CANMET

Canada Centre for Mineral and Energy
Technology

Centre canadien de la technologie des minéraux et de l'énergie

Chapter 8 Utility Programs

CANMET
Canada Centre for Mineral and Energy Technology

Centre canadien de la technologie des minéraux et de l'énergie

The

Chapter 8 Utility Programs

D. Laguitton and J. Leung

Editor: D. Laguitton
Contributor: R. Pilgrim
© Minister of Supply and Services Canada 1985
Available in Canada through
Authorized Book Agents and other bookstores
or by mail from
Canadian Government Publishing Centre
Supply and Services Canada
Ottawa, Canada K1A 0S9

THE SPOC MANUAL

The SPOC* manual consists of eighteen chapters, published separately. Their numbers and short titles are as follows:

1. Summary
2. Sampling Methodology
2.1 SAMBA Computer Program
2.2 Grinding Circuit Sampling
3. Material Balance
3.1 BILMAT Computer Program
3.2 MATBAL Computer Program
4. Modelling and Simulation
4.1 Industrial Ball Mill Modelling
5. Unit Models: Part A
5.1 Unit Models: Part B
5.2 Unit Models: Part C
6. Flowsheet Simulators
7. Model Calibration
7.1 STAMP Computer Program
7.2 FINDBS Computer Program
7.3 RTD and MIXERS Computer Programs
8. Miscellaneous Computer Programs

These chapters are available from: CANMET, Energy, Mines and Resources Canada
Technology Information Division
555 Booth Street
Ottawa, Ontario

[^0]'

FOREWORD

High energy costs and depleting ore reserves combine to make process evaluation and optimization a challenging goal in the 80's. The spectacular growth of computer technology in the same period has resulted in widely available computing power that can be distributed to the most remote mineral processing operations. The SPOC project, initiated at CANMET in 1980, has undertaken to provide Canadian industry with a coherent methodology for process evaluation and optimization assisted by computers. The SPOC Manual constitutes the written base of this methodology and covers most aspects of steady-state process evaluation and simulation. It is expected to facilitate industrial initiatives in data collection and model upgrading.
Creating a manual covering multidisciplinary topics and involving contributions from groups in universities, industry and government is a complex endeavour. The reader will undoubtedly notice some heterogeneities resulting from the necessary compromise between ideals and realistic objectives or, more simply, from oversight. Critiques to improve future editions are welcomed.

D. Laguitton
SPOC Project Leader
Canada Centre for Mineral and Energy Technology

AVANT-PROPOS

La croissance des coûts de l'énergie et l'appauvrissement des gisements ont fait de l'évaluation et de l'optimisation des procédés un défi des années 80 au moment même où s'effectuait la dissémination de l'informatique jusqu'aux concentrateurs les plus isolés. Le projet SPOC, a été lancé en 1980 au CANMET, en vue de développer pour l'industrie canadienne, une méthodologie d'application de l'informatique à l'évaluation et à l'optimisation des procédés minéralurgiques. Le Manuel SPOC constitue la documentation écrite de cette méthodologie et en couvre les différents éléments. Les retombées devraient en être une vague nouvelle d'échantillonnages et d'amélioration de modèles.
La rédaction d'un ouvrage couvrant différentes disciplines et rassemblant des contributions de groupes aussi divers que les universités, l'industrie et le gouvernement est une tâche complexe. Le lecteur notera sans aucun doute des ambiguïtés ou contradictions qui ont pu résulter de la diversité des sources, de la traduction ou tout simplement d'erreurs. La critique constructive est encouragée afin de parvenir au format et au contenu de la meilleure qualité possible.
D. Laguitton

Chef du projet SPOC,
Centre canadien de la technologie des minéraux et de l'énergie

$$
!
$$

ABSTRACT

This chapter contains sample runs of several programs that were developed during the course of the SPOC project either for mineral processing laboratory calculations (metallurgical recoveries, particle size distribution tabulation, Bond work index formula, non-SI to SI physical units conversion, etc.) or for graphic data display (x-y plots, flowsheet drawing, etc.).

RÉSUMÉ

Ce chapitre décrit plusieurs programmes développés au cours du projet SPOC soit pour des calculs de laboratoire (calculs de récupérations, tables de granulométries, indice de Bond, conversions d'unités de mesure non-métriques à métriques, etc.) ou pour des représentations graphiques (graphes $x-y$, dessin de flowsheets, etc.).

ACKNOWLEDGEMENTS

The SPOC project has benefited from such a wide range of contributions throughout the industry, the university, and the government sectors that a nominal acknowledgement would be bound to make unfair omissions. The main groups that contributed are: the various contractors who completed project elements; the Industrial Steering Committee members who met seven times to provide advice to the project leader; the various users of project documents and software who provided feedback on their experience; the CANMET Mineral Sciences Laboratories staff members who handled the considerable in-house task of software development, maintenance, and documentation; the EMR Computer Science Centre staff who were instrumental in some software development; and the CANMET Publications Section. Inasmuch as in a snow storm, every flake is responsible, their contributions are acknowledged.

CONTENTS

THE SPOC MANUAL i
FOREWORD iii
AVANT-PROPOS iii
ABSTRACT v
RÉSUMÉ v
ACKNOWLEDGEMENTS v

1. INTRODUCTION 1
2. USER'S GUIDE 2
2.1 METCAL 2
2.1.1 Program Identification 2
2.1.2 Engineering Documentation 2
2.1.3 Sample Run 3
2.2 UNCONV 5
2.2.1 Program Identification 5
2.2.2 Engineering Documentation 5
2.2.3 Sample Run 6
2.3 BONDWI 8
2.3.1 Program Identification 8
2.3.2 Engineering Documentation 8
2.3.3 Sample Run 8
2.4 SBOND 8
2.4.1 Program Identification 8
2.4.2 Engineering Documentation 8
2.4.3 Sample Run 8
2.5 PARTSZ 9
2.5.1 Program Identification 9
2.5.2 Engineering Documentation 9
2.5.3 Sample Run 9
2.6 NPRD 10
2.6.1 Program Identification 10
2.6.2 Engineering Documentation 10
2.6.3 Sample Run 11
2.7 GYFORM 12
2.7.1 Program Identification 12
2.7.2 Engineering Documentation 12
2.7.3 Sample Run 13
2.8 FADESN 14
2.8.1 Program Identification 14
2.8.2 Engineering Documentation 14
2.8.3 Sample Run 15
2.9 TIMESR 17
2.9.1 Program Identification 17
2.9.2 Engineering Documentation 17
2.9.3 Sample Run 18
2.10 STATPD 19
2.10.1 Program Identification 19
2.10.2 Engineering Documentation 19
2.10.3 Sample Run 20
2.11 ANOVA 21
2.11.1 Program Identification 21
2.11.2 Engineering Documentation 21
2.11.3 Sample Run 22
2.12 COMPLOT 24
2.12.1 Program Identification 24
2.12.2 Engineering Documentation 24
2.12.3 Sample Run 24
2.13 URANDT 25
2.13.1 Program Identification 25
2.13.2 Engineering Documentation 25
2.13.3 Sample Run 25

1. INTRODUCTION

Several programs have been developed during the course of the SPOC project, which either do not belong to the predefined themes or have been developed too late to be integrated into the chapters covering a given theme. Their general applicability, however, warrants presentation in a special chapter titled "Utility Programs".
These programs range from routine laboratory applications, such as the calculation of recoveries from ore fraction analysis or particle-size distribution tabulations, to more exotic subjects, such as time series analysis, paired data analysis, and graphics.
Most programs in this chapter require very little information and can be used without a detailed user's guide. The sample run includes a copy of a condensed information file on how to use the program. Some programs
have been described in their initial version in several CANMET Division Reports, listed in the brief documentation presented in Section 2.
All programs are in FORTRAN Extended 4.8 as implemented on the department's CDC CYBER computer. IBM-PC versions, executable under the MS-DOS operating system, have also been prepared on diskettes.
Enquiries should be directed to:
CANMET
Energy, Mines and Resources
Technology Information Division 555 Booth Street Ottawa, Ontario
K1A 0G1.

2. USER'S GUIDE

2.1 METCAL

2.1.1 Program Identification

Author:	D. Laguitton (CANMET, EMR).
Last Update:	August 1984.
Purpose:	To calculate and tabulate distri- butions and metal contents in up to nine fractions of an ore.
Usage:	Execute as a main program. See "User's Manual", CANMET Divi- sion Report MRP/MSL 79-120(IR).
Remarks:	None.
Subroutines and METIN, METOUT.	

2.1.2 Engineering Documentation

METCAL is a program for performing laboratory metallurgical calculations. Absolute or relative weights, and assay values of a feed material are read. Recoveries and metal contents of each fraction and any combination of fractions are computed and tabulated, followed by those of the calculated feed (sum of all fractions).

The following variables are used in the program:
TITLE - Job title (max. 30 characters).
M - Number of fractions (max. 20 including combinations).
\mathbf{N} - Number of assays (max. 5). If $N \quad 2$, the output requires 132 characters/line.
NC - Number of combinations (max. 9).
INAME - Fraction name (max. 10 characters) e.g., Cl.Conc.

JNAME - Assay name (max. 6 characters) e.g., CU\%. GR - Assay values.
IW - Combination vector. Combinations are numbered in sequence after the last fraction.

- The calculated feed is always added internally as the last combination.

To test METCAL, enter the following data when prompted:

JOB TITLE: DEMO
COAL DATA (Y/N)?: N
FRACTION, ASSAY AND COMBINATION NAMES ALREADY ENTERED (Y/N)?: N
(For a second job on a similar set, save entries - ENTER: Y.)

NUMBER OF FRACTIONS, ASSAYS AND
COMBINATIONS (M, N, NC): 321
(For coal data, enter only M)
ENTER FRACTION NAMES:
FRACTION 1: CONC
FRACTION 2: MIDS
FRACTION 3: TAILS

ENTER 3 WEIGHTS: 102030

ENTER ASSAY NAMES: CU\%, FE\%
(Coal assays are Ash\% and S\% by default)
ENTER ASSAY VALUES
CONC: 23
MIDS: 45
TAILS: 67

ENTER COMBINATION NUMBERS (e.g., 14 to combine

 fractions 1 and 4)COMBINATION 1: 23
ORDER OF TABLE (99 = DASHED LINE, $55=$ SPACE) (e.g., 0155 02)

010203990405
(01 0203 are the three fractions, 04 is the combination, 05 is the calculated feed and 99 is the dashed line.)
(Note: Combinations and table order are not entered for coal data.)

2.1.3 Sample Run

```
JOB TITLE : DEMO METCAL
COAL DATA (Y OR N)?:N
NUMBER OF FRACTIONS,ASSAYS AND COMBINATIONS (M,N,NC) : 3 2 1
ENTER FRAGTION NAMES
FRACTION 1 : CONC
FRACTION 2 : MIDS
FRACTION 3: TAILS
ENTER 3 WEIGHTS : 10 20 30
ENTER ASSAY NAMES
ASSAY 1 : %CU
ASSAY 2 : %FE
ENTER ASSAY VALUES
CONC : 2 3
MIDS : 4 5
TAILS : 6 7
ENTER COMBINATION NUMBERS (EX.l456)
COMBINATION 1:23
ORDER OF TABLE,(99=DASH LINE,55=SPACE)EX:O1 55 02
O1 02 03 99 04 05
MOVE PAPER OR CLEAR SCREEN, ENTER BLANK & RETURN.
```


DEMO METCAL
ASSAY
DISTRIBUTION

PRODUCTS	WEIGHT	WEIGHT \%	\% CU	\% FE	\% CU	\% FE
$1 _\mathrm{CONC}$	10.000	16.667	2.000	3.000	7.143	8.824
2_MIDS	20.000	33.333	4.000	5.000	28.571	29.412
3_TAILS	30.000	50.000	6.000	7.000	64.286	61.765
C:23	50.000	83.333	5.200	6.200	92.857	91.176
C:CAL.FEED	60.000	100.000	4.667	5.667	100.000	100.000


```
#########################################################################################################################
    DEMO METCAL METAL CONTENT
```

PRODUCTS	WEIGHT \%	\% CU	\% FE
1 CONC	16.667	. 333	. 500
2_MIDS	33.333	1.333	1.667
3_TAILS	50.000	3.000	3.500
C:23	83.333	4.333	5.167
C: CAL.FEED	100.000	4.667	5.667
\#\#\#\#\#\#\#\#\#\#	\# \# \# \#\#\#\#	\#\#\#\#\#	\#\#\#\#\#

ENTER NEW TABLE ORDER, (99mDASH,55\#SPACE) OR $0: 0$ ANOTHER RUN (Y OR N)Y

```
JOB TITLE : HLS OF LIRGAN COAL
COAL DATA (Y OR N)P: Y
FRACTION,ASSAY : COMBINATION NAMES ALREADY IN (Y./N)? : N
NUMBER OF FRACTIONS (M) : 7
ENTER FRAOTION NAMES
FRACTION 1:-1.25
FRACTION 2:-1.3
FRACTION 3:-1.4
FRAOTION 4:-1.6
FRACTION 5 : -1.8
FRACTION 6:-2.2
FRACTION 7 : +2.2
ENTER 7 WEIGHTS : 5 60 8 4 2 2 19
COAL ASSAYS ARE ASH% & S% BY DEFAULT
ENTER ASSAY VAIUES
-1.25 : .7 .7
-1.3 : 1.4.8
-1.4 : 6.6 3.1
-1.6 : 225
-1.8 : 365
-2.2 : 53 5
+2.2 : 84 5
MOVE PAPER OR CLEAR SCREEN, ENTER BLANK & RETURN.
```



```
ANOTHER RUN (Y OR N)N
    STOP
    022000 MAXIMUM EXECUTION FL.
        0.905 CP SECONDS EXECUTION TIME.
```


2.2 UCONV

2.2.1 Program Identification

Author:	R. Pilgrim (CANMET, EMR).
Last Update:	June 4, 1984.
Purpose:	Interactive program to convert from non-SI units to SI units, and vice versa.
Usage:	Execute as a main program.
Remarks:	The selected conversion factor is returned as X through the labelled COMMON /CC/.
Subroutines and Functions Required:	AREA, CONC, CONNEC, DENS, ENER, FLOW, FORC, LENG, MASS, PRES, VELO, VISC, VOLU

Source:

Metric Practice Guide for the Canadian Mining and Metallurgical Industries. Published by the Mining Association of Canada, in cooperation with the Coal Association of Canada; February 1978.

2.2.2 Engineering Documentation

UNCONV is an interactive program to convert from non-SI units (e.g., lb, ft) to Sl units (e.g., kg, M,) and vice versa. The program consists of a driver and twelve subroutines, one for each of the unit categories (e.g., length, area, volume).
Conversion factors for the various options within each unit category are stored in the subroutines. Interactively, the program is menu-driven, permitting selection of category and option, and entry of amounts to be converted.

2.2.3 Sample Run

```
    LIST OF CATEGORIES
    l - LENGTH
    2 - AREA
    3 - VOLUME
    4 - VELOCITY & ACCELERATION
    5 - MASS
    6 - DENSITY
    7 - CONCENTRATION
    8-FORCE
    9 - PRESSURE
    10-VISCOSITY
    ll - FLOWRATE
    12 - ENERGY & WORK
    0- EXIT
SELECT CATEGORY : 1
LIST OF OPTIONS FOR LENGTH
            1-IN - CM
            2-FT - M
            3-YD - M
            4 - MI - KM
            0- EXIT
                SELECT DESIRED OPTION :
        +VE TO CONVERT FROM NON-SI TO SI UNITS
        -VE TO CONVERT FROM SI TO NON-SI UNITS
1
    THE CONVERSION FACTOR FOR IN > CM
ENIER AMOUNT OF UNIT TO BE CONVERTED, AND REPEAT
OR ENTER O TO SELECT NEW OPTION
10
10. 25.4
20
20.50.8
0
LIST OF OPTIONS FOR LENGTH
1-IN-CM
2-FT-M
3-YD - M
4 - MI - KM
0 - EXIT
```

1

```
        SELECT DESIRED OPTION :
        +VE TO CONVERT FROM NON-SI TO SI UNITS
    -VE TO CONVERT FROM SI TO NON-SI UNITS
-1
    THE CONVERSION FACTOR FOR CM > IN
IS
    *** .3937007874 ***
ENTER AMOUNT OF UNIT TO BE CONVERTED, AND REPEAT
OR ENTER O TO SELECT NEW OPTION
25.4
25.4 10.
0
LIST OF OPTIONS FOR LENGTH
                    l - IN - CM
                    2 - FT - M
                    3-YD - M
                    4 - MI - KM
                    O - EXIT
                    SELECT DESIRED OPTION :
                +VE TO CONVERT FROM NON-SI TO SI UNITS
                -VE TO CONVERT FROM SI TO NON-SI UNITS
0
LIST OF CATEGORIES
        l - LENGTH
        2 - AREA
        3 - VOLUME
        4- VELOCITY & AGCELERATION
        5 - MASS
        6 - DENSITY
        7 - CONCENTRATION
        8 - FORCE
        9 - PRESSURE
    10 - VISCOSITY
    11 - FLOWRATE
    12 - ENERGY & WORK
        0 - EXIT
SELECT CATEGORY : O
        STOP PROGESSING COMPLETE
        020500 MAXIMUM EXECUTION FI.
            0.373 CP SECONDS EXECUTION TIME.
```


2.3 BONDWI

2.3.1 Program Identification

Authors:	D. Laguitton, A. Boire, R. Pilgrim (CANMET, EMR).
Last Update:	February 14, 1984.
Purpose:	Calculation of BOND work index.
Usage:	Execute as a main program.
Subroutines and	None.
Functions Required:	

2.3.2 Engineering Documentation

This program calculates the BOND work index in a ball-mill experiment according to the BOND formula:
$\mathrm{WI}=4.45 /\left(\left(\mathrm{Pl} \mathrm{I}^{*} .23\right){ }^{*}\left(\mathrm{G}^{* *} .82\right)\right.$ * (1./SQRT(P)

- 1./SQRT(F)))
where:
$\mathrm{P} 1=$ finest opening of the mesh size tested in microns
$\mathrm{G}=$ grams of material passing the size P1 per revolution of the mill
$P=$ size in microns which 80% of the product passes
$F=$ size in microns which 80% of the feed passes
Reference: Bond, F.C. "Crushing and Grinding Calculations"; Part 1, British Chem. Eng 6:6:378-385; 1961.
Example: ENTER: P1, G, P, F: 74, 1.4673, 52, 1850.
THE BOND WORK INDEX: 10.46

2.3.3 Sample Run

2.4 SBOND

2.4.1 Program Identification

Authors:	D. Laguitton, A. Boire, R. Pilgrim (CANMET, EMR).
Last Update:	February 14, 1984.
Purpose:	Calculation of BOND work index by a simplified equation using a reference.
Usage:	Execute as a main program.
Subroutines and None.	
Functions Required:	

2.4.2 Engineering Documentation

The program SBOND calculates the BOND work index for an unknown ore from the known work index of a reference ore. The equation used is:

$$
W I=\underset{(1 . / \operatorname{SQRT}(\mathrm{P})-1 . / \operatorname{SQRT}(\mathrm{F}))}{\mathrm{WIR} *(1 . / \mathrm{SQRT}(\mathrm{FR})) /}
$$

where:

$$
\begin{aligned}
\text { WIR } & =\text { work Index of the Reference Ore } \\
F R & =80 \% \text { passing size in microns of the reference ore } \\
& \text { feed } \\
\text { PR } & =80 \% \text { passing size in microns of the reference ore } \\
& \text { product } \\
F & =80 \% \text { passing size in microns of the unknown ore } \\
& \text { feed } \\
P & =80 \% \text { passing size in microns of the unknown ore } \\
& \text { product }
\end{aligned}
$$

Reference: Canadian Mining Journal pp. 63-65; July 1966.

Example: ENTER: WIR,FR,PR,F,P: 19.5, 1130, 960, 133, 123 THE BOND WORK INDEX: $\mathrm{WI}=14.3$

2.4.3 Sample Run

```
                                    ***** SBOND *****
TO CALCULATE THE BOND WORK INDEX,
    ENTER WIR,FR,PR,P,F :
19.5 1130 960133 123
THE BOND WORK INDEX: WI = 14.3
    ANOTHER PROBLEM (Y/N)PN
        STOP
        015700 MAXIMUM EXECUTION FL.
        0.230 CP SECONDS EXECUTION TIME.
```


2.5 PARTSZ

2.5.1 Program Identification

Authors:	D. Laguitton and R. Pilgrim (CANMET, EMR).
Last Update:	March 1, 1984.
Purpose:	To compute particle-size distributions in various units.
Usage:	Execute as a main program. See "User's Manual", CANMET Division Report MRP/MSL79-120(IR).
Remarks:	None.
Subroutines and Functions Required:	SZFORM, MESHMU, TABS, TABL CUMR, CUMP.

2.5.2 Engineering Documentation

The interactive program PARTSZ permits size distribution data to be entered or displayed in several selected units. The type of conversion is identified by the two variables: NATURI (for input data) and NATURO (for output data).

These can have the following values:

1. Non-cumulative weight fraction
2. Cumulative weight fraction retained
3. Cumulative weight fraction passing
4. Non-cumulative weight per cent
5. Cumulative weight per cent retained
6. Cumulative weight per cent passing

NATURI $=7$. Raw weights in grams are input NATURO $=7$. Table in units 4,5 , and 6 is produced
Variables used:
TITLE: Problem descriptor (maximum - 28 characters).
N: Number of size values, including pan.
SIZ: Vector of size values (negative if size in mesh; 0 if non-SQRT (2) series). The head size, or SIZ(1), is entered.
X: Vector of weights or weight fractions.
To test PARTSZ, try the following data (or one of the test data sets given in the reference).

ENTER TITLE: DEMO
ENTER NATURI, NATURO, N: 7, 7, 4
ENTER SIZ(1): -28
ENTER THE 4 WEIGHTS OR WEIGHT FRACTIONS: 20, 20, 20, 20

```
2.5.3 Sample Run
ENTER TITLE: DEMO PARTSZ
ENTER NATURI,NATURO,N: 7 7 4
HEAD SIZE (NEG.IF MESH,O IF NON SQRT(2) SERIES): -28
ENTER THE 4 WEIGHTS OR WEIGHT FRACTIONS : 20 20 20 20
################################################################
DEMO PARTSZ
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SIZE(MICRONS)} & ENTRY & NON-CUM\% & CUM.RET\% & CUM. PASS \\
\hline 1 & 600.00 & 20.00 & 25.00 & 25.00 & 75.00 \\
\hline 2 & 424.26 & 20.00 & 25.00 & 50.00 & 50.00 \\
\hline 3 & 300.00 & 20.00 & 25.00 & 75.00 & 25.00 \\
\hline 4 & 212.13 & 20.00 & 25.00 & 100.00 & 0.00 \\
\hline
\end{tabular}
###############################################################
ANOTHER PROBLEMPN
    STOP
    O23400 MAXIMUM EXECUTION FL.
        0.309 CP SECONDS EXECUTION TIME.
```


2.6 NPRD

2.6.1 Program Identification

Author:

Date Written:	February 1982.
Major Update:	January 1984.
Purpose:	An interactive program for material

Remarks: Subroutine SIMQ solves the system of equations described by matrices D and E , and returns the results as calculated stream flow rates in matrix E .
For runs using the Monte Carlo iterative method, function GNOISE is used to compute a pseudorandom number belonging to a Gaussian distribution, specified by its mean and standard deviation, and is used for assay and flow rate adjustments.
Function URAND is a uniform random-number generator based on the theory put forth by D.E. Knuth (1969).

Subroutines and SIMQ, GNOISE, URAND, CSTD. Functions Required:

2.6.2 Engineering Documentation

NPRD is a general purpose N -product formula program; i.e., it calculates the flow rates around a process unit or a circuit when assays of species for which mass conservation around the unit are given. The generalization consists of allowing not only units with one feed and N products, but also any number of feeds and products connected to the same unit.

Any of the streams can be chosen as a reference flow rate of any given value, fixed or measured, with a given precision (\%). The program can also perform a Monte-Carlo simulation of pseudo-assays centered around the experimental assays with a standard deviation as given by the user. This permits a calculation of the sensitivity of the calculated flow rates to the sampling errors.

The data entry is prompted at the terminal and in free field format; i.e., numbers are separated by blanks or commas.
If the number of streams is NSTR, the method requires NSTR-2 different assays for each of the streams. If more than NSTR-2 assay types are entered, the user is asked to decide which subset of assays to use. A comparison of the results obtained for various assays can, therefore, be made.

Note also that for the sensitivity analysis, the reference flow rate may be a measured value with its own precision taken into consideration.

For further details, consult: Taggart Handbook of Mineral Dressing, pp. 19-189; or "The SPOC Manual, Chapter 3.1", CANMET, Energy, Mines and Resources Canada.

As an example, you can try the following circuit balance:

This diagram represents a five-stream circuit, assayed for three species: Pb, Zn, and Cu . It can be represented by a mass balance equation, entered as 1-2-3-4-5.
This indicates that, after numbering (arbitrarily) the streams from 1 to 5 , stream 1 enters the unit (or circuit); streams 2 to 5 are outputs.
Note that there is no extra assay type, over the three required to solve this problem using the N -product formula.

2.6.3 Sample Run

```
************* PROGRAM NPRD ***************
COMPUTATION OF FLOW RATES BY
THE N-PRODUCT FORMULA
DATA ENTRY IS FREE FIELD FORMAT (BLANK OR COMMA SEPARATORS)
NUMBER OF STREAMS (1 - 10) P5
NUMBER OF ASSAY TYPES ( 3 TO 10) ?3
ENTER (5, 3) ASSAY VALUES
ONE ROW PER STREAM
7.1 5.7 2.26
601 1
1401
2 2 10
1 2 .l
ENTER NUMBER OF THE REFERENCE STREAM ? l
REFERENCE FLOW RATE AND STD.DEV.% ?100 5
ENTER MASS CONSERVATION EQUATION
IN ASCENDING NUMBERS, I.E. 1 -2 - 3 .. ?1 -2 -3 -4 -5
DO YOU WISH A MONTE-CARLO CALCULATION
OF THE PRECISION Y OR N ?Y
HOW MANY RANDOM SAMPLES ?MIN=10,MAX= 50
50
SELECT OPTION TO GENERATE ASSAY STD. DEVIATIONS
l = SAME RELATIVE STD % FOR ALL ASSAYS
2 = (5, 3) RELATIVE STD % (1 ROW PER STREAM)
3 = 3 RELATIVE STD % (1 PER ASSAY TYPE)
l
ENTER % STD DEV APPLIED TO ALL ASSAYS
7
GLEAR SGREEN/ADVANCE PAPER
ENTER A BLANK AND CARRIAGE RETURN
```


ANOTHER RUN, Y OR N ? N

```
STOP
025100 MAXIMUM EXECUTION FL.
    0.825 CP SECONDS EXECUTION TIME.
```


2.7 GYFORM

2.7.1 Program Identification

Authors:
Date Written:
Purpose:

Last Update:
December 1983.
G. Lambert and D. Tremblay.

To compute the values of SIGMA, MS, ML, D, and/or C, parameters of Gy's simplified formula.

April 1985; (by F. Flament).

2.7.2 Engineering Documentation

To compute SIGMA(FE), MS, ML, or D from GY's formula:

$$
\operatorname{SIGMA}(F E)^{2}=(1 / M S-1 / M L) * C * L * F * G * D^{3}
$$

where:
SIGMA (FE) = standard deviation of the fundamental error of the critical component (Default, $0.18 \mathrm{E}-3$; Unit, none)

MS = sample mass (Default, 100; Unit, g)
ML = lot mass (Default, infinite; Unit, g)
$\mathrm{C}=$ composition factor (Default, 0.5 ; Unit, $\mathrm{g} / \mathrm{cm}^{3}$)
$\mathrm{L}=$ liberation factor (Default, 1.0; Unit, none)
$\mathrm{F}=$ particle shape factor (Default, 0.5 ; Unit, none)
$\mathrm{G}=$ size distribution factor (Default, 0.25 ; Unit, none)
$\mathrm{D}=$ maximum particle diameter (Default, 0.02; Unit, cm)

The composition factor may be computed from:

$$
C=((1-A L) / A L) *((1-A L) * R H O C+A L * R H O G)
$$

where:
AL = fractional concentration of the critical component (Default, 0.5 ; Unit, none)
RHOC = density of the critical component (Default, 4.0; Unit, $\mathrm{g} / \mathrm{cm}^{3}$)
RHOG = mean density of the non-critical components (Default, 2.5; Unit, $\mathrm{g} / \mathrm{cm}^{3}$).
Reference: "The SPOC Manual, Chapter 2"; CANMET, Energy, Mines and Resources Canada.

2.7.3 Sample Run

```
    GY'S SIMPLIFIED FORMULA
```



```
        2 3
        SIGMA(FE) = (I/MS - I/ML) * C * L * F * G * D
        C =((1-AL)/AL) * ((I-AL)*RHOC+AL*RHOG))
USAGE: FOLLOWING THE TABLE ORDER, ENTER THE PARAMETER VALUES
                                    ( OR O TO USE THE DEFAULT VALUE
                                    OR - I TO COMPUTE THE CORRESPONDING
                                    PARAMETER VALUE)
```


ANOTHER COMPUTATION (Y/N) YN
STOP
O22500 MAXIMUM EXECUTION FL.
0.173 CP SECONDS EXECUTION TIME.

2.8 FADESN

2.8.1 Program Identification

Author:	J. Leung (CANMET, EMR).
Date Written:	September 1984.
Last Update:	None. (Version 0.)
Purpose:	FADESN is an interactive program used in factorial design to determine the regression coefficients, to test the significance of the main and interaction effects with F -ratio, and to determine the experimental error.
Usage:	Used as main program.
Remarks:	Maximum numbers for total tests, factor/interaction and levels per factor are 32, 16, and 4, respectively. The number of levels should be the same for all factors.
Subroutines and Functions Required:	FADN1 - conversion of T to X. FADN2 - calculate experimental error. FADN3 - calculate regression coefficients. FADN4 - output. FADN5 - estimate experimental error.
Methods:	1) Enter, or choose, X-values. 2) Read Y values. 3) Estimate experimental error. 4) Calculate regression coefficients. 5) Calculate sum of squares. 6) Perform F-test. 7) Output results.

2.8.2 Engineering Documentation

FADESN analyzes the results of factorial experiments. It calculates the sum of squares, regression coefficients, the experimental error (either from replicate measurements or from interaction effects that are insignificant and negligible) and, finally, performs the F-test to determine the significance of each effect.

The method of evaluation for the experimental designs aims to relate the quantity measured, (i.e., the observation) to the variables of the design (i.e., the factors).
This dependence is usually in the form of a regression equation:

$$
\mathrm{Y}=\mathrm{BO}+\mathrm{B} 1 * \mathrm{X} 1+\ldots+\mathrm{BN} * \mathrm{X} 1^{*} \ldots{ }^{*} \mathrm{XN}
$$

where:
Y is the response or test result BO,..., BN are the regression coefficients $\mathrm{X} 1, \ldots, \mathrm{XN}$ are the main factors $\mathrm{X} 1 *$...*XN is their ($\mathrm{N}-1$)th degree interaction.
The user has to know the number of levels, the design matrix (information matrix), and the test results of the experiments. Either the user's own design matrix can be entered, or one of the five supplied by the program can be used.

They are coded as: L4(2**3), L8(2**7), L16(2**15), L9(3**4), and L16(4**5).
(L4(2**3) indicates a design with four observations or rows; three effects or columns, and all factors at 2-levels.)
Reference: Leung, J., "An Analysis of the Results of Factorial Experiments in Mineral Processing with Computer," CANMET Division Report 84-150(IR).
Example: A 2^{2} factorial design with four observations; two factors X1 and X2; interaction X1*X2; all factors at two levels -1 (lower level) and +1 (higher level); the design matrix (with dimension 4×3) is available as design No. 1 in this program:

Test No.	$\underline{X 1}$		$X 2$	$X 1 * X 2$
1		-1	-1	1
2	1	-1	-1	
3	-1	1	-1	
4	1	1	1	

The test results are: 100, 120, 200 and 230.
The regression equation becomes:

$$
Y=B O+B 1 * X 1+B 2 * X 2+B 3 * X 1 * X 2
$$

The experimental error can be estimated from the interaction effect $\mathrm{X} 1 * \mathrm{X} 2$ because it has the least sum of squares. The result shows that only the X2 factor has a significant effect on Y .

2.8.3 Sample Run

(This example is taken from the "SPOC Manual", Chapter 4.)

A major porphyry copper mine in British Columbia wanted to improve the performance PW of its grinding circuit. From a preliminary survey, the three variables believed to have the most effect were identified, and each variable was set at two levels:

Variable low high
F (rod mill feed rate, stph)
320
340
W (pump box water addition rate, 10001150 USGPM)
A (cyclone apex size, in.)

Design Matrix

Test No.	F*	W*	A*	F*W*	F*A*	W* ${ }^{*}$	F*W*A*	PW (\$ $\times 10^{6}$)
1	-1	-1	-1	+1	+1	+1	-1	35.522
2	+1	-1	-1	-1	-1	+1	+1	36.184
3	-1	+1	-1	-1	+1	-1	+1	35.921
4	+1	+1	-1	+1	-1	-1	-1	37.125
5	-1	-1	+1	+1	-1	-1	+1	35.599
6	+1	-1	+1	-1	+1	-1	-1	36.106
7	-1	+1	+1	-1	-1	+1	-1	35.46
8	+1	+1	+1	+1	+1	+1	+1	37.433
9								36.334
10	0	0	0	0	0	0	0	36.759
11								36.616
12								36.227

```
***************FACTORIAL DESIGN***************
HERE IS A LIST OF EXPERIMENTAL DESIGNS AVAILABLE IN
THIS PROGRAM :
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESIGN NO.} & \multicolumn{3}{|c|}{DESIGN MATRIX} & POSSIBLE \\
\hline & NO. OF LEVELS & DIMENSIONS & (ROW X COLUMN) & NO. OF FACTORS \\
\hline 1 & 2 & 4 X & 3 & 20 OR 3 \\
\hline 2 & 2 & 8 X & 7 & 3,4,5,6 OR 7 \\
\hline 3 & 2 & 16 X & 15 & 4,5,6,7 OR 8 \\
\hline 4 & 3 & 9 X & 4 & 2,3 OR 4 \\
\hline 5 & 4 & 16 X & 5 & 2,3,4 OR 5 \\
\hline
\end{tabular}
WHICH DESIGN YOU WANT (1,2,\ldotsOR 5,O IF NONE OF THESE)?O
YOU ARE TO ENTER YOUR OWN EXPERIMENTAL DESIGN
ENTER THE NUMBERS OF LEVELS, ROWS AND COLUMNS: 2,8,7
THE LEVELS ARE TO BE REPRESENTED BY:
    -1, 1 (2-LEVEL)
    -1, 0, 1 (3-LEVEL)
    -3, -1, 1, 3 (4-LEVEL)
MAXIMUM NO. OF LEVELS =4
ENTER THE MATRIX ONE COLUMN AT A TIME:
    COLUMN( 1) =-1,1,-1,1,-1,1,-1,1
    COLUMN( 2) =-1,-1,1,1,-1,-1,1,1
    COLUMN( 3) =-1,-1,-1,-1,1,1,1,1
    COLUMN( 4) =1,-1,-1,1,1,-1,-1,1
    COLUMN( 5) =1,-1,1,-1,-1,1,-1,1
    COLUMN( 6) =1,1,-1,-1,-1,-1,1,1
    COLUMN( 7) =-1,1,1,-1,1,-1,-1,1
IS THIS THE DESIGN YOU WANT (Y/N) PY
INPUT 8 TEST RESULTS: 35.522,36.184,35.921,37.125,35.599,36.106
35.46,37.433
ANY REPEAT MEASUREMENTS (Y/N) PY
ENTER THE NUMBER OF NO. 1 REPEAT MEASUREMENT (ENTER O TO FINISH): 4
ENTER THE TEST RESULTS FROM THIS REPEAT: 36.334,36.759,36.616,36.227
ENTER THE NUMBER OF NO. 2 REPEAT MEASUREMENT (ENTER O TO FINISH): 0
THE VARIANCE OF EXPERIMENTAL ERROR = .0605
THE NUMBER OF DEGREES OF FREEDOM = 3
WHICH CONFIDENCE LIMIT 90 OR 95 895
```


2.9 TIMESR

2.9.1 Program Identification

Author:	J. Leung (CANMET, EMR).
Date Written:	
Last Update:	
November 1984.	
None. Version 0.	
Remarks:	To calculate mean, variance and variogram for time or space dependent data.
	The program was originally written for HewlettPackard 41C calculator by J. Merks and rewritten in
FORTRAN language by J. Leung.	

2.9.2 Engineering Documentation

TIMESR calculates mean, variance, and variogram for time- or space-dependent data, entered by the user. The program prints out each consecutive pair of data and the difference between the two, followed by the statistical values of all the data.
Time series variance is also calculated from all pairs of data with J spacing(s) ($\mathrm{J}=1,2, \ldots$, max $=\mathrm{N}$, until the sequential variance exceeds the classical variance).
The formulae used are:

$$
\begin{aligned}
& \text { Classical variance }=\sum_{l=1}^{N}(X(I)-X B A R)^{2} /(N-1) \\
& \text { Time series variance }=\sum_{\mathrm{l}=1}^{N-\mathrm{j}}(X(\mathrm{l})-\mathrm{X}(\mathrm{l}+\mathrm{J}))^{2} /(2(\mathrm{~N}-\mathrm{J}))
\end{aligned}
$$

where:
XBAR = mean of all X
$\mathbf{N}=$ total number of X
$J=$ spacing (min. $=1, \max .=N$).

2.9.3 Sample Run

2.10 STATPD

2.10.1 Program Identification

Author:	J. Leung (CANMET, EMR).
Date Written:	
Last Update:	
November 1984.	
None. (Version 0.)	

Reference: Merks, J.W. "Sampling and weighing of bulk solids"; Trans Tech Publications; February 1985.

2.10.2 Engineering Documentation

STATPD calculates from a pair of data (X and Y), the mean, the variance, the standard deviation, the coefficient of variation, the difference, and the absolute difference.

It also correlates X and Y with a regression equation, $Y=A$ $+B^{*} X$, by finding coefficients A and B. Finally, it compares their T -values with the student T -distribution approximation.

2.10.3 Sample Run

2.11 ANOVA

2.11.1 Program Identification

Author:	J. Leung (CANMET, EMR).
Date Written:	January 1985.
Last Update:	None. (Version 0.)
Purpose:	To perform a one-way and two-way analysis of variance for a maximum of nine treatments of data. It also calculates the statistical values of every two treatments and compares the relationship between the two.
Remarks:	The program was originally written in CBASIC language by J . Merks and rewritten in FORTRAN language by J. Leung.
Reference:	Merks, J.W. 'Sampling and weighing of bulk solids"; Trans Tech Publications; February 1985
Subroutines and	None.
Functions Required:	

2.11.2 Engineering Documentation

ANOVA performs the analysis of variance for an experiment with more than two treatments (maximum=9). The user enters the observations of each treatment in a column. All treatments should have the same numbers of observations (i.e., same row numbers, maximum=50).
The program first prints the data entered by the user in columns. Under each column it prints their mean, variance, standard deviation, and coefficient of variation.

In one-way (or single-classification) analysis, the amounts of variation are calculated between columns and within columns. The F-ratio is given to test the null hypothesis that the means of all columns are equal. If the F-ratio is significantly greater than the value from the F-table, then the hypothesis is discredited; i.e., the means of all columns are not equal.

In two-way (or cross-classification) analysis, each observation can be classified independently with respect to all sources of variation. Two factors occur: the treatment (or column) effect, and the block (or row) effect. The two F-ratio values can be tested separately for the variability of the means of the columns and rows.
Finally, the program calculates the statistical values of every paired column and correlates the two columns with a regression equation $(Y=A+B * X)$ where the higher order column is the dependent variable Y and the lower column is the independent variable X.
The regression coefficients A, B, and their T-values, will be calculated if the correlation coefficient $R: X Y$ is greater than the R-value approximation. Then, the T-values of A and B can be compared with the student T-distribution approximation for the significance test.

2.11.3 Sample Run

ONE-WAY ANALYSIS OF VARIANCE

SOURGE	SUM OF SQUARES	DEGREES	$0 F$	FREEDOM	MEAN	SUM	OF SQUARES
COLUMNS	.0656	2		.0328	RATIO		
ROWS	108.2021	84		1.2881			
TOTAL	108.2678	86					

TWO-WAY ANALYSIS OF VARIANCE

| SOURCE | SUM OF SQUARES | DEGREES | OF FREEDOM | MEAN | SUM | OF SQUARES |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | F-RATIO

WANT T-VALUES FOR PAIRED COLUMNS (Y/N) ?Y

STUDENT'S T-VALUE FOR PAIRED COLUMNS

COL	MD	CV	SD: MD	TV:MD	R: XY	B	S D : B	TV:B	A	SD:A	TV: A
1-2	-.0114	2.10	. 0255	. 447	. 9927	1.00	. 0234	42.91	. 01	. 1546	. 04
1-3	-. 0631	3.87	. 0471	1.341	. 9750	. 98	. 0431	22.82	. 17	. 2849	. 61
2-3	.0517	3.60	. 0438	1.181	. 9785	. 98	.0397	24.66	. 19	. 2629	.73
T 1	28), 95% :		2.05		T (28), 9		2.76			
T (27), 95\%:		2.05		T (27), 9	\% :	2.77			
R (27), 95\%:		. 37		R (27), 9	\%:	. 47			

R:XY : CORRELATION COEFFICIENT

ANOTHER RUN (Y/N) TN

```
STOP
O24100 MAXIMUM EXECUTION FL.
    0.506 CP SECONDS EXECUTION TIME.
```


2.12 COMPLOT

2.12.1 Program Identification

Author:	W. Feader.
Last Update:	F. Flament, November 1984.
Purpose:	To generate Calcomp plot jobs interactively, allowing the userthe widest range of plotting options and defaults.
Remarks:	This program is called to execution by the CCLprocedure, COMPLOT. The various routines accept: - plotting parameters - ploting data - requests for manipulation of plotting data.
Subroutines and	CENTER, SYMBOL, LINTYP,
Functions Required:GETPT, XYFUNC, GETFIL, TITLE,	
Library Required:	PAIRS, SORT.
EMRLIB (from Computer Science	
Centre, EMR).	

2.12.2 Engineering Documentation

COMPLOT is a conversational plotting program for the creation of X / Y plots in interactive mode. The user is presented with a list of default values divided into several groups: axes characteristics, curves characteristics, hard copy characteristics, labels, and titles.
Up to 1000 data points can be plotted and divided into a maximum of nine different curves. The graph can be previewed on a graphic terminal and, if unsatisfactory, can be modified by changing interactively any, or all, the tabulated options. When the user is satisfied with the displayed graph, a hard copy can be obtained on the Calcomp plotter using the pen type, size, and colour specified by the user.
For demonstration, a typical X / Y graph is presented; the size distribution obtained by simulation of a grinding circuit are plotted. (This demo was set up on a tektronix 4016 terminal, operated at 9600 bauds, and may present technical difficulties for remote operation from different terminals at lower speeds.) The following messages will appear on the screen, and require the appropriate entry by the user:

```
MESSAGE REPLY
START OF TAPE
OPTION? W
WHERE WOULD YOU LIKE ORIGIN? 0,0
0,0 ENTER SIZE (WIDTH, HEIGHT)? (See below)
```

The reply to this last message depends on your terminal size, since it is used to fit the original plot within the window of your screen and to maintain the original proportions.

Default graph size $=6 \times 6$ in.
General window: TEKTRONIX 4010 16/12
DIGITAL VT640 16/12
VGT 100 16/12
However, to avoid distortion on the VT640, a factor of $11 / 8$ can be applied to the X -dimension of the window. For instance, $16 / 12$ window on TEK, can be seen in the same proportion with a window of $22 / 12$ on VT640; a full screen image with a window of 22/12 on VT640 can be seen with same proportion with a window of 22/16 on TEK. If you do not know...try numbers around these.
After entering the size by a carriage return, the terminal waits for a final command: EC. This will erase the screen and display the graph. Entering \mathbf{C} will terminate the demo.

2.12.3 Sample Run

A typical graph obtained with COMPLOT is shown below:

2.13 URANDT

2.13.1 Program Identification

Author:	D. Laguitton.
Date Written:	
Last Update:	

Purpose: \quad Program to test random number generation of a sample of a Gaussian population of given mean and standard deviation. For each run, NN samples can be generated.

Usage: \quad Executes as a main program.
File Description: System input and output are used for free format user input. No fixed record formats are used.

2.13.2 Engineering Documentation

The URANDT program uses a random-number generator to produce series of numbers that belong to a normal population of given mean and given standard deviation. It is used to simulate the sampling of a lot by increments (cuts) and to illustrate the Central Limit theorem.

As the number of increments that form this sample increases, the standard deviation of the mean of a composite sample decreases.

In practice, since a large part of the sampling error occurs at the cut of an increment, the more increments there are, the better it is.
The program requires the mean and standard deviation in each cut (e.g., the CU\% grade of the sampled stream and the absolute error on that grade in each increment) and the number of increments collected as well as their size (i.e., the number of random numbers in each increment).
The following limits have been preset: mean : maximum 1000
number of increments (cuts) : 2 to 30 increment size : 10 to 200 numbers in each.

2.13.3 Sample Run

[^0]: * Simulated Processing of Ore and Coal

