore in place. The ore must be competent because it is usually uneconomical to provide anything but localized support to the back. (See Fig. 3).


Essential Criteria

- Dip must be greater than the angle of repose of broken ore or 50°.
- Must have competent ore and wall rock.

Advantages

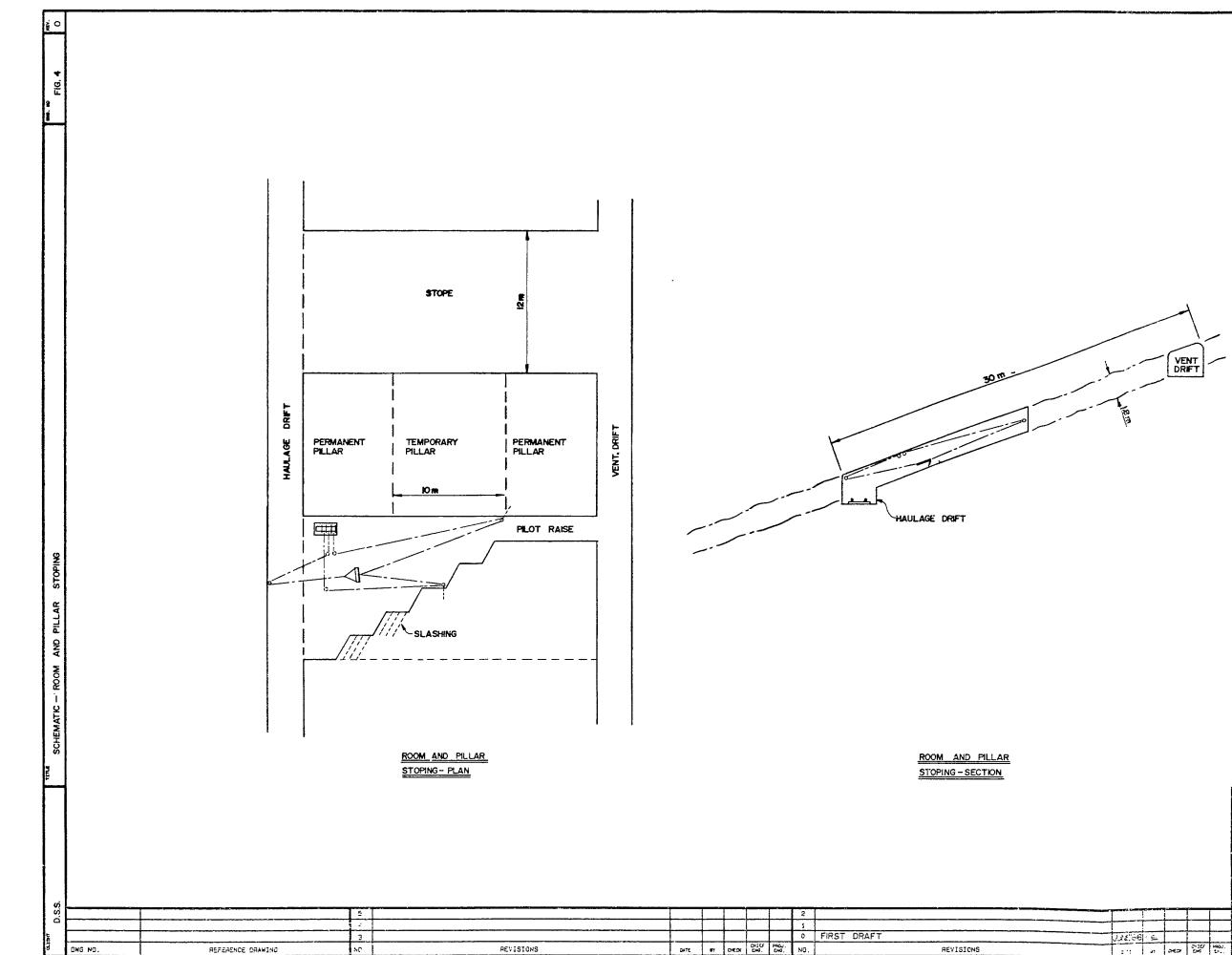
- High recovery, low dilution
- ° Relatively safe method
- Good ventilation
- ° No backfill required
- Stope equipment costs low
- ° Flexible method
- ° Easy mining of ore shoots

- ° Ore tied-up in producing stopes
- Whilst this method gives excellent ground control during mining, it can lead to excessive dilution in poor ground when drawing stope empty.

							ATH-LIM	
					0. S . S			
						MATIC NKAGE ST	OPING	
AP:1:86	2	<u> </u>			ONTE	BCALE	DWI XC	HEY.
GLTE	8*	DHECK	ENG	ENG.	APR.'85	1:300	F1G, 3	0

General

Room and pillar mining derives its name from the basic approach: driving openings in the ore and leaving pillars to provide support for the hanging wall rocks. There are many variations to the method to account for individual ore body characteristics. Room and pillar mining is normally used in ore bodies with a dip of less than 40°, and with moderate to large lateral extent. The size of the pillars and the rooms is primarily dependent on ground conditions and the thickness of the deposit. Flat deposits, especially the thicker ones, can be highly mechanized resulting in high productivity rates and low mining costs. Such deposits typically result in larger mines with production rates above 500 tpd. The example depicted in Figure 4 is more common to small mines. Here there is very little mechanization, thus productivities are low and costs relatively high.


Essential Criteria

' Dip must be less than 40°.

Advantages

- Low dilution
- ^o High degree of selectivity possible
- ° Relatively flexible method
- Good regional ground support, subsidence inhibited
- ^o Moderately good ventilation
- ° Relatively safe method
- ° Amenable to mechanization
- ° Frequently low preproduction development requirements

- Moderate recovery (loss of recovery in pillars)
- ° Ground support costs may be high
- Ventilation costs high
- Productivity is quite low if mechanization is not practical.

פר	
MINING	CONTRACTORS and CONSULTING ENGINEERS
D.	S.S.

 					SCHEI ROOM		AR STOPING	
 J. 2. 66	· ۲				SATE .	BCALE	Eng HJ,	PEV.
 : '!	1 ن	2452	5-15F EMS	14RO.U. 14	JUNE'66	+ i	FIG. 4	0

2.4 STOPING COSTS

2.4.1 Blasthole Stoping

2.4.1 a) Description

Figure 1 shows a typical blasthole stoping layout showing drill sublevels, drawpoint production level and service and slot raises.

Stoping costs include definition diamond drilling, development, mining and drawpoint mucking. Drawpoint mucking in this case is scooptram mucking from the drawpoint to the ore pass. Haulage beyond this point is level haulage and is identified as a separate cost (see Section 2.7).

The user of the manual should be aware that the particular deposit under evaluation may vary somewhat from the typical layout shown here, therefore, a range of overall stoping costs is offered with the example suitably positioned within the range. The user should compare the deposit being evaluated with the layout and data shown here and select a stoping cost accordingly.

The data used to develop stoping costs is listed below:

Stope dimensions:

Strike length (m)	75
Thickness (m)	5
Dip height (m)	52
Volume (m³)	19,500
Tonnage factor (tonnes/m³)	3.0
Stope tonnage (tonnes)	58,500
% Ore from stoping	89%
% Ore from development	11%
Labour productivity (tonnes/m.s.	.) 47
Haul distance from drawpoint to ore pass (metres)	150
00 01 c page (medica)	100

Factors Increasing Costs	Factors Decreasing /Costs
Ore density less than 3.0 tonnes/m³	Ore thickness greater than 5 m
Increased development/	Ore density greater than
tonne mined	3.0 tonnes/m³
Adverse ground conditions	Decreased haul distance to
Substantial water inflows	ore pass or main haulage drift

2.4.1 b) Blasthole Stoping Costs

ł

	ITEM	\$/TONNE
1.	Diamond Drilling	\$ 0.34
2.	Stope Development	4.33
3.	Stoping Labour	1.36
4.	Drawpoint Mucking	1.31
5.	Drilling Supplies - Bits & Steel, etc.	1.11
6.	Blasting Supplies - Powder & Accessories - Primary - Secondary	0.58 0.06
7.	Ground Support (included in item 2)	-
8.	Pipe, Timber, Aux. Ventilation & Misc. Supplies	0.12
9.	Equipment Operating and Maintenance Supplies	0.89
<u> </u>	Subtotal Misc. Costs @ 10%	\$10.10 1.01
	TOTAL.	\$11.11
Bla	sthole Stoping Cost Range \$9.00	0 - \$15.00

2.4.2 Cut and Fill Stoping

2.4.2 a) Description

Figure 2 shows a typical cut and fill stoping layout showing manway and service raises, mill holes to haulage level, backfill emplaced, breast mining and Cavo mucking machine mucking to the mill holes.

Stoping costs include definition diamond drilling, development, mining, mucking to mill hole and backfill emplacement.

As shown in Figure 2, the broken ore is pulled from chutes directly into rail cars on the main haulage level and trammed to the shaft. This level haulage cost is identified in Section 2.7.

The user of the manual should be aware that the particular deposit under evaluation may vary somewhat from the typical layout shown here, therefore, a range of overall stoping costs is offered with the example suitably positioned within the range. The user should compare the deposit being evaluated with the layout and data shown here and select a stoping cost accordingly.

The data used to develop stoping costs is listed below:

Stope dimensions:

Strike length (m)	60
Thickness (m)	2.5
Dip height (m)	60
Volume (m³)	9,000
Tonnage factor (tonnes/m³)	3.0
Stope tonnage (tonnes)	27,000
% Ore from stoping	93%
% Ore from development	7%
Labour productivity (tonnes/m.s.)	17

The major factors that would increase or decrease stoping costs are listed below:

Factors Increasing Costs	Factors Decreasing Costs
Adverse ground conditions	Ore thickness greater than 2.5m
Ore density less than 3.0 tonnes/m³	Ore density greater than 3.0 tonnes/m³
Substantial water inflows	
Use of coarse backfill which requires placement	
Increased use of cement in backfill for extra support	
Increased development/ tonne mined	

2.4.2 b) Cut and Fill Stoping Costs

.

	ITEM	\$/TONNE
1.	Diamond Drilling	\$ 0.75
2.	Stope Development	3.82
3.	Stoping Labour (includes stope mucking)	10.77
4.	Drilling Supplies - Bits & Steel, etc.	1.66
5.	Blasting Supplies - Powder & Accessories	1.40
6.	Ground Support Supplies	0.22
7.	Pipe, Timber, Aux. Ventilation & Misc. Supplies	1.49
8.	Equipment Operating and Maintenance Supplies	0.51
9.	Sandfill	4.25
	Subtotal	\$24.87
	Misc. Costs @ 10%	2.49
	TOTAL	\$27.36

Cut & Fill Stoping Cost Range

\$22.00 - \$32.00

2.4.3 Shrinkage Stoping

2.4.3 a) Description

Figure 3 shows a typical shrinkage stoping layout showing the drawpoint production level, breast mining and the service and ventilation development raises.

Stoping costs include definition diamond drilling, development, mining and drawdown of swell.

The broken ore is drawn from the stope via a boxhole chute arrangement directly into rail cars on the main haulage level. The level haulage costs are identified in section 2.7.

The user of the manual should be aware that the particular deposit under evaluation may vary somewhat from the typical layout shown here, therefore, a range of overall stoping costs is offered with the example suitably positioned within the range. The user should compare the deposit being evaluated with the layout and data shown here and select a stoping cost accordingly.

The data used to develop stoping costs is listed below:

Stope dimensions:

Strike length (m)	60
Thickness (m)	2.5
Dip height (m)	32
Volume (m³)	4,800
Tonnage factor (tonnes/m³)	3.0
Stope tonnage (tonnes)	14,400
% Ore from stoping	82%
% Ore from development	18%
Labour productivity (tonnes/m.s.)	21

The major factors that would increase or decrease stoping costs are listed below:

Factors Increasing CostsFactorsAdverse ground conditionsOre thisrequiring support of back2.5mand/or hanging wall orfootwall drawpointsReduced stope widthsOre derless than 2.5m3.0 torSubstantial water inflowsOre density less thanOre density less than3.0 tonnes/m³Increased development/tonne mined

Factors Decreasing Costs

Ore thickness greater than 2.5m

Ore density greater than 3.0 tonnes/m^3

2.4.3 b) Shrinkage Stoping Costs

- ----

1.	Diamond Drilling	\$ 0.88
2.	Stope Development	9.73
3.	Stoping Labour	5.01
4.	Drilling Supplies - Bits & Steel	1.47
5.	Blasting Supplies - Powder & Accessories	1.23
6.	Ground Support Supplies	0.20
7.	Pipe, Timber, Aux. Ventilation & Misc. Supplies	0.78
3.	Equipment Operating and Maintenance Supplies	0.05
		\$19.35
	Misc. Costs @ 10%	1.94
	TOTAL	\$21.29

2.4.4 Room and Pillar Stoping

2.4.4 a) Description

Figure 4 shows a typical slusher mining room and pillar layout for a thin vein, medium dipping ore body showing stopes and pillars, pilot raise development, slashing and slusher arrangement for slushing to main haulage drift.

Stoping costs include stope development, mining and slushing into ore cars.

The user of the manual should be aware that the particular deposit under evaluation may vary somewhat from the typical layout shown here, therefore, a range of overall stoping costs is offered with the example suitably positioned within the range. The user should compare the deposit being evaluated with the layout and data shown here and select a stoping cost accordingly.

The data used to develop stoping costs is listed below:

Stope dimensions:

Dip length (m)	30
Strike width (m)	12
Thickness (m)	1.8
Volume (m³) [includes temporary pillar & dev't.]	983
Tonnage factor (tonnes/m³)	3.0
Stope tonnage (tonnes)	2949
% Ore from stoping	66%
% Ore from development	34%
Labour productivity (tonnes/m.s.)	21

The major factors that would increase or decrease stoping costs are listed below:

Factors Increasing Costs	Factors Decreasing Costs	
Adverse ground conditions	Ore thickness greater than 1.8m	
Substantial water inflows	Ore density greater than 3.0 tonnes/m³	
Ore density less than 3.0 tonnes/m³	Good ground conditions permitting additional pillar	
Increased development/	recovery	
tonne mined	Mechanized mining	

2.4.4 b) Room and Pillar Stoping Costs

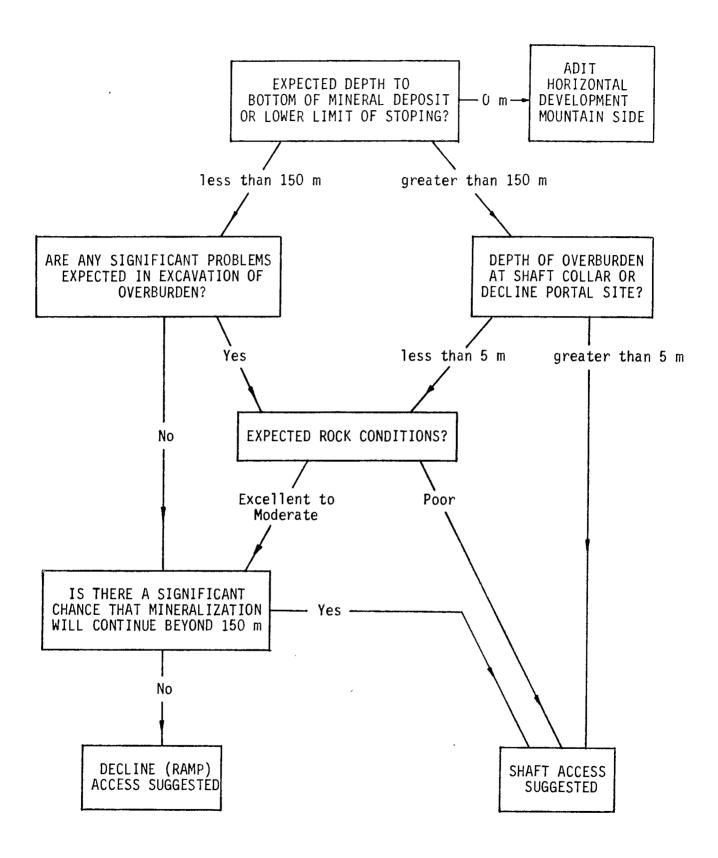
	ITEM	\$/TONNE
1.	Diamond Drilling (from surface)	\$ -
2.	Stope Development	8.57
3.	Stoping Labour (includes stope mucking)	5.37
4.	Drilling Supplies - Bits & Steel	1.33
5.	Blasting Supplies - Powder & Accessories	0.99
6.	Ground Support Supplies	0.42
7.	Pipe, Timber, Aux. Ventilation & Misc. Supplies	s 0.44
8.	Equipment Operating and Maintenance Supplies	0.18
• • • • • •	Subtotal Misc. Costs @ 10%	\$17.30 1.73
	TOTAL	\$19.03
Rooi	m & Pillar Stoping Cost Range \$15	.00 - \$25.00

2.5 SELECTION OF MINE ACCESS AND HAULAGE METHOD

The selection of the mine access is a major decision in the planning of an underground ore body. This is the life line of the mine and will determine production capacity and flexibility, ease of service and access and have a major impact on operating and capital costs.

In choosing and designing the means of access the following design factors should be considered:

- Location of ore body in relation to topography
- Overburden depth and characteristics
- Depth of ore body
- Production tonnage requirements
- Capital costs
- Operating costs
- Ventilation requirements
- Probability of additional ore at greater depth


Three alternatives should be considered:

- a) Shaft
- b) Ramp
- c) Adit

The access chosen will in part determine the underground haulage system chosen. Access/haulage combinations are listed below:

- a) Shaft and track haulage
- b) Shaft and trackless haulage
- c) Ramp and trackless haulage
- d) Adit and track haulage
- e) Adit and trackless haulage

The following flow chart will allow the user to make a preliminary choice of means of access in order to determine anticipated operating and capital costs.

2.6 HOISTING AND RAMP HAULAGE

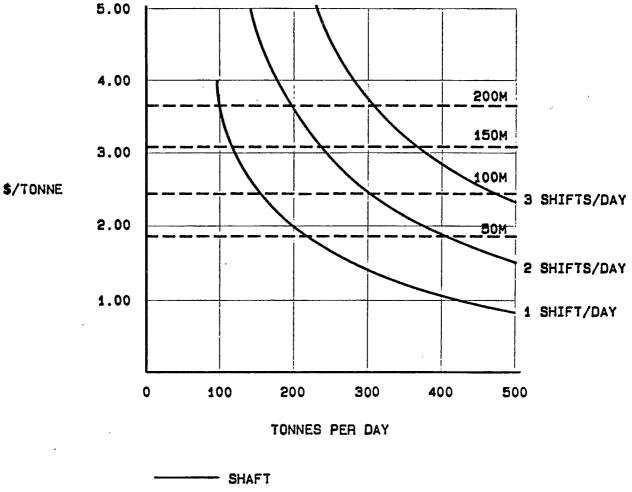
Costs per tonne identified in this section reflect the cost of moving the ore vertically from a loading pocket in a shaft, or from a fixed point along a ramp system. These costs include all direct operating labour, consumables and maintenance supplies.

Costs are determined by the choice of access alternative and the depth.

a) Shaft access with skip/cage hoist combination.

The operating costs for hoisting are largely fixed labour costs, i.e., the skip tender and hoistman are required at all times during mine operation. The hoisting cost/tonne can be optimized by maximizing the use of hoisting capacity on each working shift. The hoisting capacity/shift can be varied by selection of appropriate skip and hoist size and this selection should be made in consideration with the anticipated number of working shifts, expected production rate, depth of producing levels and some consideration of future expansion if required.

b) Ramp access with truck haulage.


The operating cost/tonne for ramp haulage is governed by equipment operating cost/hour, labour cost/hour and haulage productivity which is related to the slope of ramp, the depth and the truck size.

For the purpose of this comparison an 11.8 tonne (13 ton) truck has been chosen to operate on a 15% ramp and the graph shows the cost/tonne at different haul depths. It has been assumed that the cost/tonne is affected only by the direct haulage costs i.e., operating, labour and maintenance costs are all directly related to tonnes hauled.

c) Adit haulage.

This is an extension of level haulage and the user should refer to Section 2.7 to determine these costs.

The following graph shows the hoisting costs/tonne for varying production rates for a one, two and three shift operation respectively; and the ramp haulage costs per tonne for various depths.

---- RAMP

Manpower Schedule

For shaft hoisting, one hoistman and one skiptender should be allowed for each shift of operation.

For ramp haulage, the following manpower schedule is suggested for various production rates hauling from vertical depths up to 200 metres.

Vertical Haulage			oduction Ra nnes per da		
Depth	100	200	300	400	500
50 m	1	2	2	3	3
100 m	1	2	3	3	4
150 m	1	2	3	4	5
200 m	2	3	4	5	6

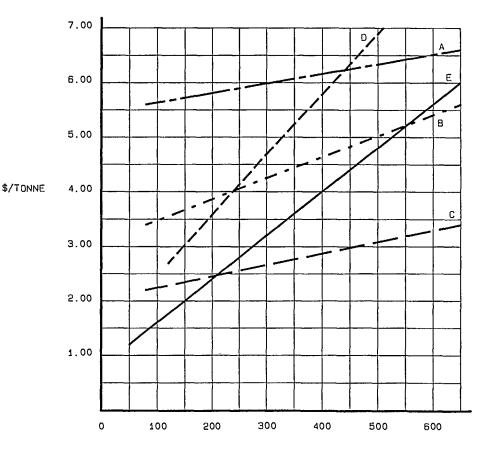
2.7 LEVEL HAULAGE

Costs per tonne identified in this section reflect the cost of moving the ore horizontally from a stoping area, or an ore pass, to the shaft or to the ramp. These costs include all direct operating labour, consumables and maintenance supplies.

The major decision to be made regarding level haulage concerns the choice of track or trackless methods.

Prior decisions made regarding mine access and/or stoping method may have already made, or at least limited, this choice. For example, if the mine is accessed by ramp, it is unlikely that track haulage will be used.

Assuming that the option is still open, some general comments pertaining to track and trackless haulage are listed below.


	Track	Trackless
Equip. Operating \$/Hr. (excluding labour)	low	high
Payload	flexible	limited by drift size
Distance Hauled	equipment can be sized to suit haul distance	L.H.D. units very flexible and productive over short hauls. Trucks may be required for longer haul distances.
Ventilation Requirement	low	high
Loading and Dumping Time	high	low
Capital Costs	low	high

Costs

The three variables having the most significant impact on the operating cost of level haulage are:

- i) the size and type of equipment;
- ii) the method of loading;
- iii) the distance hauled.

The graph below provides costs per tonne for five alternatives over a range of haulage distances.

LEVEL HAULAGE COSTS TRACK AND TRACKLESS

ONE WAY HAULAGE DISTANCE (METRES)

- A. DRAWPOINT MUCKING WITH MUCKING MACHINE-12 TONNE TRAIN
- B. CHUTE 12 TONNE TRAIN (6X2 TONNE CARS)
- C. CHUTE 20 TONNE TRAIN (5X4 TONNE CARS)
- D. DRAWPOINT MUCKING WITH 2YD³ LHD (1.5m³)
- E. DRAWPOINT MUCKING WITH 3.5YD³ LHD (2.7m³)

Manpower Schedule

The following manpower schedule is suggested for various production rates for the five level haulage options.

	Production Rate (tonnes/day)				
Level Haulage Option	100	200	300	400	500
A	3	6	8 6	12	14
B C	2	3	4	85	10 7
D E	1 1	2	3	4 3	5 3

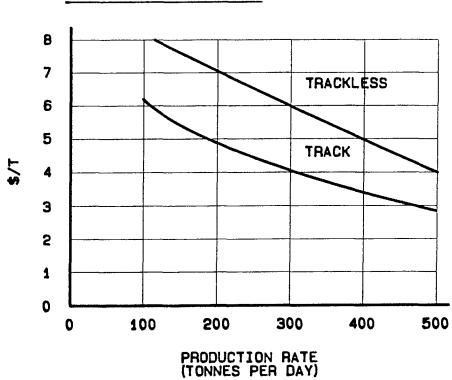
2.8 GENERAL MINE EXPENSE

"General Mine Expense" includes all labour and supplies not charged directly to a working place or activity such as development, stoping, level haulage or hoisting and generally includes:

- ° Maintenance labour for the underground facilities and equipment.
- Supplies handling.
- ° Misc. construction and level maintenance.

The major cost is labour and is proportional to the size of the active working area and installed services which are in turn proportional to the production rate.

The labour could be distributed to a working place and/or activity but because of the irregularity and/or general nature of the work, a general mine expense code is usually established. Labour would normally include:


- Underground maintenance crew (mechanics and electricians);
- Materials handling crew (nipping crew);
- ° General labour and construction crew.

Each operation will be unique; however, the following manpower schedule is suggested for various production rates. These numbers should be adjusted to reflect any site specific circumstances.

Manpower Schedule

			PRODU	CTION R	ATE	
CLASSIF	FICATION	100	200	300	400	500
U/G Med	chanics/Electricians					
a)	Track	1	2	3	3	3
b)	Trackless	2	4	5	6	6
Nipping	g Crew					
a)	Track	1	1	1	2	2
b)	Trackless	1	1	2	2	2
General	l Labour & Const.					
a)	Track	1	2	2	2	2
b)	Trackless	1	2	2	2	2
TOTAL L	.ABOUR PER DAY					
a)	Track	3	5	6	7	7
b)	Trackless	4	7	9	10	10

The following graph shows the cost/tonne of ore for both track and trackless mines at varying production rates. These costs are based on the above labour schedule, operating supplies for the nipping crew and minor construction material. The user should select the appropriate cost/tonne.

GENERAL MINE EXPENSE (COST/TONNE)

2 - 26

2.9 SURFACE PLANT AND MINE SERVICES

This section includes the cost of labour and materials to operate and maintain all surface plant and mine services including:

Surface Plant:

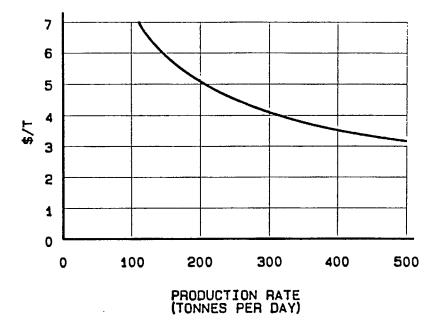
- ° Office and dry;
- ° Camp (bunkhouse/kitchen) maintenance only
- ° Lamp room
- ° Surface shop and warehouse
- ° Yard and materials handling.

Mine Services:

- ° Electric power (diesel generation/hydro)
- [°] Mine ventilation and heating
- [°] Mine pumping and drainage
- ° Compressor house
- Water and sewage
- Access road maintenance.

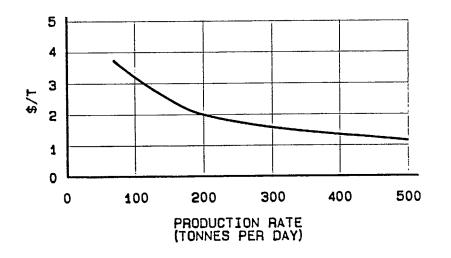
Manpower Schedule

The following manpower schedule is suggested for various production rates:

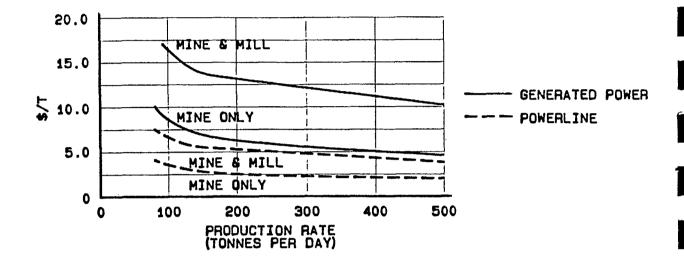

	PRODUCTION RATE					
CLASSIFICATION	100	200	300	400	500	
Mechanics	2	3	4	4	4	
Electricians	1	1	2	2	2	
Equipment Operator	1	1	1	2	2	
Labourer		-	-	1	1	
Dryman	1	1	1	1	1	
TOTAL*	5	6	8	10	10	

* This does not include camp operating labour.

Costs are broken down into the following five items:


a) Labour

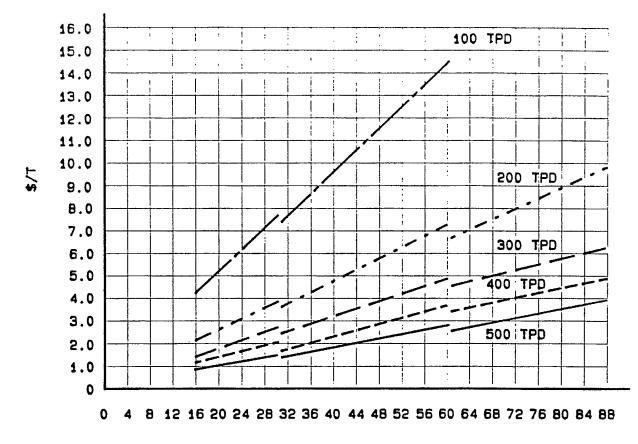
Labour costs indicated on the following graph are derived from the manpower schedule on the previous page.


b) Materials and Operating Costs

The costs indicated on the following graph include operating and maintenance costs for compressors, fans, pumps and surface payloader as well as allowances for garbage and sanitary waste disposal and miscellaneous minor operating costs.

c) <u>Power</u>

Power costs are total property costs including, but not limited to, surface facilities, mine ventilation, mine hoist, compressors, pumps and mill.


d) Camp

The camp costs indicated on the graph on the following page are based on the camp being operated by an outside caterer and include labour and operating supplies. Cost savings of approximately 30% can be realized if the mine operates the camp by employing their own cooks and cleaning staff.

Note:

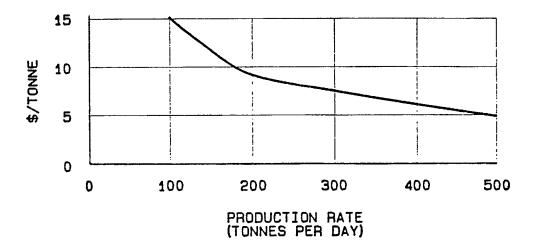
A schedule of manpower is developed using Form 2(b). The percentage of employees housed in the camp will largely depend on the mine location. This percentage must be approximated by the user.

d) Camp Operating

PERSONNEL HOUSED IN CAMP

e) Road Maintenance

A cost per tonne for road maintenance can be approximated by the following:


Cost/tonne = Length of road (km) x \$500/km Production rate (t.p.d.) x working days/year

2.10 STAFF AND ADMINISTRATION

This includes all site supervision, support staff and operating supplies based on the following manpower schedule. The staff required will depend greatly on the number of working places.

	PRODUCTION RATE					
CLASSIFICATION	100	200	300	400	500	
Manager Mine Superintendent Mine Engineer Geologist Surveyor/Technician Accountant/Clerk Shift Boss Purchasing & Warehouse	1 1 1 1 1 1 1	1 - 1 1 1 1 2 1	1 1 2 1 1 2 1	1 1 2 2 1 2 1	1 1 2 2 1 2 1	
TOTAL	7	8	10	11	11	

The user can select an appropriate cost/tonne from the graph below and should adjust for any variances to the manpower schedule above.

2.11 MILLING

Milling costs can represent from 15% to 50% of total operating costs for small mines. Where there is a choice, the decision to process ore on-site or at a custom mill may have a significant impact on the viability of a mine. While the construction of a concentrator is a major capital expenditure, this may be more than offset by the impact of reduced milling costs and freight charges over the life of the mine. In some instances, it will no doubt prove to be cheaper to have the ore processed at an existing concentrator nearby.

To make the right decision, both alternatives should generally be costed and compared and consideration given to some of the advantages and disadvantages herein.

It is worth noting that the provision of an on-site concentrator will influence various elements of a minesite's infrastructure such as:

- 1) Environmental impact studies.
- 2) Site preparation area.
- 3) Tailings disposal.
- 4) Site services.
- 5) Power requirements.
- 6) Camp installation.

2.11.1 On-Site Milling

Some of the advantages and disadvantages of on-site milling are listed below:

Advantages

Milling cost per tonne should be lower.

Owner has complete control of concentrating process.

Mill flow sheet can be tailored to mill feed for optimum recovery.

Freight costs for transporting concentrate or bullion will be much lower than for crude ore.

Disadvantages

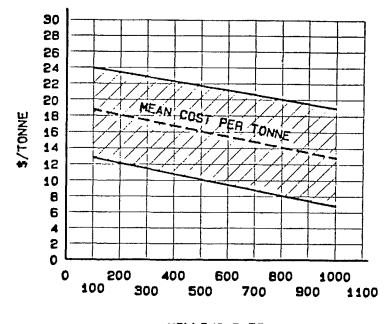
Large up-front capital cost is required.

Increased site services required.

Tailings disposal is required.

Sales contracts for products must be arranged.

Environmental requirements must be satisfied and permits obtained.


The following graph indicates a range of costs per tonne for mills with capacities ranging from 100 to 1,000 tonnes per day.

Costs will vary within the range depending largely on the amount of grinding required to liberate the mineral(s) and the complexity of the recovery process.

For example, ores that can be processed by straight cyanidation will cost less than those that require differential flotation in addition to cyanidation.

The costs indicated by the graph on the following page include staff and hourly labour, services, supplies and maintenance but not electrical power which is covered separately in Section 2.9.

MILLING RATE (TONNES/DAY)

Manpower Schedule

	Production Rate (tonnes/day)					
Description	100	200	300	400	500	
Staff	3	3	4	5	5	
Hourly	8	12	<u>15</u>	<u>17</u>	18	
Total	11	15	19	22	23	

2.11.2 Custom Milling

Some of the advantages and disadvantages of custom milling are listed below:

Advantages

There is no capital expenditure required for the mill.

There are no tailings disposal costs.

Site service requirements are reduced.

Disadvantages

Freight costs can be high depending on distance.

Recovery may be reduced as mill flow sheet not tailored to ore.

Owner may not get credit for 100% of the crude assay values.

Custom milling may not be negotiable for the total mine life.

The cost of having ore custom milled will depend on a number of factors, the most significant of which are listed below:

- a) The custom mill's basic cost per tonne. This will depend on the process, the mill's capacity, and the current milling rate.
- b) The effect on the overall cost per tonne of milling additional tonnes.

Ideally the additional tonnes will increase the mill's daily tonnage so that it matches the design capacity. In such a case the mill should operate at optimum efficiency and milling charges should be at the lower end of the scale.

Conversely, if the mill requires modification to handle a different ore or expansion to handle the extra tonnes, custom milling charges are likely to be high.

- c) The number of tonnes being custom milled.
- d) Market conditions, that is the total custom milling capacity in a given area versus the demand for custom milling.

After considering these factors, select a custom milling cost per tonne from the range below.

Custom milling, cost per tonne \$18.00 - \$30.00

Costs are all inclusive but do not include freight costs to transport ore to the mill.

2.12 MANPOWER SCHEDULE

Having developed a mine plan including, mining, ore handling, surface plant and services and staffing, it is a necessary and useful exercise to prepare a total manpower schedule for the operation. This will allow the user to determine an overall mine productivity which can be compared to similar operations as a check. Adjustments may have to be made at this stage. Use Form 2(b) to develop the manpower schedule.

Typical Example

The following manpower schedule is presented based on blasthole stoping, shaft access and hoisting, track haulage and a two shift mining and three shift milling operation for various production rates. The manpower requirements indicated for 'Ongoing Capital Development' are assumed for the purpose of the example only.

		Productio	n Rate (To	nnes/Day)	
Description	100	200	<u>300</u>	<u>400</u>	<u>500</u>
Ongoing Capital Dev't. (avg)	1	1	1	2	2
Mining:				,	
Blasthole Stoping Hoisting Haulage General Mine Expense	2 4 2 <u>3</u>	5 4 3 5	7 4 4 <u>6</u>	9 4 5 7	11 4 7 7
Total Underground	12	18	22	27	31
U/G Productivity (Tonnes/MS)	8.3	11.1	13.6	14.8	16.1
Surface:					
Plant and Services Staff & Administration Milling	5 7 <u>11</u>	6 8 15	8 10 <u>19</u>	10 11 <u>22</u>	10 11 <u>23</u>
Subtotal	23	29	37	43	44
Total On-Site Manpower	35	47	59	70	75
Overall Productivity (Tonnes/MS)	2.9	4.3	5.1	5.7	6.7

2.13 SUMMARY OF ON-SITE OPERATING COSTS

The final step in the development of operating costs is to pull all costs together in a summary of costs to provide a total on-site operating cost per tonne.

This cost would be used in the preliminary cash flow summary to assess the viability of the project.

Example

Total on-site operating costs are presented below for a mine/mill complex using blasthole stoping, shaft hoisting and track haulage. The mine operates on two shifts per day and the mill three shifts per day. A 20-tonne train is used to haul an average of 300 metres. Costs are developed for tonnages from 100 to 500 tonnes per day. Manpower is based on the schedule presented in Section 2.12. These costs do not include any depreciation or capital write-offs.

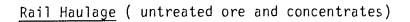
	<u> </u>		Productio	n Rate (1	Tonnes/Day)	·····
Descriptio	on	100	200	300	<u>400</u>	<u>500</u>
Mining:						
Blasthole Stoping Hoisting Level Haulage General Mine Expense Total Underground		11.11 7.30 2.70 <u>6.20</u> 27.31	$ \begin{array}{r} 11.11 \\ 3.60 \\ 2.70 \\ \underline{4.90} \\ 22.31 \end{array} $	$ \begin{array}{r} 11.11 \\ 2.50 \\ 2.70 \\ \underline{4.10} \\ 20.41 \end{array} $	$ \begin{array}{r} 11.11\\ 1.90\\ 2.70\\ \underline{3.40}\\ 19.11 \end{array} $	$ \begin{array}{r} 11.11 \\ 1.50 \\ 2.70 \\ \underline{2.80} \\ 18.11 \end{array} $
Surface: Plant and Services						
a) b) c) d) e)	Labour Material Power (powerline) Camp Road Mtce.	7.75 3.25 6.75 8.60 <u>Assum</u> es	5.10 2.00 5.25 5.90 no <u>acce</u> ss	4.10 1.60 4.75 4.70 ro <u>ad of</u>	3.50 1.30 4.50 4.10 sign <u>ifica</u> nt	3.20 1.10 4.00 3.50 length
	Subtotal	26.35	18.25	15.15	13.40	11.80
Staff & A Milling	dministration:	15.20 18.75	9.00 18.00	7.50 17.50	6.00 17.00	4.90 16.00
TOTAL OPE	RATING COSTS/TONNE:	87.61	67.56	60.56	55.51	50.81

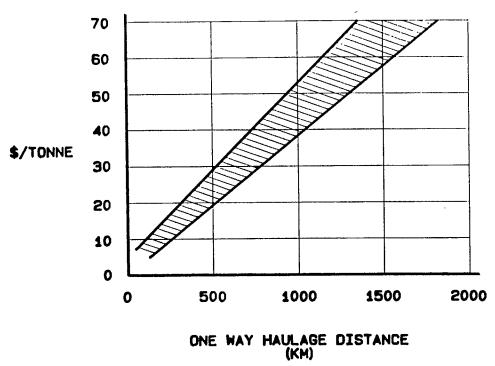
2.14 TRANSPORTATION OF MINE PRODUCT

On the following pages, haulage rates are provided for road and rail transport. It is assumed that haulage is not done by the mine operator. The rates do not include loading or unloading or transfer charges, intermediate stockpiling or warehousing, or insurances. The rates are typical of 1986 commercial rates in north-central Ontario.

Maps are included which show the location of non-ferrous smelters and refineries in Canada as well as the gold and silver producing areas. One of these locations will likely be the point of sale of the users final product be it untreated ore, concentrated ore, or precious metal bullion.

The user should recognize the tremendous impact that an on-site concentrator will have on his surface haulage costs. For example in a base metal operation where the mill head grades are 2% metal and the mill concentrate 25% metal, the tonnage of concentrate is approximately 1/13 of the mill feed tonnage.


In a precious metal operation, the cost of transporting bullion is insignificant and is not considered in this manual.


When using the road or rail haulage graphs on the next page to determine the appropriate cost per tonne mined for shipping concentrates, the cost selected from the graph must be divided by the concentrating ratio (C.R.). The latter is determined by dividing the grade of the concentrate by the mineable grade times the mill recovery or

C.R. = Concentrate Grade Mineable Grade x Recovery

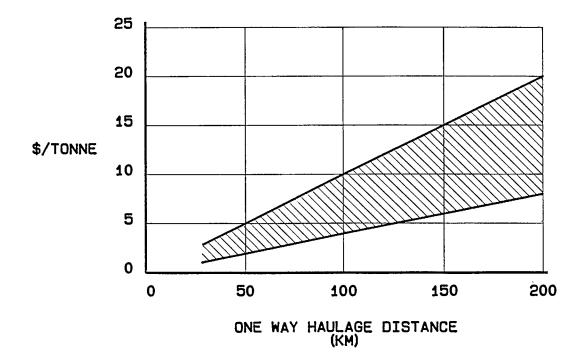
The mineable grade is determined on Form 5(e), and mill recovery factor on Form 5(f). Typical mill concentrate grades are listed below:

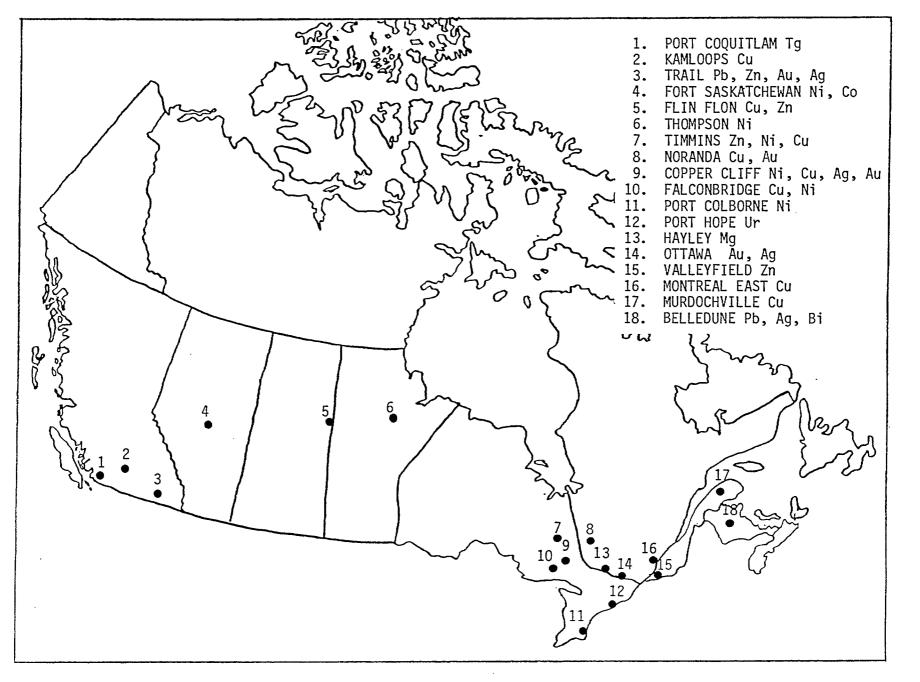
<u>Metal</u>	<u>Typical Concentrate Grade</u>
Copper	30%
Zinc	50%
Lead	60%
Other	5% to 90%

ł

Road Haulage (untreated ore and concentrates)

Trucking costs will be influenced by two main factors.


i) The ability to obtain return loads.


ł

Ĩ

ii) The quality of roads over which the product is hauled.

Both factors are influenced by project location. Select a cost from the range presented accordingly.

CANADIAN NON-FERROUS SMELTERS AND REFINERIES

2 - 41

 \sim

SECTION 3

CAPITAL COSTS 3.0

Section	Description	Page
	Preproduction Capital Costs	
3.1	Introduction and Criteria	3 - 1
3.2	Feasibility Studies and Detailed Engineering	- 3
3.3	Additional Diamond Drilling & Sampling	- 4
	.1 Drilling from Surface.2 Underground Drilling.3 Assaying Samples	
3.4	Permits & Environmental Studies	- 6
3.5	Project Management and Preproduction Scheduling	- 7
3.6	Access to Minesite	- 9
	 .1 New Road Construction .2 Upgrading Existing Roads .3 Road Bridges .4 New Railway Spur Lines .5 Barges and Docks .6 Remote Airstrip .7 Winter Roads 	
3.7	Site Preparation	- 14
3.8	Camp Installation	- 16
3.9	Site Services	- 17
3.10	Electrical Power and Compressed Air	- 18
	 .1 Electrical Power - powerlines generating plant .2 Compressed Air Plant 	
3.11	Offices, Shops, Dry, Warehouse	- 22

.

3.12	Mine Access	3 - 23
	.1 Shafts - setup/teardown - shaft collars - timber shafts - concrete shafts - changeover to skipping	
	.2 Declines - setup/teardown - portals in rock - portals in overburden - decline excavation	
	.3 Adits - setup/teardown - portals - adits and internal ramps	
3.13	Ancillary Shaft Excavations & Installations	- 33
	 .1 Shaft Stations .2 Loading Pockets .3 Lip Pockets .4 Spill Handling .5 Shaft Bottom Construction 	
3.14	Hoisting Systems, Headframes & Bins	- 35
	 .1 Hoists and Hoistroom .2 Headframes and Collarhouse .3 Headframe Bins .4 Conveyances 	
3.15	Ventilation and Mine Air Heating	- 41
	.1 Primary Ventilation Fans.2 Mine Air Heaters	
3.16	Underground Development	- 43
	.1 Level Development.2 Ore Pass System	

Primary Ventilation and Escapeway .3

3.17	Underground Installations	3 - 49
	 .1 Main Sumps and Pump Stations .2 Rockbreaker and Grizzly .3 Ore Pass Controls .4 Underground Electrical Room/Load Centre .5 Miscellaneous Installations 	
3.18	Equipment	- 51
	 .1 Shaft Access/Track Haulage .2 Shaft Access/Trackless Haulage .3 Ramp Access/Trackless Haulage .4 Adit Access/Trackless Haulage .5 Adit Access/Track Haulage 	
3.19	Concentrator	- 54
3.20	.1 Concentrator Construction.2 Tailings Disposal AreaCost Contingency	- 56
	.1 Items Omitted.2 Variations in Conditions.3 Delays	
	Ongoing Capital Costs	

Į

3.21	Ongoing Capital Development	- 59
3.22	Exploration Development	- 61
3 .23	Exploration Diamond Drilling	- 62
3.24	Equipment Replacement	- 64
	Appendices	
3.A	Equipment Capital Costs	
3.B	Unit Rates for Underground Development	

3.1 INTRODUCTION AND CRITERIA

General

Capital costs, compiled using information contained in this section, should be entered and summarized on Forms 3 (a) and 3 (b). Form 3 (a) develops preproduction capital costs and Form 3 (b) operating capital costs.

Each subsection contains a description of the items covered therein. Should the user feel that the items covered differ from his requirements, a corresponding adjustment of costs can be made. When making such adjustments however, be careful not to eliminate an essential item or include an item covered elsewhere.

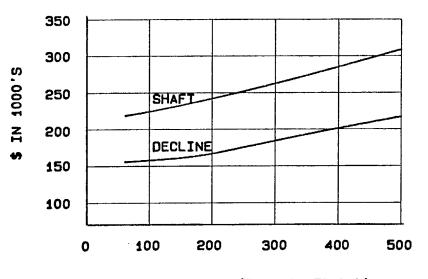
"Working Capital" or "Start-up Capital" has not been allowed for in this manual. The user should be aware, however, that there will be a period of time at the start of production when costs will be incurred with no revenue being received, and should budget accordingly. The time period will vary according to the method and location of the processing/refining facilities.

Cost Criteria

The following criteria have been used in developing Capital Costs:

- 1) Costs are in first quarter 1986 Canadian dollars.
- Preproduction development and construction is to be done by a contractor, on a three shift, seven days per week basis.
- 3) Capital costs are estimated for a property located in north - central Ontario. Capital costs are to be adjusted to suit the actual property location through the use of Regional Cost Factors included in Section 4.0.

- 4) Capital costs are all-inclusive and cover procurement, transportation and installation costs. Preproduction development costs include the cost of labour, equipment write-offs, and consumable supplies including electric power and compressed air.
- 5) All units are metric.
- 6) In some instances a project may have a special requirement that is not addressed by this manual. Some special requirements not addressed by this manual include:
 - a) shaft freezing
 - b) tunnel boring
 - c) radiation protection.
- 7) Costs presented assume that road access is either existing, or will be constructed prior to on-site construction and excavation.


General

This section covers the cost of:

- i) prefeasibility studies;
- ii) feasibility studies;
- iii) detailed engineering.

<u>Costs</u>

By using the production rate and means of mine access previously determined, select the appropriate cost from the graph below:

PRODUCTION RATE (TONNES PER DAY)

The above graph includes costs for the following:

- i) Mineral reserve estimates;
- ii) Evaluation of alternatives;
- iii) Mine planning and scheduling;
- iv) Metallurgical evaluation;
- v) Tender document preparation.

General

This section covers the cost of additional drilling and sampling that will be carried out prior to the start of production.

Costs are included for:

- i) Diamond drilling from surface;
- ii) Underground diamond drilling;
- iii) Assaying of samples.

Should a drilling program already be outlined, or if the user can estimate the quantity of drilling required, use those figures. If not, refer to the guidelines below to determine the number of holes to be drilled. The user is required to estimate the length of holes from the existing knowledge of the geometry and depth of the deposit.

3.3.1 Drilling from Surface

a) Number of holes

Allow for one hole every 30 metres of strike length.

b)	Costs (B-size core)	
	Basic cost	\$65.00/metre
	Additional costs:	
	Drilling from ice	\$10.00/metre
	Hard, abrasive rock	\$10.00/metre

3.3.2 Underground Drilling

a) Number of holes

Allow three holes (one up, one flat, one down) every 30 metres of strike length for drilling on initial production level.

Subsequent definition diamond drilling is covered under operating costs.

b) Costs (B-size core)
 Basic cost \$45.00/metre
 Additional costs:
 Hard abrasive rock \$10.00/metre

3.3.3 Assaying Samples

Assaying sample for o	ne element	\$12.00
Assaying for addition	al elements	\$ 5.00 each

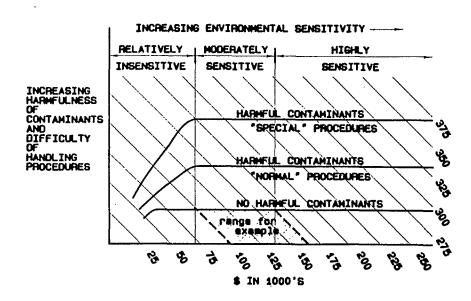
Direct assaying costs may be reduced if assaying is carried out on-site. This option has not been considered in this manual.

3.4 PERMITS AND ENVIRONMENTAL STUDIES

General

This section covers the cost of:

- a) obtaining necessary permits;
- b) undertaking environmental studies, should they be required.


<u>Costs</u>

The time and cost required to obtain permits and carry out environmental impact studies are both related to:

- a) the environmental sensitivity of the region;
- b) the amount and type of contaminants that will be produced and the complexity of the procedures required to control them.

The graph below approximates the effect that these two elements have on costs. Be aware, however, that individual circumstances can cause costs to vary significantly from those presented.

As an example, a mine located in a moderately sensitive area, producing no harmful contaminants, can expect costs ranging from \$100,000 to \$165,000.

3.5 PROJECT MANAGEMENT AND PREPRODUCTION SCHEDULING

General

This section covers the Owner's on-site costs during the preproduction phase of the project.

These include:

- i) Owner's site representative;
- ii) Owner's site geologist;
- iii) Operating and administration costs incurred by on-site personnel during the preproduction phase.

Costs

The total cost of project management prior to production start-up is a function of:

- i) the average monthly cost;
- ii) the duration of the preproduction phase.

Guidelines are offered below for calculating each of these items. The user is required to calculate each item and multiply together to arrive at a total cost.

Example of Average Monthly Cost

	\$/Month
Site Engineer (salary + burdens + living costs)	5,500
Site Geologist (salary + burdens + living costs) (50% of time)	2,500
Pickup/telephone/office & misc. costs	1,500
Total	9,500

Parameters for Estimating Preproduction Schedule

Suggested schedule periods and rates of advance are listed below for both ramp and shaft mines. The user is required to determine the duration of preproduction development and construction based on these guidelines.

		Ramp	<u>Shaft</u>
i)	Mobilization and Surface Setup		
	Select contractor, mobilize, setup & complete surface work prior to excavation of ramp or shaft.	2 months	4 months
ii)	Excavation of Mine Access		
	Vertical advance rate Schedule:	30 metres/month	75 metres/month
	Depth + vertical advance rate (eg. vertical depth of 150 m)	(5 months)	(2 months)
iii)	Excavate Shaft Stations	N/A	1 month each
iv)	Ancillary Shaft Excavations & Installations	N/A	1 month
v)	Preproduction Development		
	Advance rate – track (metres/level) – trackless	N/A 240 metres/month	180 metres/month 240 metres/month
	Schedule: (refer to Section 3.16)		
	Development for 2 years mining ÷ (advance rate/level x # of levels)		
vi)	Miscellaneous Construction	concurrent wi	th other work
vii)	Diamond Drilling		
	Includes evaluation of drill core & mine planning	3 months	3 months
<u>Note</u> :	The above schedule assumes cont	inuous work.	

3.6 ACCESS TO MINESITE

General

This section covers the cost of establishing a means of access to the site.

It includes:

- i) New road construction;
- ii) Upgrading existing roads;
- iii) Road bridges.

As stated in the capital cost criteria, costs included in this manual assume that road access is either existing, or will be constructed prior to on-site construction and excavation. The following alternatives are included for reference only.

- i) New railway spur lines;
- ii) Barges and docks;
- iii) Remote airstrips;
- iv) Winter roads.

3.6.1 New Road Construction

a) Road Length

The cost range presented in Section b) assumes that the road is routed to avoid 'problem areas' that would cause costs to become excessive.

These 'problem areas' may include:

- i) routes requiring more than occasional rock excavation;
- ii) regions with numerous water courses;
- iii) swamps;
- iv) excessive changes in grade.

The user should keep points i) to iv) above in mind when estimating the length of the access road.

b) <u>Costs</u>

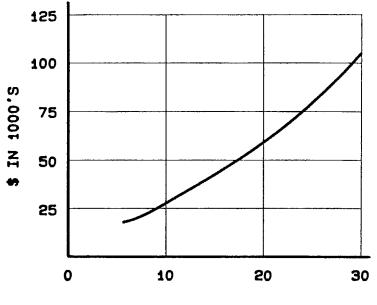
The costs below allow for clearing, grubbing, fill, granular material and occasional culverts to construct a gravel road of sufficient width to allow trucks to pass with one vehicle stationary.

'Typical' access roads will cost \$75,000 - \$125,000 per kilometre with \$100,000 being a reasonable average.

If sections of the road cannot avoid difficult terrain an additional cost allowance should be added accordingly.

3.6.2 Upgrading Existing Roads

Costs will naturally depend on the state of the existing road.


Upgrading may only consist of improving the road surface or may involve widening, replacing culverts and straightening curves in addition to re-surfacing.

Estimate the cost of work required within the range of 15% - 50% of the cost of new road construction.

ie) \$15,000 - \$50,000 per km.

3.6.3 Road Bridges

The graph below presents costs for single lane bridges up to 30 metres in length. It assumes that there are no significant problems with foundations.

BRIDGE LENGTH (METRES)

3.6.4 New Railway Spur Lines

Unit costs are tabulated below for new railway spur lines. Train bridge costs are not included.

Type of <u>Terrain</u>	Description	Cost
1	Flat terrain. Fill is required over rock outcrops along spur line route.	\$510,000/km
2	Moderately flat terrain. Some fill and rock blasting is required along spur line route.	\$550,000/km
3	Flat terrain. A significant amount of fill is required to traverse muskeg along spur line route.	\$950,000/km

3.6.5 Barges and Docks

Should the location of a mine site require that a road be constructed around a lake, a barging system may offer a more economic alternative. The range of costs indicated below allows for a motorized barge, timber and rock fill docking facilities at two locations, a motor boat for personnel transport and lifting devices. Costs will largely depend on the suitability of dock sites and the size of barge required.

Estimated cost range \$150,000 - \$300,000

3.6.6 Remote Airstrip

The costs of establishing a remote private use airstrip are summarized in the table below:

.

GRAVEL AIRSTRIP COSTS

Type of Aircraft to be Used	Approximate Runway Length	Cost to Construct Remote Gravel Airstrip
DC-3, Twin Otter or equivalent	1100 m	\$410,000
737, Hercules or equivalent	1600 m	\$515,000

<u>Note</u>: The costs presented above assume terrain "reasonably suited" to the construction of an airstrip and a nearby source of good gravel.

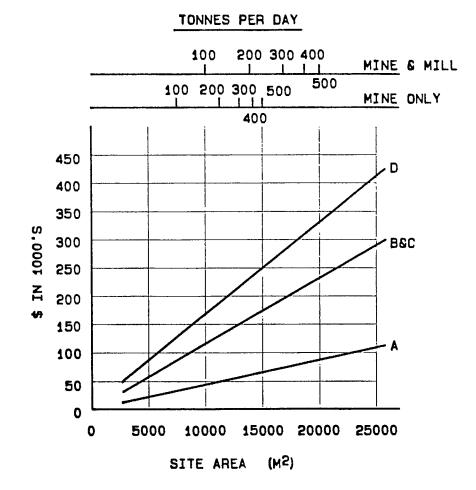
3.6.7 Winter Roads

Allow \$1500 per kilometre for the initial construction of a winter road. This cost includes initial helicopter reconnaisance, site clearing, and winter road construction.

3.7 SITE PREPARATION

General

This section deals with the cost of providing an adequately level and free draining site for construction. The work undertaken may include:


- i) Clearing and grubbing;
- ii) Overburden stripping;
- iii) Filling and grading;
- iv) Blasting, levelling, and terracing;
- v) Placement of geotextile materials;
- vi) Site drainage.

Costs

Costs will depend on the size of the area to be prepared, and the topography and surface ground conditions found at the site.

Identify the site category (or mixture of categories) that best describes the site being evaluated.

The graph on the following page relates costs for a range of areas in each site category. Site areas of mines and mine and mill complexes are also approximated for varying production rates.

<u>Site Category</u>	Description
А	Ideal site - flat, dry, and free draining.
В	Uneven ground with rock outcrops.
С	Flat ground with muskeg.
D	25% rock slope requiring terracing.

For sites having mixed topographic conditions:

- 1) Determine the site area required for the production rate.
- 2) Estimate area of each topographic category.
- 3) Combine costs of each topographic area.

3 - 15

3.8 CAMP INSTALLATION

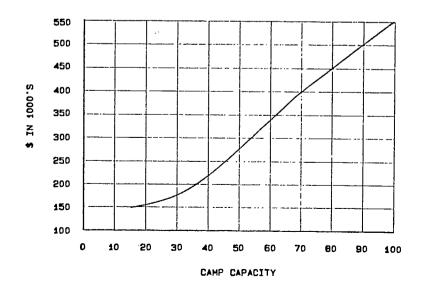
<u>General</u>

This section covers the cost of supplying and installing a camp facility for the <u>Production Phase Only</u>. The costs presented for pre-production work include the installation, rental and operation of a temporary camp.

The camp facility includes:

- i) Sleep trailers
- ii) Wash and toilet facilities
- iii) Kitchen and dining facilities
- iv) Limited recreational facilities

Camp Capacity


The capacity of the camp required will depend on:

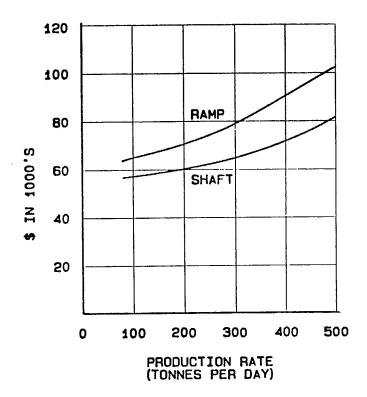
- i) Total on-site manpower refer to Form 2(b).
- ii) The percentage of the on-site manpower that requires housing in a camp. This will depend on the mine location and must be approximated by the user.

After considering the two points above, an allowance of an additional 10% should be included to account for fluctuations in manpower.

Costs

Refer to the graph below and select a cost based on camp capacity. Costs assume the use of trailer modules which will allow flexibility, ease of installation and expansion.

3.9 SITE SERVICES


General

This section covers the provision of all site services with the exception of electrical power and compressed air. Site services include the following:

- i) Potable and process water supply.
- ii) Sewage handling.
- iii) Communications telephone and telex.
- iv) Fuel storage.
- v) Storage areas.

Costs

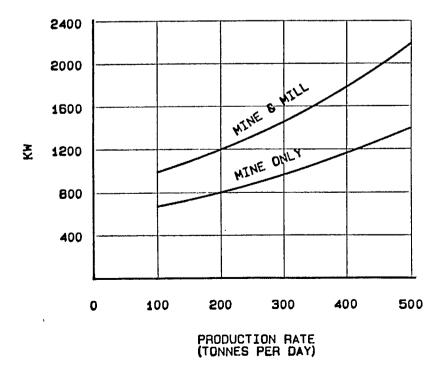
The graph below illustrates the relationship between the capital cost for site services and the mining rate for both shaft and ramp/adit access. Select a capital cost based on the mine production rate, and means of mine access to be used.

3.10 ELECTRICAL POWER AND COMPRESSED AIR

General

This section covers the supply and surface distribution of electrical power and compressed air.

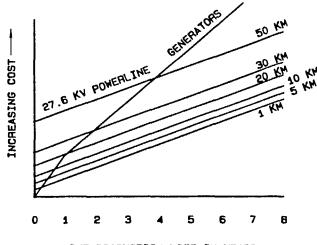
Electrical power may be supplied from either a powerline or generators depending on the availability of a suitable powerline.


Compressed air is considered to be supplied from electric compressors.

3.10.1 Electrical Power

a) Electrical Power Capacity

The graph below approximates the power capacity required by "typical" mines and mine/mill complexes.


The user should be aware that the amount of power actually required will vary depending on hoist size, ventilation requirements, pumping capacity, type of mill, etc.

- b) Powerline or Generators?
 - i) Is a powerline with free capacity available? If so, at what distance from the mine site? If the answer is unknown, contact the local power authority.
 - ii) If power is available, is it more economical to construct a powerline or operate with generators?

The following graph approximates relative power costs for generators and powerlines of various lengths. It assumes a total connected load of 1000 kW.

Starting with the expected mine life, determine which is the most economical choice.

MINE PRODUCTION LIFE IN YEARS

Note:

i) Loads less than 1000 kW will improve the relative position of generators and vice-versa.

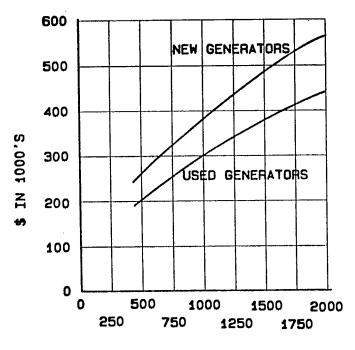
- ii) The fact that up-front capital costs can be reduced by using generators may outweigh a slightly higher overall cost.
- iii) By guaranteeing a minimum power demand over a period of years, the cost of a powerline can sometimes be recouped in reduced usage charges.

c) <u>Costs</u>

i) <u>Powerline</u>

Costs are split into two areas:

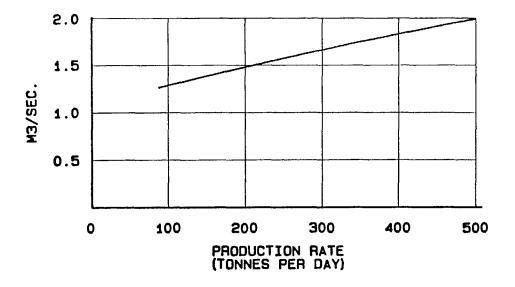
0	Powerline	-	pole line and conductor (dependent on length and voltage)
o	Site costs	-	transformer station and surface distribution
			(dependent on voltage & site


specifics)

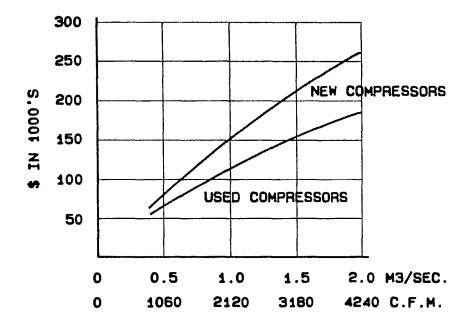
Assuming 27.6 kV:

Powerline cost - \$30,000 per Km Site cost - \$200,000 Costs will increase somewhat at higher voltages.

ii) Generating Plant


The costs indicated on the graph below include the supply and installation of generators and surface distribution of electrical power. Costs allow for a spare generator.

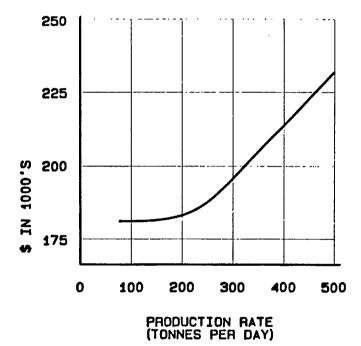
3.10.2 Compressed Air Plant


a) Compressed Air Capacity

Determine the capacity required from the graph below:

b) <u>Costs</u>

The graph below indicates the cost of the supply and installation of a compressor plant. Identify costs based on the plant capacity determined above.


3.11 OFFICES, SHOPS, DRY, WAREHOUSE

General

This section covers the capital cost for the supply and erection of the permanent office, shop, dry and warehouse facilities required for the production phase of the project. Cost estimates for pre-production construction and excavation allow for the installation, rental and operation of temporary facilities.

Costs

Refer to the graph below and select the capital cost based on the expected mine production rate.

The costs presented are based on the following:

- i) Buildings are new prefabricated, or pre-engineered, and trailers are utilized where suitable.
- ii) All buildings are equipped for operation:
 - a) Office complete with desks and filing cabinets.
 - b) Shop complete with overhead crane, work benches, etc.
 - c) Dry complete with lockers, hangers and wash facilities.
 - d) Warehouse complete with shelving.

3.12 MINE ACCESS

General

This section covers the cost of providing a means of access to the deposit at the required elevations.

This can be by shaft, decline or adit(s).

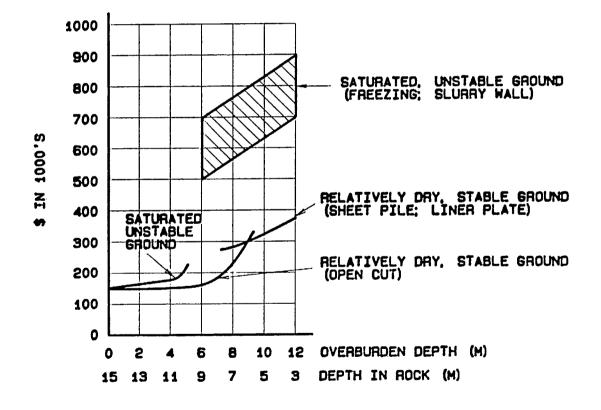
All-inclusive contractor costs are provided for:

i)	Shafts	 mobilize, setup, teardown, demobilize shaft collar (in rock and overburden) shaft excavation and equipping shaft changeover to skipping
		Note: Owner's hoist and headframe are utilized for shaft sinking.
ii)	Declines	 mobilize, setup, teardown, demobilize decline portals (in rock and overburden) decline excavation
iii)	Adits	 mobilize, setup, teardown, demobilize (as per decline) portals (as per decline) adit excavation and internal ramps

3.12.1 Shafts

a) Mobilize, Setup, Teardown, Demobilize

To mobilize contractor to site, set up temporary surface facilities, install sinking gear prior to start of shaft sinking and teardown and demobilize once shaft sinking is completed.


Allow one lump sum \$225,000

b) Shaft Collars

Shaft collars are assumed to 15 metres in depth in all cases.

The graph below presents costs for collars using various excavation techniques. The choice of technique, and therefore costs, will depend on the depth, type and water content of the overburden.

Identify the cost corresponding to the overburden depth (if any) and ground conditions that best describe the project site.

c) Shaft Excavation and Equipping

Costs are presented for:

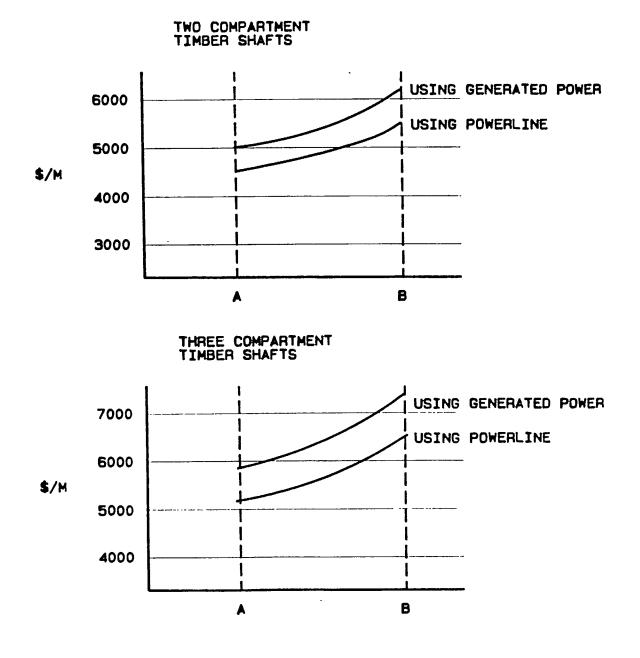
- ° 2-compartment timber shafts 1.83m x 1.83m compts. (6'x6')
- ° 3-compartment timber shafts 1.83m x 1.83m compts. (6'x6')
- ° 4.5 m diameter concrete shafts

It is likely that a timber shaft will be selected over concrete unless poor or squeezing ground is anticipated.

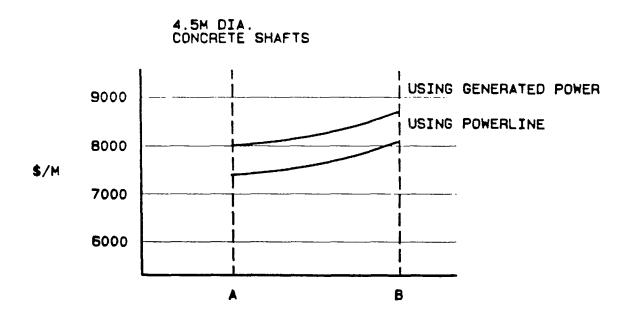
The choice of 2 or 3-compartments will depend largely on hoisting requirements. Refer to Section 3.14, "Hoisting Systems" and also consider the possibility of future increases in production rate.

When calculating shaft depth:

- Allow 30 metres past the bottom level for loading pocket.
- ii) Subtract collar depth (15 metres) from total depth to determine shaft length.


The graphs presented on the following pages indicate costs for each of the shaft alternatives.

Costs allow for excavation, equipping, ground support and installation of bearing sets, catch pits and water rings. Shafts requiring freezing or extensive grouting are outside the scope of the graphs presented.


c) Shaft Excavation and Equipping (Continued)

Costs are presented for a range of ground conditions ranging from A to B.

- A = Good ground, random bolting only.
- B = Poor ground, bolting to bench affecting excavation performance.

c) Shaft Excavation and Equipping (Continued)

d) Shaft Changeover to Skipping

Costs include installing permanent ropes, suspending skip(s) and cage, testing and commissioning system.

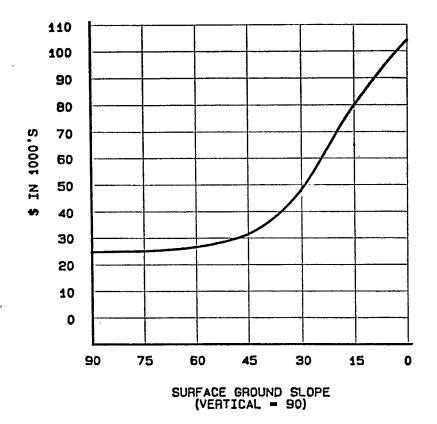
Allow one lump sum - \$40,000

3.12.2 Declines

a) Mobilize, Setup, Teardown, Demobilize

To mobilize contractor to site, set up temporary surface facilities, teardown and demobilize.

Allow one lump sum of

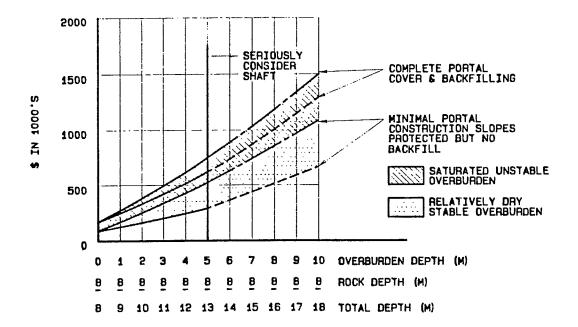

\$160,000

b) Portals in Rock

If the portal is collared directly into rock, the main variable is the ground slope of the area where the portal is excavated.

The graph below indicates costs related to ground slopes ranging from vertical (90°) to flat (0°) .

The costs presented allow for sufficient excavation to establish a 3 metre 'socket' into rock.



c) Portals in Overburden

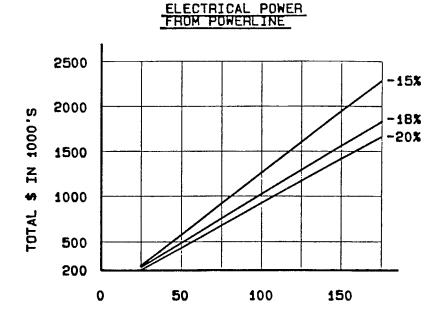
If the portal is located in overburden, costs will depend on the depth, type and water content of the overburden.

The costs presented allow for sufficient excavation to establish a 3 metre socket into rock.

Note that the lines are broken after 5 metres of overburden. Should overburden depths in excess of 5 metres be encountered, serious consideration should be given to a shaft.

d) Decline Excavation

Total costs are presented for declines of various gradients.


The choice of decline gradient is a trade-off between capital and operating costs. Steeper grades will require shorter declines but will increase maintenance costs and equipment down-time.

To use the graphs, calculate the depth of the lowest level accessed by the decline and subtract the depth covered by the portal.

While a low tonnage mine with a life in the order of 5 years is unlikely to recoup the additional cost of a -15% decline, (vs -18% or -20%), some provinces legislate against haulage ramps at steeper grades.

If in doubt, use -15%

The costs indicated by the graphs below are for a 4.5m x 3.5m decline, fully equipped with air, water and drainage pipelines, ventilation duct and ground support. Quantities used allow for muckbays and miscellaneous excavations.

VERTICAL DEPTH BELOW PORTAL IN METRES

S 2000 S 200

VERTICAL DEPTH BELOW PORTAL IN METRES

Note: Remember to allow for vertical depth covered by portal.

3.12.3 <u>Adits</u>

A mine employing an adit or adits as a means of access will fit into one of the following categories:

- i) A single adit;
- ii) Multiple adits at various elevations;
- iii) Either of the above, together with internal ramps.These ramps may be driven upgrade or downgrade.

The user must calculate the length of adit required.

With one adit in place, other levels may be accessed either by additional adits or by internal ramps. If the external terrain permits additional adits the decision will largely depend on the length of adit compared to length of ramp required.

Use the quantities calculated together with the unit costs below to arrive at an estimate of total costs.

- a) <u>Mobilization, Setup, Teardown, Demobilize</u> Similar to decline, allow \$160,000
- b) <u>Portals</u> Refer to Section 3.12.2 b), "Portals in Rock".

c) Adits & Ramps - Unit Costs for Excavation

		<u>\$/Metre</u>			
Unit Costs:		Electrical Power from Powerline	Electrical Power from Generators		
i)	Adits				
ii)	Track – 3.5m x 2.5m @ +1% Trackless – 4.5m x 3.5m @ +1% Internal Ramps	1400 1475	1550 1600		
	Upramps - 4.5m x 3.5m @ +15% Declines - 4.5m x 3.5m @ -15%	1750 1525	1800 1650		

3.13 ANCILLARY SHAFT EXCAVATIONS AND INSTALLATIONS

General

This section covers the excavation, construction and installations required to make the shaft functional.

Included are:

0	Shaft	stations	-	excavation	and	construction
---	-------	----------	---	------------	-----	--------------

Loading pockets - excavation and construction

excavation and construction

° Lip pockets -

Spill handling

- construction
- Shaft bottom construction

3.13.1 Shaft Stations

0

0

The number of stations will depend on the overall height of the ore body and the level interval. This will be influenced by the mining method selected. Refer to Section 2.4.

The costs below include excavation, ground support and equipping with station doors, track and pipe.

For 2-compartment timber shafts	 \$63,500 per station 	1
For 3-compartment timber shafts	- \$75,000 per station	l
For 4.5 m diameter concrete shafts	 \$75,000 per station 	l

3.13.2 Loading Pockets

The loading pocket will be influenced by several factors. These include:

- whether hoisting is carried out in one or two compartments;
- ° the mine production rate;
- the possibility of future increases in the mine production rate;
- ° mine life.

Descriptions and costs are provided for four alternatives.

3.13.2 Loading Pockets (Continued)

Costs include excavation, fabrication and installation.

- a) Double compartment loading pocket with feed raise, capacity up to 1,000 tonnes per day (ore & waste combined).
 \$90,000
- b) Single compartment loading pocket with feed raise, capacity up to 600 tonnes per day.

\$80,000

c) Single compartment loading pocket utilizing two undercutting guillotine gates with feed raise, capacity up to 400 tonnes per day.

\$45,000

d) Lip pocket, suitable for production rates under 300 tonnes per day.

\$25,000

3.13.3 <u>Lip Pockets</u> (for development tonnages only) Costs include excavation, materials and installation. \$15,000

3.13.4 Spill Handling

For "simple" arrangement to catch spill at shaft bottom. \$ 5,000

3.13.5 Shaft Bottom Construction

For construction of a small sump and installation of a dirty water pump with basic filtering arrangement.

\$10,000

3.14 HOISTING SYSTEMS, HEADFRAMES & BINS

General

This section covers the selection and costing of the components of a hoisting system.

The following are included:

- 1) hoist and hoistroom;
- 2) headframe and collarhouse;
- 3) bin or dump area;
- 4) conveyances.

Careful consideration should be given to the sizing of a hoisting system. Some 'oversizing' of hoist and headframe will allow for flexibility of operation and allow future increases in production rate to be undertaken at minimal additional expense.

3.14.1 Hoists and Hoistroom

a) Hoist Sizing

The following tables indicate hourly hoisting capacities, for various hoist sizes, hoisting from a depth of 300 metres. There are many other combinations of hoist and skip sizes but the tables should be sufficient to make a suitable selection.

For a three-shift operation, select a hoist that will hoist the required total tonnes of ore and waste in 10 - 14 hours.

i) Using Skip/Cage Combination & Skip

Drum Diameter		Probable Motor <u>Size Range</u>	Payload	Hoisting Capacity
Ft.	(m)	kw	Tonnes	Tonnes/Hour
5	(1.5)	75 - 160	2.0	49 - 78
6	(1.8)	180 - 270	3.0	106 - 128
8	(2.4)	250 - 400	4.0	142 - 170

- i -i	llcina	Skin/Cado	Combination	Q.	Counterweight
	/ Using	Skip/ ouge		α	councerwerght

Drum Diameter	Probable Motor Size Range	Payload	Hoisting Capacity
Ft. (m)	kw	Tonnes	Tonnes/Hour
5 (1.5) 6 (1.8) 8 (2.4)	60 - 100 100 - 160 130 - 225	2.0 3.0 4.0	25 - 41 55 - 68 74 - 90

b) <u>Costs</u>

The costs presented in the table below include:

- o purchase of used hoist
- ° refurbishing and modification to meet regulations
- o hoist installation
- ° hoisthouse purchase and erection
- ° foundations and floors

TOTAL COST

Hoist Drum Diameter (in feet and metres)	Foundations on Rock	Mat Foundations on Competent Soil	Pile Foundations on Weak Soil
5 ft. (1.52 m)	\$500,000	\$540,000	\$560,000
6 ft. (1.83 m)	\$580,000	\$620,000	\$640,000
8 ft. (2.44 m)	\$720 , 000	\$765,000	\$790,000

Note:

- 1) Hoists are used, double drum, with AC motors.
- Costs assume that hoist is available in dealer's yard ie. no removal costs.
- 8-foot (2.4 m) hoists are probably too large for mines under 500 tpd but have been included for:
 - i) Possibility of increased production rate;
 - ii) Selection due to limited availability of smaller hoists.

3.14.2 Headframes and Collarhouse

a) Design/Selection

Headframes priced in this section are designed for use with $25 \text{ mm} (1^{\circ})$ rope.

Given the rope size, the following decisions are required:

 Headframe Height - with the limited range of speeds and conveyance sizes probable in mines producing under 500 tonnes per day the major influence on height will be whether or not an ore bin is required and, if so, what capacity.

If a bin is considered necessary, the following size limitations should be taken into account.

<u>Headframe Height</u>	<u>Maximum Bin Capaci</u>	ty
26 m (85 ft.)	Virtually none	
27.5 m (90 ft.)	100 tonne	for truck
30.5 m (100 ft.)	200 tonne	loading
33.5 m (110 ft.)	300 tonne	

ii) Steel or Timber Construction

No significant cost difference.

Eventual decision will likely depend on delivery schedule, transportation cost and personal preference.

iii) Moving an Existing Headframe - often not as economic as might be expected.

Two exceptions are:

- ° if the headframe was designed to be portable.
- if property location makes transportation charges excessive and existing headframe is close.
- b) <u>Costs</u>

The costs presented below include:

- opurchase of new headframe
- ° headframe erection
- ° collarhouse purchase and erection
- ^o headframe cladding
- ^o headframe equipping
- ° headframe & collarhouse footings & floors.
- i) New Headframes

<u>Headframe Height</u>	\$
26 m (85 ft.)	265,000
27.5 m (90 ft.)	285,000
30.5 m (100 ft.)	315,000
33.5 m (110 ft.)	350,000

ii) Moving Existing Headframes

As an approximation use 80% of equivalent new headframe cost.

Note:

- 1) Headframes suitable for use with 25 mm (1") rope.
- Collarhouse assumed to be a new 9 m x 9 m pre-engineered building with floor and track.
- Headframe equipped with guides, limits, shaft doors, sheaves, and brattice.
- 4) Headframe cladding is single skin no insulation.

3.14.3 Headframe Bins

a) <u>Selection</u>

Because of the high cost of a bin of any appreciable size, the requirement for a bin should be given serious thought.

Bins offer advantages in loading either trucks or conveyors but can experience problems with freezing, particularly if not heated.

Should a bin be considered necessary, note the capacity limitations versus headframe height listed in Section 3.14.2.

b) <u>Costs</u>

Costs presented below include:

- ° purchase and delivery of new steel bin
- ° footings
- ° erection
- simple unheated enclosure

			\$
i)	100	tonne	125,000
ii)	200	tonne	200,000
iii)	300	tonne	275,000

c) Bin Alternative

As an alternative to a headframe bin, hoisted muck can be dumped onto the ground to be picked up by a loader.

For the construction of a timber and concrete "dump area", allow \$ 15,000

3.14.4 Conveyances

Probable conveyance combinations are as follows:

0	Two-compartment shafts	-	skip/cage combination & counterweight
o	Three-compartment shafts	-	skip/cage combination & skip separate skip & cage

Prices are presented below for new skips of various capacities and cages with capacity of 12 to 13 men.

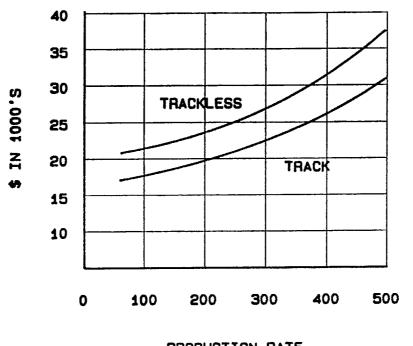
		\$	
	2-Tonne Skips	3-Tonne Skips	4-Tonne Skips
i) Skip/cage combination & cwt.	72,000	76,000	82,000
<pre>ii) Skip/cage combination & skip</pre>	85,000	93,000	100,000
iii) Skip & cage (separate units)	60,000	65,000	70,000

Note:

These are purchase and delivery costs only. Suspending conveyances in shaft is covered elsewhere.

3.15 VENTILATION AND MINE AIR HEATING

General

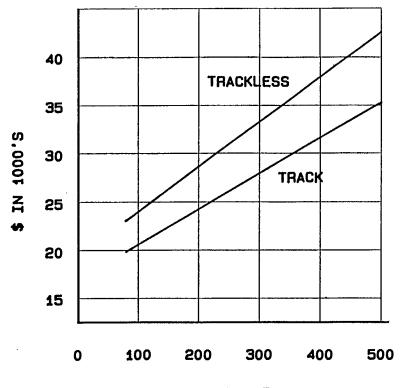

This section covers the supply and installation of new:

- i) Primary ventilation fans.
- ii) Mine air heaters.

3.15.1 Primary Ventilation Fans

Ventilation air volumes and resistances have been estimated for a typical case mine. This information has been used to select and cost the appropriate fans.

Select ventilation fan capital costs from the graph below based on the mine production rate and type of equipment used underground.



PRODUCTION RATE (TONNES PER DAY)

3.15.2 Mine Air Heaters

The mine air heating plant is based on using direct-fired propane heating and is sized and costed according to the ventilation criteria previously established.

Select a capital cost for mine air heaters from the graph below based on the mine production rate and type of equipment used underground.

PRODUCTION RATE (TONNES PER DAY)

3.16 UNDERGROUND DEVELOPMENT

General

This section covers the following:

- a) Level development (crosscuts and drifts in waste), from shaft, ramp or adit prior to the start of production.
 Development directly related to stoping is not included as it is covered in operating costs.
- b) Raise development to establish an ore pass system (if required).
- c) Raise development and construction to establish a primary ventilation and escapeway system.

A sketch is located following section 3.16.3 to clarify some of the terms used.

A summary of unit rates for excavation is included in Appendix 3.B.

3.16.1 Level Development

The <u>preproduction</u> capital costs calculated in this section allow for the completion of sufficient development to access stoping blocks containing tonnages equivalent to two years production.

Capital development beyond this amount is covered under "Ongoing Capital Costs".

The quantity and cost of preproduction development (P.P.D.) will depend on the following variables.

Variables: Annual production rate Strike Length (within mining limits) Average stoping width Density of material to be mined Interval between main levels Average crosscut length A method of estimating preproduction development (P.P.D.) costs is outlined below. The calculation is repeated in the capital cost calculation form for the user to enter the appropriate information.

P.P.D. costs are approximated by the following:

P.P.D. = QTY. OF DEV'T/LEVEL(m) × COST/METRE × TONNES/YR. × 2 TONNES ACCESSED/LEVEL

In order to define the terms used above, remembering that '2' accounts for the 2 years of development required, this expression is rewritten as:

 $\frac{P.P.D.}{COSTS} = \frac{(a) \times (b) \times (c) \times 2}{(d)}$

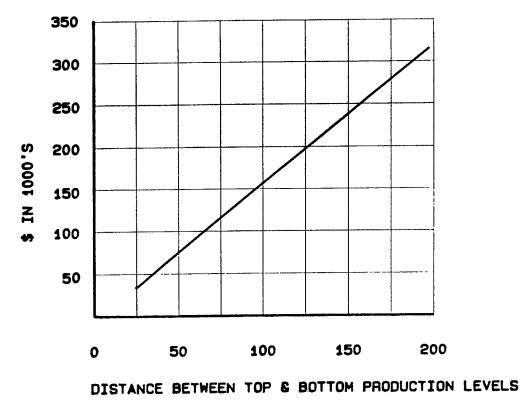
(a) = quantity of development per level = average crosscut length (m) + strike length (m)

(b) = cost per metre

	Shaft Access Track Drift 2.4 m x 3.0 m	Shaft Access Trackless Drift <u>4.0 m x 3.0 m</u>	Ramp or Adit Access Trackless Drift <u>4.0 m x 3.0 m</u>
Power from utility	\$1390	\$1440	\$1475
Power from generators	\$1525	\$1570	\$1600

(c) = tonnes per year = working days per year x daily production (tonnes)

(d) = tonnes accessed per level calculated as follows:


Strike	Average	Ore Length*	Х	Density
Length	x Stoping Width x	Between Levels		of Ore
(m)	(m)	(m)		(tonnes/m³)

* Measured along dip. For vertical ore bodies this becomes the level interval.

3.16.2 Ore Pass System

The costs indicated on the following graph were calculated based on the parameters detailed below:

- ore pass extends between top and bottom production levels.
- raise size is 2.13 m x 2.13 m
- raise angle is 70°
- level interval is 50 m with a 10 m finger raise at each level except the top level.
- costs include excavation and ground support. No construction is included. Ore pass controls and grizzlies are covered in Section 3.17.

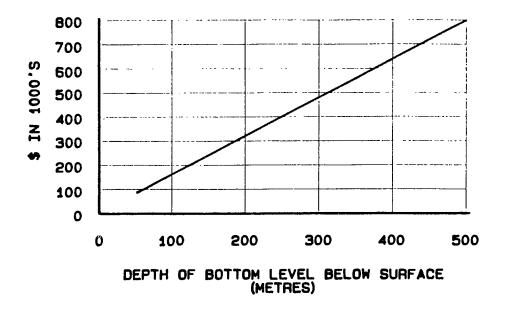
(METRES)

If the user has identified the quantities of raise development required, the unit rate below can be used to estimate costs.

Cost per metre (2.13 m x 2.13 m) - \$1,320

<u>Note</u>: If production is from one level only, or if ore is trucked directly to surface, an ore pass system may not be required.

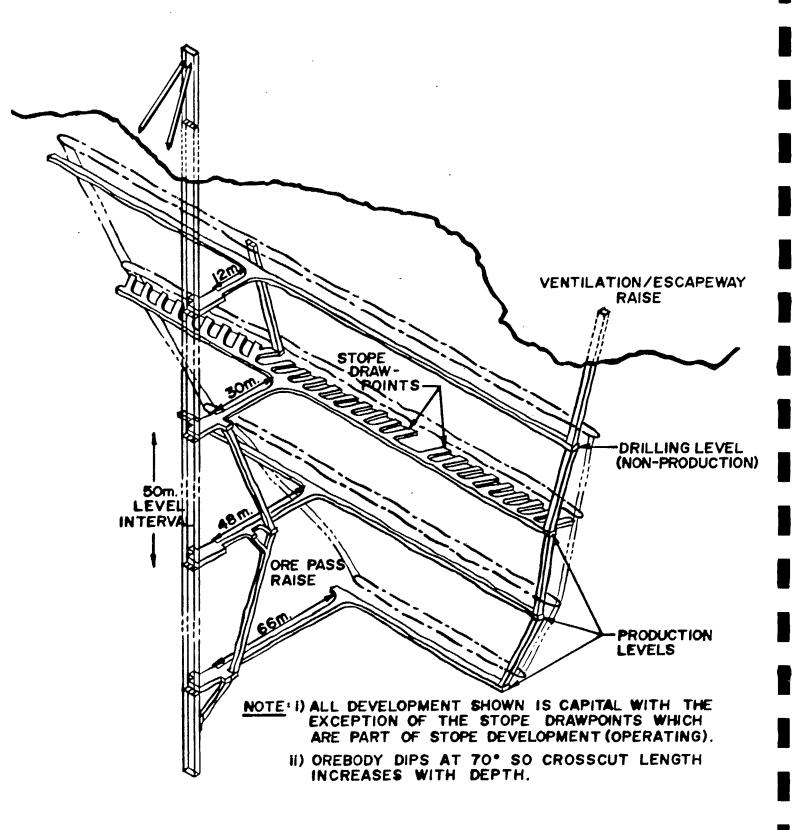
It is assumed that a separate waste pass is not required. Preproduction waste would be handled through the ore pass system (once available) and by lip pockets on the levels once production starts.


Should a waste pass system be considered necessary, costs would be similar to the ore pass system.

3.16.3 Primary Ventilation and Escapeway

The costs indicated on the following graph were calculated based on the parameters detailed below:

- the raise extends from bottom production level to surface.
- raise size is 1.83 m x 2.44 m (alimak).
- raise angle is 80°.
- the raise includes a timber manway.
- costs include excavation, ground support and manway installation.
- the breakthrough to surface is assumed to cause no significant problems.


3 - 47

If the user has identified the quantity of raise development required the unit rate below can be used to estimate costs.

Cost per metre (1.83 m x 2.44 m) - \$1,650

This unit rate includes setup, teardown, ground support and the cost of alimak cut-outs.

CUT-AWAY VIEW OF TYPICAL MINE LAYOUT

3.17 UNDERGROUND INSTALLATIONS

General

This section covers underground installations, including any additional excavation that might be required, for items such as:

- ° Main sumps and pump stations.
- ° Rockbreaker and grizzly.
- ° Ore pass controls.
- ° Underground electrical room.
- ° Other miscellaneous installations.

3.17.1 Main Sumps and Pump Stations

Costs will depend on water inflow, mine depth and whether mine is accessed by ramp or shaft.

Costs include the supply and installation of pumps and the excavation and construction required for clear and dirty water sumps.

	<u>Mine Layout</u>		
	Ramp to 150 m depth	Shaft to 200 m depth	Shaft to <u>400 m depth</u>
'Dry' Mines	\$45,000	\$50,000	\$ 65,000
'Average' Mines	65,000	72,000	80,000
'Wet' Mines	80,000	90,000	100,000

3.17.2 Rockbreaker and Grizzly

Allow one rockbreaker and grizzly installation in shaft mines to condition muck prior to loading skip.

For mines that use ramp haulage, no rockbreaker required.

Costs include the supply and installation of a new pneumatic rockbreaker, the construction of a grizzly and the additional excavation required for each.

Cost per installation \$95,000

3.17.3 Ore Pass Controls

Allow a set of control chains every second level.

Costs include the supply and installation of a brow beam and chains c/w cylinder and controls.

Cost per control

\$20,000

3.17.4 Underground Electrical Room/Load Centre

To provide working voltages underground, allow one substation every second level.

The cost presented represents the supply and installation of a 200 KVA substation.

Cost per substation

\$37,000

3.17.5 Miscellaneous Installations

To allow for the numerous smaller construction items required underground a "miscellaneous" allowance per level is provided.

Allowance per level \$25,000

3.18 EQUIPMENT

General

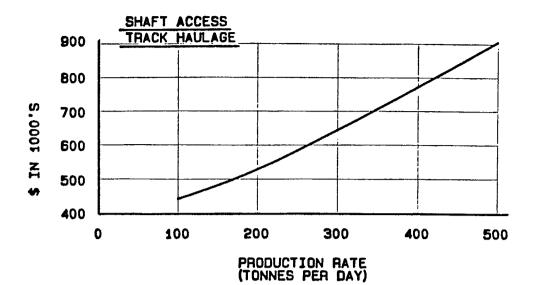
This section covers the cost of equipment required for production mining and support services.

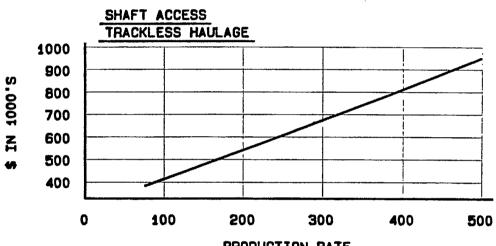
Depending on the mining layout this equipment may include:

- ° trackless loading and haulage equipment.
- ° track loading and haulage equipment.
- development and production drills.
- ° secondary fans and pumps.
- underground service vehicles.
- ° surface payloader.

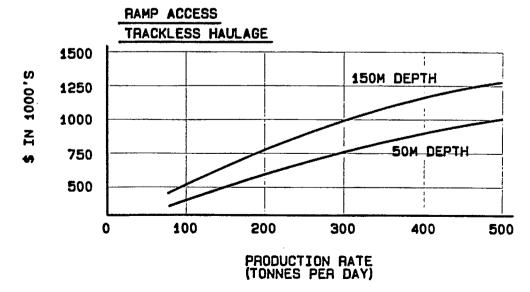
It does not include mine plant such as hoists, compressors, generators or main mine pumps which are covered individually elsewhere.

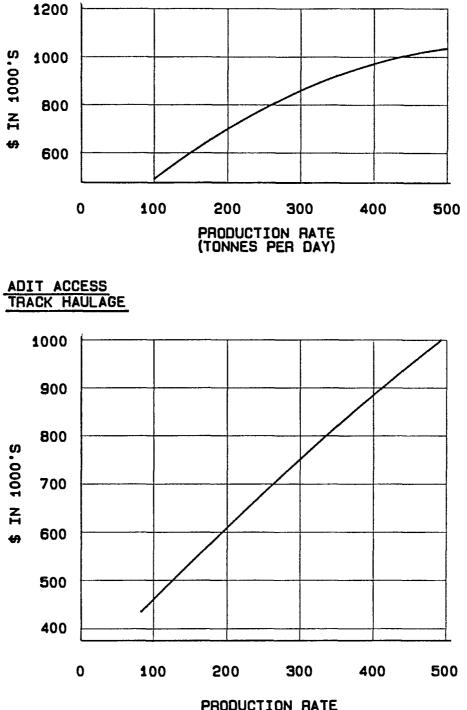
For simplicity, it is assumed that equipment is purchased outright. Should this cause initial capital costs to become excessively high, then a portion of the equipment could be considered to be acquired on a rental purchase basis. Any lowering of capital costs due to renting equipment, however, would require an offsetting increase in the operating cost per tonne.


Costs


The costs presented on the following graphs are based on quantities and equipment types considered "typical" of mines producing at tonnages of 100 to 500 tonnes per day. An allowance for a spares inventory has also been included.

Wherever practicable, "good-used" values for equipment have been used. For example, all haulage equipment including L.H.D. units, trucks, mucking machines, locomotives and mine cars have been included at used prices. All production drilling equipment is priced new.


<u>Note</u>: New and "good-used" values of a variety of commonly used mining equipment are included in Appendix 3.A.



PRODUCTION RATE (TONNES PER DAY)

ADIT ACCESS TRACKLESS HAULAGE

PRODUCTION RATE (TONNES PER DAY)

3.19 CONCENTRATOR

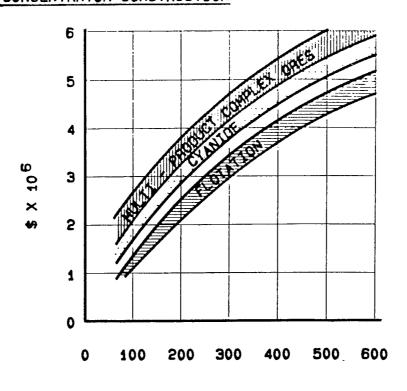
General

This section covers the cost of constructing a concentrator where the possibility of shipping to an existing concentrator is not feasible or is contraindicated due to other considerations.

The design and cost of a mineral concentrator is dependent upon a number of variables including, but not limited to:

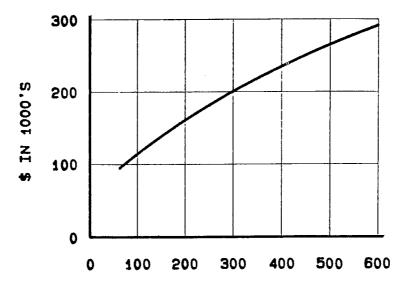
- Production rate.
- Type of mineral.
- Mineral association.
- Rock hardness.
- Comminution required to liberate mineral constituents.
- Concentrating process.
- Contaminant minerals.
- Tailings disposal.
- Flowsheet.

3.19.1 <u>Concentrator Construction</u>


The first graph on the following page gives a range of typical costs for concentrators treating various types of ores. Flotation would be used in a base metal operation whereas cyanidation would be used in a gold mining scenario.

Multi-product or complex ores are those ores requiring special treatment due to the complex character of the ore which necessitates finer grinding and intensive treatment, or ores which require a combination of treatment methods.

3.19.2 <u>Tailings Disposal Area</u>


The second graph on the following page indicates the cost of constructing a tailings disposal area based on the mine production rate.

CONCENTRATOR CONSTRUCTION

TONNES PER DAY

TAILINGS DISPOSAL AREA

TONNES PER DAY

3.20 COST CONTINGENCY

General

The cost contingency estimated in this section <u>is intended</u> to cover conditions beyond the control of the operator, and is <u>not</u> <u>meant</u> to compensate for poor or incomplete estimating.

The costs allocated to contingency are expressed as percentages of overall preproduction capital costs and are divided into three major areas as follows:

- i) The items which may have been omitted from the manual. The contingency allocated is intended to cover numerous small items rather than individual items of significant cost.
- ii) Variations in conditions actually encountered from those anticipated.
- iii) Delays influenced by project location.

Review the sections below and compile an overall contingency percentage accordingly.

3.20.1 Items Omitted

Although every effort has been made to include all identifiable costs, it is certain that some minor items have been omitted.

For these additional items allow 5%

3.20.2 Variations in Conditions

This estimate of costs is likely being prepared at a time when the availability of definite information regarding the project is limited. This fact necessitates that the user make a number of decisions based on "best judgement". The accuracy of these decisions will have a significant impact on the overall accuracy of the estimate.

The allocation of contingency requires the user to review those decisions and assess the risk involved in the decisions made.

For example, one person may have assumed the "worst case" each time a judgement was required, and therefore produced a very conservative estimate of costs.

Conversely, a second person with identical circumstances may have made "hopeful" or "best case" decisions and therefore produced a very optimistic estimate of costs.

Clearly, a different contingency would be appropriate in each case.

To determine a contingency percentage, review the major decisions you have made and make an assessment of the potential for increases in costs should you be incorrect. Then select a percentage from the range offered below:

Assessment of Decisions	Contingency Percentage
Very conservative	0%
Relatively optimistic but confident decisions are correct	5%
Optimistic with low level of confidence in decisions	10%

3.20.3 <u>Delays</u>

All projects are subject to delays due to a variety of reasons. These reasons are numerous but include:

- i) Local weather conditions;
- ii) Delays in scheduled and unscheduled deliveries to the project site. This problem can be compounded if bad weather is also encountered.
- iii) The requirement of specialized services, material or equipment not immediately available at or near the site.

The location and/or remoteness of a project will affect all of the above.

Bearing in mind that costs presented in this manual are based on the climate, transportation system and availability of specialized services, material and equipment found in north-central Ontario, assess the affect of delays due to the location of the project being evaluated.

Estimate within a range of 0 - 5%.

Summary

After reviewing the three sections above, the user should total the three contingency items to determine the overall contingency which will be in the range of 5 - 20%.

3.21 ONGOING CAPITAL DEVELOPMENT

General

This section covers the cost of development required to provide access to new stoping blocks as working stopes are mined out.

A means of determining the daily manpower required to complete this development is outlined on the following page.

<u>Costs</u>

Costs are developed on the basis that sufficient development is completed annually to provide access to new stoping blocks containing tonnages equivalent to one year's production.

The calculation below is identical to that used to calculate preproduction capital costs for level development (Section 3.16.1) with three exceptions:

- ongoing capital development (0.C.D.) costs allow for development of one year's tonnage instead of two.
- ii) the cost per metre allows for the Owner's direct labour, consumables and direct operating supplies only.
- iii) Annual O.C.D. costs are approximated by the following:

ANNUAL O.C.D. = <u>QTY. OF DEV'T/LEVEL (m) x COST/METRE x TONNES/YR.</u> TONNES ACCESSED/LEVEL

Owner's cost per metre:

\$/metre

Track drift (2.44 m x 3.05 m) -	- shaft access	800
Trackless drift (3.0 m x 4.0 m) -	- shaft access	800
-	- ramp access	950

<u>Note</u>: The total amount of O.C.D. can be determined by calculating how many levels, or what portion of a level, is required to provide one year's production.

Manpower

The total annual quantity of "Ongoing Capital Development" can be determined by dividing the total annual cost by the cost per metre.

That is,

ANNUAL				
QTY. OF	=		0.C.D.	COST
0.C.D.		COST/MET	F RE	

With the annual quantity of O.C.D. established, the average daily manpower required can be approximated by:

AVERAGE DAILY = MANPOWER		MANSH	<u>OF O.C.D.</u> IIFT x WORK	ING DAYS/YEAR
For typical	performances use:	-		0.75 metres/manshift 1.0 metres/manshift

Round up the resulting figure to the next whole number.

3.22 EXPLORATION DEVELOPMENT

General

This section covers the cost of development carried out solely for exploration purposes. This development may, or may not increase the mineral inventory.

Costs

ĺ

j

The amount of exploration development required annually is not a calculable quantity. It will vary from year to year with the availability of funds and the urgency of increasing the mineral inventory.

It is fair to say that exploration is related, in the long run, to annual production rate and, therefore, ongoing capital development.

Allow 20% of the ongoing capital development cost calculated in Section 3.21.

3.23 EXPLORATION DIAMOND DRILLING

General

This section covers the cost of diamond drilling carried out in an attempt to increase the mineral inventory.

Assuming that drilling is carried out as part of a regular program the annual exploration diamond drilling (E.D.D.) cost will depend on:

- i) Quantity of drilling per setup;
- ii) Setup interval along strike;
- iii) Metres of exploration development completed annually;
- iv) Cost per metre drilled.

Costs

ANNUAL ANNUAL QTY. OF E.D.D. = QTY. DRILLING/SETUP × EXPLORATION DEV'T × COST/METRE DRILLED COST SETUP INTERVAL

$$= (a) x (b) x (c) (d)$$

(a) = quantity of diamond drilling per setup in metres.

Allow four holes per setup. Average length to be determined by the user depending on the geometry of the deposit.

If in doubt, use four holes at 60 metres each.

(b) = annual quantity of exploration development in metres.

•

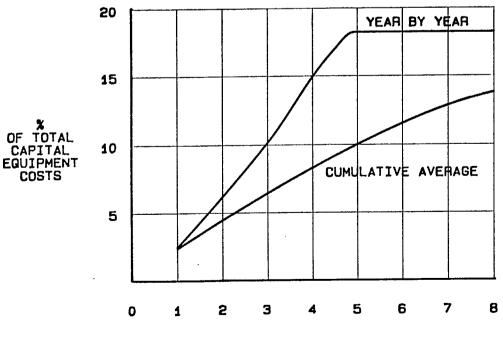
- = <u>Annual O.C.D. Costs (Section 3.21) x 20%</u> Cost/Metre (Section 3.16.1)
- (c) = cost per metre for diamond drilling (Section 3.3.2)
- (d) = setup interval

Use a setup interval along strike of 25 metres.

3.24 EQUIPMENT REPLACEMENT

General

This section covers the ongoing replacement of major equipment necessary because of depreciation or damage.


Costs

Equipment replacement costs will vary depending on the following:

- i) Total value of equipment on site.
- ii) Years of use since purchase.
- iii) Whether new or used equipment was purchased initially.

The graph below approximates the annual replacement cost of major equipment. It expresses costs, by year, as a percentage of total capital equipment costs as determined in Section 3.18.

Both year by year and cumulative average percentages are indicated. An example calculation can be found in Appendix A, Form 3(b), page 3 of 3.

MINE LIFE IN YEARS

APPENDIX 3.A

EQUIPMENT CAPITAL COSTS

If equipment requirements have already been detailed by the user, the following list will provide costs for a range of commonly used equipment.

Costs are F.O.B. the manufacturer's plant or sellers' yard, and do not include taxes.

Item	Size or Type	New \$	Good Used
L.H.D. Units	1.0 yd. ³	77,500	55,000
	2.0 yd. ³	125,000	80,000
	2.2 yd. ³	131,000	85,000
	2.5 yd. ³	138,000	90,000
	3.5 yd. ³	141,000	105,000
	5.0 yd. ³	212,000	135,000
	6.0 yd. ³	219,000	150,000
U/G Trucks	13-ton	145,000	90,000
	15-ton	147,000	90,000
	26-ton	240,000	125,000
Drill Jumbos	2-boom pneumatic	190,000	145,000
	3-boom pneumatic	245,000	170,000
	1-boom hydraulic	250,000	135,000
	2-boom hydraulic	350 - 425,000	250,000
Production Drills	I.T.H. drill c/w 40m Rods	75,000	45,000
	Fan drill (upholes) - pneumatic	160,000	100,000
	Fan drill (360°) - hydraulic	260,000	160,000
	Longhole wagon (35 - 64 mm)	65,000	40,000
	Bar and arm	25,000	16,000

Item	Size or Type	New \$	Good Used \$
	<u></u>		<u></u>
Handheld Drills	Jackleg	2,400	1,500
	Stoper	2,400	1,500
	Plugger	2,200	1,300
Service Vehicles	Scissorlift	75,000	50,000
	Personnel Carrier (4 man)	17,000 - 25,000	10,000
Bulldozers	D-3	74,000	50,000
	D-4H	88,000	60,000
	D-5H	149,000	80,000
Track Mucking	0.26 m³	52,870	20,000
Machines	0.40 m ³	91,000	45,0 00
	0.60 m³	125,000	60,000
Underground			
Battery Locos	1 1 -Ton	34,000	12 ,00 0
	3≟-Ton	45,000	22,000
Mine Cars	2-Tonne	4,200	1,300
	4-Tonne	10,000	3,750
Payloaders	915	98,000	75 ,00 0
	926	109,000	90,00 0
	936	141,000	110,000
Compressors	0. 35 m³/sec. (750 cfm)	40,000	25 ,0 00
	0.71 m³/sec. (1500 cfm)	70,000	45,000
Generators	100 kW	27,000	15,000
	400 kW	65,000	45,000
	1000 kW	125,000	75,000

.

APPENDIX 3.B

UNIT RATES FOR UNDERGROUND DEVELOPMENT

For the user who has detailed underground layouts established, unit rates for various underground excavations including shafts, track and trackless drifts, raises (alimak, conventional and bored), etc. are listed below.

Rates are all-inclusive and assume Contractor's productivity.

		<u>\$/M</u>	<u>etre</u>
Item		Hydro Power	Generated Power
Shafts	2-Comp't. timber	4,500	5,000
(complete with bearing	3-Comp't. timber	5,500	6,100
sets, catch pits, etc.)	4.5 m dia. concrete	7,500	8,200
Access Ramps	4.5 m x 3.5 m (-15%)	1,700	1,850
Adits	3.5 m x 2.5 m track	1,400	1,550
	4.5 m x 3.5 m trackless	1,475	1,600
Drifts - Track (shaft access)	2.4 m x 3.0 m	1,390	1,525
Drifts - Trackless (shaft access)	3.0 m x 4.0 m	1,440	1,570
- Trackless (ramp access)	3.0 m x 4.0 m	1,475	1,600
Raises - Open	1.83 m x 1.83 m	975	1,025
- Timber	1.52 m x 2.0 m	1,425	1,500
- Alimak (cut-out separate)	2.0 m x 2.0 m	1,200	1,245
- Raisebore (station separate)	1.22 m dia.	800	900
	1.52 m dia.	900	1,025
	1.83 m dia.	1,000	1,150
Miscellaneous Excavations	Large or simple excavation	76/m³	84/m³
	Small or difficult excavatio	ns 180/m³	200/m³

SECTION 4

4.0 <u>REGIONAL COST FACTORS</u>

1

Section	Description	Page
4.1	Basic Approach to Determining Cost Factors	4 - 1
4.2	Blanket Cost Factors	4 - 2
4.3	Component Cost Factors	4 - 6
4.4	Worked Examples	4 - 7

4.0 REGIONAL COST FACTORS

General

Capital and mine operating costs are significantly influenced by the geographical location of a project.

The cost information contained in this manual has been developed based on conditions prevailing in north-central Ontario. This "base region" includes the mining camps of Elliot Lake, Sudbury and Timmins.

The purpose of this section is to determine the regional cost factors which must be applied to the capital and operating costs presented in the manual to adjust these costs for specific project locations.

4.1 BASIC APPROACH TO DETERMINING COST FACTORS

Individual factors have been derived, in each region, for the following cost components.

- i) Labour
- ii) Plant and Equipment
- iii) Materials and Consumables
- iv) Hydro Power
- v) Transportation
- vi) Provincial Tax

These individual cost factors are tabulated in Section 4.3.

By estimating the percentage of each component in either operating or capital costs and applying the appropriate cost factor to each, an overall cost factor can be obtained.

Examples are included in Section 4.4.

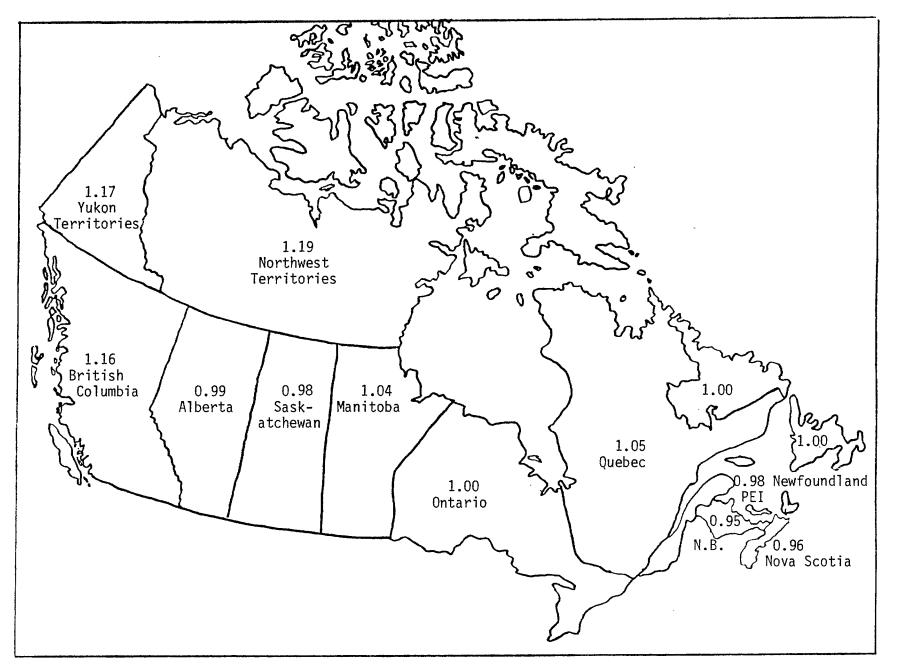
The user can determine the appropriate cost factors in two ways:

- i) By referring to the two maps in Section 4.2 a blanket factor can be selected. These blanket factors have been calulated based on parameters described in Section 4.2.
- ii) By breaking down the estimates of capital and operating costs (separately) into percentages of each of the six cost components and then applying the appropriate individual factors, to determine an overall factor that is specific to the user's project. Use Form 4 to calculate these factors.

4.2 BLANKET COST FACTORS (MAPS)

Blanket cost factors are indicated on the maps, Figures 4 - 1and 4 - 2, for capital and operating costs respectively. The factors indicated are based on the following scenarios:

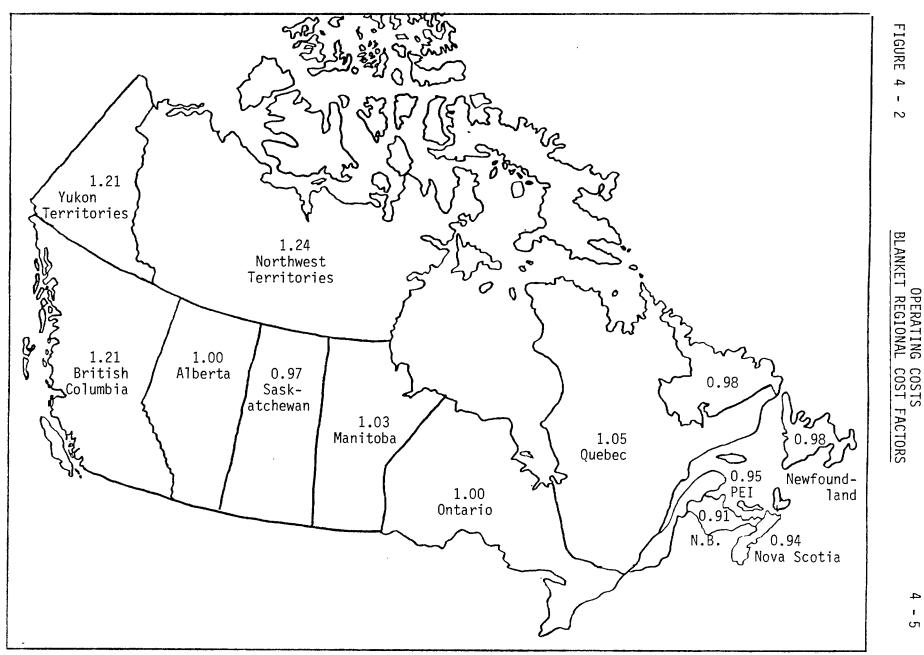
Capital Cost Criteria:


- 1) 200 tonne per day operation.
- 2) On site mill.
- 3) Decline access.
- 4) Road access to minesite.
- 5) Power generated on site.

Item	Distribution of Capital Cost
Labour	40%
Plant and Equipment	20%
Materials & Consuma	bles 35%
Hydro Power	0%
Transportation	3%
Provincial Tax	2%

Operating Cost Criteria:

- 1) 200 tonne per day operation.
- 2) Blasthole stoping.
- 3) Decline access.
- 4) On-site milling.
- 5) Power generated on site.


Item	Distribution of Operating Cost
Labour	54%
Plant and Equipment	0%
Materials & Consuma	bles 42%
Hydro Power	0%
Transportation	3%
Provincial Tax	1%

CAPITAL COSTS BLANKET REGIONAL COST FACTORS

FIGURE

4 - 1

 \sim

Cost Components

-

Area	Labour	Plant & <u>Equipment</u>	Mat'ls. & Consumables	Hydro <u>Power</u>	Transportation	Provincial Tax
British Columbia	1.34	1.00	1.00	0.92	1.75	1.20
Alberta	1.05	1.00	0.92	0.97	1.50	-
Saskatchewan	0.97	1.00	0.93	1.09	1.50	1.29
Manitoba	1.04	1.00	0.95	0.66	2.00	1.29
Ontario	1.00	1.00	1.00	1.00	1.00	1.00
Quebec	1.06	1.00	1.04	0.94	1.00	1.41
Newfoundland	0.86	1.00	1.05	1.29	1.75	1.89
New Brunswick	0.82	1.00	0.95	1.17	1.35	2.36
Nova Scotia	0.85	1.00	0.98	1.21	1.70	1.37
Prince Edward Island	0.82	1.00	1.02	1.21	2.00	1.71
Yukon Territory	1.14	1.00	1.15	1.51	3.75	-
Northwest Territories	1.19	1.00	1.17	1.51	3.50	-

þ

Ì

· ·

1

Capital Cost Regional Cost Factor

Classification Fac	Regional Cost tor for Manit rom Table 4.3	oba Disti) Cap [.]	rcentage ribution of ital Costs ined by User)	Multiplication Product
Labour	1.04	x	40 % =	<u>0.42</u> (a)
Plant & Equipment	1.00	x	20 % =	<u>0.20</u> (b)
Materials & Consumables	0.95	x	35 % =	<u> 0.33 </u> (c)
Hydro Power	0.66	x	0 % =	<u> 0.00 </u> (d)
Transportation	2.00	x	3 % =	<u>0.06</u> (e)
Provincial Tax	1.29	x	2 % =	<u>0.03</u> (f)
		Tota	al = 100%	
Capital Cost Regional Cost	Factor = sum	(a to f)) =	1.04
Operating Cost Regional Co	st Factor			
Classification Fac	Regional Cost tor for Manit rom Table 4.3	oba Distı	rcentage ribution of ating Costs	Multiplication Product
Labour	1.04	x	% =	<u> 0.56 (g</u>)
Plant & Equipment	1.00	x	0 % =	<u> 0.00 (h)</u>
Materials & Consumables	0.95	x	42 % =	<u>0.40</u> (i)
Hydro Power	0.66	x	0 % =	0.00(j)
Transportation	2.00	x	3 % =	<u> 0.06 (k)</u>
Provincial Tax	1.29	x	1 % =	0.01 (1)
		Tota	al = 100%	
Operating Cost Regional Co	st Factor = s	um (g to	1) =	1.03

SECTION 5

5.0	MINERAL	DEPOSIT	VALUE

<u>Section</u>	Description	Page
5.1	Introduction	5 - 1
5.2	Tonnage/Grade Calculations	5 - 1
	.1 Geological Tonnes and Grade.2 Mineable Tonnes and Grade.3 Worked Example	
5.3	Estimate of Value	5 - 15
	 .1 Mill Recovery .2 Values Recovered by Mill .3 Net Value After Smelting or Refining .4 Worked Example 	
5.4	Potential Problems in Estimating Mineral Deposit Value	5 - 18

5.1 INTRODUCTION

The purpose of this section is to assist the user who has not already developed preliminary estimates of tonnage, grade and economic value from the available geological information. These calculations are to be completed using Forms 5(a) to 5(f).

The basic approach is outlined below:

- i) Calculate geological tonnes and grade
 - mineable tonnes and grade
- ii) Estimate mill recovery
- iii) Estimate the values recovered by the mill
- iv) Estimate net value after smelting.

5.2 TONNAGE/GRADE CALCULATIONS

The reserve calculation method selected for any particular deposit will be dependent upon the geological and engineering elements unique to each deposit, and no one technique is universally applicable.

Reserve calculation methods available include: calculation by mining block, calculation by polygons, calculation by triangles, geostatistical techniques, and the classical, calculation by section, which is discussed in this Section.

5.2.1 Geological Tonnes and Grade

- Assemble the most up-to-date geological data, diamond drill intersections (length and assay values) and other relevant information.
- ii) Prepare the following drawings showing all of the available geological information:
 - a) surface plan
 - b) cross-sections
 - c) longitudinal section(s)
- iii) On each cross-section indicate the geological limits of mineralized areas. A preliminary cut-off grade may have to be arbitrarily selected. Limit the influence of each intersection to 50% of the distance to the next intersection.

Each cross-section therefore has one or more mineralized areas shown, each with an identifiable area and grade.

Assessing the average width or thickness is extremely important as it will influence the selection of a mining method in Section 2.0.

- iv) From the longitudinal section, determine the strike length that each cross-section will represent.
- v) For each cross-section, multiply each area of mineralization by the strike length identified in iv) above to determine a volume in cubic metres.
- vi) Multiply the volume of each area by a tonnage factor (see Note 1) to determine the tonnage of mineralization.
- vii) Multiply the tonnage of each area by its grade, expressed in units of metal per tonne, (kg of base metal or grams of precious metal), to determine total units of metal.
- viii) For each cross-section, calculate the total tonnes and total units of metal represented by that cross-section by adding each mineralized area.
- ix) Calculate the average grade of each cross-section by dividing total units of metal by total tonnes.
- Add the total tonnes from each cross-section to determine the total geological reserve.
- xi) Add the total units of metal from each cross-section and divide by the total geological reserve to determine the overall average grade.

Note 1 "Tonnage Factor" (tonnes/m³)

The tonnage factor is a factor used to convert volume to tonnage. Use the actual tonnage factor if known. If the tonnage factor is not known refer to the table below.

Type of Mineralization	Tonnage Factor
Gold Disseminated Base Metal Massive Sulphides	2.7 tonnes/m³ 3.2 tonnes/m³ 4.0 tonnes/m³
Waste	2.7 tonnes/m³

5.2.2 Mineable Tonnes and Grade

In general, mineable tonnes are developed by superimposing a mine design over the outline of the geological reserves. This involves selecting a suitable mining method(s) which is part of Section 2.0 "Operating Costs".

The selection made will influence the ability to mine selectively and may require some waste to be mined or, conversely, some mineralization to be left behind.

In this manual, mineable tonnes and grade are developed in three distinct steps as follows:

- a) In-situ reserves are determined for each geological cross-section on Form 5(d).
- b) Total in-situ reserves for the mine are then tabulated on Form 5(c).
- c) Finally, total mineable tonnes and grade are calculated on Form 5(e) by manipulating the numbers generated on Form 5(c), to adjust for pillars, dilution and stope losses.

The in-situ reserve tonnes and grade can be calculated in a similar way to geological tonnes and grade.

The user must consider the implications of the selected mining method and place mining limits on the geological sections developed in Section 5.2.1. At this stage, the geological grade may be diluted because some waste has to be mined. There is no regard for pillars at this point.

Thereafter, the true mineable reserves are determined by adjusting the in-situ reserves for three additional considerations:

- ° mining recovery factor (Note 2)
- odilution factor (Note 3)
- stope losses factor (Note 4)

The "mining recovery factor" accounts for all of the solid ore which must be left in place and never mined. This may include crown pillars, sill pillars, structural support pillars and other mineralization that is abandoned for geotechnical or economic reasons. Refer to Note 2 on the following page.

The ore actually recovered will be diluted by waste rock and/or adjacent fill material. The amount of dilution will depend on the mining method and the ground conditions. Refer to Note 3 on the following page.

Finally, some of the tonnage broken may not be recovered. The amount not recovered will depend mainly on the mining method selected. Refer to Note 4 on the following page.

Note 2 "Mining Recovery Factor"

The user is cautioned that this factor is very difficult to evaluate accurately until a detailed mine design is completed.

	Mining Recovery Fac		
Mining Method	Range	Typical	
Blasthole	60% - 100%	80%	
Cut & Fill	70% - 100%	85%	
Shrinkage	75% - 100%	90%	
Room & Pillar	50% - 75%	60%	

Note 3 "Mining Dilution Factor"

The mining dilution factor expresses the diluted tonnes as a factor of the in-situ reserve tonnes.

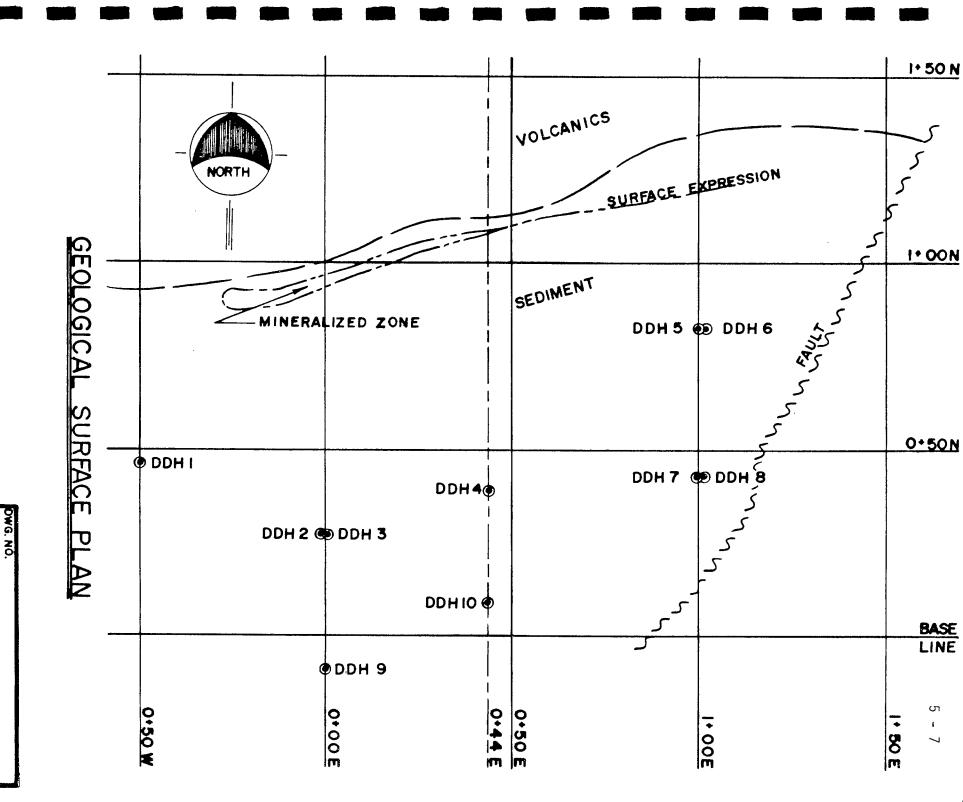
MINING METHOD	Expected Ground Condition			
MINING METHOD	Excellent	Average	Poor	
Blasthole	1.20	1.30	N/A	
Cut and Fill	1.05	1.10	1.15	
Shrinkage	1.10	1.15	1.25	
Room and Pillar	1.05	1.10	1.20	

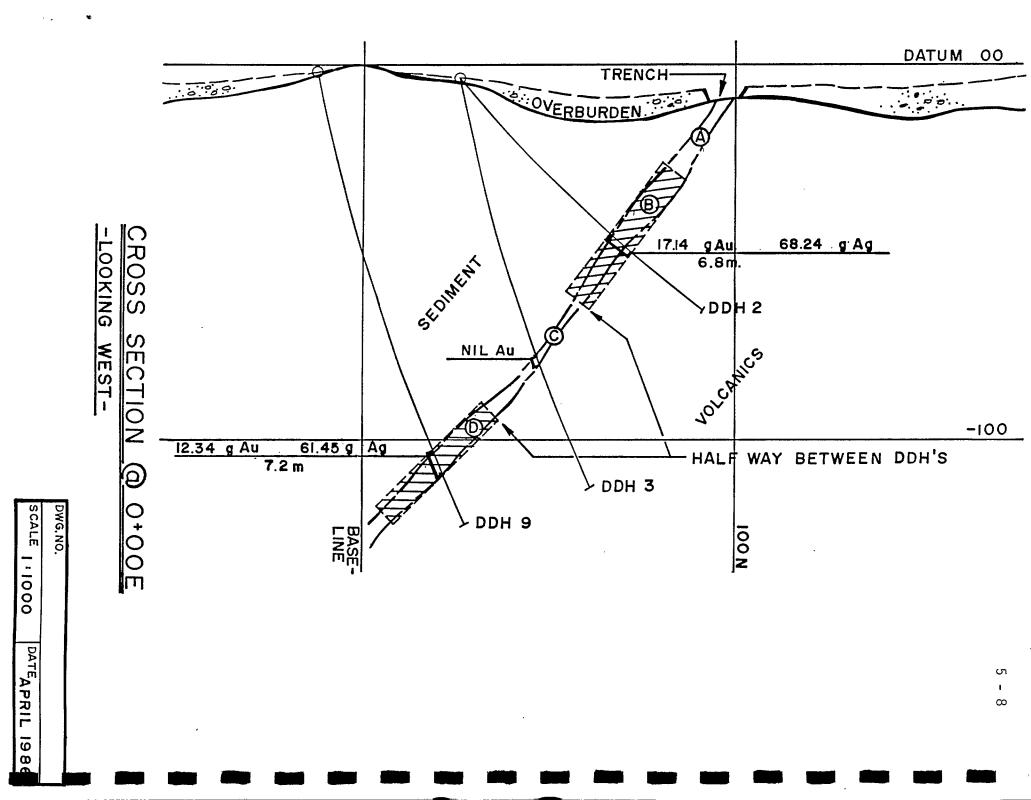
Note 4 "Stope Losses Factor"

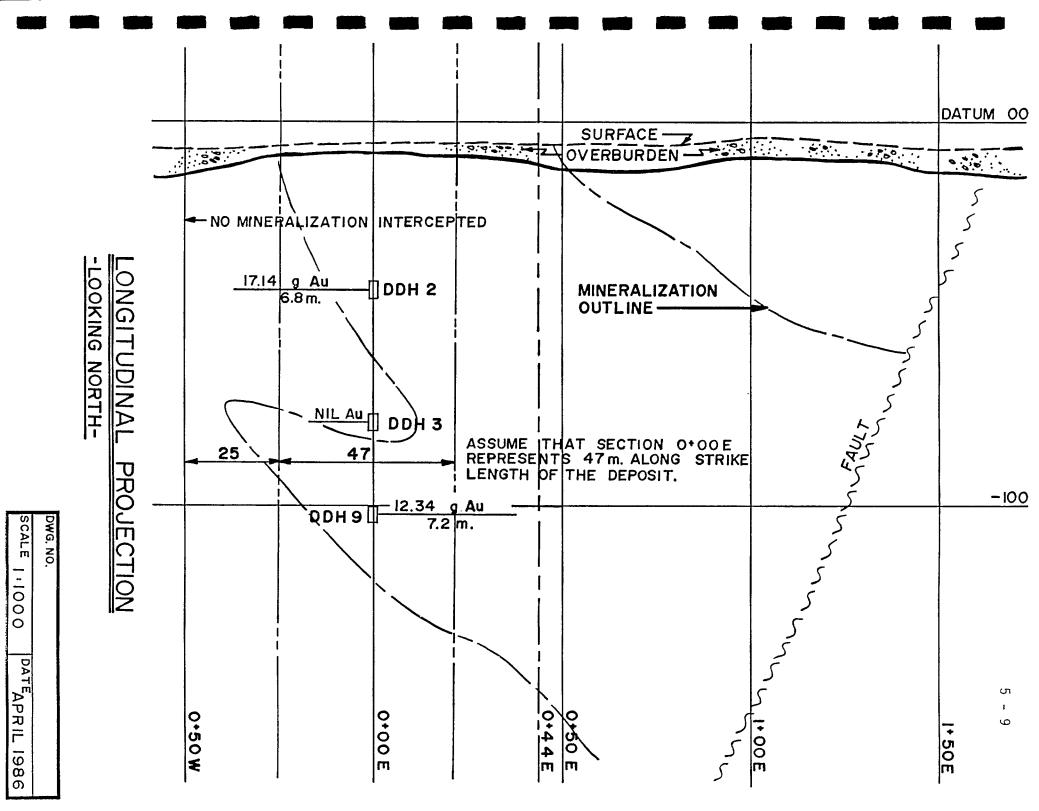
This factor expresses tonnes actually recovered as a factor of diluted tonnes.

<u>Mining Method</u>	Stope Losses Factor
Blasthole	0.8 to 1.0
Cut and Fill	1.0
Shrinkage	0.9 to 1.0
Room and Pillar	1.0

5.2.3 Worked Example


The following drawings and calculations have been developed for a gold/silver deposit, using shrinkage stoping in average ground conditions.


For simplicity, calculations are completed for one cross-section only.


It should be noted that, in this example, all of the geological reserve tonnage falls within the mining limits. This will not always be the case and some mineralization may be left behind.

40. 140.

1

FORM 5(a)

GEOLOGICAL TONNES & GRADE

SUMM	I <u>ARY</u> (see next	page for cal	culation)		Unit of <u>Measureme</u>	
Seco	mary metal is ondary metal i tiary metal is				g/tonne g/tonne N/A	
	Cross	Total Tonne	s	Tot	al Units of M	etal
-	Section <u>No.</u>	of <u>Mineralizat</u>		rimary Metal	Secondary Metal	Tertiary <u>Metal</u>
	<u>0 + 00E</u>	41,242	6	27,702	2,702,340	N/A
				·	<u> </u>	
		<u>.</u>	_ _		·	
<u> </u>						
		(A)		(B)	(C)	(D)
TOTALS		41,242	6	27,702	2,702,340	N/A
	DLOGICAL RESEF AL RESERVE GRA		=	41,242	(A)	
Pri	nary Metal (B/A)	=	<u>15.22 g/</u>	<u>tonne</u>	
	ondary Metal (-	=	65.52 g/	tonne	
Ter	tiary Metal (D/A)	=	<u>N/A</u>		

EXAMPLE

.

FORM 5(b)

EXAMPLE

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 00E

		Mineraliz	ed Area	
	А	В	С	D
Diamond Drill Hole No.		2		9
Area of Mineralization (m²)		195	<u></u>	130
Grade of Mineralized Area:				
Primary Metal		17.14		12.34
Secondary Metal		68.24		61.45
Tertiary Metal				-
Strike Length Represented by Cross-section (m)		47		47
Volume of Mineralization (m³)		9,165		6,110
Tonnage Factor (tonnes/m³)		2.7		2.7
Tonnes of Mineralization		_24,745		16,497
Total Units of Metal: Primary Metal		424,129		202 572
•				203,573
Secondary Metal		1,688,599		1,013,741
Tertiary Metal				

TOTAL TONNES (A + B + C + D) =

41,242

	Total Units of Metal	Average Grade
Primary Metal	627,702 g	15.22 g/tonne
Secondary Metal	2,702,340 g	65.52 g/tonne
Tertiary Metal		-

.

EXAMPLE

FORM 5(c)

IN-SITU TONNES & GRADE

<u>SUMMARY</u> - From Form	ns 5(d)	Unit of <u>Measurement</u>
Primary metal is Secondary metal is Tertiary metal is	<u>Gold (Au)</u> Silver (Ag) _N/A	g/tonne g/tonne N/A
Cross Section <u>No.</u>	Total In-Situ Tonnes	Total Units of Metal Primary Secondary Tertiary Metal Metal Metal
<u>0 + 00E</u>	47,334	<u>627,702</u> <u>2,702,340</u> <u>N/A</u>
	······	
	· · · · · · · · · · · · · · · · · · ·	
TOTALS	(A) 47,334	(B) (C) (D) 627,702 2,702,340 N/A
TOTAL IN-SITU RESERVE IN-SITU RESERVE GRADE:	=	47,334 (A)
Primary Metal (B/ Secondary Metal (C/ Tertiary Metal (D/	(A) =	13.26 g/tonne 57.09 g/tonne N/A

FORM 5(d)

EXAMPLE

	IN-SITU TONN	ES & GRA	DE		
IN-SITU RESERVE BY C					
Cross-Section No.	<u>0 + 00E</u>			_	
		А	Mining B	Zone C	D
AREAS (Within Mining	Limits)	<i>n</i>	U	U	D
Area of Mineralizati	on (m²)		195		130
Area of Waste	(m²)		33		15
Total Area	(m²)		228	<u></u>	145
VOLUMES (Within Mini	ng Limits)				<u> </u>
Strike Length Repres Cross-section (m)	ented by		47		47
Volume of Mineraliza	tion (m³)		9,165	·····	6,110
Volume of Waste	(m³)		1,551		705
Total Volume	(m³)		10,716	1 <u></u>	6,815
TONNES (Within Minin	-		0.7		0.7
Tonnage Factor - Ore			2.7	u	2.7
Tonnage Factor - Was			2.7	·	2.7
Tonnes of Mineraliza	ition		24,745	<u> </u>	16,497
Tonnes of Waste			4,188	<u></u>	1,904
Tonnes of Mineraliza			28,933	······································	18,401
TOTAL TONNES OF ORE	- ALL ZONES		47,334	4(a)	
GRADES OF MINERALIZE	D AREAS (Geological	Grade)			
Primary Metal			17.14		12.34
Secondary Metal			68.24		61.45
Tertiary Metal			_		_
UNITS OF METAL (Tonr	nes of Mineralizatio	n x Geol	-)	
Primary Metal		<u></u>	424,129		203,573
Secondary Metal		. <u></u>	1,688,599		1,013,741
Tertiary Metal					-
<u>Total Units Al</u>	<u>1 Zones</u> (b)		verage Grade /		(b ÷ a)
Primary	627,702		13.26 g/tonn	<u>e</u>	
Secondary	2,702,340	_	57.09 g/tonn	<u>e</u>	
Tertiary	_	-	-	_	

1

FORM 5(e)

EXAMPLE

MINEABLE TONNES AND GRADE TO MILL

ADJUSTMENT FOR MINING RECOVERY

		Total In-Situ <u>Reserve</u>		Mining Recovery Factor	Actually Mined	
Tonnes	=	47,334	х	0.90 =	42,600	(a)
Primary Metal - Units - Grade	= =	627,702 13.26	х	0.90 =	564,932 13.26	(b) (c)
Secondary Metal - Units - Grade	= =	<u>2,702,340</u> <u>57.09</u>	х	0.90 =	= <u>2,432,106</u> <u>57.09</u>	(d) (e)
Tertiary Metal - Units - Grade	=	N/A N/A	x	0.90 =	= <u>N/A</u> N/A	(f) (g)
ADJUSTMENT FOR DILUTION					<u></u>	····
Dilution Factor				=	1.15	(h)
Diluted Tonnes (a x h)				=	48,990	(i)
"MINEABLE GRADES"						
Primary Metal (c/h)				=	11.53	(j)
Secondary Metal (e/h)				E	49.64	(k)
Tertiary Metal (g/h)				=	<u> </u>	(1)
ADJUSTMENT FOR STOPE LOSSES						
Stope Losses Factor				=	0.90	(m)
"MINEABLE TONNES" to Mill	(i	x m)		=	44,091	(n)
Units of Metal/Tonne in Mill	Feed:					
Primary Metal (b/i)				=	11.53	
Secondary Metal (d/i)				=	49.64	
Tertiary Metal (f/i)				Ŧ	<u>N/A</u>	

5.3 ESTIMATE OF VALUE

5.3.1 Mill Recovery

Section 5.2 calculated the tonnage and grade actually mined and delivered to the mill.

A mill facility will not extract 100% of the units mined, therefore, a mill recovery factor is required to adjust the units recovered by the mining operation.

If metallurgical test work concerning mill recovery is available then use that information. Should no suitable information be available, select a factor from the table below:

Note that the recovery factor for the primary metal is likely to be higher than for the secondary metal.

Type of Mineralization	<u>Mill Recovery Factor</u>
Precious Metal	0.80 to 0.97
Base Metal	0.75 to 0.95
Complex Base Metal	0.60 to 0.85
Other	0.50 to 0.80

Multiply the units of metal in the mill feed by the mill recovery factor to determine the units of metal per tonne recovered by the mill.

5.3.2 Values Recovered by Mill

The value of a tonne of ore after milling can be established by multiplying the mineable grade by the mill recovery factor by the current price (or projected price if available) per unit.

Current metal prices can be obtained from the Northern Miner; the Engineering and Mining Journal; London Metal Exchange; Hardy and Harmon (New York).

5.3.3 Net Value after Smelting or Refining

The revenue actually realized by the mine operator will depend on the contract negotiated with a smelter or the specific charges related to refining a particular bullion product.

Each contract is unique and returns cannot be generalized. It is essential to realize, however, that the revenue received by the mine operator will only be a percentage of the total value of the metal contained in the concentrate.

If inquiries have been made with regard to smelter returns or refining charges, adjust the values contained in the concentrate accordingly to arrive at:

NET VALUE AFTER SMELTING/REFINING

5.3.4 Worked Example

The following example carries on from the example of tonnage and grade calculations in Section 5.2.

The calculation develops a net value per tonne of mineable ore delivered to the mill.

The "Net Value After Smelting" allocated in the example is for illustrative purposes only and is not a calculated figure.

FORM 5(f)

EXAMPLE

MINERAL DEPOSIT VALUE

	Primary Metal	Secondary Metal	Tertiary <u>Metal</u>
Units of Metal/Tonne in Mill Feed	11.53	49.64	
Mill Recovery Factor	0.90	0.90	
Units of Metal Recovered Per Tonne of Mill Feed	10.38	44.68	
Current Metal Price/Unit	<u>\$15.11/g</u> (\$470 Cdn/oz)	<u>\$0.23/g</u> (\$7.15 Cdn/oz)	<u> </u>
Value Per Tonne of Ore after Milling	\$156.84	\$10.28	
TOTAL VALUE PER TONNE OF ORE AFTER MILLING	=	\$167.12	
NET VALUE PER TONNE OF ORE AFTER SMELTING/REFINING	=	\$155.00	

AFTER SMELTING/REFINING (Approximation only)

-

5.4 POTENTIAL PROBLEMS IN ESTIMATING MINERAL DEPOSIT VALUE

Tremendous errors can be made in estimating a mineral reserve. There have been instances where mineral reserve estimates have been significantly inaccurate even after detailed drilling and analysis. This section is provided to alert the user to some of the areas where major problems could arise.

Sources of Error

Area	Potential Problem		
Conversion of Units	Imperial & Metric units not converted correctly.		
Geology	Geology misinterpreted.		
	Mineral values are erratically distributed throughout the deposit so that a mineral reserve estimate may be incorrect.		
	The deposit could be cut-off by structural features such as a fault.		
,	The deposit may be complex both physically and mineralogically.		
Geotechnical	May require more or larger pillars than anticipated.		
	Dilution may be significantly higher.		

Assay values may be misleading. Sampling Sampling procedures may be deficient. Assumptions may be too optimistic. Optimism Actual conditions experienced Actual Mining Conditions underground may be significantly different than expected and the tonnage that can be practically mined may be less than expected. For various reasons, concentrator Metallurgical Problems recovery may not be as high as expected. The preliminary mineral inventory Economic Mining Grade (Cut-Off Grade) estimate is not based on any minimum acceptable economic grade of mineralization. In a detailed feasibility study a minimum acceptable grade of mineralization would be calculated and used to decide what areas are to be considered mineable. Metal (Product) Prices Changes in metal (product) prices may have a significant effect on the economic viability of the deposit. Change in market. Smelter Contract

SECTION 6

6.0 PRELIMINARY CASH FLOW SUMMARY

.

<u>Section</u>	Description	Page	
6.1	Cash Flow Chart	6 - 1	
6.2	Other Approaches		
6.3	Evaluation of Results	6 - 3	
	.1 Discussion .2 Level of Confidence in Information and Assumptic	Ons	

6.0 PRELIMINARY CASH FLOW SUMMARY

General

The user is now in a position to make a very preliminary assessment of the economic viability of his deposit.

He has chosen a mining method and mining rate, developed operating and capital costs and calculated a Net Value After Smelting/Refining. A simple cash flow chart can now be developed showing the cash out-flows and in-flows for each year of operation.

Costs generated or selected in the preceding sections of this manual are brought together on an "Economic Analysis" form or flow chart to provide the total profitability picture. With a little effort on the part of the user, particularly in breaking down certain cost groupings into fixed and variable, this analysis form can become a handy tool for executing certain sensitivity evaluations.

6.1 CASH FLOW CHART

A simple cash flow chart developed for the first five years of operation, for a small mine will generally show whether the project has the potential to be viable or not.

Form 6 presents a format for determining cash flow by year for the first five years of operation.

The annual cash flows calculated <u>do not consider depreciation and</u> <u>taxes</u>. The information developed can be used to perform a Discounted Cash Flow Rate of Return (D.C.F.R.O.R.) calculation.

6.2 OTHER APPROACHES

If the deposit does not generate a profit, return to Section 2.0 and reconsider some of the key decisions.

Other possible approaches may include:

- 1) Mining only the higher grade sections of the deposit.
- 2) Using another means of mine access.
- 3) Selecting a different mine production rate.
- 4) Using a different mining method.
- 5) Reducing the initial capital outlay.
- 6) Custom milling.
- 7) Undertaking additional work to increase tonnage and/or grade.
- Hiring a contractor to do the production mining and provide all of the capital equipment.

A deposit that still does not show a profit, even after looking at other approaches, may not necessarily be uneconomic.

Regardless of what your conclusions are at this point, read the next section as it deals with evaluating results.

6.3 EVALUATION OF RESULTS

6.3.1 Discussion

Many assumptions have been made by the user while working his way through this manual which have a significant effect on the conclusion reached.

The selection and/or calculation of key parameters such as mineable tonnes and grade, production rate, mining method, price of product, as well as capital and operating costs are all critical to the overall economics of the project. Form 6 will help the user identify the order of magnitude cost improvement that is required to achieve break-even or better. By selectively applying the plus or minus 30% accuracy range projected for this manual to specific cost categories, the user should be able to compute a worst and best case scenario from Form 6. Actual sensitivity analysis will require recalculating the primary forms used to generate Form 6, based on changed parameters.

A mineral deposit which appears to be marginal may prove to be viable with a change in the variables but only a proper detailed feasibility study will provide definitive answers.

6.3.2 Level of Confidence in Information and Assumptions.

Regardless of the results obtained, good or bad, the user should evaluate his own level of confidence in each step by the estimating process. By completing the following assessment honestly, an overall confidence in the results can be established.

<u>Area</u> Understanding of the	<u>High</u>	<u>Moderate</u>	Low
evaluation process used in this manual		-	
Understanding of the geology of the deposit and the mineral reserve estimate.			
Understanding of required mineral processing.	·····		
Level of confidence in your Capital Cost Estimates			<u></u>
Level of confidence in your Operating Cost Estimates			
Level of confidence in the metal price used.			
Level of confidence in the marketing and saleability of the product.			
Overall confidence based on the preceding.			

Review responses above and subjectively relate them to the results obtained on Form 6.

The use of this manual and its estimating process provides a very preliminary assessment of the profitability of the mineral deposit examined. It should be recognized that, at best, this examination can only result in a rough approximation of the economic model involved. It can however, serve to point out the direction to be followed in pursuing the ultimate evaluation and exploitation of the resource.

SECTION 7

7.0 EXPLORATION PROGRAMMES

General

This section explains how the manual can be used to cost the construction and excavation required to conduct an underground exploration programme.

It is important to understand that capital costs presented in Section 3.0 are "all - inclusive" and do not require additional support or services to make them complete.

For example, the cost per metre for shaft sinking includes the cost of a temporary camp, electrical power, compressed air and all other support services required.

Therefore, to cost an exploration programme the user has only to identify the work required and select the appropriate costs from Section 3.0 accordingly. Form 3(a) can be used to develop the costs.

Each section of capital costs is briefly described on the following pages and comments are made as to the relevance of each section to an exploration programme. In some sections, only a portion of the costs indicated in Section 3.0 are applicable. In these cases, the costs indicated in Section 3.0 should be multiplied by the percentages listed in this section.

7.1 CAPITAL COSTS FOR EXPLORATION PROGRAMMES

CAPITAL COSTS SECTION NO.	TITLE AND DESCRIPTION	RELEVANCE TO EXPLORATION PROGRAMME	
3.1	Introduction and Criteria	All criteria apply.	
3.2	Feasibility Studies and Detailed Engineering	Only a portion of this work is required for exploration.	
		Use 50% of indicated cost	
3.3	Additional Diamond Drilling and Sampling	Fully applicable to exploration programme.	
3.4	Permits and Environmental Studies	Only permitting applicable to exploration programme.	
		Use 10% of indicated cost	
3.5	<u>Project Management and</u> <u>Preproduction Scheduling</u> Cost of <u>Owner's</u> site management	Fully applicable to exploration programme.	
3.6	Access to Minesite Cost of providing new or upgraded road and bridges	Applicable but quality of road required may be reduced. Adjust cost/km accordingly.	
3.7	<u>Site Preparation</u> Cost of clearing, filling and grading site	Cost for a given area still applicable. The area required for exploration will be less than for production.	

Use 50% of indicated cost

CAPITAL COSTS SECTION NO.

TITLE AND DESCRIPTION

RELEVANCE TO EXPLORATION PROGRAMME

Not applicable. 3.8 Camp Installation Construction and Camp for production phase of project excavation costs include temporary camp costs. 3.9 Site Services Applicable but quality and size of facilities may be Cost of providing water supply, reduced. sewage handling, storage, communications, etc. Use 70% of indicated cost 3.10 Electrical Power & Compressed Air Electrical Power - cost of If estimates of capital constructing powerline or costs are calculated using installing generators. (For hydro power and a line is the production phase.) not already built to the site then include the cost of a powerline.

Compressed air - plant

for production phase.

If generated power is used, the applicable capital costs include generator rental and operating costs where applicable.

Not applicable.

Construction and excavation costs include temporary compressor costs.

CAPITAL COSTS SECTION NO.	TITLE AND DESCRIPTION	RELEVANCE TO EXPLORATION PROGRAMME	
3.11	Offices, Shops, Dry, Warehouse	Not applicable.	
		The Owners representative(s) may use part of the Contractors office. If the user considers a separate office necessary include an allowance of \$15,000.00	
3.12	Mine Access	Fully applicable.	
	Cost of shaft, decline or adit including mobilization, setup, collar or portal, etc.	Costs include all support services.	
3.13	Ancillary Shaft Excavations & Installations	Fully applicable.	
	Station & pocket excavation & construction	Could delay loading pocket installation but usually cheaper if installed at the time the shaft is excavated.	

_

CAPITAL COSTS SECTION NO.

TITLE AND DESCRIPTION

RELEVANCE TO EXPLORATION PROGRAMME

3.14	.14 <u>Hoisting Systems, Headframes</u> <u>& Bins</u>			
	Hoist & hoisthouse	Fully applicable.		
		Alternately could rent from Contractor with an option to purchase. In this case, allow 50% of indicated capital cost and a monthly rental of 5% of the difference or 2.5% of the total indicated cost.		
	Headframe & collarhouse	Fully applicable.		
		Exception to above is if temporary mobile headframe used (max. height 15 m). In this case, allow \$20,000 for temporary collarhouse and a headframe rental of \$2,500 per month.		
	Bin or dump area	Allow for dump area only.		
	Conveyances	Fully applicable. Car hoisting will not affect costs appreciably.		

RELEVANCE TO EXPLORATION PROGRAMME

3.15	Ventilation & Mine Air Heating	Not applicable.
	Primary ventilation & heating	Sufficient ventilation & heating for exploration will be supplied by Contractor.
3.16	Underground Development	Only "Level Development" (3.16.1) applicable to exploration.
		Establish quantity and multiply by unit costs.
		See Appendix 3.B for unit rates.
3.17	Underground Installations	Allow for main sumps and pumps only.
	Main sumps and pumps, rockbreaker and grizzly, ore pass controls, electrical substations & misc. installations.	
3.18	Equipment	Not applicable.
	Mining and support equipment	Unit prices for excavation and construction include contractor's equipment rentals.

CAPITAL COSTS SECTION NO.

RELEVANCE TO EXPLORATION PROGRAMME

3.19	Concentrator	Not applicable.
3.20	Cost Contingency	Fully applicable.
3.21 to	Ongoing Capital Costs	Not applicable.

· 3.24

APPENDIX A

<u>EXAMPLE ONE</u>

.

.

FORM 1

BASIC INFORMATION

Estimate Prepared By:	John	Smith	Date:	June 13, 1986
Name of Property:	PRIME EXA	MPLE GOLD MIN	<u>E</u>	
Property Location:	Northern	British Colum	bia. 100 mi	les
		awson Creek	5 105 100 m	
				<u> </u>
Brief Description of	Unev	en rolling gr	ound with r	ocky outcrops
Site and Local Area:				
		<u></u>		
		····	<u></u>	
• <u></u>				
Expected Overburden Cond	itions	<u> </u>	s of dry un	consolidated
(Depth and Type):		glacial	+;11	
		graciai		<u>,</u>
Expected Rock Conditions	:	Competent or	e with reas	onable to good
		hanging wall	and footwa	11
Expected Ground Water Co	inditions:	Dry		
				<u></u>
Other Relevant Informati	on:	Ore horizon	- 100 m to	300 m below
Other Relevant Information: <u>Ore horizon - 100 m to 300 m below</u> surface, strike length 300 m; ore thickness 3 m; dip 80°				
Geological tonnes and grade:				
481,342 tonnes - 11.45 grams/tonne Au (see Form 5(a))				
- 50	.50 grams/	'tonne Ag		

Attach additional sheets as required.

1

FORM 2(a)

OPERATING COSTS

SUMMARY (costs are developed on the next two pages)

				\$/Tonne	
Stoping Costs				21.29	
Hoisting or Ramp Haulage Cost	t			2.80	
Level Haulage Cost				2.40	
General Mine Expense				4.40	
Surface Plant and Mine Servic	ces			16.88	
Staff and Administration				8.00	
Milling					
	Subtotal			73.52	
Add Cost Contingency @ <u>13</u> %	,			9.56	
	Subtotal			83.08	(a)
Regional Operating Cost Facto	or	(blanket fac	tor)	1.21	(b)
TOTAL OPERATING COST (a) x (b)			100.53		
	<i>,</i>				
Transportation of Mine Produc	ct			N/A	

Page 2 of 3

FORM 2(a)

OPERATING COSTS

DETAILED CALCULATION FORM

Reference Section No.	Item		Operating Cost \$/Tonne Ore
2.2	Selection of Production	Rate	
	Rate selected 260 Mining days per year 39 Mining shifts per day		
2.3	Selection of Mining Methor Method selected Shrip	od nkage	
2.4	Stoping Costs		21.29
2.5	Selection of Mine Access Access selected Level haulage selected Depth	and Haulage Method Shaft Track 300 m	
2.6	Hoisting or Ramp Haulage	Cost	2.80
2.7	<u>Level Haulage Cost</u> Haulage Distance Haulage Capacity/Trip Cost	<u>150 m</u> 20 tonnes	2.40
2.8	General Mine Expense		4.40

2.9 Surface Plant and Mine Services Power source selected Hydro Cost a) Labour 4.40 b) 1.70 Materials and Operating Costs c) 5.00 Power d) Camp 5.75 e) Road Maintenance 0.03 Total Surface Plant and Mine Services 16.88 Staff and Administration 2.10 8.00 2.11 **Milling** Selection of Location On-Site Cost 17.75 2.14 Transportation of Mine Product i) Bullion N/A ii) Ore (enter cost from graph) N/A iii) Concentrate \$/tonne (a) (enter cost from graph) Concentrating Ratio (b) Cost/tonne mined (a) \div (b) N/A 3.20 Cost Contingency 3.20.1 Contingency for items omitted 5 % 3.20.2 Contingency for variations in conditions 5 % 3.20.3 Contingency for delays due to location 3 % Total Contingency Percentage, (add 3 lines above) 13 %

Transfer all subsection totals to the summary page.

FORM 2(b)

MANPOWER SCHEDULE

Reference Section No.	Item	Manpower
3.21	Ongoing Capital Development	2
2.4	StopingMining method selectedShrinkageProductivity (tonnes/manshift)21Production rate (tonnes/day)260Manpower required (b)/(a)	13
2.6	Hoisting or Ramp Haulage Hoisting: Shifts worked per day <u>2</u> (c) Manpower required per shift <u>2</u> (d) Manpower required per day (c) x (d)	4
	Ramp: Vertical depth (e) Manpower required	N/A
2.7	Level Haulage Haulage method selected <u>Track/20T</u> Manpower required	4
2.8	<u>General Mine Expense</u> Track or trackless mine <u>Track</u>	6
2.9	Subtotal Underground Manpower (including hoistman) Surface Plant and Mine Services	<u> </u>
2.10	Staff and Administration	9
2.11	Milling	17
	Subtotal Surface Manpower	33
	TOTAL ON-SITE MANPOWER	62

FORM 3(a)

PREPRODUCTION CAPITAL COSTS

<u>SUMMARY</u> (costs are developed on the next 8 pages)	\$	
Feasibility Studies and Detailed Engineering	255,000	
Additional Diamond Drilling and Sampling	79,500	
Permits and Environmental Studies	175,000	
Project Management and Preproduction Scheduling	152,000	
Access to Minesite	625,000	
Site Preparation	180,000	
Camp Installation	395,000	
Site Services	62,000	
Electrical Power & Compressed Air	510,000	
Offices, Shops, Dry, Warehouse	189,000	
Mine Access	1,869,000	
Ancillary Shaft Excavations & Installations	549,500	
Hoisting Systems, Headframes & Bins	976,000	
Ventilation & Mine Air Heating	48,000	
Underground Development	1,838,600	
Underground Installations	498,500	
Equipment	590,000	
Concentrator	3,780,000	
Subtotal	12,772,100	
Add Cost Contingency @ <u>13</u> %	1,660,373	
Subtotal	14,432,473	(a)
Regional Capital Cost Factor (blanket factor)	1.16	(b)
TOTAL PREPRODUCTION CAPITAL COST (a) x (b)	16,741,669	
LICE	16 742 000	

16,742,000

USE

`

PREPRODUCTION CAPITAL COSTS - Detailed Calculation Form

Reference Section No.	Item		Capital Cost \$
3.2	Feasibility Studies &	Detailed Engineering	
	For shaft or ramp acce	ss? <u>Shaft</u>	
	Subsection Total (ente	r cost from graph)	255,000
3.3	Additional Diamond Dri	lling & Sampling	
3.3.1	Drilling from surface:		
	Number of holes	None	
	Average hole length	m	
	Cost/metre	\$/m	
	Subtotal a)	\$	
3.3.2	Underground drilling:		
	Number of holes	30	
	Average hole length	<u> </u>	
	Cost/metre	\$ <u>45.00</u> /m	
	Subtotal b)	\$ <u>67,500</u>	
3.3.3	Assaying samples:		
	Number of samples	1,000	
	Cost per assay	\$ <u>12.00</u> ea.	
	Subtotal c)	\$12,000	
	Subsection Total (add a	a + b + c	79,500

Ņ

~

Reference Section No.	Item	Capital Cost \$
3.4	Permits and Environmental Studies	
	Environmental sensitivity of region <u>Moderate</u> Are harmful contaminants produced? <u>Yes</u>	
	Do contaminants require 'normal' or 'special' handling? <u>Normal</u>	
	Subsection Total (enter cost from graph)	175,000
3.5	Project Management and Preproduction Scheduling	
	Average monthly cost\$ 9,500 /monthDuration of preproduction work16 months	
	Subsection Total (multiply two lines above)	152,000
3.6	Access to Minesite	
3.6.1	New road construction:	
3.6.2	km x <u>\$125,000</u> /km = <u>\$625,000</u> Upgrading existing roads: km x \$ /km = \$ None	
3.6.3	Road Bridges: (total cost) \$ None	
3.6.4/7	Other Access Costs: <u>\$ None</u>	
•	Subsection Total (add 4 lines above)	625,000
3.7	Site Preparation	
	Site Site Area Cost Category\$	
	B 16,000 180,000	
	C	

9 **33**

D

Total

180,000

ų

Reference Section No.	Item		Capital Cost \$
3.8	Camp Installation		
	Total manpower <u>62</u> (see Form 2(b)) Camp capacity <u>69</u> personnel		
	Subsection Total (enter cost from graph)		395,000
3.9	Site Services		
	Ramp or shaft access <u>Shaft</u> Production rate <u>260</u> t.p.d.		
	Subsection Total (enter cost from graph)		62,000
3.10	Electrical Power & Compressed Air		
3.10.1	Electrical Power		
	Site power requirements <u>1350</u> kW Powerline:		
	Line Cost <u>5</u> km x \$30,000/km = \$150,000 Site Cost <u>\$200,000</u>		
	Total Powerline Cost \$3	350 , 000	
	Generators: (enter cost from graph) =	N/A	
3.10.2	Compressor Plant		
	Compressed air requirements <u>1.60</u> m ³ /sec. Compressor inst'n. (enter cost from graph) <u>\$1</u>	160,000	
	Subsection Total (add 3 lines above)		510,000
3.11	Offices, Shops, Dry, Warehouse		
	Subsection Total (enter cost from graph)		189,000

·· .

.

Reference Section No.	Item	Capital Cost \$
3.12	Mine Access Complete 3.12.1, 3.12.2 or 3.12.3 below.	
3.12.1	Shaft2-Compt. TimberShaft330m	
	Mobilize, setup, teardown, demobilize\$ 225,000Shaft collar\$ 155,000Shaft $315m \times $ 4,60\%m$ = \$1,449,000Shaft changeover to skipping= \$ 40,000Total Shaft Costs (add 4 lines above)	<u>1,869,000</u>
3.12.2	Decline Depth of lowest level m	
	Mobilize, setup, teardown, demobilize\$Decline portal\$Decline excavation\$Total Decline Costs (add 3 lines above)	<u> </u>
3.12.3	Adit(s) Mobilize, setup, teardown, demobilize \$ Adit portal \$ Adit excavation m x \$/m = \$ Internal ramp (+15%) m x \$/m = \$ Internal ramp (-15%) m x \$/m = \$	
	Total Adit Costs (add 5 lines above)	<u>N/A</u>

5 01 5

3.13	Ancillary Shaft Excavations & Installations	
3.13.1	Shaft stations: 7 x \$63,500 ea. =	\$444,500
3.13.2	Loading pocket: =	\$ 45,000
3.13.3	Lip pockets: 3 x \$15,000 ea. =	\$ 45,000
3.13.4	Spill handling: =	\$ 5,000
3.13.5	Shaft bottom construction: =	\$ 10,000
	Subsection Total (add 5 lines above)	\$ 549,500
	· · ·	
3.14	Hoisting System, Headframe & Bin	
	Hoisting depth <u>320</u>	m
	Hoisting capacity (ore & waste)40	tonnes/hour
3.14.1	Hoist & Hoistroom	
	Hoist selected:	
	Motor size <u>125</u> kw	
	Drum diameter <u>6</u> ft.	
	Total cost, hoist & hoistroom	\$620,000
3.14.2	Headframe & Collarhouse	
	Headframe height 26 m	
	Total cost, headframe & collarhouse	\$265,000
3.14.3	Headframe Bins	
0.11.0	Bin or 'dump area' Dump area	
	If bin, what size? N/A tonnes	
	Total cost, bin or dump area	\$ 15,000
0 1 4 4		
3.14.4	<u>Conveyances</u>	
	Conveyance combination <u>Skip/Cage & Cwt.</u>	¢ 76 000
	Total cost, conveyances	\$ <u>76,000</u>
	Subsection Total (add 4 lines above)	\$ 976,000

Reference Section No.	Item	Capital Cost \$		
3.15	Ventilation & Mine Air Heating			
3.15.1	Primary ventilation fans \$ 21,500			
3.15.2	Mine air heaters <u>\$ 26,500</u>	t 10.000		
	Subsection Total (add 2 lines above)	\$ 48,000		
3.16	Underground Development			
3.16.1	Level Development			
	Production level development costs are approximated by the following:			
	Quantity of development per level:			
	Avg. x-cut length 30 m + strike length 300 m =	<u> 330</u> (a)		
	Cost per metre	<u>\$1,390</u> (b)		
	Annual Production Tonnage:			
	Multiply the two items below:			
	Daily production rate 260 t.p.d.			
	Working days per year 350 days			
	Annual production tonnage =	<u>91,000</u> (c)		
	Tonnes accessed per level:			
	Multiply the four items below:			
	Strike length between mining limits 300 m			
	Average stoping width3 m			
	Ore length between main levels m			
	Ore tonnage factor 2.7 t/m ³			
	Tonnes accessed =	<u>77,760</u> (d)		
	Total Preproduction Level Development Cost			

$= \frac{(a) \times (b) \times (c) \times 2}{(d)}$		\$1,073,603
	USE	\$1,073,600

Reference Section No.	Item	Capital Cost \$
3.16.2	<u>Ore Pass System</u>	
	Distance between top & bottom production levels <u>18</u> Total cost, (enter cost from graph) <u>\$285</u>	
3.16.3	Primary Ventilation & Escapeway	
	Depth of bottom level below surface30Total cost, (enter cost from graph)\$480	00 m ,000
	Subsection Total (add 3 totals above)	1,838,600
3.17	Underground Installations	
3.17.1	Main Sumps and Pump Stations: Is mine 'dry', 'average' or 'wet'? <u>Dry</u>	<u>\$ 57,500</u>
3.17.2	Rockbreaker & Grizzly:	<u>\$ 95,000</u>
3.17.3	Ore Pass Controls: No. of controls <u>3</u> x <u>\$20,000</u> /control	\$ 60,000
3.17.4	Underground Electrical Room/Load Centre: No. of installations <u>3</u> x <u>\$37,000</u> /inst'n.	<u>\$111,000</u>
3.17.5	Miscellaneous Installations: No. of levels _7x <u>\$25,000</u> /level	<u>\$175,000</u>
	Subsection Total (add 5 lines above)	498,500
3.18	Equipment	
	Shaft, ramp or adit?ShaftTrack or trackless haulage?Track	
	Subsection Total (enter cost from graph)	<u>\$ 590,000</u>

Reference Section No.	Item	Capital Cost \$
3.19	Concentrator	
3.19.1	Concentrator construction:	
	Process type <u>Cyanide</u>	
	Construction costs, (enter cost from graph) <u>\$3,600,000</u>	
3.19.2	Tailings disposal area:	
	Construction costs, (enter cost from graph) <u>\$ 180,000</u>	
	Subsection Total, (add 2 lines above) <u>3</u>	<u>,780,000</u>
3.20	Cost Contingency	
3,20,1	Contingency for items omitted 5 %	
3.20.2	Contingency for variations in conditions 5 %	
3.20.3	Contingency for delays due to location 3 %	
	Total Contingency Percentage, (add 3 lines above)	<u>13</u> %
	Transfer all subsection totals to the summary page.	

FORM 3(b)

ONGOING CAPITAL COSTS

SUMMARY (costs are developed on the next two pages)

	Year <u>1</u>	Year 2	Year <u>3</u>	Year 4	Year 5
Ongoing Capital Development	308 ,9 51	308,951	308,951	30,895*	
Exploration Development	61,790	61,790	61,790	61,790	61,790
Exploration Diamond Drilling	27,720	27,720	27,720	27,720	27,720
Equipment Replacement	14,750	38,350	59,000	88,500	26,550
Subtotal	<u>413,211</u>	436,811	457,461	208,905	116,060
Regional Cost Factor	1.16	1.16	1.16		1.16
TOTAL ONCOINC CADITAL COST	479,325	506,700	530 , 655	242,330	134,630
TOTAL ONGOING CAPITAL COST	······	·			

Mine life is approximately 5 years. Because Preproduction Capital
 Costs allow for development of 2 year's stope tonnage, Ongoing Capital
 Development has been reduced to 10% in Year 4 and 0% in Year 5.

ONGOING CAPITAL COSTS - Detailed Calculation Form

Reference Section No.	Item	Capital Cost \$/Year
3.21	Ongoing Capital Development (O.C.D.) Calculation is similar to that used for preproduction level development, Form 3(a), Section 3.16.1, except that results are NOT multiplied by 2.	
	Ongoing Capital Development Costs can be approximated by the following:	
	Quantity of development per level <u>330</u> m	
	Cost/metre (Owner's cost) x \$ <u>800</u> /m (e)	
	Annual production rate x <u>91,000</u> tonnes/year	
	Tonnes accessed/level ÷ <u>77,760</u> tonnes/level	
	Total Ongoing Development Costs \$30	08,951 (f)
3.22	Exploration Development	
		61 , 790
3.23	Exploration Diamond Drilling The annual cost of exploration diamond drilling is approximated by the following:	
	<u>Quantity of drilling/setup</u> : No. of holes <u>4</u> x length/hole <u>50</u> = <u>200</u>	_ (a)
	Annual quantity of exploration development:	
	Total 0.C.D. $308,951$ (f) x 20% ÷ Cost/m 800 (e) = 77	(b)
	<u>Cost/metre drilled</u> = <u>45.0</u>) (c)
	<u>Setup interval</u> = <u>25</u>	(d)
	Total Exploration Diamond Drilling Cost	

Total Exploration Diamond Drilling Cost

$$= \frac{(a) \times (b) \times (c)}{(d)} = \frac{$27,720}{}$$

Reference Section		Capital Cost
No.	Item	\$/Year

3.24 Equipment Replacement

Total value of capital equipment <u>\$590,000</u> (From Form 3(a), Section 3.18)

Enter percentages from the graph and multiply by the total values above to estimate annual replacement costs by year.

	<u>% of Total Va</u>		otal Annual Lacement Costs
Year 1	2.5		14,750
Year 2	6.5		38,350
Year 3	10.0		59,000
Year 4	15.0		88,500
Year 5	18.0	x 25% *	26,550

* Because this is the last year of operation.

FORM 4

REGIONAL COST FACTORS

Project Location

British Columbia - Use Blanket Factors

CAPITAL COST FACTOR

Cost Classification Area	Factor 1	onal Cost for Table 4.3)		ution of 1 Costs	~)	Multiplication Product	
Labour		X		%	=		(a)
Plant & Equipment		X		%	=		(b)
Materials & Consumabl	es	X		%	=		(c)
Hydro Power		X		%	=		(d)
Transportation		x		%	=		(e)
Provincial Tax		X		%	п		(f)
		Ť	OTAL =	100 %			

CAPITAL COST REGIONAL COST FACTOR (sum a to f) =

OPERATING COST FACTOR

Cost Classification Area	Factor f	nal Cost or able 4.3)	Percentag Distributio Operating C (Determined by	n of osts		iplicatio Product	n
Labour	<u> </u>	X		% :			(g)
Plant & Equipment		X		% :	=		(h)
Materials & Consumab	les	X		% =	=		(i)
Hydro Power	<u></u>	X		% :	=		(j)
Transportation		X		% :	=		(k)
Provincial Tax		X		% :	=		(1)

TOTAL = 100 %

OPERATING COST REGIONAL COST FACTOR (sum g to 1) =

FORM 5(a)

GEOLOGICAL TONNES & GRADE

<u>SUMMARY</u> - From Forms 5(b)		Unit of Measurement				
-	-	Gold (Au) Silver (Ag) N/A	- -		conne conne N/A	
	Cross Section No.	Total To of Minerali		Tot Primary Metal	cal Units of M Secondary <u>Metal</u>	letal Tertiary <u>Metal</u>
	$ \begin{array}{r} 0 + 00E \\ 0 + 50E \\ 0 + 100E \\ 0 + 150E \\ 0 + 200E \\ 0 + 250E \\ \\ \\ \\ \\ $	43,875 72,900 100,575 88,425 70,200 105,367) 5 5)	<u>667,778</u> <u>890,676</u> <u>1,026,189</u> <u>903,487</u> <u>856,615</u> <u>1,166,371</u>	2,874,866 3,946,725 4,327,020 3,880,919 3,291,327 5,987,728	Fit Image: Section of the section of
TOTALS		(A) 481,342		(B) 5,511,116	(C) 24,308,585	(D) N/A
GEOLOGIC/	DLOGICAL RES AL RESERVE G nary Metal		=		tonnes (A) g/tonne	
	Secondary Metal (C/A) = Tertiary Metal (D/A) =			50.50 g/tonne N/A		

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 00

	Mineralized Area				
	А	В	С	D	
Diamond Drill Hole No.	<u> </u>				
Area of Mineralization (m²)		195		130	
Grade of Mineralized Area:					
Primary Metal		17.14		12.34	
Secondary Metal		68.24		61.45	
Tertiary Metal					
Strike Length Represented by Cross-section (m)		50		50	
Volume of Mineralization (m³)	,	9,750		6,500	
Tonnage Factor (tonnes/m³)	<u></u>	2.7		2.7	
Tonnes of Mineralization	<u></u>	26,325		17,550	
Total Units of Metal:					
Primary Metal		451,211		216,567	
Secondary Metal		1,796,418		1,078,448	
Tertiary Metal					

TOTAL TONNES (A + B + C + D)

43,875

	Total Units of Metal	Average Grade
Primary Metal	667 , 778 g	15.22 g/tonne
Secondary Metal	2,874,866 g	65.52 g/tonne
Tertiary Metal		

=

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 50

Mineralized Area С А В D Diamond Drill Hole No. 330 210 Area of Mineralization (m²) Grade of Mineralized Area: Primary Metal 12.42 11.90 Secondary Metal 50.60 59.70 Tertiary Metal --Strike Length Represented by Cross-section (m) 50 50 Volume of Mineralization (m³) 16,500 10,500 2.7 2.7 Tonnage Factor (tonnes/m³) Tonnes of Mineralization 44,550 28,350 Total Units of Metal: Primary Metal 553,311 337,365 2,254,230 Secondary Metal 1,692,495 Tertiary Metal

TOTAL TONNES (A + B + C + D)

= 72,900

	Total Units of Metal	Average _Grade	
Primary Metal	890,676	12.22	
Secondary Metal	3,946,725	54.14	
Tertiary Metal			

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 100

		Mineral	ized Area	
	А	В	С	D
Diamond Drill Hole No.		±		
Area of Mineralization (m²)	445		300	
Grade of Mineralized Area:				
Primary Metal	9.72		10.92	
Secondary Metal	45.6		39.2	
Tertiary Metal				
Strike Length Represented by Cross-section (m)	50		50	
Volume of Mineralization (m³)	22,250		15,000	
Tonnage Factor (tonnes/m³)	2.7		2.7	
Tonnes of Mineralization	60,075		40,500	····
Total Units of Metal: Primary Metal Secondary Metal	<u>583,92</u> 9		442,260	
Tertiary Metal	2 <u>,739,4</u> 20 		1 <u>,587,6</u> 00	
TOTAL TONNES (A + B + C + D)	=	5		
	Total Units of Metal		erage rade	
Primary Metal	1,026,189		10.20	

4,327,020

43.02

Tertiary Metal

Secondary Metal

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 150

		Minerali	zed Area	
	А	В	С	D
Diamond Drill Hole No.				
Area of Mineralization (m²)		390	265	
Grade of Mineralized Area:				
Primary Metal		9.55	11.20	
Secondary Metal	·	45.71	41.21	
Tertiary Metal		**	+=	
Strike Length Represented by Cross-section (m)		50	50	
Volume of Mineralization (m³)		19,500	<u>13,250</u>	
Tonnage Factor (tonnes/m³)	. <u></u>	2.7	2.7	
Tonnes of Mineralization		52,650	35,775	
Total Units of Metal:				
Primary Metal		502,807	400,680	
Secondary Metal		2,406,631	1,474,288	
Tertiary Metal				

TOTAL TONNES (A + B + C + D) = 88,425

	Total Units of Metal	Average Grade
Primary Metal	903,487	10.22
Secondary Metal	3,880,919	43.89
Tertiary Metal		

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 200

Mineralized Area А В С D Diamond Drill Hole No. 325 195 Area of Mineralization (m²) Grade of Mineralized Area: Primary Metal 13.32 10.34 Secondary Metal 51.07 39.91 Tertiary Metal --Strike Length Represented by Cross-section (m) 50 50 Volume of Mineralization (m³) 16,250 9,750 Tonnage Factor (tonnes/m³) 2.7 2.7 Tonnes of Mineralization 43,875 26,325 Total Units of Metal: Primary Metal 584,415 272,200 Secondary Metal 2,240,696 1,050,631 Tertiary Metal

TOTAL TONNES (A + B + C + D)

70,200

	Total Units of Metal	Average Grade
Primary Metal	856,615	12.20
Secondary Metal	3,291,327	46.88
Tertiary Metal		_

=

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No. 0 + 250

3		Mineraliz	zed Area	
	А	В	С	D
Diamond Drill Hole No.	••••••••••••••			
Area of Mineralization (m²)		446.5		334
Grade of Mineralized Area:				
Primary Metal		9.85	*****	12.70
Secondary Metal		39.74		79.67
Tertiary Metal			•	
Strike Length Represented by Cross-section (m)		50		50
Volume of Mineralization (m³)		22,325		16,700
Tonnage Factor (tonnes/m³)		2.7		2.7
Tonnes of Mineralization		60,277		45,090
Total Units of Metal:				
Primary Metal	••••••••	593,728		572,643
Secondary Metal		2,395,408		3,592,320
Tertiary Metal			-	

TOTAL TONNES (A + B + C + D) = 105,367

	Total Units of Metal	Average Grade
Primary Metal	1,166,371	11.07
Secondary Metal	5,987,728	56.83
Tertiary Metal	-	-

FORM 5(c)

IN-SITU TONNES & GRADE

SUMMARY - From Forms 5(d)

Unit of <u>Measurement</u>

Primary metal is Secondary metal is	<u>Gold (Au)</u> Silver (Ag)		g/tonne g/tonne	-
Tertiary metal is	N/A		N/A	-
Cross Section No	Total In-Situ Tonnes	Tot Primary Metal	al Units of M Secondary Metal	etal Tertiary Metal
$\frac{0 + 00E}{0 + 50E}$ $\frac{0 + 100E}{0 + 150E}$ $\frac{0 + 200E}{0 + 250E}$	49,410 76,005 105,300 91,800 75,195 111,577	<u>667,778</u> <u>841,217</u> <u>971,271</u> <u>848,576</u> <u>813,885</u> <u>1,166,371</u>	2,874,866 3,727,053 4,093,740 3,643,197 3,127,137 5,987,728	
	(A)	(B)	(C)	(D)
TOTALS	509,287	5,309,098	23,453,721	
TOTAL IN-SITU RESERVE IN-SITU RESERVE GRADE: Primary Metal (B/ Secondary Metal (C/ Tertiary Metal (D/	A) =	<u> </u>	tonne	

IN-SITU TONNES & GRADE

Cross-Section No.	0 + 00			
		A	Mining Zo B	<u> </u>
AREAS (Within Mining	limits)	A	D	C D
Area of Mineralizati	•		195	130
Area of Waste	(m ²)		23	
Total Area	(m²)		218	148
VOLUMES (Within Mini	ng Limits)			
Strike Length Repres Cross-section (m)	ented by		50	50
Volume of Mineraliza	tion (m³)		9,750	6,500
Volume of Waste	(m³)		1,150	900
Total Volume	(m³)		10,900	7,400
TONNES (Within Minin	g Limits)		······································	
Tonnage Factor - Ore	(tonnes/m³)		2.7	2.7
Tonnage Factor - Was	te (tonnes/m³)	<u></u>	2.7	2.7
Tonnes of Mineraliza	tion		26,325	17,550
Tonnes of Waste			3,105	2,430
Tonnes of Mineraliza	tion & Waste (Ore)		29,430	19,980
TOTAL TONNES OF ORE	- ALL ZONES		49,410	_ (a)
GRADES OF MINERALIZE	D AREAS (Geological	Grade)		
Primary Metal			17.14	12.34
Secondary Metal			68.24	61.45
Tertiary Metal		. <u></u>		
UNITS OF METAL (Tonn	es of Mineralizatio	n x Geol	ogical Grade)	
Primary Metal			451,211	216,567
Secondary Metal			1,796,418	<u>1,078,448</u>
Tertiary Metal			-	<u> </u>
<u>Total Units Al</u>	<u>1 Zones</u> (b)	Av (w	erage Grade All ithin mining li	<u>Zones</u> (b) ÷ (a) mits)
Primary	667,778		13.52	
Secondary	2,874,866		58.18	
Tertiary				

IN-SITU TONNES & GRADE

IN-SITU RESERVE BY CROSS-SECTION

Cross-Section No.	0 + 50				
			Mining	Zone	D
AREAS (Within Mining L	imite)	А	В	L	D
Area of Mineralization		312		198	
Area of Waste	(m ²)	32		21	**** **** ***
Total Area	(m ²)	344		219	<u></u>
	·····				
<u>VOLUMES</u> (Within Mining	Limits)		i i		
Strike Length Represen Cross-section (m)	ted by	50		50	
Volume of Mineralizati	on (m³)	15,600		9,900	·
Volume of Waste	(m ³)	1,600		1,050	
Total Volume	(m ³)	17,200		10,950	
TONNES (Within Mining	Limits)				
Tonnage Factor - Ore	(tonnes/m³)	2.7		2.7	
Tonnage Factor - Waste	(tonnes/m³)			2.7	
Tonnes of Mineralizati	on	42,120		26,730	
Tonnes of Waste		4,320	- <u></u>	2,835	
Tonnes of Mineralizati	on & Waste (Ore)	46,440		29,565	
TOTAL TONNES OF ORE -	ALL ZONES		76,0	<u>05</u> (a)	
GRADES OF MINERALIZED	AREAS (Geological	Grade)	<u></u>	···; ······	· · · · ·
Primary Metal		12.42		11.9	
Secondary Metal		50.60		59.7	
Tertiary Metal					
	- C. Marine - 7.4		<u> </u>		
UNITS OF METAL (Tonnes	of Mineralizatio	-		-	
Primary Metal Secondary Metal		523,130	·····	<u>318,08</u> 7	
Tertiary Metal		2,131,272		1,595,781	
-	700000 (4)				
Total Units All	Zones (b)	<u>Avera</u> (with	<u>age Grade</u> nin mining	All Zones limits)	(b) ÷ (a)
Primary	841,217		11.07		
Secondary	3,727,053		49.04		
Tertiary					

IN-SITU TONNES & GRADE

Cross-Section No.	0 + 100				
		А	Mining B	Zone C	D
AREAS (Within Mining	imite)	A	D	C	U
Area of Mineralizatio		420		285	
Area of Waste	(m²)	45	<u></u>	30	
Total Area	(m²) (m²)	465	<u></u>	315	
	\"" /				
VOLUMES (Within Minin	g Limits)				
Strike Length Represe	nted by			5.0	
Cross-section (m)				50	<u> </u>
Volume of Mineralizat		21,000		14,250	••••••
Volume of Waste	(m³)	2,250		1,500	
Total Volume	(m³)	23,250		15,750	
TONNES (Within Mining	Limits)				
Tonnage Factor - Ore	(tonnes/m³)	2.7		2.7	
Tonnage Factor - Wast	e (tonnes/m³)	2.7		2.7	
Tonnes of Mineralizat	ion	56,700		38,475	<u>.</u>
Tonnes of Waste		6,075		4,050	<u></u>
Tonnes of Mineralizat	ion & Waste (Ore)	62,775		42,525	
TOTAL TONNES OF ORE -	ALL ZONES		105,3	00 (a)	
GRADES OF MINERALIZED	AREAS (Geologica	Grade)	<u> </u>		
Primary Metal		9.72		10.92	
Secondary Metal		45.6		39.20	
Tertiary Metal				<u> </u>	
				\ \	
UNITS OF METAL (Tonne	S OF MINEralization		ical Graue		
Primary Metal		<u>551,124</u>	<u></u>	420,147	
Secondary Metal		2 <u>,585,5</u> 20	<u>. . </u>	1 <u>,508,2</u> 20	
Tertiary Metal		,		<u></u>	
Total Units All	Zones (b)		age Grade hin mining		(b) ÷ (a)
Primary	971,271		9.22	-	
Secondary	4,093,740		38.88	-	
Tertiary	800 800		-	-	

IN-SITU TONNES & GRADE

Cross-Section No.	0 + 150				
			Mining	Zone	
		А	В	С	D
AREAS (Within Mining L			0.65	050	
Area of Mineralization			365	250	
Area of Waste	(m ²)		40	25	u nitis (
Total Area	(m²)		405	275	
VOLUMES (Within Mining	Limits)	<u></u>			
Strike Length Represen	ted by		- 0		
Cross-section (m)	(-)		50	50	
Volume of Mineralizati			18,250	12,500	
Volume of Waste	(m ³)	·····	2,000	1,250	
Total Volume	(m³)		20,250	13,750	
TONNES (Within Mining	Limits)				
Tonnage Factor - Ore	(tonnes/m³)		2.7	2.7	
Tonnage Factor - Waste	(tonnes/m³)		2.7	2.7	
Tonnes of Mineralizati	on		49,275	33,750	
Tonnes of Waste			5,400	3,375	
Tonnes of Mineralizati	on & Waste (Ore)		54,675	37,125	
TOTAL TONNES OF ORE -	ALL ZONES		91,8	300 (a)	
GRADES OF MINERALIZED	ARFAS (Geologica	Grade)			
Primary Metal	(add rog rou		9.55	11.20	
Secondary Metal		<u>نبي , انتاع</u>	45.71	41.21	
Tertiary Metal			-		
	· · · · · · · · · · · · · · · · · · ·			······································	
UNITS OF METAL (Tonnes	of Mineralizatio	on x Geol	-	e)	
Primary Metal			470,576	<u>378,00</u> 0	
Secondary Metal			2,252,360	1 <u>,390,8</u> 37	
Tertiary Metal			-	<u> </u>	
Total Units All	Zones (b)	Ave	erage Grade ithin mining	All Zones	(b) ÷ (a)
Primary	848,576	(w	9.24	,	
Secondary	3,643,197		39.69	-	
Tertiary	0,040,137			-	
· · · · · · · · · · · · · · · · · · ·				-	

IN-SITU TONNES & GRADE

Cross-Section No.	0 + 200				
		А	Mining B	g Zone C	D
AREAS (Within Mining	limits)	0	D	C	U
Area of Mineralizatio			309	185	
Area of Waste	(m ²)		36	27	··· ·· ···
Total Area	(m²)		345	212	
VOLUMES (Within Minim	ng Limits)				
Strike Length Represe Cross-section (m)	ented by		50	50	
Volume of Mineraliza	tion (m³)		15,450	9,250	
Volume of Waste	(m³)		1,800	1,350	
Total Volume	(m³)		17,250	10,600	
TONNES (Within Mining	g Limits)	<u></u>	. <u></u>	·	
Tonnage Factor - Ore	(tonnes/m³)		2.7	2.7	
Tonnage Factor - Was	te (tonnes/m³)	•	2.7	2.7	
Tonnes of Mineraliza	tion		41,715	24,975	
Tonnes of Waste			4,860	3,645	
Tonnes of Mineraliza	tion & Waste (Ore)		46,575	28,620	
TOTAL TONNES OF ORE .	- ALL ZONES		75,	195 (a)	
GRADES OF MINERALIZE	D AREAS (Geologica	l Grade)			
Primary Metal			13.32	10.34	
Secondary Metal		<u></u>	51.07	39.91	
Tertiary Metal				-	
UNITS OF METAL (Tonne	es of Mineralizatio	on x Geol	ogical Grade	≘)	
Primary Metal			555,644	258,241	
Secondary Metal		••••••••	2,130,385	<u>996,75</u> 2	·
Tertiary Metal			_		
<u>Total Units Al</u>	<u>1 Zones</u> (b)		erage Grade ithin mining		(b) ÷ (a)
Primary	813,885	•	10.82	- 1	
Secondary	3,127,137		41.59	-	
Tertiary			······		

IN-SITU TONNES & GRADE

Cross-Section No.	0 + 250				
			Mining Z	one	_
	• • • \	А	В	С	D
AREAS (Within Mining L					004
Area of Mineralization			446.5		334
Area of Waste	(m ²)				21
Total Area	(m²)	<u></u>	471.50	<u></u>	355
VOLUMES (Within Mining	Limits)			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Strike Length Represen Cross-section (m)	ted by		50		50
Volume of Mineralizatio	on (m³)		22,325		16,700
Volume of Waste	(m ³)		1,250		1,050
Total Volume	(m ³)		23,575		17,750
TONNES (Within Mining					
Tonnage Factor - Ore	•				2.7
Tonnage Factor - Waste			2.7	<u></u>	2.7
Tonnes of Mineralizati	on		60,277		45,090
Tonnes of Waste		. <u></u>	3,375	<u> </u>	2,835
Tonnes of Mineralizati	on & Waste (Ore)		63,652		47,925
TOTAL TONNES OF ORE -	ALL ZONES			(a)	
GRADES OF MINERALIZED	AREAS (Geological	Grade)		
Primary Metal	· · · · · · · · · · · · · · · · · · ·		, 9.85		12.70
Secondary Metal			39.74		79.67
Tertiary Metal			-	<u></u>	
		<u> </u>			
UNITS OF METAL (Tonnes	of Mineralizatio	on x Ge	ological Grade)		
Primary Metal			593,728		572,643
Secondary Metal		e	2,395,408		3,592,320
Tertiary Metal					-
<u>Total Units All</u>	<u>Zones</u> (b)		Average Grade Al (within mining l		(b) ÷ (a)
Primary	1,166,371		10.45		
Secondary	5,987,728		53.66		
Tertiary					

FORM 5(e)

MINEABLE TONNES AND GRADE TO MILL

ADJUSTMENT FOR MINING RECOVERY

	Total In-Situ <u>Reserve</u>	Miring Recovery Factor	Actually Mined	
Tonnes =	509,287	x <u>0.90</u> =	<u> 458,358 (a</u>	a)
Primary Metal – Units = - Grade =	5,309,098 g 10.42 g/t	x <u>0.90</u> =	4,778,188 g (H 10.42 g/t (d	b) c)
Secondary Metal - Units = - Grade =	23,453,721 g x 46.05 g/t	x <u>0.90</u> =		d) e)
Tertiary Metal - Units = - Grade =	<u>N/A</u> >	< =	<u> </u>	f) g)
ADJUSTMENT FOR DILUTION				
Dilution Factor		=	<u> 1.15 (</u> ł	h)
Diluted Tonnes (a x h)		=		i)
"MINEABLE GRADES"				
Primary Metal (c/h)		=	<u>9.06 g/t</u> (5	j)
Secondary Metal (e/h)		=	40.04 g/t (k	k)
Tertiary Metal (g/h)		=	<u>N/A</u> (1	1)
ADJUSTMENT FOR STOPE LOSSES				
Stope Losses Factor		=	<u> 0.95 </u> (n	m)
"MINEABLE TONNES" to Mill	(ixm)	=	<u> 500,756 (</u> r	n)
Units of Metal/Tonne in Mill F	eed:			
Primary Metal (b/i)		=	9.06 g/t	
Secondary Metal (d/i)		-	40.05 g/t	
Tertiary Metal (f/i)		=	<u>N/A</u>	

FORM 5(f)

.

1

Y

MINERAL DEPOSIT VALUE

	Primary Metal	Secondary Metal	Tertiary Metal
Units of Metal/Tonne in Mill Feed	9.06 g	40.05 g	<u>N/A</u>
Mill Recovery Factor	0.95	0.85	
Units of Metal Recovered Per Tonne of Mill Feed	8.61 g	34.04 g	
Current Metal Price/Unit		\$0.23/g (\$7.15 Cdn/oz)	
Value Per Tonne of Ore after Milling	\$130.10	\$7.83	
TOTAL VALUE PER TONNE OF ORE AFTER MILLING	=	\$137.93	
NET VALUE PER TONNE OF ORE AFTER SMELTING/REFINING (Approximation only)	= .	\$130.00	

FORM 6

PRELIMINARY CASH FLOW SUMMARY

Reference Section	Cash Flow (Initial 5 year	rs)					
No.				\$ i n	1,000's	5	
	Year	0	_1	_2	_3	4	_5
Form 3(a)	Preproduction Capital	1 <u>6,742</u>					
Form 3(b)	Ongoing Capital		479	507	531	242	135
	Total Capital	1 <u>6,742</u>	479	507	531	242	135
Form 3(a) Section 3.16.1	Annual Production <u>91,000</u> tonnes						
Form 2(a)	Operating Cost/Tonne \$100.53/tonne						
	Annual Operating Costs		<u>9,148</u>	<u>9,148</u>	9,148	9,148	9,148
	Total On-Site Costs	1 <u>6,742</u>	9,627	9,655	9,679	9,390	9,283
Form 2(a)	Freight Charges						
Section 2.14	<u>\$ N/A _</u> /tonne of Ore Annual Freight Costs		<u></u>				
Form 5(f)	Total Costs Revenue/Tonne after Smelting \$130.00/tonne	1 <u>6,742</u>	<u>9,627</u>	9,655	<u>9,679</u>	<u>9,390</u>	<u>9,283</u>
	Total Revenue		1 <u>1,830</u>	1 <u>1,830</u>	1 <u>1,830</u>	1 <u>1,830</u>	1 <u>1,830</u>
	* Cash Flow - By Year	-1 <u>6,742</u>	2,203	2,175	2,151	2,440	2,547
	* Cumulative Cash Flow	-1 <u>6,742</u> -	1 <u>4,539</u>	-1 <u>2,364</u>	-1 <u>0,213</u>	- <u>7,773</u>	-5,226

EXAMPLE TWO

FORM 1

BASIC INFORMATION

Estimate Prepared By:	Henry Brown	Date:	June 13, 198
Name of Property:	PROFIT GOLD MINE		
Property Location:	10 km outside of V	al d'Or, Quebec	
Brief Description of Site and Local Area:	Uneven, dry a	rea with rock o	outcrops
			······
	مريد فيلافك	4	
Expected Overburden Cor (Depth and Type):		imal	<u></u>
Expected Overburden Cor (Depth and Type):			
Expected Overburden Cor (Depth and Type): Expected Rock Conditior		t ore and wall	rocks
(Depth and Type):	ns: <u>Competen</u>	t ore and wall	rocks
(Depth and Type): Expected Rock Condition	ns: <u>Competen</u> Conditions: <u>Mod</u>	t ore and wall	
<pre>(Depth and Type): Expected Rock Condition Expected Ground Water C Other Relevant Informat following tonnages</pre>	ns: <u>Competen</u> Conditions: <u>Mod</u> cion: <u>For the</u> s and grades are assu	t ore and wall erate purpose of this med:	s example, the
<pre>(Depth and Type): Expected Rock Condition Expected Ground Water C Other Relevant Informat following tonnages Geological tonnes</pre>	ns: <u>Competen</u> Conditions: <u>Mod</u> cion: <u>For the</u> s and grades are assu and grade: 900,000	t ore and wall erate purpose of this med: tonnes @ 11 g/t	s example, the conne Au
<pre>(Depth and Type): Expected Rock Condition Expected Ground Water C Other Relevant Informat following tonnages Geological tonnes In-situ tonnes and</pre>	ns: <u>Competen</u> Conditions: <u>Mod</u> cion: <u>For the</u> s and grades are assu and grade: 900,000 d grade: 850,000	t ore and wall erate purpose of this med: tonnes @ 11 g/t tonnes @ 10 g /	s example, the conne Au 'tonne Au
(Depth and Type): Expected Rock Condition Expected Ground Water C Other Relevant Informat following tonnages Geological tonnes In-situ tonnes and Ore horizon is fro	ns: <u>Competen</u> Conditions: <u>Mod</u> cion: <u>For the</u> s and grades are assu and grade: 900,000	t ore and wall erate purpose of this med: tonnes @ 11 g/t tonnes @ 10 g / elow surface.	s example, the conne Au 'tonne Au The deposit

Attach additional sheets as required.

FORM 2(a)

OPERATING COSTS

SUMMARY (costs are developed on the next two pages)

	\$/Tonne	
Stoping Costs	10.50	
Hoisting or Ramp Haulage Cost	2.15	
Level Haulage Cost	3.10	
General Mine Expense	4.85	
Surface Plant and Mine Services	8.61	
Staff and Administration	6.00	
Milling	20.00	
Subtotal	55.21	
Add Cost Contingency @ <u>11</u> %	6.07	
Subtotal	61.28	(a)
Regional Operating Cost Factor (blanket factor)	1.05	(b)
TOTAL OPERATING COST (a) x (b)	64.34	
Transportation of Mine Product	2.00	

FORM 2(a)

OPERATING COSTS

DETAILED CALCULATION FORM

Reference Section No.	Item	Operating Cost \$/Tonne Ore
2.2	Selection of Production Rate	
	Rate selected <u>417</u> tonnes/day Mining days per year <u>350</u>	
	Mining shifts per day <u>3</u>	
2.3	Selection of Mining Method Method selected <u>Blasthole</u>	
2.4	Stoping Costs	10.50
2.5	Selection of Mine Access and Haulage Method	
	Access selectedRampLevel haulage selectedTracklessDepth75 m (avg.)	
2.6	Hoisting or Ramp Haulage Cost	_2.15
2.7	Level Haulage Cost Haulage Distance <u>150 m (avg</u> .)	
	Haulage Capacity/Trip <u>2 yd.³</u> Cost	_3.10_
2.8	<u>General Mine Expense</u>	4.85

2.9 Surface Plant and Mine Services Power source selected Hydro Cost a) Labour 3.40 b) Materials and Operating Costs 1.35 c) Power 2.25 d) Camp (50% in camp) 1.60 e) Road Maintenance 0.01 Total Surface Plant and Mine Services 8.61 2.10 Staff and Administration 6.00 2.11 Milling Selection of Location Custom - Val d'Or Cost 20.00 2.14 Transportation of Mine Product i) Bullion N/A ii) Ore (enter cost from graph) 2.00 iii) Concentrate \$/tonne (a) (enter cost from graph) Concentrating Ratio (b) Cost/tonne mined (a) \div (b) N/A 3.20 Cost Contingency 3.20.1 Contingency for items omitted 5 % 3.20.2 Contingency for variations in conditions 5 % 3.20.3 Contingency for delays due to location 1 % Total Contingency Percentage, (add 3 lines above) 11 %

Transfer all subsection totals to the summary page.

FORM 2(b)

MANPOWER SCHEDULE

Reference Section No.	Item	Manpower
3.21	Ongoing Capital Development	1
2.4	StopingMining method selectedBlastholeProductivity (tonnes/manshift)47Production rate (tonnes/day)417Manpower required (b)/(a)	9
2.6	Hoisting or Ramp Haulage Hoisting: Shifts worked per day (c) Manpower required per shift 2 (d) Manpower required per day (c) x (d)	<u>N/A</u>
	Ramp: Vertical depth(e) Manpower required	3
2.7	Level Haulage Haulage method selected <u>2-yd.³</u> LHD Manpower required	4
2.8	<u>General Mine Expense</u> Track or trackless mine <u>Trackless</u>	10
	Subtotal Underground Manpower (including hoistman)	27
2.9	Surface Plant and Mine Services	10
2.10	Staff and Administration	11
2.11	Milling	<u>N/A</u>
	Subtotal Surface Manpower	21
	TOTAL ON-SITE MANPOWER	48

FORM 3(a)

PREPRODUCTION CAPITAL COSTS

SUMMARY (costs are developed on the next 8 pages)	\$	
Feasibility Studies and Detailed Engineering	205,000	
Additional Diamond Drilling and Sampling	338,250	
Permits and Environmental Studies	175,000	
Project Management and Preproduction Scheduling	114,000	
Access to Minesite	250,000	
Site Preparation	165,000	
Camp Installation	165,000	
Site Services	92,000	
Electrical Power & Compressed Air	495,000	
Offices, Shops, Dry, Warehouse	218,000	
Mine Access	2,190,000	
Ancillary Shaft Excavations & Installations	N/A	
Hoisting Systems, Headframes & Bins	N/A	
Ventilation & Mine Air Heating	70,000	
Underground Development	786,000	
Underground Installations	214,000	
Equipment	1,150,000	
Concentrator	<u>N/A</u>	
Subtotal	6,627,250	
Add Cost Contingency @ <u>11</u> %	728,998	
Subtotal	7,356,248	(a) _.
Regional Capital Cost Factor (blanket factor)	1.05	(b)
TOTAL PREPRODUCTION CAPITAL COST (a) x (b)	7,724,060	
USE	7,724,000	

PREPRODUCTION CAPITAL COSTS - Detailed Calculation Form

Referenc Section No.	e Item		Capital Cost \$
3.2	Feasibility Studies &	Detailed Engineering	
	For shaft or ramp acce		
	Subsection Total (ente		205,000
	Subsection local (ente	r cost from graph)	
3.3	Additional Diamond Dri	lling & Sampling	
3.3.1	Drilling from surface:		
	Number of holes	18	
	Average hole length	m	
	Cost/metre	\$ <u>65.00</u> /m	
	Subtotaï a)	\$204,750	
3.3.2	Underground drilling:		
	Number of holes	54	
	Average hole length	<u> </u>	
	Cost/metre	\$ <u>45.00</u> /m	
	Subtotal b)	\$ <u>121,500</u>	
3.3.3	Assaying samples:		
	Number of samples	1,000	
	Cost per a s say	\$ 12.00 ea.	
	Subtotal c)	\$ 12,000	
	Subsection Total (add	a + b + c	338,250

1

Reference Section No.	Item	Capital Cost \$
3.4	Permits and Environmental Studies	
	Environmental sensitivity of region Moderate	
	Are harmful contaminants produced? Yes	
	Do contaminants require 'normal' or 'special' handling? <u>Normal</u>	
	Subsection Total (enter cost from graph)	175,000
3.5	Project Management and Preproduction Scheduling	
	Average monthly cost\$ 9,500 /monthDuration of preproduction work12 months	
	Subsection Total (multiply two lines above)	
3.6	Access to Minesite	
3.6.1	New road construction:	
	$2 km \times \frac{100,000}{km} = \frac{20}{km}$	0,000
3.6.2	Upgrading existing roads:	
		0,000
3.6.3	Road bridges: (total cost) \$	N/A
3.6.4/7	Other Access Costs: \$	<u>N/A</u>
	Subsection Total (add 4 lines above)	250,000
3.7	Site Preparation	
	Site Site Area Cost Category m ² \$ A	

14,500

165,000

В

C D

Total

165,000

Reference Section No.	Item	Capital Cost \$
3.8	Camp Installation	
	Total manpower <u>48</u> (see Form 2(b)) Camp capacity 27 personnel	
	Subsection Total (enter cost from graph)	165,000
3.9	Site Services	
	Ramp or shaft accessRampProduction rate417t.p.d.	
	Subsection Total (enter cost from graph)	92,000
3.10	Electrical Power & Compressed Air	
3.10.1	Electrical Power	
	Site power requirements <u>1200</u> kW Powerline:	
	Line Cost <u>4</u> km x \$ <u>30,000</u> /km = <u>\$120,000</u> Site Cost <u>\$200,000</u>	
	Total Powerline Cost \$320,000	
	Generators: (enter cost from graph) =	
3.10.2	Compressor Plant	
	Compressed air requirements <u>1.85</u> m ³ /sec. Compressor inst'n. (enter cost from graph) <u>\$175,000</u>	
	Subsection Total (add 3 lines above)	495,000
3.11	Offices, Shops, Dry, Warehouse	
	Subsection Total (enter cost from graph)	218,000

Reference Section No.	Item	Capital Cost \$
3.12	Mine Access	
	Complete 3.12.1, 3.12.2, or 3.12.3 below.	
3.12.1	Shaft	
	Shaft type	
	Shaft depthm	
	Mobilize, setup, teardown, demobilize 💲	
	Shaft collar <u>\$</u>	
	Shaft m x <u>\$</u> /m = <u>\$</u>	
	Shaft changeover to skipping = <u>\$</u>	
	Total Shaft Costs (add 4 lines above)	<u>N/A</u>
3.12.2	Decline	
	Depth of lowest level <u>150</u> m	
	Mobilize, setup, teardown, demobilize \$ 160,000	
	Decline portal \$ 105,000	
	Decline excavation \$1,925,000	
	Total Decline Costs (add 3 lines above)	2,190,000
3.12.3	<u>Adit(s)</u>	
	Mobilize, setup, teardown, demobilize \$	
	Adit portal \$	
	Adit excavation m x \$/m = \$	
	Internal ramp (+15%) m x \$/m = \$	
	Internal ramp (-15%) m x \$/m = \$	
	Total Adit Costs (add 5 lines above)	<u>N/A</u>

.

Reference Section		Capital Cost
No.	Item	\$

ľ

Ì

3.13	Ancillary Shaft Excavations & Installations
3.13.1	Shaft stations:x <u>\$</u> ea. = <u>\$</u>
3.13.2	
3.13.3	Lip pockets: x <u>\$</u> ea. = <u>\$</u>
3.13.4	Loading pocket: = <u>\$</u> Lip pockets:x <u>\$</u> ea. = <u>\$</u> Spill handling: = <u>\$</u>
3.13.5	Shaft bottom construction: = \$
	Subsection Total (add 5 lines above) <u>\$ N/A</u>
3.14	Hoisting System, Headframe & Bin
	Hoisting depthm
	Hoisting capacity (ore & waste) tonnes/hour
3.14.1	Hoist & Hoistroom
	Hoist selected:
	Motor sizekw
	Drum diameter ft.
	Total cost, hoist & hoistroom \$
3.14.2	Headframe & Collarhouse
0.11.1	Headframe height m
	Total cost, headframe & collarhouse \$
0 14 0	
3.14.3	Headframe Bins
	Bin or 'dump area'
	If bin, what size? tonnes
	Total cost, bin or dump area \$
3.14.4	Conveyances
	Conveyance combination
	Total cost, conveyances \$
	Subsection Total (add 4 lines above) \$ N/A
	Subsection local (and 4 lines above) $\frac{3}{100}$ M/M

Reference Section No.	Item	Capital Cost \$
3.15	Ventilation & Mine Air Heating	
3.15.1 3.15.2	Primary ventilation fans <u>\$ 32,000</u> Mine air heaters <u>\$ 38,000</u>	
	Subsection Total (add 2 lines above)	\$ 70,000
3.16	Underground Development	
3.16.1	Level Development	
	Production level development costs are approximated by the following:	
	Quantity of development per level: Avg. x-cut length <u>15</u> m + strike length <u>55</u>	60_m = <u>565</u> (a)
	Cost per metre	<u>\$1,475</u> (b)
	Annual Production Tonnage:	
	Multiply the two items below: Daily production rate <u>417</u> Working days per year <u>350</u> Annual production tonnage =	t.p.d. days <u>145,95</u> 0 (c)
	Tonnes accessed per level:	
		m m t/m ³ <u>445,50</u> 0 (d)
	Total Preproduction Level Development Cost	;

$= \frac{(a) \times (b) \times (c) \times (c)}{(d)}$	2	\$ 546,043
• •	USE	\$ 546,000

Reference Section No.	Item	Capital Cost \$
3.16.2	<u>Ore Pass System</u> Distance between top & bottom production levels Total cost, (enter cost from graph) <u>S N/</u>	
3.16.3	Primary Ventilation & Escapeway	
	Depth of bottom level below surface15Total cost, (enter cost from graph)\$240.	50 m ,000
	Subsection Total (add 3 totals above)	786,000
3.17	Underground Installations	
3.17.1	Main Sumps and Pump Stations: Is mine 'dry', 'average' or 'wet'? <u>Avg.</u>	\$ 65,000
3.17.2	Rockbreaker & Grizzly:	<u>\$ N/A</u>
3.17.3	Ore Pass Controls: No. of controlsx <u>\$</u> /control	<u>\$ N/A</u>
3.17.4	Underground Electrical Room/Load Centre: No. of installations <u>2</u> x <u>\$37,000</u> /inst'n.	<u>\$ 74,000</u>
3.17.5	Miscellaneous Installations: No. of levels <u>3</u> x <u>\$25,000</u> /level	<u>\$ 75,000</u>
	Subsection Total (add 5 lines above)	214,000
3.18	Equipment	
	Shaft, ramp or adit? Ramp Track or trackless haulage? <u>Trackless</u>	
	Subsection Total (enter cost from graph)	\$1,150,000

ľ

ľ

•

Reference Section No.	Item			Capital Cost \$
		<u></u>		
3.19	Concentrator			
3.19.1	Concentrator construction: Process type Construction costs, (enter cost from graph)	\$		
3.19.2	Tailings disposal area: Construction costs, (enter cost from graph) Subsection Total, (add 2 lines above)	<u>\$</u>		N/A
3.20	Cost Contingency			
3.20.1	Contingency for items omitted	5	%	
3.20.2	Contingency for variations in conditions	<u>5</u> 1	%	
3.20.3	Contingency for delays due to location		%	
	Total Contingency Percentage, (add 3 lines a	bove)		%

Transfer all subsection totals to the summary page.

.

FORM 3(b)

ONGOING CAPITAL COSTS

SUMMARY (costs are developed on the next two pages)

	Year <u>1</u>	Year 2	Year <u>3</u>	Year 4	Year 5
Ongoing Capital Development	175,844	175,844	175,844	175,844	<u> 17,584</u> *
Exploration Development	35,169	35,169	35,169	35,169	35,169
Exploration Diamond Drilling	15,984	15,984	15,984	15,984	15,984
Equipment Replacement	28,750	74,750	115,000	172,500	207,000
Subtotal	255,747	<u>301,747</u>	<u>341,997</u>	399,497	275,737
Regional Cost Factor	1.05	1.05	1.05	1.05	1.05
TOTAL ONGOING CAPITAL COST	268,534	316,834	359,097	419,472	289,524

* Mine life is approximately 6 years. Ongoing Capital Development has been reduced to 10% in Year 5.

ľ

ľ

Í

Reference Section No.	Capita Cost Item \$/Yea	
3.21	Ongoing Capital Development (O.C.D.) Calculation is similar to that used for preproduction level development, Form 3(a), Section 3.16.1, except that results are NOT multiplied by 2.	
	Ongoing Capital Development Costs can be approximated by the following:	
	Quantity of development per level565 m	
	Cost/metre (Owner's cost) x $\frac{950}{m}$ (e)	
	Annual production rate x <u>145,950</u> tonnes/year Tonnes accessed/level ÷ 445,500 tonnes/level	
	Tonnes accessed/level÷445,500tonnes/levelTotal Ongoing Development Costs\$175,844(f)
3.22	Exploration Development Enter 20% of Ongoing Capital Development above	
3.23	Exploration Diamond Drilling The annual cost of exploration diamond drilling is approximated by the following:	
	<u>Quantity of drilling/setup</u> : No. of holes <u>4</u> x length/hole <u>60</u> = <u>240</u> (a)	
	<u>Annual quantity of exploration development</u> : Total O.C.D. <u>175,844</u> (f) x 20% ÷ Cost/m <u>950</u> (e) = <u>37</u> (b)	
	<u>Cost/metre drilled</u> = 45.00 (c)	
	Setup interval $= 25$ (d)	
	Total Exploration Diamond Drilling Cost = $\frac{(a) \times (b) \times (c)}{(a)}$ = \$15,984	

ONGOING CAPITAL COSTS - Detailed Calculation Form

(d)

,

Capital Cost \$/Year

3.24 Equipment Replacement

Total value of capital equipment <u>\$1,150,000</u> (From Form 3(a), Section 3.18)

Enter percentages from the graph and multiply by the total values above to estimate annual replacement costs by year.

	% of Total Value	Total Annual Replacement Costs
V 1		
Year 1	2.5	28,750
Year 2	6.5	74,750
Year 3	10	115,000
Year 4	15	172,500
Year 5	18	207,000

Page 1 of 1

FORM 4

REGIONAL COST FACTORS

Project Location

Quebec - Use Blanket Factors

CAPITAL COST FACTOR

Cost Classification Area	Facto	ional Cost r for Table 4.3)	D C	Percent istribu apital rmined	ution		Multiplication Product	
Labour			x		%	=.		(a)
Plant & Equipment	-		x	. <u> </u>	%	=		(b)
Materials & Consumable	s _		x	. <u> </u>	%	=		(c)
Hydro Power	-		x		%	=		(d)
Transportation			x	. <u> </u>	%	=		(e)
Provincial Tax			x		%	=		(f)
			TOTAL =	1(00_%			

CAPITAL COST REGIONAL COST FACTOR (sum a to f) =

OPERATING COST FACTOR

Cost Classification Area	Regional Cost Factor for (From Table 4.3)	Percentage Distribution Operating Costs (Determined by User)	Ņ	Multiplication Product
Labour	X	%	=	(g)
Plant & Equipment	X	%	=	(h)
Materials & Consumable	s x	<u> </u>	=	(i)
Hydro Power	X	0/	=	(j)
Transportation	X	%	=	(k)
Provincial Tax	X	<u> </u>	=	(1)
	Т	DTAL = 100 %		

OPERATING COST REGIONAL COST FACTOR (sum g to 1) =

EXAMPLE

NOTE:

G

Forms 5(a) to 5(d) have not been included in this example since the geological and in-situ tonnes and grades were assumed (see Form 1). This information is entered on Form 5(e) in order to complete the Mineral Deposit Value calculation, Form 5(f).

FORM 5(e)

,

۱

V

1

MINEABLE TONKES AND GRADE TO MILL

ADJUSTMENT FOR MINING RECOVERY

	Total In-Situ <u>Reserve</u>	Mining Recovery Factor	Actually <u>Mined</u>	、
Tonnes =	850,000	x <u>0.80</u> =	<u>680,000</u> (a))
Primary Metal - Units = - Grade =	8,500,000 10 g/t	x <u>0.80</u> =	<u>6,800,000</u> (b) <u>10 g/t</u> (c)))
Secondary Metal - Units = - Grade =		× =	<u>N/A</u> (d)))
Tertiary Metal Units = Grade =		X =	<u>N/A</u> (f) (g)	
ADJUSTMENT FOR DILUTION	Be forger men en mannen men men an en er for til de Mindelen kannen af annen er a som er er a		a waxayan da san san san san san san san san san sa	-
Dilution Factor		=	<u> 1.20 (h)</u>)
Diluted Tonnes (a x h)		=	816,000 (i))
"MINEABLE GRADES"				
Primary Metal (c/h)		=	8.33(j))
Secondary Metal (e/h)		=	<u> </u>	
Tertiary Metal (g/h)		=	<u> </u>)
ADJUSTMENT FOR STOPE LOSSES			Name	1011
Stope Losses Factor		=	<u> 0.90 (m)</u>)
<u>"MINEABLE TONNES</u> to Mill	(ixm)	=	<u>734,400</u> (n))
Units of Metal/Tonne in Mill Fe	ed:			
Primary Metal (b/i)		=	8.33	
Secondary Metal (d/i)		=		
Tertiary Metal (f/i)		=		
	₩.₩*****			-

FORM S(1)

.

I

K

MINERAL DEPOSIT VALUE

	Primary Metal	Secondary Netal	Tertiary Metal
Units of Metal/Tonne in Mill Feed	8.33	apa, dan san santaga a singa salama	40 W
Mill Recovery Factor	0.95		
Units of Metal Recovered Per Tonne of Mill Feed	7.91		
Current Metal Price/Unit	<u>\$15.11/g</u> (\$470 Cdn/oz)		
Value Per Tonne of Ore after Milling	\$119.52		
TOTAL VALUE PER TONNE OF ORE AFTER MILLING	Ξ	\$119.52	
NET VALUE PER TONNE OF ORE AFTER SMELTING/REFINING (Approximation only)		\$112.00	

F	ORM	6
---	-----	---

PRELIMINARY CASH FLOW SUMMARY

Reference Section	Cash Flow (Initial 5 year	·s)					
No.				\$ in	1,000's	5	
	Year	_0		_2	3	4	_5
Form 3(a)	Preproduction Capital	7,724					
Form 3(b)	Ongoing Capital		269	317	359	419	290
	Total Capital	7,724	269	317	359	419	290
Form 3(a) Section 3.16.1	Annual Production <u>145,950</u> tonnes						
Form 2(a)	Operating Cost/Tonne <u>\$64.34</u> /tonne						·
	Annual Operating Costs		9,390	<u>9,390</u>	9,390	<u>9,390</u>	9,390
	Total On-Site Costs	7,724	9,659	9,707	9,749	9,809	9,680
Form 2(a)	Freight Charges						
Section 2.14	<pre>\$ 2.00/tonne of Ore Annual Freight Costs</pre>		292	292	292	292	292
Form 5(f)	Total Costs Revenue/Tonne after Smelting <u>\$112.00</u> /tonne	7,724	9,951	9,999	1 <u>0,041</u>	1 <u>0,101</u>	9,972
	Total Revenue		<u>16,346</u>	<u>16,346</u>	16,346	<u>16,346</u>	16,346
	* Cash Flow - By Year	- <u>7,724</u>	6,395	6,347	6,305	6,245	<u>6,374</u>
	* Cumulative Cash Flow	- <u>7,724</u>	- <u>1,329</u>	<u>5,018</u>	11,323	17,568	23,942
	* Before depreciation and	taxes.					

ŀ

* Before depreciation and taxes.

APPENDIX B

1

APPENDIX B

BLANK CALCULATION FORMS

The following blank calculation forms are included in this section.

FORM 1	BASIC	INFORMATION

FORM 2 OPERATING COSTS

- (a) OPERATING COSTS
- (b) MANPOWER SCHEDULE

FORM 3 CAPITAL COSTS

- (a) PREPRODUCTION CAPITAL COSTS
- (b) ONGOING CAPITAL COSTS

FORM 4 REGIONAL COST FACTORS

FORM 5 MINERAL DEPOSIT VALUE

- (a) SUMMARY OF GEOLOGICAL TONNES & GRADE
- (b) GEOLOGICAL TONNES & GRADE RESERVE BY CROSS-SECTION
- (c) SUMMARY OF IN-SITU TONNES & GRADE
- (d) IN-SITU TONNES & GRADE RESERVE BY CROSS-SECTION
- (e) MINEABLE TONNES & GRADE TO MILL
- (f) MINERAL DEPOSIT VALUE
- FORM 6 PRELIMINARY CASH FLOW SUMMARY

FORM 1

ł

ļ

I

Į

BASIC INFORMATION

Estimate Prepared By:	Date:
Name of Property:	
Property Location:	
Brief Description of Site and Local Area:	
······································	
Expected Overburden Conditions (Depth and Type):	
<u></u>	
Expected Rock Conditions:	
Expected Ground Water Conditions:	
Other Relevant Information:	
<u></u>	

Attach additional sheets as required.

FORM 2(a)

OPERATING COSTS

<u>SUMMARY</u> (costs are developed on the next two pages)

ľ

ļ

	<pre>\$/Tonne</pre>
Stoping Costs	
Hoisting or Ramp Haulage Cost	
Level Haulage Cost	
General Mine Expense	
Surface Plant and Mine Services	
Staff and Administration	 .
Milling	
Subtotal	
Add Cost Contingency @%	
Subtotal	(a)
Regional Operating Cost Factor	(b)
TOTAL OPERATING COST (a) x (b)	
Transportation of Mine Product	

FORM 2(a)

OPERATING COSTS

DETAILED CALCULATION FORM

Í

Î

Reference Section No.	Item	Operating Cost \$/Tonne Ore
2.2	Selection of Production Rate	
	Rate selected tonnes/day	
	Mining days per year	
	Mining shifts per day	
2.3	Selection of Mining Method	· · ·
	Method selected	
0 1	Stanium Casta	
2.4	<u>Stoping Costs</u>	
2.5	Selection of Mine Access and Haulage Metho	bd
	Access selected	
	Level haulage selected	
	Depth	
2.6	Hoisting or Ramp Haulage Cost	
2.7	Level Haulage Cost	
	Haulage Distance	
	Haulage Capacity/Trip	
	Cost	
2.8	General Mine Expense	

2.9	Surface Plant and Mine Services	
	Power source selected	
	Cost	
	i) Labour ii) Materials and Operating Costs	
	iii) Power	
	iv) Camp v) Road Maintenance	
	Total Surface Plant and Mine Services	
2.10	Staff and Administration	
2.11	Milling	
	Selection of Location Cost	
2.14	Transportation of Mine Product	
	i) Bullion	N/A
	ii) Ore (enter cost from graph)	
	iii) Concentrate\$/tonne (a) (enter cost from graph)	
	Concentrating Ratio (b)	
	Cost/tonne mined (a) ÷ (b)	
3.20	Cost Contingency	
3.20.1		
3.20.2 3.20.3		
	Total Contingency Percentage, (add 3 lines above)	%

1

ľ

ļ

Transfer all subsection totals to the summary page.

FORM 2(b)

MANPOWER SCHEDULE

Í

I

Reference Section No.	Item	Manpower
3.21	Ongoing Capital Development	
2.4	<u>Stoping</u> Mining method selected Productivity (tonnes/manshift) (a) Production rate (tonnes/day) (b) Manpower required (b)/(a)	
2.6	Hoisting or Ramp Haulage Hoisting: Shifts worked per day (c) Manpower required per shift 2 (d) Manpower required per day (c) x (d)	
	Ramp: Vertical depth (e) Productivity (tonnes/manshift) (f) Production rate (tonnes/day) (g)	
	Manpower required (g)/(f)	
2.7	Level Haulage Haulage method selected Manpower required	
2.8	<u>General Mine Expense</u> Track or trackless mine	
	Subtotal Underground Manpower (including hoistman)	
2.9	Surface Plant and Mine Services	
2.10	Staff and Administration	
2.11	<u>Milling</u> Subtotal Surface Manpower TOTAL ON-SITE MANPOWER	

FORM 3(a)

PREPRODUCTION CAPITAL COSTS

ľ

<u>SUMMARY</u> (costs are developed on the next 8 pages)	\$	
Feasibility Studies and Detailed Engineering		
Additional Diamond Drilling and Sampling		
Permits and Environmental Studies		
Project Management and Preproduction Scheduling		
Access to Minesite	·····	
Site Preparation		
Camp Installation		
Site Services		
Electrical Power & Compressed Air		
Offices, Shops, Dry, Warehouse		
Mine Access		
Ancillary Shaft Excavations & Installations		
Hoisting Systems, Headframes & Bins		
Ventilation & Mine Air Heating		
Underground Development		
Underground Installations		
Equipment		
Concentrator		
Subtotal		
Add Cost Contingency @%		
Subtotal	<u></u>	(a)
Regional Capital Cost Factor	····	(b)
TOTAL PREPRODUCTION CAPITAL COST (a) x (b)		

PREPRODUCTION CAPITAL COSTS - Detailed Calculation Form

ľ

Reference Section No.	Item			Capital Cost \$
3.2	Feasibility Studies &	Detailed	Engineering	
	For shaft or ramp acce	ss?		
	Subsection Total (ente	r cost f	rom graph)	
3.3	Additional Diamond Dri	lling &	Sampling	
3.3.1	Drilling from surface:			
	Number of holes			
	Average hole length		m	
	Cost/metre	\$	/m	
	Subtotal a)	\$		
3.3.2	Underground drilling:			
	Number of holes			
	Average hole length		m	
	Cost/metre	\$	/m	
	Subtotal b)	\$		
3.3.3	Assaying samples:			
	Number of samples			
	Cost per assay	\$	ea.	
	Subtotal c)	\$		
	Subsection Total (add a	a + b +	c)	

Reference Section No.	Item	Capital Cost \$
		······
3.4	Permits and Environmental Studies	
	Environmental sensitivity of region	
	Are harmful contaminants produced? Do contaminants require 'normal' or 'special' handling?	
	Subsection Total (enter cost from graph)	
3.5	Project Management and Preproduction Scheduling	
	Average monthly cost\$/monthDuration of preproduction work months	
	Subsection Total (multiply two lines above)	
3.6	Access to Minesite	
3.6.1	New road construction:	
	km x <u>\$</u> /km = <u>\$</u>	
3.6.2	Upgrading existing roads:	
	km x \$km =\$km =Road bridges: (total cost)\$km =	
3.6.3		
3.6.4/7	Other Access Costs: \$	
	Subsection Total (add 4 lines above)	
3.7	Site Preparation	
	Site Site Area Cost Category m ² \$	
	A B	
	c	
	D	
	Total	

I

Reference Section No.	Item		Capital Cost \$
3.8	Camp Installation		
	Total manpower (see Form 2(b)) Camp capacity personnel		
	Subsection Total (enter cost from graph)		
3.9	Site Services		
	Ramp or shaft access t.p.d.		
	Subsection Total (enter cost from graph)		
3.10	Electrical Power & Compressed Air		
3.10.1	Electrical Power		
	Site power requirements kW Powerline:		
	Line Cost km x \$/km = \$ Site Cost \$		
	Total Powerline Cost	<u>\$</u>	
	Generators: (enter cost from graph) =	\$	
3.10.2	Compressor Plant		
	Compressed air requirements m³/sec. Compressor inst'n. (enter cost from graph)	\$	
	Subsection Total (add 3 lines above)		
3.11	Offices, Shops, Dry, Warehouse		
	Subsection Total (enter cost from graph)		

Y

F

Reference Section No.	Item	Capital Cost \$
3.12	Mine Access	
	Complete 3.12.1, 3.12.2, or 3.12.3 below.	
3.12.1	Shaft Shaft ture	
	Shaft typem	
	Mobilize, setup, teardown, demobilize\$Shaft collar\$Shaft m x \$/m=Shaft changeover to skipping=\$	
	Total Shaft Costs (add 4 lines above)	
3.12.2	Decline Depth of lowest level m	
	Mobilize, setup, teardown, demobilize\$Decline portal\$Decline excavation\$	
	Total Decline Costs (add 3 lines above)	
3.12.3	<u>Adit(s)</u>	
	Mobilize, setup, teardown, demobilize \$ Adit portal \$ Adit excavation m x \$/m = \$ Internal ramp (+15%) m x \$/m = \$ Internal ramp (-15%) m x \$/m = \$ Total Adit Costs (add 5 lines above)	
	Total Adit Costs (add 5 lines above)	

•

-- ·

Reference	Capital
Section	Cost
No. Item	\$

3.13	Ancillary Shaft Excavations & Installations
3.13.1	Shaft stations: x \$ ea. = \$
3.13.2	Loading pocket: = \$
3.13.3	Loading pocket: = <u>\$</u> Lip pockets:x <u>\$</u> ea. = <u>\$</u> Spill handling: = <u>\$</u>
3.13.4	Spill handling: = \$
3.13.5	Shaft bottom construction: = \$
	Subsection Total (add 5 lines above) <u>\$</u>
2 14	Uninting Cuntom Unadfurne & Din
3.14	Hoisting System, Headframe & Bin
	Hoisting depthm
	Hoisting capacity (ore & waste) tonnes/hour
3.14.1	<u>Hoist & Hoistroom</u>
	Hoist selected:
	Motor sizekw
	Drum diameter ft.
	Total cost, hoist & hoistroom <u>\$</u>
3.14.2	Headframe & Collarhouse
	Headframe height m
	Total cost, headframe & collarhouse
3.14.3	Headframe Bins
	Bin or 'dump area'
	If bin, what size? tonnes
	Total cost, bin or dump area \$
3.14.4	Conveyances
	Conveyance combination
	Total cost, conveyances \$
	Subsection Total (add 4 lines above) \$\$
	$\frac{\psi}{\psi}$

Reference Section No.	Item	Capital Cost \$
3.15	Ventilation & Mine Air Heating	
3.15.1	Primary ventilation fans	
3.15.2	Mine air heaters <u>\$</u>	
	Subsection Total (add 2 lines above)	\$
3.16	Underground Development	
3.16.1	Level Development	
	Production level development costs are approximated by the following:	
	Quantity of development per level: Avg. x-cut length m + strike length m =	(a)
	Cost per metre	(b)
	Annual Production Tonnage:	
	Multiply the two items below: Daily production ratet.p.d. Working days per yeardays Annual production tonnage =	(c)
	Tonnes accessed per level:	
	Multiply the four items below: Strike length between mining limits m Average stoping width m Ore length between main levels m Ore tonnage factor t/m ³ Tonnes accessed =	(d)
	Total Preproduction Level Development Cost	

•

$$= \frac{(a) \times (b) \times (c) \times 2}{(d)}$$

Reference Section No.	Item	Capital Cost \$
3.16.2	Ore Pass System Distance between top & bottom production levels m	
	Total cost, (enter cost from graph) \$	
3.16.3	Primary Ventilation & Escapeway	
	Depth of bottom level below surface Total cost, (enter cost from graph) \$	n
	Subsection Total (add 3 totals above)	
3.17	Underground Installations	
3.17.1	Main Sumps and Pump Stations: Is mine 'dry', 'average' or 'wet'? \$	
3.17.2	Rockbreaker & Grizzly:	
3.17.3	Ore Pass Controls: No. of controlsx \$/control \$	·····
3.17.4	Underground Electrical Room/Load Centre: No. of installationsx <u>\$</u> /inst'n. <u>\$</u>	• •
3.17.5	Miscellaneous Installations: No. of levelsx <u>\$</u> /level <u>\$</u>	
	Subsection Total (add 5 lines above)	<u></u>
3.18	Equipment	
	Shaft, ramp or adit? Track or trackless haulage?	* *
	Subsection Total (enter cost from graph)	\$

Reference Section No.	Item	Capital Cost \$
2 10	Concentration	
3.19	Concentrator	
3.19.1	Concentrator construction:	
	Process type	
3.19.2	Construction costs, (enter cost from graph) $\frac{\$}{2}$	
	Tailings disposal area:	
	Construction costs, (enter cost from graph) <u>\$</u>	
	Subsection Total, (add 2 lines above)	
3.20	Cost Contingency	
3.20.1	Contingency for items omitted %	
3.20.2	Contingency for variations in conditions %	
3.20.3	Contingency for delays due to location%	
	Total Contingency Percentage, (add 3 lines above)	%

Transfer all subsection totals to the summary page.

.

.

FORM 3(b)

ONGOING CAPITAL COSTS

SUMMARY (costs are developed on the next two pages)

B

	Year <u>1</u>	Year 2	Year <u>3</u>	Year 4	Year 5
Ongoing Capital Development					
Exploration Development			<u> </u>		
Exploration Diamond Drilling					
Equipment Replacement			·		. <u></u>
Subtotal			. <u></u> .		
Regional Cost Factor			<u> </u>		
TOTAL ONGOING CAPITAL COST					

Reference Capital Section Cost No. Item \$/Year 3.21 Ongoing Capital Development (O.C.D.) Calculation is similar to that used for preproduction level development, Form 3(a), Section 3.16.1, except that results are NOT multiplied by 2. Ongoing Capital Development Costs can be approximated by the following: Quantity of development per level _____ m \$____/m (e) Cost/metre (Owner's cost) Х Annual production rate _____ tonnes/year Х _____tonnes/level Tonnes accessed/level ÷ Total Ongoing Development Costs <u></u>\$____(f) 3.22 Exploration Development Enter 20% of Ongoing Capital Development above 3.23 Exploration Diamond Drilling The annual cost of exploration diamond drilling is approximated by the following: Quantity of drilling/setup: No. of holes _____ x length/hole _____ = (a) Annual quantity of exploration development: Total 0.C.D. (f) $x 20\% \div Cost/m$ (e) = (b) = (c) Cost/metre drilled Setup interval = ____ (d) Total Exploration Diamond Drilling Cost

ONGOING CAPITAL COSTS - Detailed Calculation Form

$$= \frac{(a) \times (b) \times (c)}{(d)} = \frac{$}{}$$

Reference					Capital
Section					Cost
No.	Item				\$/Year

3.24 Equipment Replacement

Total value of capital equipment \$_____(From Form 3(a), Section 3.18)

Enter percentages from the graph and multiply by the total values above to estimate annual replacement costs by year.

	% of Total Value	Total Annual Replacement Costs
Year 1		
Year 2		
Year 3		
Year 4		
Year 5		<u></u>

FORM 4

REGIONAL COST FACTORS

Project Location

CAPITAL COST FACTOR

Cost Classification Area	Regional Cost Factor for (From Table 4.3)	Dis Ca	ercentage tribution of pital Costs mined by User)	1	Multiplication Product	
Labour	>	<	%	=		(a)
Plant & Equipment	>	(%	=		(b)
Materials & Consumables	;	(%	=		(c)
Hydro Power	>	ζ	%	=		(d)
Transportation	>	ζ.	%	=		(e)
Provincial Tax	>	ζ	%	=		(f)
	٦	OTAL =	100 %			

CAPITAL COST REGIONAL COST FACTOR (sum a to f) =

OPERATING COST FACTOR

Cost Classification Area	Regional Factor for (From Table	Op	Percentage stribution of perating Costs ermined by Use		Multiplication Product
Labour		X	%	=	(g)
Plant & Equipment		X	%	=	(h)
Materials & Consumable	S	X	%	=	(i)
Hydro Power		X	%	=	(j)
Transportation		X	%	=	(k)
Provincial Tax		X	%	=	(1)
		TOTAL =	100_%		

OPERATING COST REGIONAL COST FACTOR (sum g to 1) =

FORM 5(a)

•

GEOLOGICAL TONNES & GRADE

SUMMARY - From Forms 5(b)				Unit of Measurement				
Primary meta Secondary me Tertiary meta	talis _							
	Cross ection No.	Total Tonne of Mineralizat	 Dwim	nary S	Units of M Secondary Metal	etal Tertiary Metal		
TOTALS		(A)	(В	3)	(C)	(D)		
TOTAL GEOLOG GEOLOGICAL R			=		(A)			
Primary Seconda Tertiar	ry Metal	(B/A) (C/A) (D/A)	=					

FORM 5(b)

GEOLOGICAL TONNES & GRADE

MINERAL RESERVE BY CROSS-SECTION

Cross-Section No.

	Mineralized Area				
	А	В	С	D	
Diamond Drill Hole No.		<u></u>			
Area of Mineralization (m²)			·	*	
Grade of Mineralized Area: Primary Metal Secondary Metal Tertiary Metal					
Strike Length Represented by Cross-section (m)					
Volume of Mineralization (m³)				***	
Tonnage Factor (tonnes/m³)				·····	
Tonnes of Mineralization				·····	
Total Units of Metal: Primary Metal Secondary Metal Tertiary Metal					
TOTAL TONNES (A + B + C + D)	=				
	Total Units of Metal		rage ade		
Primary Metal		<u> </u>			
Secondary Metal					

Tertiary Metal

FORM 5(c)

IN-SITU TONNES & GRADE

SUMMARY - From For		_		
Primary metal is Secondary metal is			<u> </u>	-
Tertiary metal is				-
Cross Section	Total In-Situ		al Units of M Secondary	letal Tertiary
<u>No.</u>	Tonnes	Metal	Metal	<u>Metal</u>
	·····		<u></u>	
		<u> </u>		
	•			
				<u> </u>
<u>- 1 Martin II. II. 19 - II. II II. II. I</u>	(A)	(B)	(C)	(D)
TOTALS				
		· · · · · · · · · · · · · · · · · · ·		
TOTAL IN-SITU RESERVE IN-SITU RESERVE GRADE:	=		(A)	
	3/A) =			
	C/A) = D/A) =	·		

FORM 5(d)

IN-SITU TONNES & GRADE

IN-SITU RESERVE BY CRO	SS-SECTION				
Cross-Section No.					
		A	Mining B	Zone C	D
AREAS (Within Mining L	imits)				
Area of Mineralization	(m²)				
Area of Waste	(m²)				
Total Area	(m²)				
VOLUMES (Within Mining	Limits)		<u></u>		<u> </u>
Strike Length Represen Cross-section (m)	ted by				
Volume of Mineralizati	on (m³)	· · · · · · · · · · · · · · · · · · ·		<u></u>	
Volume of Waste	(m ³)	<u></u>			
Total Volume	(m ³)				
TONNES (Within Mining	Limits)				
Tonnage Factor - Ore					
Tonnage Factor - Waste					
Tonnes of Mineralizati	on				
Tonnes of Waste					
Tonnes of Mineralizati	on & Waste (Ore)				
TOTAL TONNES OF ORE -	• •	. <u></u>	• <u>••••</u> ••	(a)	
GRADES OF MINERALIZED	AREAS (Geological	Grade)	<u></u>	<u>.</u>	···· · · · · · · · · · · · · · · · · ·
Primary Metal					<u></u>
Secondary Metal		. <u></u>		. <u> </u>	
Tertiary Metal		<u> </u>			<u></u>
UNITS OF METAL (Tonnes	of Mineralizatio	on x Geol	ogical Grade)	
Primary Metal					
Secondary Metal				<u></u>	
Tertiary Metal					
Total Units All	Zones (b)	Av (w	erage Grade . ithin mining	<u>All Zones</u> limits)	(b) ÷ (a
Primary		•	Ũ		
Secondary					
Tertiary	<u></u>				

FORM 5(e)

MINEABLE TONNES AND GRADE TO MILL

ADJUSTMENT FOR MINING RECOVERY

	Total In-Situ Reserve	Mining Recovery Factor	Actually Mined
Tonnes		X =	(a)
Primary Metal - Units = - Grade =		X =	(b) (c)
Secondary Metal - Units = - Grade =		x =	(d) (e)
Tertiary Metal - Units = - Grade =		X =	(f) (g)
ADJUSTMENT FOR DILUTION		· <u>····································</u>	
Dilution Factor		=	(h)
Diluted Tonnes (a x h)		=	(i)
"MINEABLE GRADES"			
Primary Metal (c/h)		=	(j)
Secondary Metal (e/h) Tertiary Metal (g/h)		=	(k)
ADJUSTMENT FOR STOPE LOSSES			
Stope Losses Factor		=	(m)
<u>"MINEABLE TONNES</u> to Mill (i	x m)	=	(n)
Units of Metal/Tonne in Mill Feed	:		
Primary Metal (b/i)		=	
Secondary Metal (d/i)		=	
Tertiary Metal (f/i)		=	

FORM 5(f)

~

I.

ļ

MINERAL DEPOSIT VALUE

	Primary Metal	Secondary Metal	Tertiary Metal
Units of Metal/Tonne in Mill Feed	<u></u>		
Mill Recovery Factor			<u></u>
Units of Metal Recovered Per Tonne of Mill Feed			
Current Metal Price/Unit			
Value Per Tonne of Ore after Milling			
TOTAL VALUE PER TONNE OF ORE AFTER MILLING	Ŧ		
NET VALUE PER TONNE OF ORE AFTER SMELTING/REFINING (Approximation only)	-		

FORM 6

PRELIMINARY CASH FLOW SUMMARY

Reference Section	Cash Flow (Initial 5 years)						
No.	_	\$ in 1,000's					
	Year	0	_1	_2	_3	_4	5
Form 3(a)	Preproduction Capital					<u></u>	
Form 3(b)	Ongoing Capital			<u> </u>			
	Total Capital	••••••••••••••••••••••••••••••••••••••					
Form 3(a) Section 3.16.1	Annual Production tonnes						
Form 2(a)	Operating Cost/Tonne \$/tonne						
	Annual Operating Costs			<u> </u>			<u></u>
	Total On-Site Costs						
Form 2(a)	Freight Charges						
Section 2.14	<pre>\$/tonne of Ore Annual Freight Costs</pre>						
Form 5(f)	Total Costs Revenue/Tonne after Smelting \$/tonne						
	Total Revenue			<u></u>			
	* Cash Flow - By Year					·	
	* Cumulative Cash Flow				<u> </u>		

* Before depreciation and taxes.

