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FOREWORD 

High energy costs and depleting ore reserves combine to make process evaluation and optimization a challenging 
goal in the 80's. The spectacular growth of computer technology in the same period has resulted in widely available 
computing power that can be distributed to the most remote minerai processing operations. The SPOC project, 
initiated at CANMET in 1980, has undertaken to provide Canadian industry with a coherent methodology for process 
evaluation and optimization assisted by computers. The SPOC Manual constitutes the written base of this meth-
odology and covers most aspects of steady-state process evaluation and simulation. It is expected to facilitate 
industrial initiatives in data collection and model upgrading. 

Creating a manual covering multidisciplinary topics and involving contributions from groups in universities, industry 
and government is a complex endeavour. The reader will undoubtedly notice some heterogeneities resulting fronn the 
necessary compromise between ideals and realistic objectives or, more simply, from oversight. Critiques to improve 
future editions are welcomed. 

D. Laguitton 
SPOC Project Leader 
Canada Centre for Minerai and Energy Technology 

AVANT-PROPOS 

La croissance des coûts de l'énergie et l'appauvrissement des gisements ont fait de l'évaluation et de l'optimisation 
des procédés un défi des années 80 au moment même où s'effectuait la dissémination de l'informatique jusqu'aux 
concentrateurs les plus isolés. Le projet SPOC, a été lancé en 1980 au CANMET, en vue de développer pour 
l'industrie canadienne, une méthodologie d'application de l'informatique à l'évaluation et à l'optimisation des pro-
cédés minéralurgiques. Le Manuel SPOC constitue la documentation écrite de cette méthodologie et en couvre les 
différents éléments. Les retombées devraient en être une vague nouvelle d'échantillonnages et d'amélioration de 
modèles. 

La rédaction d'un ouvrage couvrant différentes disciplines et rassemblant des contributions de groupes aussi divers 
que les universités, l'industrie et le gouvernement est une tâche complexe. Le lecteur notera sans aucun doute des 
ambiguïtés ou contradictions qui ont pu résulter de la diversité des sources, de la traduction ou tout simplement 
d'erreurs. La critique constructive est encouragée afin de parvenir au format et au contenu de la meilleure qualité 
possible. 

D. Laguitton 
Chef du projet SPOC, 
Centre canadien de la technologie des minéraux et de l'énergie 

Ili 





ABSTRACT

This manual describes the various procedures involved in the development of a ball-mill simulator. The major task is
the estimation of the breakage rate and distribution parameters which are central to the model. That is why the bulk of
this volume is devoted to describing the methods, mathematics and computer programs used to calculate model
parameters. Section 1 outlines the general structure of the kinetic ball-mill model. Section 2 focuses on the laboratory
tests and computation techniques required to estimate the breakage distribution and rate parameters. Finally,
Section 3 illustrates the methods using data from an operating industrial mill.

The computer programs are interactive and fully documented and can therefore be used without a detailed knowledge
of the principles. However, it must be emphasized that a correct interpretation of the results depends on a thorough
understanding of the kinetic model. For that reason, program users should at least read Section 1 describing the basis
of the method. Further explanations and analysis appear in the remaining sections; the mathematics have been
detailed in the appendices. The program structure should allow easy modifications.

RÉSUMÉ

Ce manuel décrit les divers procédés en jeu dans la mise au point d'un simulateur d'un broyeur à boulets. La tâche
principale consiste à évaluer la fonction de sélection et les paramètres de distribution des fragments qui constituent le
centre du modèle. C'est pourquoi la majeure partie de ce volume est dédiée à la description des méthodes, des
mathématiques et des programmes d'informatique utilisés pour calculer les paramètres du modèle. La section 1
présente les grandes lignes de la structure générale du modèle cinétique du broyeur à boulets. La section 2 porte sur
les essais en laboratoire et sur les techniques de calcul utilisées pour évaluer la vitesse de broyage et les paramètres
de distribution. Finalement, la section 3 illustre les méthodes à l'aide de données fournies par un broyeur industriel en
opération.

Les programmes de calcul sont conversationnels et accompagnés d'une documentation complète et peuvent en
conséquent être utilisés par quelqu'un qui ne possède pas de connaissance approfondie des principes. Cependant, il
est clair que l'interprétation correcte des résultats dépend de la compréhension en profondeur du modèle cinétique.
Pour cette raison, les utilisateurs du programme devraient au moins lire la première section qui décrit les fondements
de la méthode. Les applications et les analyses plus détaillées se trouvent dans les sections deux et trois, alors que
les détails des mathématiques se situent dans les annexes. La structure du programme devrait permettre de les
modifier facilement.
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1. BASIC CONCEPTS OF THE BALL-MILL MATHEMATICAL MODEL 

The mathematical model of the ball-mill described in this 
chapter is the phenomenological model derived from 
population balance considerations (1-3). In this model 
all breakage events which prevail in a mill under a given 
set of operating conditions are lumped together, and 
only an average of all the individual breakage events is 
considered to characterize the grinding performance of 
the mill. Two types of information are required when this 
model is used to predict the performance of a ball-
mill: the kinetics of breakage of the ore particles; and 
the flow pattern of the particles through the mill. 

The breakage kinetics is conveniently described by 
dividing the entire population of particles into a series of 
discrete size-intervals and considering the rates at 
which each size-interval loses material due to breakage, 
and also the rates at which each size-interval receives 
the product of breakage from coarser size-intervals. 

The rates of breakage and formation of particles, cou-
pled with the time of grinding, determine the size dis-
tribution of the mill product. In the batch mode of opera-
tion, all the feed particles are subjected to the grinding 
action of the mill for the same length of time. However, in 
the continuous mode of operation, due to the random 
nature of the mixing action generated by the tumbling 
balls, all the particles that enter the mill together do not 
leave the mill at the same time. In fact, a wide variation is 
observed in their time of residence in the mill. A quan-
titative description of this variation is, therefore, also 
required to calculate the size distribution of the product 
of a continuous mill. 

Based on the approach outlined above, in the following 
sections mathematical expressions are derived for the 
size distribution of the mill product for batch and continu-
ous modes of operation. These derivations are pre-
ceded by the definitions of the basic elements of the 
mathematical model. 

1.1 DISCRETE SIZE-INTERVALS 
A discrete size-interval is defined as the size range 
bounded by the size of the mesh openings of two adja-
cent sieves in a standard series, normally characterized 
by a constant sieve-size ratio 8 ( = N./i or 2). The entire 
size range of interest is divided into n size-intervals. For 
the ith size-interval the size of the mesh openings of the 
upper sieve is denoted by and that of the lower one 
by xi . The upper-most size-interval is represented by 
i 

 
=1, and the last size-interval by i = n. The mass fraction 

of the particulate solids in the it" size-interval is denoted 
by  M. The fraction reporting to the pan corresponds to 
the finest size-interval and is denoted by Mn  (Fig. 1). 

Fig. 1 - Illustration of the notations used in the mathe-
matical model 

1.2 BREAKAGE RATE PARAMETERS 
For homogeneous materials, in a dry batch operation, 
the rate of loss of material from a size-interval j can be 
described by the following first-order expression (1,4,5): 

dM(t) 
- 

 dt 	
s m.1(t) 	 Eq 1 1  

where Sj  is a constant (similar to the reaction rate con-
stant for a first-order chemical reaction), and is known as 
the rate parameter for size-interval j, also called the 
selection function in the grinding literature. From Equa-
tion  lit  follows that SI  can also be defined as the specific 
rate of disappearance of material in size-interval j, and it 
has the dimension of time-1 . 

For particles of a given size, the magnitude of the rate 
parameter is determined by two main factors: the rate 
of occurrence of the breakage events in the mill for 
particles of this size; and the nature (shear or impact) 
and intensity of various breakage events in relation to 
the strength of the particles. The role of the first factor is 
obvious. The second set of factors determines the size 
distribution of the fragments of the broken particles (6), 
which in turn determines the fraction of the broken mate-
rial that leaves the parent size-interval (3). Obviously, the 
greater the intensity of the breakage events, the higher 
the value of the rate parameter. 

The rate parameter values for different sieve-size frac- 
tions can be plotted as a function of some characteristic 

1 



size associated with each size-interval*. Figure 2 shows 
a typical variation of the S values with size. A log-log plot 
has been used in order to obtain uniform spacing 
between the size-intervals. For a given set of operating 
conditions, the S values in general increase with particle 
size up to a certain limiting size, and then decrease 
continuously (4,8). This behaviour results from the inter-
action between two basic factors which have opposite 
effects on the value of the rate parameter. The positive 
factor — the probability of being caught between two 
colliding surfaces 1/N as well as the negative factor 1/N 
the strength of the particles 1/N both tend to become 
more effective with increase in particle size (7,8). 
Depending upon the intensity of the collisions (which is 
determined mainly by ball and mill diameter and mill 
speed), the positive factor dominates up to a certain 
size, beyond which increase in particle strength 
becomes more important and the particles.  cannot be 
broken effectively. 

In addition to particle size and particle strength, particle 
load (5,8), ball size (8), ball load (9), mill speed (9), mill 
diameter and per cent solids in the pulp (10,11,12) can 
be listed as important variables that determine the mag-
nitude of the rate parameters, and also their relative 
variation with particle size (i.e., the shape of the S i  vs x i  
cunte). A detailed discussion on the effect of these 
variables can be found in the literature. 

In the wet-grinding operation, the values of the rate 
parameters are also influenced by the overall size dis- 

1.00 

0.50 
7c  

0.20 

0.10 

0.05 

0.02 
48 	28 	14 	8 	4 
65 	35 	20 	10 	6 

SIZE INTERVAL i, MESH 
Fig. 2 – Use of the log-log graph paper to show variation of 
the rate parameters with particle size 

tribution of the particles in the mill (13,14). In general, the 
finer the contents of the mill, the higher the S values for 
each size-interval. However, the variation in S  values  is 
not uniform for all size-intervals, and it becomes less 
pronounced as the particle size decreases (14). 

It should be pointed out that as the last size-interval 
retains all the product of breakage, the value of the rate 
parameter is always zero for this size-interval. 

1.3 BREAKAGE DISTRIBUTION 
PARAMETERS 

A set of parameters  b 1 ,  used to describe the distribu-
tion of the material leaNiing a size-interval j, over the finer 
size-intervals i=j  +1,  j  +2,...n. The distribution is repre-
sented as weight fractions in different size-intervals and, 
therefore, b1 , 1  is a dimensionless parameter. 

Conservation of mass requires that: 

bkj  = 1 
k=j+1 

Using this set of parameters, it becomes possible to 
write a mathematical expression for the rate of 
appearance of material in different size-intervals. For 
example, a size-interval j loses material at a rate of Si Mj  
and a fraction 13 11  of this material reports to a finer size-
interval 1. Therefore, for the size-interval 1, the rate of 
appearance of material originating from the size-interval 
j is given by: buSi Mi . 

Using the concept of distribution function (15), another 
set of parameters 13 1  is defined as follows: 

B i d = 	bkà  
k=i+1 

Thus, B1 j  denotes the weight fraction of the material 
leaving size-interval j which is finer than size x i . It follows 
that: 

Eq 4 

B 1  = 1 1, 

and 

B J = 0 	 Eq 6 n, 

The two sets of parameters bli  and Bli  are often called 
distribution parameters  and cumulative distribution 
parameters, respectively, or breakage and cumulative 
breakage functions. 

Eq 2 

Eq 3 

Eq 5 

*Lower sieve size, upper sieve size, arithmetic or geometric mean of the lower and upper sieve sizes — any one of 
these can be used to represent a size-interval. In each case the ratio of the characteristic sizes for adjacent size-
intervals is the same as the ratio for the size of the openings of two successive screens (i.e., '\,/i). 
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0.13 0.20 0.30 - - 
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- 	- 	- 	- 	- 

0.45 	- 	- 	- 	- 

0.18 0.41 	- 	- 	- 

0.10 0.19 0.37 - - 

0.07 0.11 0.20 0.33 - 

0.20 0.29 0.43 0.67 1.00 

Bij  

j= 	1 	2 	3 	4 	5 

1 	1.00 	- 	- 	- 	- 

2 	0.55 1.00 	- 	- 	- 

3 	0.37 0.59 1.00 - 	- 

4 	0.27 0.40 0.63 1.00 - 

5 	0.20 0.29 0.43 0.67 1.00 

6 	0.00 0.00 0.00 0.00 0.00 

Sometimes the values of all the individual parameters 
Bii  and b1 , 1 depend only on the difference (i-j). For exam-
ple: 

Eq 7a 

B5I  = B5,2  = B7,3  =  	 Eq 7b 

In such a case, the set of distribution parameters is said 
to be difference-similar (3) or normalizable (4). 

For a given size-fraction of a given material, the values of 
the distribution parameters are determined by the 
strength and nature of the breakage forces experienced 
by the particles. Some forces result in abrasion, some in 
chipping, and others in fracture of the particles (6). The 
proportions of the different types of forces depend 
mainly on mill speed (9), shape (16), size (8), and load 
(9) of the grinding media. Several investigators have 
reported that the distribution parameters are fairly inde-
pendent of the ball and mill diameter (11,12,17). Also, 
over the range of 30-40 volume per cent solids in the 
pulp, the values of these parameters are found to be 
practically the same as those obtained under dry-grind-
ing conditions (11,13,14). 

Figure 4 shows some typical values of the B parameters 
in the form of a distribution curve. This representation is 
convenient for graphical display of the B values. 

Figure 3 gives two examples of difference-similar and 
non-difference-similar sets of distribution parameters in 
the matrix form. The j th  column gives the distribution 
parameters for particles originating from the jth size-
interval. A "-" mark in the matrix indicates that the 
corresponding 13 1  or b 1  is not defined, or is 
physically not meàningiul. In Fig. 3a, only one curve has 
been drawn corresponding to B 11  values. Because the 
distribution parameters are difference-similar, all other 
Bid . values are also equally well represented by this 
curve. In Fig. 3b, separate curves have been drawn for 
different j values because the B parameters are non-
difference-similar. 

Generally, for macrocrystalline materials the distribution 
parameters are observed to be difference-similar and 
for polycrystalline and multicomponent materials these 
are observed to be non-difference-similar (13). 

Bij  

j= 	1 	2 	3 	4 	5 	6 

1 	1.00 	- 	- 	- 	- 	- 

2 	0.70 1.00 	- 	- 	- 	- 

3 	0.50 0.70 1.00 - 	- 	- 

4 	0.37 0.50 0.70 1.00 - 	- 

5 	0.28 0.37 0.50 0.70 1.00 - 

6 	0.00 0.00 0.00 0.00 0.00 - 

Fig. 3 - Examples of difference-similar and non-difference-similar distribution parameters 
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1.4 RESIDENCE TIME DISTRIBUTION 
The variation in the time of residence of the particles in 
the mill is described by a function H(t), called the resi-
dence time distribution (RTD) (15). H(t') represents the 
weight fraction of the feed particles that leave the mill by 
a certain time t'. Thus, the difference [H(t2)-H(t 1 )1 gives 
the weight fraction of the feed for which the time of 
residence is in the t 1  to t2  range. The time derivative of 
the function H(t) is represented by h(t), and is called the 
residence time density function. The quantity h(t) dt can 
be identified as the weight fraction of the feed that leaves 
the mill during the time interval t, t + dt. The following 
two equations express the conservation of mass: 

00 
f h(t) dt = 1 

1-1(0.) = 1 

It is obvious that H(0) is always zero, and h(t) is a 
positive-definite function. The relationship between h(t) 
and H(t) can also be expressed as: 

H(t) = ih(t) dt 	 Eq 9 

The mean residence time of the particles, T, is given by: 
co 
ft h(t) dt 	 Eq 10 

. 	o 

For comparison of the basic shapes of H or h functions, 
a dimensionless variable O  (=  tir)  can be used. The 
corresponding functions H*(0) can be defined as: 

H*(0) = H(r0) 	 Eq 11a 

h*(0) = Th(70) 	 Eq 11b  

The residence time distribution function can be 
regarded to a first approximation as independent of 
particle size (11,18-20), and the basic shape of the RTD 
function can be considered to be independent of the 
operating conditions for a given mill, over the range of 
practical interest for different operating variables (11,18). 

A typical example of the residence time distribution 
function is shown in Figure 5. 

Fig.  5—A typical example of the residence time distribu-
tion function in the density form 

1.5 BATCH-GRINDING OPERATION 
Using the concepts of rate and distribution parameters, 
for a dry batch-grinding operation the overall rate of 
change in the mass fraction M i (t) for a size interval I can 
be expressed as: 

CAM 
= —S I M,(t), 1=1 	Eq 12a 

dMi(t) 1-1  
— —SA/1M) + I bi)  SiMj (t), i=2,3,...n 	Eq 12b 

In Equation 12b the summation term corresponds to the 
contributions from all size-intervals coarser than size 
interval i. 

Various analytical solutions have been developed for the 
set of coupled differential equations in Equation 12 
(1,21-23). Appendix A gives the details of the solution 
adopted in the computer program. 

For the first size-interval, the solution to Equation 12a is 
very simple: 

Mi(t) = M1(0) exP( — Sit) 	Eq 13 

This equation can be used to calculate the value of the 
rate parameter S 1  from the experimental data. 

Eq 8a 

Eq 8b 
dt 

dt 	 = 1  

4 



Eq 15 

Eq 16 

1.6 CONTINUOUS-GRINDING OPERATION 
Using the concept of the residence time distribution, the 
mathematical model of the batch-grinding operation can 
easily be extended to describe the continuous-grinding 
operation. The nnill product size distribution in the con- 
tinuous mode of operation, in principle, should be the 
same as the one obtained by carrying out a weighted 
summation of the size distributions of the batch-ground 
products obtained from the same mill corresponding to 
time values ranging from zero to infinity, with h(t) — the 
density of the residence time distribution — as the 
weighting factor. Mathematically this can be expressed 
as (2,11,24,25): 

oo 

= f h(t) M i (t) dt 	 Eq 14 

where p i  is the mass fraction of the particulate solids in 
the ith size-interval of the mill discharge (or product). 
Substituting for M i (t) from the solution to Equation 12, 
and replacing M i(o) by f l , the equivalent notation for 
representing the size distribution of the feed to the con-
tinuous mill, an appropriate expression can be obtained 
for the mill product size distribution p i  as shown in 
Appendix A. 

In the derivation of Equation 14 it has been assumed 
that the values of the rate parameters do not change 
along the length of the mill, although the size distribution 
of the mill contents changes. It has been shown that for 
the usual extent of variation in particle-size distribution 
across the mills in the plants, this assumption is valid 
(11). 

Using the approach outlined above for the derivation of 
Equation 14, it is not possible to describe the size dis-
tribution of the mill contents along the length of the mill. 
For this reason, except for some special cases, it is not 
possible to write a general population balance equation 
similar to Equation 12 for the continuous-grinding oper-
ation for the batch-grinding operation. One special case 
is when the mill acts like a perfect mixer. In this case, the 
size distribution of the mill holdup of the solids (Neil) is the 
same as that of the mill discharge (p 1 ). At any instant of 
time for size-interval i the rate of change of the mill 

contents is equal to the net result of the feed and dis-
charge rates, and of the breakage and production of size 
i particles. Let W, F and P be the total hold-up weight of 
the solids in the mill, feed rate, and discharge rate of the 
solids, respectively; then the population balance can be 
mathematically expressed as: 

dw, 
--:= Ff i  — Pp i  — WS iw i 

 dt 
i — 1 

+ W > b i iSiwi , i=2,3,...n 
j = 1 

Note that for steady state operation: 

dw i  
= 0; F = P; W i  = p i  

we obtain the following solution to the set of Equa-
tion 15: 

f i  + T 	bi 
= 1 

Pi — 

where 

T = W/F 	 Eq 18 

Is the mean residence time. 

In general, the residence time distribution does not cor-
respond to that of a perfect mixer. Therefore, Equa-
tion 14 must be used. As the RTD information is usually 
not available in terms of an explicit mathematical func-
tional form, use of Equation 14 involves evaluation of 
(n-1) integrals by numerical methods (Appendix A). It 
has been shown that for industrial mills, the mixing 
characteristics as characterized by the RTD function, 
can be closely approximated by considering the mill as 
two or more perfect mixers in series followed by a small 
pure-delay element (18-20). For this case and some 
others, explicit expressions can be obtained for the vari-
ous integrals. These are given in Appendix A. 

dt 

1 + S IT 
Eq 17 
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2. DETERMINATION OF THE BREAKAGE RATE AND DISTRIBUTION 
PARAMETERS 

From Equation 12 it follows that the millixoduct size 
distribution is related to the mill feed size distribution 
through n rate and n(n-1)/2 distribution parameters. 
Generally, the number n is of the order 12-15. In practice, 
therefore, the total number of the unknown parameters 
would range from 78 to 120, or more. 

At present, it is not possible to predict the values of the S 
and B parameters from first principles using only funda-
mental physical properties of the mill-material system. 
The estimates of the model parameters must, therefore, 
be obtained from the experimental feed-product size 
distribution data. 

An examination of the basic structure of the feed-prod-
uct size distribution relationships would show that these 
expressions are highly non-linear in the S and B param-
eters (Appendix A). It is well known that even for a set of 
equations with moderate degree of non-linearity and 
only 10-20 unknown parameters, it is quite difficult to 
obtain accurate estimates of the parameters (26). 
Obviously, in our case, determination of one hundred or 
so rate and distribution parameters by usual methods is 
practically impossible. 

Two main approaches to the problem have emerged 
from research in this area: direct estimation of the S and 
B parameters using single-size feeds (such as 2 mm 
feed) for generating the size distribution data (27,28), 
and indirect estimation of S and B using functional forms 
for describing the variation of these parameters with 
particle size (11,29-31). Although direct methods give 
more reliable results, these are not very attractive 
because an enormous effort is required for the prepara-
tion of the single-size feeds. In this manual, the more 
practical, indirect, functional form approach (also called 
back-calculation method) has been used. 

It has been shown (11,31) that several sets of feed-
product size distribution data corresponding to a wide 
range of mill feed size distributions are required for 
simultaneous estimation of all the S and B parameters 
by the functional form method (Appendix B). In the 
actual plant operation, the mill feed size distribution can 
be varied to only a very limited extent. Therefore, both 
sets of parameters cannot be obtained from the plant 
data alone. However, as the B parameters are practically 
independent of the mill size and the mode of operation 
(wet/dry), these can be determined first from laboratory 
dry-batch-grinding tests (11-14). Thus, only the S param-
eters need to be calculated from plant data. It will be 
shown in Section 3 that for most of the size intervals of 
interest, good estimates of the S parameters can be 
obtained from the plant data. This outlines the overall 
approach to the parameter estimation problem. 

The following parts of this chapter are devoted to the 
details of the required laboratory batch-grinding tests, 

the continuous tests in the plant, and the functional form 
method for parameter estimation. 

2.1 CALCULATION TECHNIQUE 

In using the functional form approach for the estimation 
of the S and B parameters, it is assumed that both the 
sets of parameters vary continuously with particle size 
and therefore their variation can be described in terms of 
mathematical functions. The two functions for the two 
sets of parameters can be called as rate function and 
breakage distribution function (11,29,30). The problem 
of the estimation of one hundred or so model param-
eters therefore reduces to finding the values of only a 
few unknown constants in the chosen functions for the 
two sets of parameters. 

2.1.1 The Data Requirements 

Even though the S and B values generally vary system-
atically with particle size, the exact forms of the S and B 
functions cannot be known a priori. For this reason, in 
order to obtain the real values of the S and B parameters 
it is important that the breakage characteristics of all 
size-intervals of interest be well represented in the size 
distribution data used for the estimation of the param-
eters (31). The data requirements for the correct estima-
tion of the S and B parameters are discussed in Appen-
dix B. 

2.1.2 Choice of Functional Forms 

The correct choice of the functional forms for the S and B 
parameters is also very important for the success of this 
method. The accuracy of the parameter estimates 
depends on the closeness with which the assumed 
functional forms can describe the size variation of the 
parameters. Certainly, a very flexible form, such as a 
sixth-order polynomial, can describe complex variations 
in the parameter values quite closely. However, func-
tions with too many unknown constants are not desir-
able. The choice of the functional form for one set of 
parameters should be consistent with that for the other 
set of parameters, because both types of parameters 
are interrelated through the basic size continuous func-
tions S(vs ) and B(x,v) (3,32). Take for example, when 

= s1 x1s2 (where s i  and s2  are constants), the functional 
form for the B parameters must generate difference-
similar distribution parameters (33). However, if reason-
ably flexible functional forms are chosen for both S and 
B parameters, and if good data are used, then these 
functional forms can be confidently expected to provide 
a very close approximation to the real values. The only 
disadvantage in this case is that the values of the con-
stants may not be unique. Depending upon the initial 
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where b1 , b2, b3 ...b6  are constants and R is the sieve-
size ratio. Equation 19 generates a difference-similar 
set of breakage distribution parameters. For small 
deviations from the difference-similar form, Equation 19 
is good. For larger deviations from the difference-similar 
form, Equation 21 should be used (11,30,31). 

Functional forms for S 
The following two functional forms have been found to 
be quite suitable for the rate function: 

S — 	
s

i
x

'
.s2 

Eq 22 
1 + s3x,s4 

InSi  = s 1  + s2(Inx 1) + s3(Inx 1 ) 2  + s4(Inx1)3  + 
Eq 23 

values of the constants used in the optimization exercise 
(discussed later in this chapter), one can obtain different 
sets of values which will generate practically identical S 
and B values (31). 

Functional forms for B 
The following three functional forms have been found to 
be quite suitable for representing the breakage distribu-
tion function for various materials (11,29-31): 

b, 	„b, 

B11  = 	+ (1-13 1 )(1 
X 	 X 

Xi 	 X 

b4 	b2 	 b4 	b3  

B 1 , 1  = bl  (
xi

..1  ) (1 	+ (1 — b 1 (I) ) (3-) 
xi 	 x. 	x. 1 	1 

	

b4 
 1x 

	+ 135 j 

B 1 ,1  = ID, (I) 	xi  
xi 	Xi 

b4 ( )13, + be j 

+ (1 — b i  (1) ) )A 
xi 	x 1 

Er =  1 	1 (M 11  — 	1  
test size 	' 	Œii 2 

intervals 

where crpi  is the variance associated with the ith size- 
interval mass fraction of the i th  test. The statistics of the 
experimental errors are generally not known, except if 
the same test is repeated many times, which is improba- 
ble. This is the reason why, generally, Er is not weighted. 

When the error Er is not weighted, it is in fact implicitly 

E 19 	
assumed that crfi  is independent of i and j. This means 

q  that the measurement standard deviation o- is constant. 
In this situation the results of the model parameter cal- 
culation are mainly influenced by the size-intervals con-

Eq 20 taining significant amounts of material. Another limiting 
condition is the assumption of constant relative 
accuracy of the measured values. This implies that cr• is 
proportional to the amount of material M I1  of size i in the 
product. In this situation the results of thé model param-
eter calculation can be strongly influenced and possibly 
biased by the size-intervals containing very little mate-
rial. 

Generally, it is acceptable to use an unweighted crite- 
rion; however, the following simple structure of the stan- 
dard deviation of the measurements might be better: 

cr = P. + DM; j  Eq 25 

where P. is the threshold of sensitivity of the size analy-
sis method. It can be taken as the smallest measureable 
mass fraction, for instance, the fraction which exhibits a 
100% error (0.2% for a standard sieving technique). The 
a coefficient is the mean relative accuracy for the size-
interval in which the weight percentage is very signifi-
cant (10% for example). Generally, it can be taken 
between 5 to 10%. 

Another recommended weighted least-squares criterion 
is inspired from chi-square (x 2) statistics (34). The error 
function is given by: 

Eq 24 

Eq 21 

where sl , s2 , 53 , etc. are constants. The functional form 
in Equation 23 is the most flexible one. Depending on 
the complexity of the shape of the rate function curve, 
higher order terms can be included in the polynomial. 
The functional form (23) is implemented in the program 
up to the third degree, but it could easily be extended to 
higher degrees, if needed. 

2.1.3 Estimation of the Unknown 
Constants 

A weighted least-squares method can be used to calcu-
late the best values of the unknown constants in the S 
and B functions. A squared errors function is defined 
which provides a measure of the differences in the 
experimental and the calculated product-size distribu-
tions: 

Er =  1 1 (M 1,1 — F1 1 )2 _ 	26 

Table 1 gives the effect of this weighting strategy for 
three typical levels of agreement between calculated 
and experimental size distributions. Three different con-
stant values are given to the ratio (M — M) 2/K/I corre-
sponding to satisfactory, good, and excellent fit. For 
increasing M value, the allowed adjustment  M — 
increases but the relative adjustment (% error in table) 
decreases. This is in agreement with the usual error 
structure of a size analysis: poor relative accuracy for 
small weights and better for large weights. 

The best values of the unknown constants in the func-
tional forms of S and B are then determined by a non-
linear programming method which minimizes Er. 

In a first step, both sets of parameters can be obtained 
from the batch-grinding size distribution data. As 
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pointed out earlier, the same B parameters can then be 
used to estimate the S parameters for the mill in the 
plant. 

The usual technique to minimize a function with respect 
to some variables is to solve the set of equations 
obtained by differentiating the function with respect to 
each variable and equating the derivatives to zero. 

For the present case, the values of the unknown con-
stants can be obtained by solving the following system 
of equations: 

SD* = 0 ; k = 1,2.... 

SEr 

 

0;  k 	1, 2... 
Ssk  

In fact, this system is strongly non-linear and very di ff i-
cult to solve. When the breakage distribution function is 
known, it has been shown (35) that this system can be 
solved very efficiently by the Gauss-Newton method 
starting from a reasonable initial value of the rate param-
eters. However, when B and S parameters are simul-
taneously calculated, this method becomes very unsta-
ble. So it is preferable to select a method which does not 
involve the formal calculation of the derivatives. The 
Powell algorithm is based on an approximation of the 
conjugate gradient technique (36) and is one of the most 
powerful non-linear programming methods available 
which do not require derivatives. 

2.2 BATCH-GRINDING TESTS 
The main purpose of carrying out the laboratory batch-
grinding tests is to obtain the estimates of the B param-
eters for the plant operation. It is, therefore, important 
that the laboratory tests be carried out under conditions 
which will simulate the breakage behaviour of the parti-
dos in the industrial mill. The various recommendations 
made in the following sections are based on this general 
criterion. Depending upon the actual operating condi-
tions in a plant, suitable variations can be made by the 
user. 

2.2.1 Apparatus 
The tests should be carried out in a mill of at least 25 cm 
in diameter. The ball charge should consist of approxi-
mately equal numbers of 1.27 cm (0.5 in.), 1.91 cm 
(0.75 in.), and 2.5 cm (1 in.) balls (8, 27, and 65 wt %, 
respectively). In case balls of several different intermedi-
ate sizes are available (for example, from the mill in the 
plant), these can be used to duplicate continuous grind-
ing ball size distributions. The weight of the ball charge 
should correspond to 35-40% apparent filling of the mill 
volume. The important considerations in the selection of 
the values of these parameters are: the profile of the 
tumbling ball charge; the number of layers of ball in the 
tumbling charge (at least 6-7 layers of ball should be 
there to simulate the actual grinding action of the plant 
mill); and the porosity of the ball charge. Ali  these factors 
along with the mill speed determine the proportions of 
the different types of breakage events in the mill. 

The mill should run at 70% of the critical speed. The 
critical speed can be calculated from the following 
expression: 

423 	peritical speed - 	_ 	r m 
(D - dr. 5  

where D is the mill diameter in cm and d is the average 
ball diameter, which can be taken as 2 cm. 

2.2.2 Preparation of the Test Feeds 
Actual  bail -mill feed obtained from the plant is best for 
the breakage tests. In case the rod mill discharge or the 
crushed run-of-mine ore is used for preparing the test 
feeds, this material should first be ground in the bail -mill 
for one to two minutes before the final samples are 
prepared. This procedure ensures, to a certain extent, 
that the material used in the laboratory tests is represen-
tative of the actual ball-mill feed in the plant in terms of 
the particle shape and strength distribution (31). 

In the plant, the feed to the ball-mill may contain propor- 
tionately greater amounts of heavier  minerais due to 
preferential classification by the hydrocyclones. This 

depending on the 
functional form 
selected 

Eq 27 

Table 1 -Differences between the experimental and calculated values of M corresponding to 
three different values of the chi-square term, Er = (M-fill)2/M 

Relative error [M- i1]  x 100 Relative error [M-f■I]/M 

KA x 100 	Er = 0.02500 Er = 0.00625 Er = 0.00156 Er = 0.02500 Er = 0.00625 

	

40 	1.000 	0.500 	0.250 	2.50 	 1.25 

	

30 	0.866 	0.433 	0.216 	2.89 	 1.44 

	

20 	0.707 	0.353 	0.176 	3.53 	 1.76 

	

15 	0.612 	0.306 	0.153 	4.08 	 2.04 

	

10 	0.500 	0.250 	0.125 	5.00 	 2.50 

	

5 	0.353 	0.176 	0.088 	7.06 	 3.52 

	

3 	0.274 	0.137 	0.068 	9.13 	 4.57 

	

2 	0.224 	0.112 	0.056 	11.20 	5.60 

	

1 	0.158 	0.079 	0.039 	15.80 	7.90 

Er  = 0.00156 

0.62 
0.72 
0.88 
1.02 
1.25 
1.76 
2.27 
2.80 
3.95 

Slak  

Fit 	Satisfactory 	Good 	Excellent 	Satisfactory 	Good 	Excellent 

8 



Weight Size interval 	Weight 
(mesh) micrometres* 

Size interval 
(mesh) micrometres* 

Feed 1 
60 
15 
25 

65 
20 
15 

8/10 	2000 
10/14 	1400 
– 14 –1180 

8/10 	2000 
10/14 	1400 
–14 –1180 

	

20/28 	710 
Feed 2 	 28/35 	500 

– 35 	–425 

	

75 	 28/35 	500 

	

18 	 35/48 	355 

	

7 	 –48 	–300 

68 
15 
17 

	

48/65 	250 
Feed 3 	 65/100 	180 

	

–100 	–150 

58 	 100/150 	125 
22 	 150/200 	90 
20 	 –200 	–75 

55 
20 
25 

factor cannot be taken into account, if the actual plant 
ball-mill feed is not used for the tests. 

Three or four feeds of different top size need to be 
prepared (Appendix B). The top size of the first feed 
should correspond to approximately the 90% passing 
size of the plant ball-mill feed. The top size of the last 
(the finest) feed should correspond to one or maximum 
two size-intervals above the last sieve-size interval used 
in the analysis of the plant data. For example, if the 90% 
passing size of the plant feed is 8 mesh and the last 
screen used in the size analysis is 270 mesh, then the 
top size-interval of the first feed would be 8/10 mesh and 
the top size-interval of the last feed would be 150/200 
mesh. The typical size distributions of the test feeds are 
indicated in Table 2. The general guidelines are: the 
top-most size-interval should contain 50% or more 
material; the next size-interval should contain less than 
35% of the amount in the top-most size-interval; and the 
remaining material should be well distributed over the 
finer size-intervals. 

It is relatively difficult to prepare large amounts of the 
finer size fractions such as a 100/150 mesh size fraction. 
Fortunately, for these size fractions the values of the rate 
parameters are quite small. It is, therefore, possible to 
maintain a reasonably high weight ratio for the top-most 
size-interval with respect to the next size-interval for a 
longer period of time, even when the starting weight 
ratio is relatively smaller than the general recommended 
value of three. However, as indicated in Table 2, it is 
recommended that even in case of the finest feed, this 
ratio should not be less than two. 

For each grinding experiment the weight of the test feed 
should correspond to 80-100% apparent filling of the 
void volume of the static ball charge in the mill. This 

weight can be calculated by multiplying the void volume 
of the ball charge by the bulk density of the ground ore. 
The void volume of the balls can be measured by adding 
water to the mill until the water level is just at the top of 
the balls. The bulk density of the ore can be obtained by 
measuring the volume of a known weight of the ore 
sample with a measuring cylinder under loose packing 
condition. 

2.2.3 Size Analysis 

For size analysis, standard sieves of the Tyler series 
(size ratio N/2) must be used. Standard sampling and 
screening procedures should be used. Good sampling, 
uniform screening time and uniform efficiency of screen-
ing for particles of all sizes are very important. It should 
be emphasized that as the percentage of fines in the 
sample increases, the sample weight cut for screening 
should be reduced. Sometimes, it may therefore be 
necessary to divide the original sample into two or three 
small samples and screen each one of them separately. 

2.2.4 Details of Grinding Tests 

it is preferable to grind each test feed twice. This way it is 
possible to check if the rate parameter of the top-most 
size fraction remains reasonably constant with grinding 
time — which is the main basis of the mathematical 
model. Moreover, with two sets of feed-product size 
distribution data for each starting feed, more reliable 
estimates of the S and B parameters can be obtained. 

For an accurate estimation of all the B parameters, it is 
important that each size-interval receives a significant 
amount of the broken material. For this reason it is 
recommended that in each one of the two stages of 

Table 2 – A typical set of starting feed size distributions 

Set of four feeds Set of three feeds 

	

150/200 	90 
Feed 4 	 200/270 	63 

	

–270 	–53 

50 
25 
25 

*mean size 
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Si  = 
t i  

In[M 1 (t 1 )/M 1 (0)]  

Eq 28 

Eq 29 

grinding, the top-most size fraction should be reduced 
by 30-50 per cent. Certainly, an initial guess of grinding 
time is required for the first stage of grinding of each 
feed. In most cases a time period of 1.5 min will be found 
to be quite suitable for the coarsest feed. After carrying 
out the first experiment, the time period for the second 
experiment can be fixed more accurately with the help of 
the S 1  value obtained from the first experiment size-
distribution data. For 50% reduction, the expected dura-
tion of the second experiment can be calculated as 
(Eq 13): 

In 0.50  t2  = 
Si  

where 

For uccessively finer feeds the grinding time of the first 
experiment can be increased by 25%. Depending on the 
result obtained in the first experiment, the grinding time 
for the second period can be adjusted in the same way 
as explained above. 

2.3 CONTINUOUS TESTS 
To be able to model the continuous mill, the minimum 
data requirements are the mill feed and product size 
distributions during one steady-state sampling cam-
paign. However, in this case, only the product of the 
mean residence time T and the rate parameters can be 
calculated (TS for size interval j). This can be under-
stood by looking at the mathematical solution of the 
continuous grinding equation given in Appendix A. 
When the Si  parameters are multiplied by any constant 
factor the matrix Z is not changed; consequently, the 
predicted product of a mill depends only upon the vari-
ables TSi  present in the diagonal matrix V. 

The product TSi  varies strongly with the operating condi-
tions of the mill. As a result it is not a suitable parameter 
to build a grinding mill model. The mean residence time 
T is by definition the mass of ore retained in the mill 
divided by the ore throughput (Eq 18). Consequently, we 
have: 

WS, 
iS = 	 Eq 30 1 

When the throughput F is measured, the value of only 
the product  5 1W is needed for the calculation of the mill 
product size distribution. This parameter can be named 
the absolute rate of breakage and denoted by  S.  It is 
generally expressed in units of tons per minute. 

Some simulation studies performed on a complex sul-
phide ore from New Brunswick at a pilot scale (11) and at 

full scale (37,38) indicated clearly that the values are 
relatively insensitive to operating conditions in the nor-
mal range of operation. For a 2.7 m x 3 m ball-mill 
was found almost constant for throughput varying from 
100 to 200 t/h. For a 40 cm x 40 cm mill, S was found 
almost constant for throughput varying from 70 to 
110 kg/h and for hold-up weight varying from 5 to 8 kg. 
The function  S is, therefore, a definitely better modelling 
parameter than the product ST. 

When the true rate parameter S is needed, the mean 
residence time T must be known. The value of T can be 
obtained by measuring the ore hold-up weight of the mill 
and the mill throughput. The measurement of the ore 
hold-up weight of the mill is very difficult to perform. The 
power drawn by the mill motor is influenced by the mill 
hold-up. However, the variations due to the ore hold-up 
are too small compared to those due to the ball charge. 
The sound emitted by the mill is related to the hold-up of 
pulp; however, this method needs a calibration. In addi-
tion, other factors—such as pulp rheology and ball load 
— influence the noise level. A suitable technique, 
although not perfect, is the tracer test. 

Ideally, the best way to perform this kind of test is to tag 
the ore itself by irradiation (39). But in wet grinding, a 
simpler way is to trace water. Twelve experiments in a 
40 cm x 40 cm pilot mill, with a complex sulphide ore, 
indicated that the mean residence time measured with a 
liquid tracer differs by less than 10% from the value 
obtained by emptying the mill and weighing the ore hold-
up (40). 

Some tracer experiments performed with unbreakable 
particles have shown that the mean residence time 
(MRT) of small particles is the same as the water MRT, 
and that coarse particles show a trend to stay longer in 
the mill (41). Some authors (19) have observed that the 
MRT of water is 10% lower than the MRT of solids. As a 
conclusion, it is quite acceptable in the relatively fine 
size range of ball-mill grinding operation to measure the 
MRT of the water. Another Chapter 7.3 of the SPOC 
Manual  (18) gives the experimental methods and the 
programs needed for such tracer tests. 

It should be noted that the accuracy of the calculated 
MRT is affected by the choice of the mathematical repre-
sentation used for the RTD function. However, the S 
calculation (when T is known) and the S calculation 
(when only F is known) is not very sensitive to the 
assumed model of the dimensionless RTD. A com-
parison of S calculated for a 2.7 m x 3.6 m mill, 
assuming a series of perfect mixers and a log normal 
representation of the RTD with the same variance, indi-
cated a 10% variation (42). 

In summary, the following table shows what can be 
calculated given the available data: 
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Available data Calculations possible

Feed and product size
distributions

and
reasonable approximation

of the dimensionless
RTD

(TS)

All of the above plus Si
mill throughput

All of the above plus S, and W
the mean residence (the mill hold-up

time mass)

Generally, one set of data is largely insufficient to reli-
ably determine the rate parameters because of: the
natural experiment errors and disturbances which occur
in an industrial environment; and the variation of the rate
function with the operating conditions.

Before planning any experiments, the objectives must
be clearly established in terms of the more important
variables which should be studied for a given grinding
circuit. The rate function of a mill of given size and speed
of rotation depends on various factors, such as particle-
size distribution, % solids, pulp viscosity, pulp flowrate,
ball-load, ore grindability, ore holdup.

A complete mathematical model based on this analysis
requires the quantitative evaluation of the relationships
between those factors. This procedure would require a
voluminous set of data.

However, in a normal range of operation, where S is
almost constant as well as the ball load, the main con-
tributing factors to the value of S are:

- ore grindability
- particle-size distribution
- per cent solids

throughput.

The experimental design must be performed according
to the variables which are assumed to have prominent
effect. In any circumstance, it is highly recommended to
record the measurements of the following operating
variables:

- feed and product size distribution;
- throughput;
- per cent solids;
- ore grindability;
- mean residence time;
- noise level;
- level of balls when the mill is

stopped;
- size distribution of the balls;
- pulp viscosity.

The ore grindability is of prime importance in situations
where it varies frequently, since by neglecting this factor

the effect of the other factors on the grinding kinetics
may be hidden. The ore grindability can be inferred from
data on comminution machines preceding the ball mill-
ing circuit (rod mill or crushing stage), or it can be directly
measured by a standard Bond test or by the simplified
batch-grinding procedure described in Appendix C.

In summary, the model will be as good as the data from
which it is derived. In addition, the performance of the
model outside the normal operating range will be better
if a semi-empirical model is used (with utilization of the
concept of transport phenomena analyzed in terms of
rheology and ore hold-up) rather than a fully empirical
model relating the kinetics to the input variables (feed
rate, % solids, size distribution).

For the execution of a sampling campaign, it is recom-
mended to follow the procedures described in other
Chapter 2 of the "SPOC Manual" (43). However, the
following points must be emphasized:

- Check and maintain the steady-
state operation of the circuit.

- Take samples during approximately
a one-hour period.

Take at least six samples from each
location and make a composite
sample at each location.

- Take as many samples as possible
to have a redundant set of data.

- Carefully perform the size analysis.

Then, the raw data have to be adjusted by a mass
balance program (44). It has been demonstrated (45)
that the use of consistent data, which satisfy mass
conservation laws, produces more reliable estimates of
the model parameters.

In the computer program for continuous operation
described in Section 4, a mixers-in-series model has
been used for calculating the mill product size distribu-
tion. The mean residence time in each mixer should,
therefore, be known for the calculation of the mill product
size distribution as is shown in Appendix A. For details
related to this aspect see reference (18).

2.4 GUIDELINES FOR THE ESTIMATION
OF THE MODEL PARAMETERS

The following recommendations are made regarding the
procedures to be followed for the estimation of the model
parameters.

Recommended Procedures
1. Calculate the S values for the top size-intervals of

each feed from the batch-grinding data (use Eq 29
with appropriate modifications in time values for
each period of grinding). Check the S values for
time-independence. The proposed method can-
not be used if the S values change significantly
with grinding time.
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2. In Equation 19 through 21, the values of the con- 
stants Ill , b2  and b3  depend on the sieve-size ratio 
(R). We recommend that a root-two sieve series 
always be used. In that case: 

R = 	= 

Also, the values of the constants b4, b6  and b6  
depend on the magnitude of the xi  values. We 
suggest xl  be the geometric mean size in milli-
metres (although it could also be the upper or 
lower limit of each size function). In the computer 
program described in the next section, it is only 
necessary to provide the xi  value for the top 
size (1= 1). All other sizes are calculated as 

= x1 /R(1-1 ). 

3. The values of the constants in the functional forms 
for the rate parameters (Eq 22 and 23) depend on 
the magnitude of the xi  values. Therefore, there is 
an obvious need for being consistent in the units of 
xi  values. The user can use any suitable units 
such as micron or millimetre. However, based on 
our experience, we recommend the use of milli-
metres. 

4. Use a logarithmic graph paper to plot log S vs log 
x, as shown in Figure 2. Draw the best-fit straight 
line on this graph and calculate the corresponding 
values of the constants s i  and s2  in Equation 23. 
These values can be used as the initial estimates 
of the two constants in the optimization exercise. 

5. Start with the simplest functional forms for the B 
and S parameters (i.e., use Eq 19 and a first-order 
Eq 23). The initial values for the constants b 1 , b2 

 and b3  can, in general, be taken as 0.4, 1.0 and 
4.0, respectively (a recommendation based on our 
experience). 

In case these functional forms do not provide a 
satisfactory simulation of the experimental data, 
progressively higher order forms should be tried 
for the S parameters. 

In case even a third-order S polynomial does not 
provide a satisfactory simulation of the experimen-
tal data, Equation 20 should be tried for the B 
parameters in combination with at least a second-
order polynomial for the S parameters. The initial 
estimate of the constant b4  can be taken as 0.1. 

If increasing the order of polynomial to a value of 
four does not help, Equation 21 should be tried in 
combination with at least a third-order S poly-
nomial. In most cases a fourth-order polynomial 
will be found to be quite satisfactory. The initial 
estimates of the constants b 5  and b6  can be taken 
as 0.01 and 0.1, respectively. 

It should be emphasized that the order of S poly-
nomial must increase with the complexity of the 
functional form for the B parameters, otherwise 
meaningless results can be obtained. For exam-
ple, some of the S and B values can become 
negative, or some of the B values may become 
greater than 1.0. 

6. At the end of each estimation exercise, the error 
distribution should be studied for the predicted 
mass-fraction values. This can help in deciding the 
suitability of the functional forms and also provide 
hints for improving them. 

It is also recommended to calculate the standard 
estimate of error, SE, which is defined as (29,30): 

SE = VEr / (na -nb) 

where na is the total number of the mass-fraction 
values in the data set without the pan, and nb is the 
total number of constants in the two functional 
forms. It is expected that not only the error function 
Er will decrease, but simultaneously the SE value 
will also go down each time a new constant is 
added. If this does not happen, the basic structure 
of the functional forms should be modified. 

7. The computer program also provides an additional 
option for minimizing the unweighted least-
squares error-function corresponding to 
cumulative mass-fraction passing values denoted 
by PI : 

Pi  = 	Mj  = 1 —  E  Mk 
= - 1 	 k = 1 

The error structure of PI  values is not well under-
stood, despite their general use in industrial data. 
This option should therefore be used with circum-
spection. 
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CYC. FD. 

RMW 

MEAS.Fe.—"COMP. 
FD. 

PBW 
(including gland water) 

X Slurry sampling point. 

3. ILLUSTRATION OF THE METHOD 

3.1 DATA COLLECTION 
The simulation of a ball-mill requires knowledge of the 
rate and distribution parameters and mill-mixing proper-
ties. The following experiments provided data for deter-
mining these parameters. First a sampling campaign 
was performed around the grinding circuit of interest. 
Then batch-grinding tests were performed on rod mill 
discharge collected during the sampling campaign. 

3.1 1  Industrial Ball-Mill Sampling 
Experiment 

The ball-mill was operated in reverse closed circuit as 
shown in Figure 6. 

To determine the flow rate through the ball-mill a com-
plete mass balance sampling campaign was necessary. 
Enough. data were collected to over-define the circuit 
balance so that a least-squares adjustment procedure 
could be used to obtain a reliable set of results despite 
unavoidable sampling, screening errors, etc. 

Figure 6 shows the four locations accessible for slurry 
sampling. At each location a sample was cut every ten 
minutes for one hour and the six samples combined for 
composite location samples. In the case of the cyclone 
overflow and underflow, the design of the cyclone clus-
ter did not permit sampling of combined streams. Each 
cyclone had to be sampled individually and the samples 
combined manually. The rod and mill discharge sam-
ples were obtained by reaching into the mill and scoop-
ing samples off the rotating trunnion. 

In addition to the slurry samples, circuit instrumentation 
provided the rod mill and pump box water flow rates, the 
cyclone feed pulp density and the integrated rod mill 

Fig. 6—  Industrial grinding circuit used for methodology 
demonstration 

feed tonnage. The rod mill feed rate was then calculated 
as the integrated tonnage divided by the elapsed time. A 
monitoring computer program calculated signal vari-
ances for many of the process variables and provided a 
second estimate of the rod mill feed rate. Finally, a rod 
mill feed sample was taken to correct the feed rate for 
per cent moisture. 

For demonstrative purposes, two different tracer experi-
ments were performed for determining the residence 
time distribution function. The first immediately pre-
ceded the sampling campaign, and the second imme-
diately followed the sampling campaign. Details of these 
experiments are given elsewhere (18). 

Immediately after the sampling campaign, the slurry 
samples were weighted for density measurements, 
pressure filtered, and left to dry before screen analysis. 

3.1.2 Mass Balance Calculations 

The sampling campaign provided flow rates, pulp per 
cent of solids, and size distribution data. The BILMAT 
program (46) was used to make them self-consistent 
from a mass balance point of view. A relative standard 
deviation (accuracy of the measurement) was associ-
ated with each measured value. The flow rates and pulp 
per cent of solids accuracies were supplied by a compu-
ter program which monitored these variables during the 
sampling campaign. The standard deviations of the 
screen analysis results were estimated by assuming a 
minimum threshold variance (4) plus a term propor-
tional to the weight per cent retained on each screen 
(w1): 

Vcre, (1 + 
Relative standard 	

_n_.)
40 

= 100 x deviation (°/0) 

The 1190 and 1680 micron screens were arbitrarily given 
a high standard deviation since it was observed that the 
1680 micron screen was damaged. 

Table 3 shows the program results. The RELAT. ST  
DEV. column summarizes the percentage of accuracy 
given to each measured value. A 0.00 value in the 
MEAS. VALUES and the RELAT. ST  DEV. columns cor-
responds to an unmeasured variable. The values calcu-
lated by BILMAT are given in the ESTIM. VALUES col-
umns, while the RESID. VALUES are the percentage 
adjustments performed by the program to make the 
data self-consistent. 

'NI 
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Table 3 - BILMAT output of the mass balance results 

Relative ore flow rates values: 

Streams 	Relative flow rates 
MEAS.FD 	1.0000 

COMP.FD 	1.0000 

RM.DIS. 	1.0000 

CYC.FD. 	3.4902 

CYC.OF. 	1.0000 

BM.DIS. 	2.4902 

BM.FD. 	2.4902 

Mass balance results 

Streams Pulp flow rates 	 Water flow rates 

	

Meas. 	Estim. 	Resid. 	Relat. 	Meas. 	Estim. 	Resid. 	Relat. 

	

values 	values 	values 	St.dev. 	values 	values 	values 	St.dev.  

MEAS.FD 	348.18 	348.53 	.10 	.29 	0.00 	8.38 	100.00 	0.00 
COMP.FD 	349.90 	348.53 	.39 	.57 	0.00 	8.38 	100.00 	0.00 
RM.DIS. 	 0.00 	438.89 	100.00 	0.00 	0.00 	98.73 	100.00 	0.00 
CYC.FD. 	0.00 	1854.09 	100.00 	0.00 	0.00 	666.88 	100.00 	0.00 
CYC.OF. 	0.00 	723.18 	100.00 	0.00 	0.00 	383.03 	100.00 	0.00 
BM.DIS. 	 0.00 	1130.91 	100.00 	0.00 	0.00 	283.86 	100.00 	0.00 
BM.FD. 	 0.00 	1130.91 	100.00 	0.00 	0.00 	283.86 	100.00 	0.00 
RMW 	 0.00 	90.36 	100.00 	0.00 	82.00 	90.36 	10.19 	15.00 
PBW 	 0.00 	284.29 	100.00 	0.00 	291.00 	284.29 	2.31 	6.87 

Streams 	 Solid flow rates 	 Pulp per cent solids 

	

Meas. 	Estim. 	Resid. 	Relat. 	Meas. 	Estim. 	Resid. 	Relat. 

	

values 	values 	values 	St.dev. 	values 	values 	values 	St.dev. 
MEAS.FD 	0.00 	340.15 	100.00 	0.00 	97.60 	97.60 	.00 	.20 
COMP.FD 	0.00 	340.15 	100.00 	0.00 	97.60 	97.60 	.00 	.20 
RM.DIS. 	 0.00 	340.15 	100.00 	0.00 	77.40 	77.50 	.13 	.65 
CYC.FD. 	0.00 	1187.20 	100.00 	0.00 	63.90 	64.03 	.21 	15.65 
CYC.OF. 	0.00 	340.15 	100.00 	0.00 	47.10 	47.04 	.14 	1.06 
BM.DIS. 	 0.00 	847.05 	100.00 	0.00 	75.00 	74.90 	.13 	.67 
BM.FD. 	 0.00 	847.05 	100.00 	0.00 	74.80 	74.90 	.13 	.67 
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Table 3 - continued 

Streams RM. DIS. 	 CYC. OF. 

Meas. 	Estim. 	Resid. 	Relat. 	Meas. 	Estim. 	Resid. 	Relat. 
values 	values 	values 	St.dev. 	values 	values 	values 	St.dev. 

	

+6730 	 .04 	.04 	7.20 	127.00 	0.00 	.00 	100.00 	.00 

	

4750 	 .31 	.31 	1.01 	18.13 	0.00 	0.00 	100.00 	.00 

	

3360 	 1.18 	1.18 	.30 	6.24 	0.00 	.00 	100.00 	.00 

	

2380 	 4.37 	4.29 	1.91 	3.14 	0.00 	.00 	100.00 	.00 

	

1680 	 6.86 	6.87 	.17 	27.29 	0.00 	.00 	100.00 	.01 

	

1190 	 13.17 	12.99 	1.34 	11.90 	.28 	.30 	8.65 	99.29 

	

841 	 11.02 	11.02 	.00 	2.45 	.59 	.59 	.16 	10.47 

	

600 	 8.80 	8.84 	.47 	2.57 	2.10 	2.10 	.23 	4.38 

	

425 	 7.01 	7.02 	.13 	2.71 	5.31 	5.31 	.00 	2.94 

	

300 	 6.76 	6.74 	.27 	2.74 	9.62 	9.67 	.47 	2.52 

	

212 	 5.94 	5.92 	.32 	2.84 	12.03 	12.11 	.63 	2.42 

	

150 	 4.45 	4.43 	.42 	3.12 	10.03 	10.11 	.76 	2.50 

	

106 	 4.01 	4.00 	.20 	3.25 	9.03 	9.07 	.42 	2.55 

	

75 	 3.84 	3.83 	.18 	3.30 	8.45 	8.48 	.38 	2.59 

	

53 	 2.15 	2.13 	.76 	4.33 	4.58 	4.62 	.93 	3.09 

	

45 	 1.31 	1.30 	.99 	11.63 	2.62 	2.65 	1.28 	7.82 

	

-45 	 18.78 	19.08 	1.60 	4.61 	35.36 	35.00 	1.03 	4.28 

Streams 	 BM. DIS. 	 BM. FD. 

Meas. 	Estim. 	Resid. 	Relat. 	Meas. 	Estim. 	Resid. 	Relat. 
values 	values 	values 	St.dev. 	values 	values 	values 	St.dev. 

	

+ 6730 	 .09 	.08 	8.41 	57.56 	.09 	.10 	8.15 	57.56 

	

4750 	 .11 	.12 	6.02 	47.45 	.25 	.24 	3.05 	22.00 

	

3360 	 .34 	.33 	1.60 	16.71 	.80 	.81 	.87 	8.25 

	

2380 	 1.07 	1.01 	5.26 	6.67 	2.62 	2.74 	4.39 	3.91 

	

1680 	 1.22 	1.20 	1.63 	60.98 	4.05 	3.96 	2.23 	32.35 

	

1190 	 5.59 	5.44 	2.60 	14.47 	10.32 	10.54 	2.13 	12.42 

	

841 	 7.66 	7.66 	.02 	2.65 	11.85 	11.85 	.03 	2.42 

	

600 	 10.64 	10.78 	1.28 	2.47 	13.70 	13.49 	1.57 	2.36 

	

425 	 12.20 	12.25 	.41 	2.41 	13.00 	12.94 	.49 	2.38 

	

300 	 13.47 	13.33 	1.03 	2.37 	12.05 	12.16 	.89 	2.41 

	

212 	 10.96 	10.84 	1.12 	2.46 	8.28 	8.35 	.89 	2.60 

	

150 	 7.17 	7.08 	1.28 	2.70 	4.75 	4.80 	1.04 	3.05 

	

106 	 5.42 	5.39 	.56 	2.92 	3.34 	3.36 	.46 	3.50 

	

75 	 4.50 	4.48 	.49 	3.11 	2.60 	2.61 	.42 	3.92 

	

53 	 2.33 	2.29 	1.90 	4.15 	1.26 	1.29 	2.09 	5.97 

	

45 	 1.31 	1.28 	2.53 	11.63 	.71 	.73 	3.11 	18.08 

	

-45 	 15.92 	16.45 	3.31 	4.67 	10.33 	10.06 	2.66 	4.97 
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Table 4 - Batch-grinding tests data 

Weight per cent retained on size 

Mesh 	 Feed 	 2.0-min product 	4.0-min product 

	

10 	 62.96 	 30.50 	 15.38 

	

14 	 36.72 	 40.39 	 34.32 

	

20 	 0.16 	 11.58 	 15.87 

	

28 	 0.00 	 6.00 	 10.39 

	

35 	 0.00 	 3.03 	 5.78 

	

48 	 0.00 	 2.24 	 4.43 

	

65 	 0.00 	 1.46 	 3.08 

	

100 	 0.00 	 1.09 	 2.28 

	

150 	 0.00 	 0.85 	 1.85 

	

200 	 0.00 	 0.73 	 1.66 

	

270 	 0.00 	 0.55 	 1.17 
- 270 	 0.16 	 1.58 	 3.81 

	

20 	 59.26 	 33.45 	 19.38 

	

28 	 25.30 	 30.89 	 27.29 

	

35 	 7.80 	 14.33 	 17.47 

	

48 	 4.26 	 8.70 	 11.98 

	

65 	 1.97 	 5.12 	 7.57 

	

100 	 0.55 	 2.39 	 4.41 

	

150 	 0.24 	 1.54 	 3.00 

	

200 	 0.24 	 1.02 	 2.50 

	

270 	 0.16 	 0.68 	 1.66 
- 270 	 0.24 	 1.88 	 4.74 

	

35 	 48.41 	 31.28 	 19.95 

	

48 	 32.51 	 33.37 	 29.63 

	

65 	 10.60 	 16.38 	 19.71 

	

100 	 5.06 	 8.37 	 11.00 

	

150 	 3.42 	 5.42 	 7.98 

	

200 	 0.00 	 1.72 	 3.87 

	

270 	 0.00 	 1.11 	 2.54 
- 270 	 0.00 	 2.34 	 5.32 

	

Mesh 	 Feed 	2.0-min product 	4.0-min product 	6.0-min product 

	

65 	 41.20 	 28.83 	 22.52 	 18.36 

	

100 	 38.01 	 38.70 	 35.61 	 33.04 

	

150 	 18.54 	 21.78 	 23.00 	 23.74 

	

200 	 2.02 	 5.34 	 8.01 	 9.94 

	

270 	 0.00 	 1.78 	 3.49 	 4.49 

	

-270 	 0.23 	 3.56 	 7.38 	 10.43 
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Size 
interval 
(mesh) 

Rate parameters, min-1  

time interval, min 

0-2 	2-4 	4-6 

8/10 
14/20 
28/35 
48/65 

0.3423 
0.2729 
0.2249 
0.1235 

0.3624 
0.2859 
0.2184 
0.1785 0.1021 

3.1.3 Characterization of the Flow Pattern 
of the Particles Through the 
Grinding Mill 

The results of the tracer experiments were analyzed 
using "mixers-in-series" model (18) for obtaining a con-
venient representation of the flow pattern of the particles 
through the production ball-mill. The total number of the 
mixers to be used and the mean residence time values 
for each mixer were obtained using a sophisticated cal-
culation technique (18). Three unequal mixers and a 
pure-delay unit were required for representing the mill. ln 
terms of fractions, the distribution of the overall mean 
residence time was found to be: 

Mixer 1 	Mixer 2 	Mixer 3 	Pure-delay 
unit 

0.5597 	0.0980 	0.0965 	0.2458 

seen that although the feeds do not have the ideal size 
distribution*, all size-intervals up to 100 mesh size are 
well represented by these four feeds. The grinding tests 
were carried out in a 28 cm diameter mill under the 
recommended conditions for these tests (Section 2.2). 

Table 5 shows the variation of the rate parameters with 
grinding time for the four top size-intervals. Although the 
48/65 mesh size fraction exhibits a pronounced 
decrease in grinding rate with time, in general, the 
deviations are not very significant. This data can there-
fore by analyzed using the mill model described above 
which supposes that S does not vary with time. 

Table  5 — Variation of rate parameters with 
grinding time in the batch-grinding 
operation 

3.1.4 Batch-Grinding Tests 

The material collected from the rod nnill discharge was 
used to prepare four different feeds corresponding to top 
sizes of 8/10, 14/20, 28/35, and 48/65 mesh. The size 
distributions of the feeds are given in Table 4 along with 
the size distributions of the batch-ground products. It is 

*Due to a limited amount of sample received, it was not possible to prepare feeds of the desired size distribution. 
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3.2 ESTIMATION OF THE S AND B 
PARAMETERS FROM THE BATCH-
GRINDING DATA 

Figure 7 shows the shapes of the S function for the 0-2 
and 2-4 min periods of grinding. For the first period the 
variation of S parameters can be very closely approxi-
mated by a first-order Equation 23 with a s2  value of 
0.333. The second set of S values can be described only 
by a polynomial of higher order. For this reason, it was 
decided to estimate the parameters for the two time-
periods separately. 
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rc 0.6 

0.5 
cc 

1— • 0.4 

cc 

 

cc 
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i- 
< 
cÊ 0.2 

48 	28 	14 
65 	35 	20 

SIZE INTERVAL , MESH 

Fig. 7- The shapes of the S function for 0-2 and 2-4 min 
periods of grinding in the batch mill 

As suggested in the general guidelines in Section 2, 
Equation 19 was initially used for the B parameters, and 
a first-order Equation 23 for the S parameters. The 
initial estimates of the unknown constants for the S 
function were obtained from the experimental S values 
reported in Table 5. For the constants of the B function 
the suggested general values were used. Tables 6 and 
8 give the estimated values of the constants in the 
functional forms and Tables 7 and 9 give the corre-
sponding calculated values of some of the S and B 
parameters. In Tables 6 and 8, the values of the error 
function Er (the sum of squared differences), and the 
standard estimate of error, SE, are also given. 

Two important observations can be made from these 
results. First, the assumed first-order functional form for 
the S function provides a poor approximation of the 
experimental S values for the 2-4 minute period. This 
was expected, however, because of the complex shape 
of the experimental S curve. Second, the ID;  values for 
the 0-2 minute data correspond to a coarsei product of 
breakage as compared to that obtained during the 2-4 

minute period of grinding (i.e., b 1 .„, 1  value  is greater and 
value is smaller for the 0-2 Minute data). 

For the data set corresponding to the 2-4 minute period, 
even with a third-order polynomial form for the S func-
tion, good estimates of the S parameters could not be 
obtained, although the Er and SE values improved sig-
nificantly (Tables 8 and 9). In fact, for the finer size-
intervals (such as 100/150 and 200/270 mesh), the S 
values became unrealistically small. The improvement 
in Er and SE values can be attributed to a change in the 
b 1 ,1  values. 

In the next step, Equation 20 was used in combination 
with the first-, second- and third-order forms of Equa-
tion 23 to process the 2-4 minute data. The results are 
given in Tables 10 and 11. As mentioned earlier, with a 
first-order form for S, the B function must necessarily be 
difference-similar. This is why in the first case', the esti-
mated value of the constant b4  which introduces non-
difference-similar behaviour in the B 11  values, is esti-
mated as practically zero. As the order  of the polynomial 
for the S function was increased, b 4  values became 
more significant, Er and SE values improved — 
although the S values did not, improve in every case. 

At this step, an error analysis was carried out for all M i  
values predicted by various functional forms. It was 
found that in all the cases reported so far, the predicted 
M10114 and M14120 values for the –8  mesh feeds were 
highly erroneous. Out of the total thirty-six M i  values in 
each data set, these two M i  values alone contributed 
nearly 30-60% of the total Er value. The predicted 
M10114 values were found to be always lower and the 
predicted M14/20  values were found to be always higher 
than the corresponding experimental values by nearly 
the same amount. Two explanations are possible: the 
14 mesh screen used in the sieve-analysis had open-
ings smaller than the standard size (or some of the 
openings were blocked); and the 8/10 mesh size fraction 
actually exhibited a different breakage behaviour. 

With a view to studying the influence of the M 10/14  and 
M 1 4/20  values (in the product of a –8  mesh feed) on the 
estimates of the S and B parameters, in the next exer-
cise the weighting factors for these two M i  values were 
made zero (i.e., these terms did not contribute at all to 
the error function, Er). The results of this exercise for 0-2 
minute data are given in Tables 6 and 8; those for 2-4 
minute data in Tables 8 and 9. It can be seen that in both 
cases, along with the Er and SE values, the S estimates 
also improved considerably for most of the size-inter-
vals. No attempt was made to use more complex func-
tional forms for the B parameters, because the differ-
ence-similar form provided a very satisfactory 
simulation of the experimental data. 

It should also be pointed out that the size-intervals finer 
than 100 mesh size were not adequately represented in 
the experimental data used. For this reason it is likely 
that the breakage properties of the particles finer than 
100 mesh sizes are not accurately described by the 
estimated B and S functions. 

0.1 
8 

TO 
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Two M i  values ignored All data  

1st order 
Eq 23  

0.329 
0.845 

20.0 
0.262 
0.426 

35.45 
1.15 

3rd order 
Eq 23  

0.370 
0.947 

20.0 
0.289 
0.447 

-0.149 
-0.054 

5.26 
0.46 

Constant 

bi  
b2  
b3 

 si  
S2  

S3 

S4  

Er 
SE 

1st order 
Eq 23  

0.357 
0.956 

20.0 
0.272 
0.452 

8.32 
0.56 

2nd order 
Eq 23  

0.370 
0.939 

20.0 
0.283 
0.412 

-0.080 

5.97 
0.48 

Experimental 

0.362 
0.286 
0.218 
0.179 

It is important to note that for the 2-4 minute data set, the 
estimated 13 1  values, in general, correspond to a finer 
product of b'reakage than that represented by the bi  
values for the 0-2 minute data set. Also, an improvemeni 
in the Er value for the 2-4 minute data set is always found 
to be associated with a change in b11  values correspond-
ing to a finer product of breakage: 

Two more detailed illustrations of the method can be 
found in references 30 and 31. In these two cases, the 
six-parameter functional form (Eq 21) was required for 
the B parameters. 

Table 6 - Estimated values of the constants in the S and B functions for 0-2 min period 
(difference-similar B) 

Table 7 - Estimated values of the S and B parameters for 0 -2 min period (difference -similar B) 

All data 	 The M I  values ignored 

1st order 
Parameters 	Eq 23 

S8110 	 0.353 
S1 4/20 	 0.263 
S28/35 	 0.196 
S48/65 	 0.146 
S100/150 	 0.108 
S200/270 	 0.081 
b14. 1 	 0.754 

0.063 
0.026 
0.014 

b1÷10,1 	 0.006 

1st order 
Eq 23 

0.348 
0.266 
0.198 
0.143 
0.100 
0.068 
0.752 
0.064 
0.026 
0.014 
0.006 

2nd order 
Eq 23 

0.364 
0.284 
0.206 
0.138 
0.086 
0.049 
0.732 
0.075 
0.028 
0.015 
0.005 

3rd order 
Eq 23 

0.360 
0.290 
0.202 
0.135 
0.098 
0.084 
0.733 
0.075 
0.028 
0.014 
0.005 
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Table 8 - Estimated values of the constants in the S and B functions for 2-4 min period 
(difference-similar B) 

All data 	 Two M I  values ignored 
1st order 	2nd order 	3rd order 	 1st order 	2nd order 	3rd order 

Constant 	Eq 23 	Eq 23 	Eq 23 	 Eq 23 	Eq 23 	Eq 23 

b 1 	 0.418 	0.403 	0.438 	 0.407 	0.425 	0.426 
b2 	 0.832 	0.775 	0.783 	 0.830 	0.799 	0.792 
b3 	 20.0 	20.0 	20.0 	 20.0 	20.0 	20.0 
s1 	 0.229 	0.243 	0.225 	 0.257 	0.274 	0.267 
s2 	 0.428 	0.295 	0.207 	 0.500 	0.371 	0.348 
53 	 - 	-0.134 	0.213 	 - 	-0.156 	-0.067 
sa 	 - 	 - 	0.255 	 - 	 - 	0.059 
Er 	 35.51 	31.17 	23.86 	 10.96 	5.97 	5.56 
SE 	 1.15 	1.09 	0.98 	 0.64 	0.48 	0.47 

Table 9 - Estimated values of the S and B parameters for 2-4 min period (difference-similar B) 

All data 	 Two MI  values ignored 

	

1st order 	2nd order 	3rd order 	1st order 	2nd order 	3rd order 
Parameters 	Eq 23 	Eq 23 	Eq 23 	Eq 23 	Eq 23 	Eq 23 	Experimental  

S8/10 	 0.309 	0.280 	0.316 	0.366 	0.330 	0.337 	 0.342 
S14120 	 0.230 	0.244 	0.225 	0.259 	0.275 	0.268 	 0.272 
S28135 	 0.171 	0.187 	0.199 	0.183 	0.198 	0.200 	 0.224 
S48165 	 0.127 	0.126 	0.130 	0.129 	0.122 	0.125 	 0.124 
S100/150 	 0.094 	0.074 	0.038 	0.091 	0.065 	0.058 	 - 
S100/270 	0.070 	0.039 	0.003 	0.065 	0.030 	0.018 	 - 

	

„ 	 0.686 	0.691 	0.666 	0.694 	0.677 	0.676 	 - 

bi + 2,1 	 0.079 	0.073 	0.080 	0.077 	0.079 	0.078 	 - 
b1+5 , 1 	 0.033 	0.032 	0.035 	0.032 	0.034 	0.034 	

-131,71 	 0.019 	0.019 	0.020 	0.018 	0.020 	0.020 	 - 
bi+10'  ,i 	 0.008 	0.008 	0.009 	0.008 	0.009 	0.009 	 - 
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Table 10 - Estimated values of the constants
in the S and B functions for 2-4 min period

(non-difference-similar B)

AII 2-4 min data

Constant 1 st order 2nd order 3rd order
Eq 23 Eq 23 Eq 23

b1 0.417 0.416 0.436
b2 0.813 0.864 0.901
b3 20.0 20.0 20.0
b4 -0.071 0.152 0.343
si 0.228 0.248 0.234
s2 0.411 0.279 0.140
s3 - -0.184 0.162
s4 - - 0.318
Er 35.16 30.41 20.54
SE 1.16 1.10 0.93

Table 11 - Estimated values of the S and B parameters for 2-4 min period
(non-difference-similar B)

All 2-4 min data

Parameter 1 st order 2nd order 3rd order Experimental

S8/10
S14/20

S28/35

S48/65

S 100/150

S200/270

b2,1

b5,4

b11,10
b3,1
b6 1

b10,1

0.305 0.275 0.313 0.342
0.229 0.249 0.234 0.272
0.173 0.188 0.207 0.224
0.130 0.119 0.115 0.124
0.098 0.063 0.021 -
0.073 0.028 0.001 -
0.668 0.722 0.749 -
0.692 0.675 0.642 -
0.734 0.554 0.270 -
0.082 0.072 0.068 -
0.035 0.029 0.026 -
0.009 0.007 0.006 -
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3.3 ESTIMATION OF S PARAMETERS 
FOR THE PRODUCTION MILL 

In addition to the sampling campaign data shown in 
Table 3, data was available from seven other similar 
sampling campaigns around the same ball-mill. Use of 
many sets of production mill data is recommended 
because it increases the reliability and range of the 
estimated S parameters. Table 12 summarizes the ball-
mill feed and product size distributions for all eight data 
sets. 

The circulating load for the production ball-mill is about 
250 per cent. This means that nearly 70% of the feed to 
the ball-mill consists of particles which have passed 
through the mill at least once. It can therefore be argued 
that the breakage characteristics of these particles will 
be better represented by those particles which have 
been ground in the laboratory ball-mill for some time, 
and not by those coming directly from the rod mill. For 
this reason, it was decided that the B values obtained for 
the 2-4 minute data set of the batch tests should be used 
for the analysis of the plant data (i.e., Set 0 in Tables 8 
and 9). 

It was pointed out earlier that for all size-intervals the 
absolute rate of breakage S ( = SxW) remains constant 
over the usual range of operating conditions in the plant. 
This means that for the calculation of the mill-product 
size distribution an estimate of the mean residence time 
is not required. However, if an estimate of T is available, 
the Si  values can be easily calculated from S I  = It 
was therefore decided to estimate the parameters S I 

 simultaneously for eight pairs of feed-product size dis-
tribution data available for the industrial mill, assuming 
that these were not functions of the operating conditions 
over the range covered by the data. It was further 
assumed that the dimensionless RTD did not change 
appreciably due to variation in the operating conditions 
and the fractional mean residence time values reported 
in Section 3.1.3 applied to all the eight sets of data. 

Two sets of estimates were obtained corresponding to 
two different error-minimization criteria: the difference 
square; and the difference square divided by the pre-
dicted M I  value (called X2  or chi-square). As all S i  values 
for different size-intervals I differ from their correspond-
ing S I  values by a constant factor Fr, the functional 
forms used for the Si  parameters can also be used for 
the estimation of the S i  parameters. 

The estimated values of the parameters correspond-
ing to different orders of the polynomial functional form 
are given in Table 13 and Figure 8, along with the error 
function values Er and Er(X2). The estimates of the s 
constants are given in Table 14. 

An error analysis of the predicted size distribution data 
showed that the error distribution was quite random with 

Fig. 8 – Va riation of the absolute rates of breakage,b I, with 
particle size for the industrial mill (B values used were 
obtained from batch-grinding tests — corresponding to 
Set 0 In Table 8) 

respect to the variations in the operating conditions. The 
overall simulation of the product size distribution data 
was good, as is indicated by the error function values. In 
this way it was confirmed that the absolute rates of 
breakage for different size-intervals remained prac-
tically independent of the operating conditions. 

It must be pointed out that for the size-intervals finer 
than 65 mesh, reliable estimates of the U1  parameters 
could not be obtained — even when a third-order poly-
nomial form was used to describe the size-variation of 
these parameters. The reasons for the observed abnor-
mal variations in this size range are not precisely known, 
though several possibilities can be identified: a change 
in the breakage distribution function for particles in this 
size range due to the liberation of the various constituent 
minerals in the ore; insensitivity of the error function to 
the size distribution in this size range; and a genuine 
need for using a higher-order polynomial form for 
describing the size-variation of the S i  parameters. 

In this context, it is also noteworthy that, between 10 and 
65 mesh, practically the same S i  estimates were 
obtained irrespective of the complexity of the functional 
form used for describing the function S i  (Fig. 8). An 
inspection of the experimental feed-product size dis-
tribution data (Table 12) shows that these size-intervals 
contained most of the material. 
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The M 1  predictions for the top four size-intervals were 
observed to be reasonably accurate only when a third-
order polynomial form was used. The reason for this is 
that to obtain the real S i  values for these size-intervals, 
the function S 1  must be flat in the 6-10 mesh size range 
and then its value should decrease as the particle size 
increases. In our case, this type of natural shape of the 

function (which follows from the shape of the function 
SI ) could be generated only by a more flexible third-
order polynomial form. 

In general, the 	values obtained using the X2  (chi- 
square) criterion are practically the same as those 
obtained using the difference-square criterion. The only 
exceptions observed are those corresponding to the top 
three size-intervals. For these size-intervals, predicted 
M i  values were found to be closer to the experimental 
values when the chi-square criterion was used. More-
over, as shown in Table 13 the difference-square Er 
value obtained for the X2  set of predicted M i  values, is 
practically the same as that obtained using the differ-
ence-square criterion. These two observations show 
that the chi-square is a better error-criterion. 

It was stated earlier that correct estimates of the S and B 
parameters cannot be obtained if both the sets of 
parameters are simultaneously estimated from the plant 

data. With a view to demonstrating this fact, an exercise 
was carried out using the available size distribution data. 
The difference-similar form for the B function and the 
second-order polynomial form for the S function were 
used. The usual initial estimates were used for all the six 
unknown constants in the two functional forms. During 
the course of the error minimization program, several 
sub-optimal (or intermediate) sets of values of the six 
unknown constants and the corresponding difference 
square error-function were printed. 

It was found that for each one of these sub-optimal sets, 
the value of the error-function Er was considerably lower 
than that obtained with a third-order polynomial for the 
S I  function with fixed batch mill B values (Table 13). A 
study of the results showed that these apparently supe-
rior sub-optimal sets corresponded to widely different S I  
and 1) 11  values, some of which were negative, which is 
physidally meaningless. 

Finally, it may be mentioned that when any one of these 
intermediate sets of b 1  values was used for simulation of 
the batch-grinding reéults, the Er values obtained were 
50 to 100 times higher than those obtained earlier. This 
observation further supports the statement that S and B 
parameters cannot be simultaneously estimated from 
plant data. 
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.55 
1.06 
2.53 
3.84 
6.71 
9.57 

11.16 
12.66 
14.95 
11.08 
6.23 
4.29 
3.17 
1.63 

10.57  

1090 

.31 

.52 
1.12 
1.99 
3.87 
6.88 
9.08 

11.26 
15.05 
12.73 
8.08 
6.02 
4.74 
2.43 

16.00 

847 

.34 

.81 
2.74 
3.96 

10.54 
11.85 
13.49 
12.94 
12.16 
8.35 
4.80 
3.36 
2.61 
1.29 

10.76 

.20 

.33 
1.01 
1.20 
5.44 
7.66 

10.78 
12.25 
13.33 
10.84 
7.08 
5.39 
4.48 
2.29 

17.72 

.14 	.03 

	

2.11 	3.51 

	

13.58 	21.46 

.30 
2.00 
4.03 
7.00 

10.12 
12.80 
14.93 
12.72 

7.31 
5.60 
4.20 
3.17 

.05 

.45 
1.13 
2.55 
5.00 
8.70 

12.82 
14.03 
9.98 
8.42 
6.75 
5.12 

Table 12 - Production ball -mill feed and product size distribution and throughput 

Particle size  
+4 
4/6 
6/8 
8/10 

10/14 
14/20 
20/28 
28/35 
35/48 
48/65 
65/100 

100/150 
150/200 
200/270 

-270  

Throughput st/h 

Test 1 	 / Test 2  

Feed 	Product 	Feed 	Product 

Test 3 	 Test 4  

	

Feed 	Product 	Feed 	Product 

	

.01 	.00 	.08 	.04 

	

.12 	.07 	.22 	.12 

	

.50 	.08 	1.00 	.40 

	

2.04 	.34 	3.02 	.94 

	

4.30 	.94 	6.11 	2.21 

	

7.50 	2.80 	9.50 	4.60 

	

11.02 	6.10 	14.53 	9.96 

	

14.33 	10.71 	18.39 	15.19 

	

17.03 	16.37 	15.11 	15.25 

	

10.84 	12.65 	8.83 	11.01 

	

6.85 	10.16 	5.90 	8.86 

	

4.90 	7.70 	3.98 	6.70 

	

3.40 	5.80 	2.51 	4.62 

	

2.40 	3.73 	1.50 	2.78 

	

14.76 	22.53 	9.30 	17.33  

558 	 679.4 

Test 5 	 Test 6  Test 7 	 Test 8 
Particle size 

+4 
4/6 
6/8 
8/10 

10/14 
14/20 
20/28 
28/35 
35/48 
48/65 
65/100 

100/150 
150/200 
200/270 

-270 

	

Feed 	Product 	Feed 	Product 

	

.47 	.16 	.47 	.29 

	

.52 	.16 	1.08 	.49 

	

2.40 	.70 	3.00 	1.00 

	

5.50 	2.01 	5.65 	2.63 

	

9.00 	4.40 	9.59 	5.37 

	

11.75 	7.30 	12.00 	8.50 

	

14.60 	11.42 	14.62 	11.96 

	

14.31 	13.43 	14.95 	14.16 

	

11.51 	13.36 	11.46 	13.17 

	

7.03 	9.38 	6.84 	8.91 

	

5.10 	7.68 	5.35 	7.50 

	

3.59 	5.85 	3.50 	5.70 

	

2.45 	4.22 	2.19 	3.71 

	

1.67 	. 	2.90 	1.46 	2.39 

	

10.07 	17.01 	7.83 	14.24 

Feed 	Product 	Feed 	Product 

	

.21 	.04 

	

.48 	.11 

	

2.00 	.50 

	

4.04 	1.33 

	

6.65 	2.70 

	

9.60 	5.02 

	

12.42 	8.72 

	

15.27 	13.44 

	

14.24 	15.04 

	

8.33 	10.70 

	

5.70 	8.30 

	

4.10 	6.47 

	

2.96 	4.72 

	

1.97 	3.28 

	

12.03 	19.64 
Throughput st/h 	844.6 1001.9 	 636.2 	 693.6 
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2.737 
2.201 
1.770 
1.423 
1.145 
0.920 
0.740 
0.595 
0.479 
0.385 
0.310 
0.249 
0.200 
0.161 

5.409 
3.603 
2.469 
1.740 
1.262 
0.942 
0.723 
0.571 
0.463 
0.387 
0.333 
0.294 
0.268 
0.250 

0.976 
1.273 
1.409 
1.363 
1.187 
0.958 
0.738 
0.559 
0.429 
0.343 
0.295 
0.280 
0.304 
0.387 

0.782 
1.112 
1.311 
1.326 
1.187 
0.973 
0.753 
0.570 
0.435 
0.346 
0.296 
0.283 
0.310 
0.404 

1.558 
1.463 
1.340 
1.198 
1.045 
0.889 
0.738 
0.598 
0.472 
0.364 
0.274 
0.201 
0.144 
0.100 

•■■• 

38.68 	 31.45 Er 	 45.25 
Er(X2) 

.■,■,.. 

3.77 	 7.41 

0.6286 
..■ 

0.8847 
0.5034 

-0.1027  
■ 

0.9341 
0.8019 

.1178 
■ 

0.9661 
0.6767 

-0.2302 
-0.1305 

0.9509 
0.7036 

-0.1893 
 -0.1180 

S 1 	 0.9147 
S2  
S3  
S4 

Table 13 - Estimated values of the absolute rates of breakage (S1  x 10-3  st/h), for the 14 size- 
intervals listed in Table 12, using two different error-minimization criteria 

Difference square minimization X2  minimization 

Parameter set 
1st order 

Eq 23 

1 	Parameter set 2 
2nd order 

Eq 23 

Parameter set 3 
3rd order 

Eq 23 

Parameter set 4 
3rd order 

Eq 23 

Parameter set 5 
2nd order 

Eq 23 

Table 14 - Estimated values of the constants in the È function corresponding to Equation 23 

Difference square minimization X2  minimization 

Parameter set 1 
lst order 

Eq 23 

Parameter set 2 
2nd order 

Eq 23 

Parameter set 3 
3rd order 

Eq 23 

Parameter set 4 
3rd order 

Eq 23 

Parameter set 5 
2nd order 

Eq 23 
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Record 
No.  

1 
2 
3 

0.00 
b(2,1) 
b(3,1) 

Data description 

0.000 
b(3,2) 0.000 

FORTRAN 
format  
1F6.3 
2F6.3 
3F6.3 

FORTRAN 
format  

6A10 
11,1X,I2,2(1X,F5.3) 
11,3( 1 X,F5.3) 
Al 0,4G 10.4 

Record 
No. FORTRAN 

format 
Data description 

S(1,1) S(2,2) 	13F6.3 
S(NSIZES, NSIZES) 

1 

4. DESCRIPTION AND USE OF THE FINDBS PROGRAM 

4.1 INTRODUCTION 
The program is capable of processing both batchgrind-
ing data and data taken from a continuously operating 
mill modelled as a series of perfect mixers. All the func-
tional forms for the rate and distribution parameters 
previously mentioned in Section 1 are available. It is 
possible to have any combination of the S and B func-
tional forms, or just one functional form for one set of 
parameters and known values of the other set of param-
eters; known values of both parameters can also be 
used. The general program structure is given in Appen-
dix D. 

The input data can be divided into three categories: 

1. feed and product size distributions (on logical file 
No. 7); 

2. known values, if any, of Si  and b (on logical file 
No. 8); and 

3. other data, such as initial estimates of search vari-
ables, RTD parameters, and miscellaneous pro-
gram options (on logical file No. 5). 

The output data can vary according to user-controlled 
options and are written on logical file No. 6. Logical unit 
No. 9 is always used to write computed values of the B 
and S parameters and can be used as file No. 8 in 
subsequent program runs. 

4.2 SIZE DISTRIBUTION FILE FORMAT 
This file format is for Logical Unit No. 7. 

When batch-grinding data are used, up to three different 
product size distributions corresponding to progres-
sively longer grinding times can be entered with a single 
feed size distribution. If data sets with different feeds are 
available (as is often the case with single-size fraction 
batch-grinding data), up to five sets may be processed 
together. But whatever the extent of the data, the screen 
sizes must be in a complete geometric series, i.e., every 
screen size must be a fraction R of the next larger size. 
An example data file is shown in the sample run. 

3. R is the screen-size ratio. 
4. TOPSIZ is the size of the coarsest size fraction of 

interest (Section 2.4). 
5. NTIMES is the number of product size distribu-

tions. Must be one for batch mills. 
6. Repeat record 3 through (3 + NSIZES) inclusive 

for each data set. 
7. The number of screen sizes (NSIZES) must be 

between 2 and 20 inclusive and be the same for all 
data sets. 

8. The number of product size distributions 
(NTIMES) must be between 1 and 3 inclusive. 

9. When using batch-grinding data the values of 
TIME (i) are the grinding times. Otherwise, TIME 
(1) is the total mean residence time of the solids in 
the mill, or (1.0/flow rate of solids) for calculation of 
SW. (Use consistent units). 

10. The screen-size ratio (R) must be the same for all 
data sets. 

4.3 B AND S MATRIX FILE FORMAT 
This file format is for Logical Unit 8. 

The program can search for both the distribution and 
rate functions simultaneously, or just one at a time. In 
the latter case, one of the functions must be fixed by 
supplying the values of all the parameters in a second 
data file or by supplying the function constants interac-
tively. 

To use a fixed distribution parameter matrix, create a file 
using the following format. 

NSIZES b(pan,1) • •b(pan,N5IZES-1) 0.000 13F6.3 

Record 
No. 	 Data description  

1 	Alphanumeric title for data file 
2 	NSETS, NSIZES, R. TOPSIZ 
3 	NTIMES,[TIME(i),i = 1 ,NTIMES] 
4 	Alphanumeric name for 

largest screen size, product 
size distribution(s) in wt %, 
feed size distribution(s) in wt % 

3+ NSIZES Alphanumeric name for • 
the pan 

Notes 
1. If NSIZES is greater than 13, continue the line 

when necessary onto a second line with the same 
format. 

2. b(pan,j) = 1 - 	i = (j +1) to (NSIZES-1) 

To use a fixed rate parameter matrix create a file of only 
one record with the following format: 

Notes 
1. NSETS is the number of data sets or feed size 

distributions in the file (5.5). 
2. NSIZES is the number of screens including the 

pan (5_20). 
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1 

2 

5 

Notes 
1. The program assumes that all off-diagonal ele-

ments are zero. Therefore, enter the main diago-
nal as a single vector in Record 1. 

2. If NSIZES is greater than 13, continue onto a 
second record with the same format. 

3. S(NSIZES,NSIZES) = S(pan,pan) = 0.0. 
4. No two S elements can be equal because then the 

equations used by this program lead to undefined 
values (Appendix A, Eq A.8). 

For a direct ball-mill simulation, it is possible to fix both 
the distribution and rate matrix elements; then the rate 
matrix main diagonal should immediately follow the dis-
tribution matrix in the same file. 

4.4 TERMINAL INPUT 
A program sample of terminal input with all entries in 
free-field format is shown in Appendix E. 

Interactive data entry is requested by the appropriate 
combination of the messages listed in the following sub-
section. 

4.4.1 Options 

Options are integer codes which direct the flow of the 
program. They are IBOPT, IBFIX, ISOPT, ISFIX, and 
MIXERS. 

IBOPT 
There are five options for IBOPT presently implemen-
ted. 

IBOPT 	Effect  

0 	Stop the program. 

1 	Read the function using supplied param- 
eters or values (as determined by IBFIX). 

3 	Calculate a three-parameter normalized 
function. 

= b 1 (x1/x1 )b2 + [1 — 13 1 ] (x1/x1 ) b3 

4 	Calculate a four-parameter non-normalized 
distribution function. 

B id = b1  (1 /x)b4  (x1/x)b2 

 + [1 — 	(1 ./xj )b4](x l/xi ) b3 

6 	Calculate a six-parameter non-normalized 
distribution function. 

= b1 (1./x1 )b4 (0 )e l  

+ [1 — b i  (1 ./xi)bl(x i/xj) (92 

where e l  = b2  + 

e2  = 133  + b3I 

Other entries produce a repeat of the question. 

During the calculation of the breakage fun.ction param-
eters, the program does not allow values of b3  greater 
than 20 and absolute values of b6  smaller than two. If 
either parameter reaches these limiting values, the pro-
gram should be restarted with better initial estimates. 

IBFIX 
The IBFIX value is ignored when IBOPT 1. If 
IBOPT = 1, IBFIX is used to control the input of the 
breakage function as follows: 

Effect 

Read matrix of breakage function values on 
Unit 8. 

Read 3, 4, or 6 parameters for the breakage 
function interactively. 

Other entries produce a repeat of the prompt. 

ISOPT 
The selection function values on parameters are read or 
calculated according to the user entry for variables 
ISOPT and ISFIX that work on the same principle as 
IBOPT and IBFIX. 

ISOPT 	Effect 

Read the selection function values or param-
eters (as determined by ISFIX). 

Calculate a two parameter log-polynomial 
rate function. 

= s i (x; )s2 

or equivalent 

In(S11) = In(s 1 ) 
+ s2  In(x i ) 

3 	Calculate a second-order log-polynomial 
rate function. 

= In(s i ) + s2  In(x i) 

+  53  [In(x1)]2  

4 	Calculate a third-order log-polynomial rate 
function. 

In(S 1 ) = In(s 1 ) + s2  In(x i ) 

+ s3  [In(x i )]2  + szt  [In(x1 )]3  

Calculate a four-parameter rate function. 

si (xir2  
1 + [x 1/53] 4 

IBFIX 

 1 

3,4,6 

27 



Known RT Fraction for MIXER i 
If MIXERS # 0, the fractional mean residence time of 
each mixer must be supplied (Ti /T, T2/T, ...). 

ISFIX 
The ISFIX values are ignored when ISOPT # 1. If 
ISOPT =1, ISFIX is used to control the input of the 
selection function as follows: 

ISFIX 	Effect  

1 	Read the selection function diagonal matrix 
on Unit 8. 

2,3,4,5 	Read parameters corresponding to cases 
2,3,4,5 of ISOPT interactively. 

Other entries produce a repeat of the prompt. 

MIXERS 
The MIXERS option specifies the number of perfect 
mixers used to represent the RTD of the mill. The 
options are: 

MIXERS Effect 

0 	Used for batch mill data. 

1 to 9 	Indicate the number of perfect mixers-in- 
series with a plug flow component. 

4.4.2 Entry of B, S, and MIXER Data 

Estimate of B Constant i 
An estimate of parameters bi  to b6  of the breakage 
function is required when IBOPT>1 and as controlled by 
IBOPT. The better the estimate, the faster the final 
solution. 

Known B Constant i 
The fixed values of parameters bi  to b6  of the breakage 
function are required when IBOPT = 1 and as controlled 
by IBFIX. 

Estimate of S Constant i 
An estimate of parameters si  to 54  of the selection 
function is required when ISOPT>1 and as controlled by 
ISOPT. 

Known S Constant i 
The fixed values of parameters s i  to s4  of the selection 
function are required when ISOPT = 1 and as controlled 
by ISFIX. 

4.4.3 Criterion Type 
This allows the user to select the type of criterion to be 
minimized. 

Option Criterion  

1 	Er = (M 1  — M 1 ) 2  

2 	Er = WEIGH, x (M1  — M 1)2(weighted form) 

3 	Er = (M1  — M I ) 2/M i 	(X2  form) 

4 	Same as option 1, except M and KA are 
expressed as cumulative weight  % passing.  

If option 2 is selected, the user is asked to enter the error 
model as follows: 

ENTER K AND X (SIGMA  = K +X*M) VALUES. 
K and X are used to build the general error model 
WEIGI-1 1 — 1/(K + 	(Eq 25). 

Since the user may desire to give more weight to some 
data points, the following prompts are also issued: 

DO YOU WISH TO ALTER THE GENERAL ERROR 
MODEL FOR A PARTICULAR DATA POINT (YIN)? 
If Y is entered, the data point location and its specific 
error model are requested. 

ENTER POINT COORDINATES I,J,K IN DATA FILE. 
I 	is the number of the grinding experiment 

in which the point is located. 
J 	is the number of the size-interval in that 

experiment. 
K 	is the number of the product size 

distribution in which the print is located 
(i.e., 2,4,2 indicates second data set, 
fourth size-interval, second product of size 
distribution). 

ENTER K AND X. 

ANOTHER CHANGE (YIN)?  
This allows the user to modify the general error model 
for another point. 
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4.4.4 SEARCH Option 
This option allows the user to control the SEARCH 
routine. 

Option 	Effect 

These values are also copied to Unit 9 for possible use 
in subsequent runs (to be renamed Unit 8). 

The program then loops back to ask for new starting 
options. Enter 0 to stop the program. When this is done 
the message NORMAL PROGRAM TERMINATION is 
printed. 

1 	Prints results after a minimum is found for a 
variable in every search direction. 

2 	Prints results after a minimum is found for all 
the variables after a search in all directions. 

3 	Prints results at the end of the minimization 
process. 

4 	Allows user to change default parameters. In 
this case the user is asked to enter a value 
for: ESCALE 

ESCALE 
The larger ESCALE, the larger the step-size. The 
default is 0.9. 

CONVERGENCE CRITERION Ei  
This is the convergence limit for the SEARCH variables. 
The search routine stops when no variable changes by 
more than this value during a single iteration. The 
default is (20% of the absolute value of the initial esti-
mate) + .001. 

MAXIT 
Specify the maximum number of iterations to be per-
formed before terminating if no error-function minimum 
is found. The default is three times the number of 
SEARCH variables. 

4.5 PROGRAM OUTPUT 

4.5.1 Normal Results 
Following the request for a SEARCH option the program 
searches for the best set of constants. The quantity of 
intermediate results printed by the search routine 
depends on the SEARCH option, but the results of the 
last iteration are always printed. This includes the last 
iteration number, the total number of error-function eval-
uations, the last error-function value, and the final set of 
the constants. 

A table comparing the observed and predicted size 
distribution(s) is always printed. The table is labelled 
using the screen-size names and grind times supplied in 
the size distribution data file. 

Finally, the selection and breakage matrices are printed. 
They are the ones in the prediction of the final results. 

4.5.2 Diagnostics 
The response of the program to data entered with the 
wrong format also depends on the computer. 

The program reads and checks the file definition param-
eters in record 2 of the size distribution data file. Should 
any of these values be illegal, the message NTIMES = n 
NSIZES = m SIEVE RATIO =x TOP SIZE= y will be 
printed and the program will stop. The program will also 
stop after printing the message NTIMES = n IN SET m, 
when more than three product size distributions are 
entered in the file. In either case, it is necessary to 
correct the file. The rest of the file is never checked. Data 
file No. 8 (B and S values) is not checked. 

Terminal input is checked whenever possible. For 
instance, illegal IBOPT or ISOPT values result in a 
repeated prompt to enter them. If a non-zero MIXERS 
option is entered, the size distribution data are neces-
sarily from a continuous mill and the program checks 
that the number of product size distributions is one. 
Should this test fail, the message NTIMES MUST 
EQUAL 1 FOR CONTINUOUS MILL DATA is printed 
and the program stops. And if any RT fractions are 
negative, or if their sum is greater than one, they are re-
requested. 

The following three error messages originate in the 
SEARCH routine: 

MAXIMUM CHANGE DOES NOT ALTER FUNCTION. 
This can result, for example, when the constant b3  
becomes so large that the term (x 1/xi)b3  is numerically 
zero within the accuracy of the computer. Further 
attempts by the SEARCH procedure to find a minimum 
by varying b3  would be futile and result in this error 
message. 

n ITERATIONS COMPLETED BY BOTM. 
A minimum has not been found after the maximum 
allowable number of iterations defined by MAXIT. If 
desired, the program can be rerun using as estimates 
the last set of SEARCH variable values. Or, the 
SEARCH option can be used to increase the value of 
MAXIT, or starting estimates can be changed. 

ACCURACY LIMITED BY ERRORS IN F. 
The values returned by the program are inconsistent. 
Try different starting estimates. 
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SOLUTIONS OF THE GRINDING EQUATION 

A Solution to the Batch-Grinding Equation 

The set of simultaneous first-order di fferential equations 
(Eq 12) of the batch-grinding operation has been solved 
by Reid (1) using the following form: 

—Sit 
Mi(t)  =E œe  

j = 1 

where: 

A General Matrix Formalism of the Grinding Mill 
Model 

The size distribution vector of the mill product, P, of any 
grinding operation — batch or continuous — can be 
obtained by multiplying the feed vector F by a grinding 
matrix G: 

P = GF 	 Eq A.6 

The matrix can be diagonalized as follows (23): 

G = ZVZ-1 	 Eq A.7 

where V is a diagonal matrix and Z the eigen vectors 
matrix of (B-I)S. Here B is the matrix of the distribution 
parameters bi  and S is the diagonal matrix of the rate 
parameters.  It  can be shown that Z is generated by the 
formulae: 

= M I (0) 

The expansion of this expression in terms of distribution 
and rate parameters becomes progressively more 
tedious for i>2. Thus, up to i = 3, the solution is: 

Mi (t) = M 1(0)e- s,1 	 Eq A.3 
The matrix V depends only upon S and the mixing 
properties of the mill. For a plug flow continuous mill or a 
batch test, V is defined by: 

VII  = e-Tsi 	 Eq A.9 

, 

 

where T is the mean residence time or the time of 
grinding for batch operation. 

For a perfect mixer, V II  is given by: 

1 
v ii  — 	 

" 	1 + TS;  

For a model of p perfect mixers in series, plus some 
delay, the V matrix is: 

Vil  = e 	 )
p P 	 1  

(1 + 	S1)(1 	T2SI)... (1 + TpS j) 

Eq A.11 

Eq A.10 

It can be seen from these equations that this set of 	where  TR IS the mean residence time of the pth mixer and 
equations is highly nonlinear in the S and B parameters. 	T the total mean residence time. 
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For a mixing model described by its unit impulse 
response h(t), matrix V is calculated by: 

—S it 

	

= J e 	h(t) dt 	Eq A.12 
o 

Or using the dimensionless RTD: 

—S ITO 

	

e 	h(0)d e 	Eq A.13 
o 

For a discrete -time model described by a récursive 
 equation of parameters a  and  ,b (18), the diagonal terms 

of V can be calculated by Equation A.14 , where d is a 
pure delay, and T the sampling time interval. 

This option is not presently available in the FINDBS 
program. However, it can be easily added when neces-
sary. 

It should be noted that the matrix Z does not change 
when S is multipled by any constant factor. Furthermore, 
V depends only upon the product TS, a dimensionless 
number. So, the rate function S can be calculated from 
grinding data only if 'T is known. Otherwise, only the 
product TS is calculable. 

—2S IT 	 —pS IT 
—Sd b0  + b1  e 	+ b2 e 	+ 	+ b e = e   

—2SIT 	 — nS IT 
1 + al  e 	+ a2  e 	+ 	+ an  e 

Eq A.14 
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THE ROLE OF SIZE DISTRIBUTION IN THE ESTIMATION OF MODEL 
PARAMETERS* 

In order to assess the influence of particle size distribu-
tion on the accuracy of the back-calculation method, let 
us recall the basic batch-grinding equation: 

dMi(t) 	 i-1 
  	S i M i (t) + 	àipi Mi (t) 

dt 	 j = 1 

It can be seen that for an accurate estimation of the 
parameter S i , the term S i M i (t) should be dominant or at 
least comparable to the summation term, otherwise the 
rate of change of M i  would not be significantly affected 
by the value of the parameter S i . 

Similarly, for an accurate estimation of the parameter 
Bi , k (where k is any number in the range Ito i-1), the term 

kSkrsAk should be predominant or at least comparable 
toihe total of the remaining terms on the right-hand side 
of Equation B.1. 

Obviously, the parameter S i  and the set of parameters 
Bm i  are best represented in the set of equations under 
consideration (i.e., Eq B.1 for i = 1,2 ...n) when M i  = 1. 

However, if only one single-size feed of size-fraction i is 
used to generate the size distribution data, no matter 
how long this feed is ground, it will not be possible to 
have more than 8-10 wt °A. material in the finer size-
intervals (for example, i + 7, i + 8, i + 9, etc.) at any 
time. Under these conditions, except for the parameters 
associated with just a few size-fractions next to the 
starting size-interval i, it will not be possible to satisfy the 
conditions outlined above for the correct estimation of 
the parameters. 

On the other hand, if a single-size feed is ground for 
each size-interval of interest, the back-calculation 
method will no longer be required because all the 
parameters can be easily calculated using a direct 
method. In fact, the main objective of developing the 

back-calculation method has been to eliminate the cum-
bersome preparation of single-size feeds, which is 
especially difficult in the case of fine size-fractions such 
as 150/200 mesh. 

Taking all these factors into consideration, the authors 
arrived at a design for the grinding experiments, which 
has been found to be quite satisfactory for all the mate-
rials studied in the laboratory. This design of experi-
ments has been indicated in Table 2 and corresponds to 
the case in which the size range of interest is 8 to 270 
mesh. 

There are two principal features of this design: more 
than one (for example, 30-40% of the total number of 
size-intervals under consideration) distributed feeds of 
different fineness are used; each feed starts from a 
different top size and these sizes are equally spaced in 
terms of the number of sieves over the size range of 
interest; and in each feed most of the material (60-80%) 
is concentrated in the top-most size-interval, about 
15-25%. 

In the next size-interval the remaining 10-20% is distrib-
uted over the remaining finer size-intervals. The size 
distribution data are generated by grinding each feed 
twice for a suitable duration of time, such that in each 
step the top-size undergoes 25-40% reductions. 

This type of size distribution data forces the functional 
forms to give precise estimates of the S and B param-
eters for at least those size-intervals which contain the 
bulk of the material. If the S and B parameters really vary 
systematically with particle size, the functional forms 
are expected to provide good estimates for the remain-
ing size-intervals also, which lie between, or close to, 
the selected size-intervals (i.e., those containing 
60-80% of the material in the starting feeds). It seems 
that placing 15-25% material in the size-interval second 
from top helps in this direction. 

Eq 13.1 

* See also Reference 31. 
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SIMPLIFIED BATCH-GRINDING PROCEDURE 
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SIMPLIFIED BATCH-GRINDING PROCEDURE 

In this procedure a sample taken directly from the production mill feed is ground dry in the laboratory mill for 
different times (2-4-8 min, for instance). The breakage distribution parameters,  B1 , are assumed to remain the 
same as those obtained from the batch tests. The breakage rate parameters are assumed to change only by a 
constant factor, g: 

S= gS 	 Eq C.1 

where S.? is the rate parameter obtained from the batch tests done for the estimation of the B parameters. 

The constant g is estimated from new size distribution data using an estimation program, and it is taken as a 
grindability index, the ore used to measure B being taken as a reference. 
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GENERAL STRUCTURE OF THE FINDBS COMPUTER PROGRAM 

Program FINDBS Algorithm 	 Call MAKEG to calculate the grinding matrix 
(G). 
Call GRIND to calculate the predicted size 
distributions. 
Calculate the sum of square differences (error 
function). 

4. 	Return. 

1. Start FINDBS. 

2. Read size distribution data file. 

3. Print out data file title. 

4. Read IBOPT, IBFIX, ISOPT, ISFIX, MIXERS: 
If IBOPT = 0, then stop. 
If IBOPT = 1, then read B matrix elements or 

constants. 
If ISOPT = 1, then read S matrix elements or 

constants. 
If IBOPT 	1, then get estimates of b con- 

stants. 
If ISOPT 	1, then get estimates of s con- 

stants. 
If roixERse 0, then get fractional mean resi-

dence time values. 

5. Read minimization criterion option. 

If IBOPT 	1 then assign default values to 

or 	 search routine parameters. 

ISOPT 	1, 

6. Read SEARCH option. 
If 

 

SEARCH 
option 	= 4, then get new search routine 

parameters 

7. Call BOTM to search for best B and/or S function 
constants. 

8. Print out final estimates. 

9. Calculate final predicted size distribution(s). 

10. Print out size distribution table. 

11. Call SBOUT to print B and S matrices. 

12. Go back to step 4. 

13. End. 

Function CALCFX Algorithm* 

1. If IBOPT 

	

	1, call BREAK to calculate 
distribution matrix elements. 

If ISOPT 	1, call SELECT to calculate rate 
matrix elements. 

2. Call MAKEZ to calculate (Z) and (Z-inverse), 
(Eq A.7). 

3. Do for all mill residence times: 
Call MAKEV to calculate the matrix (V). 

*CALCFX computes the objective function. 

Subroutine GRIND Algorithm 

1. Calculate predicted size distribution 

p =  (G) F. 

2. Return. 

Subroutine MAKEZ Algorithm 

1. Calculate the diagonalized grinding matrix (Z). 

2. Calculate (Z inverse) and store (Z inverse) 
transposed in (Z). 

3. Return. 

Subroutine MAKEG Algorithm 

1. Calculate the grinding matrix (G) = (Z)*(V)„ (Z 
inverse). 

2. Return. 

Subroutine BREAK Algorithm 

1. Calculate distribution matrix elements according 
to option IBOPT, using different ENTRY points. 

2. Return. 

Subroutine SELECT Algorithm 

1. Calculate matrix elements according to option 
ISOPT, using different ENTRY points. 

2. Return. 

Subroutine SBOUT Algorithm 

1. Entry SBOUT. 

2. Print B matrix elements. 

3. Print S matrix elements. 

4. Return. 

1. Entry BRKIN. 

2. Read distribution matrix elements. 

3. Return. 

1. Entry SELIN. 

2. Read rate parameters. 

3. Return. 
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EXAMPLE DATA FILE CONTAINING BATCH MILL DATA (Unit 7) 

BATCH GRINDING DATA TEST 
4 12 1.414 2.022 
2 2. 	4. 

8/10M 	62.96 	30.5 	15.38 
10/14M 	36.72 	40.39 	34.32 
14/20M 	.16 	11.58 	15.87 
20/28M 	0.0 	 6.0 	10.39 
28 1 35M 	0.0 	 3.03 	5.78 
35/48M 	0.0 	2.24 	4.43 
48/65M 	0.0 	 1.46 	3.08 
65 1 100M 	0.0 	 1.09 	2.28 
100/150M 	0.0 	0.85 	1.85 
150 7 200M 	0.0 	0.73 	1.66 
200/270M 	0.0 	0.55 	1.17 
PAN 	0.16 	1.58 	3.81 
22. 	4. 
8/10M 
10/14M 

14/20M 	59.26 	33.45 	19.38 
20/28M 	25.3 	30.89 	27.29 
28 7 35M 	7.8 	14.33 	17.47 
35/48M 	4.26 	8.7 	11.98 
48/65M 	1.97 	5.12 	7.57 
65/100M 	0.55 	2.39 	4.41 
100/150M 	0.24 	1.54 	3.0 
150/200M 	0.24 	1.02 	2.5 
200/270M 	0.16 	0.68 	1.66 

PAN 	.24 	1.88 	4.74 
2 2. 	4. 
8/10M 
10/14M 
14/20M 

20/28M 	0.8 	0.2 	0.0 
28/35M 	47.61 	31.08 	19.95 
35/48M 	32.51 	33.37 	29.63 
48/65M 	10.6 	16.38 	19.71 
65/100M 	5.06 	8.37 	11.0 
100/150M 	3.42 	5.42 	7.98 
150/200M 	0.0 	 1.72 	3.87 
200/270M 	0.0 	 1.11 	2.54 
PAN 	0.0 	 2.34 	5.32 

2 2. 	4. 
8/10M 

10/14M 
14/20M 

20/28M 
28/35M 
35/48M 
48 7 65M 	28.83 	22.52 	18.36 
65/100M 	38.7 	35.61 	33.04 
100/150M 21.78 	23.0 	23.74 
150/200M 	5.34 	8.01 	9.94 
200 7 270M 	1.78 	3.49 	4.49 
PAN 	3.56 	7.38 	10.43 
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EXAMPLE DATA FILE CONTAINING B MATRIX (Unit 8) 

0.000 

.737 0.000 

	

.072 	.724 0.000 

	

.052 	.076 	.711 0.000 

	

.038 	.055 	.079 	.697 0.000 

	

.028 	.040 	.057 	.083 	.682 0.000 

	

.020 	.029 	.042 	.060 	.087 	.667 0.000 

	

.015 	.021 	.030 	.044 	.063 	.091 	.650 0.000 

	

.011 	.015 	.022 	.032 	.046 	.066 	.096 	.633 0.000 

	

.008 	.011 	.016 	.023 	.033 	.048 	.069 	.100 	.616 0.000 

	

.006 	.008 	.012 	.017 	.024 	.035 	.050 	.073 	.105 	.597 0.000 

	

.015 	.022 	.031 	.045 	.065 	.093 	.134 	.193 	.279 	.403 1.000 0.000 

	

.337 	.293 	.261 	.233 	.204 	.171 	.134 	.096 	.061 	.034 	.016 0.000 
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EXECUTION OF FINDBS WITH BATCH GRINDING DATA 

FINDBS 

DISTRIBUTION AND RATE FUNCTION DETERMINATION 

BATCH GRINDING DATA TEST 

	

OPTIONS: IBOPT, IBFIX, 'SOFT, ISFIX, MIXERS 	4 0 4 0 0 
ESTIMATE OF B CONSTANT 1: .5 
ESTIMATE OF B CONSTANT 2: 1. 
ESTIMATE OF B CONSTANT 3: 20 
ESTIMATE OF B CONSTANT 4: .2 
ESTIMATE OF S CONSTANT 11 .5 
ESTIMATE OF S CONSTANT 2: .2 
ESTIMATE OF S CONSTANT 3: .1 
ESTIMATE OF S CONSTANT 4: .1 

CRITERION TYPE 	3 
SEARCH OPTION : 3 

ITERATION 	10 	 236 FUNCTION VALUES 
FINAL CONSTANTS (TOP SIZE = 2.022) S.D.RESIDS. = .320 
B1 = 	.3980 
B2 = .9202 
B3 = 20.00 
B4 = 	.1367 
Si  = 	.2605 
S2 = 	.3178 
S3 = .2075E-02 
S4 = .9039E-01 

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 2.00 	 4.00 

F = .57410502E+01 
D.F. = 56 

8/10M 	 62.96 
10/14M 	36.72 
14/20M 	 .16 
20/28M 	0.00 
28/35M 	0.00 
35/48M 	 0.00 
48/65M 	 0.00 
65/100M 	0.00 
100/150M 	0.00 
150/200M 	0.00 
200/270M 	0.00 
PAN 	 .16 

FEED 
SIZE 

8/10M 	 0.00 
10/14M 	0.00 
14/20M 	59.26 
20/28M 	25.30 
28/35M 	7.80 
35/48M 	4.26 
48/65M 	 1.97 
65/100M 	 .55 
100/150M 	.24 
150/200M 	.24 
200/270M 	.16 
PAN 	 .24  

30.50 / 32.11 
40.39 / 37.07 
11.58 / 14.40 

	

6.00 / 	5.15 

	

3.03 / 	2.93 

	

2.24 / 	2.12 

	

1.46 / 	1.59 

	

1.09 / 	1.19 

	

.85 / 	.89 

	

.73 / 	.65 

	

.55 / 	.48 

0.00 / 0.00 
0.00 / 0.00 
33.45 / 35.13 
30.89 / 29.29 

14.33 / 14.29 

	

8.70 / 	7.81 

	

5.12 / 	4.65 

	

2.39 / 	2.61 

	

1.54 / 	1.69 

	

1.02 / 	1.29 

	

.68 / 	.94 

	

1.88 / 	2.31  

15.38 / 16.38 
34.32 / 29.11 
15.87 / 20.30 
10.39 / 10.44 

	

5.78 / 	6.07 

	

4.43 / 	4.33 

	

3.08 / 	3.32 

	

2.28 / 	2.56 

	

1.85 / 	1.95 

	

1.66 / 	1.46 

	

1.17 / 	1.07 

	

0.00 / 	0.00 

	

0.00 / 	0.00 
19.38 / 20.82 
27.29 / 26.32 
17.47 / 17.90 

11.98 / 11.04 

	

7.57 / 	7.19 

	

4.41 / 	4.67 

	

3.00 / 	3.24 
2.50 / 2.44 

	

1.66 / 	1.79 
4.74 / 4.60 

1.58 / 	1.43 	3.81 / 	3.02 
PRODUCT - OBSERVED/PREDICTED 

2.00 	 4.00 
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FEED 
SIZE 

8/10M 	 0.00 
10/14M 	0.00 
14/20M 	0.00 
20/28M 	 .80 
28 7 35M 	47.61 
35 7 48M 	32.51 
48 1 65M 	10.60 
65 7 100M 	5.06 
100 7 150M 	3.42 
150/200M 	0.00 
200 7 270M 	0.00 
PAN 	 0.00 

FEED 
SIZE 

PRODUCT - OBqERVED/PREDICTED 
2.00 	 4.00 

	

0.00 / 	0.00 	0.00 / 	0.00 

	

0.00 / 	0.00 	0.00 / 0.00 

	

0.00 / 	0.00 	0.00 / 0.00 

	

.20 / 	.50 	0.00 / 	.31 

	

31.08 / 	31.82 	19.95 / 21.26 

	

33.37 / 	32.26 	29.63 / 29.05 

	

16.38 / 	15.88 	19.71 / 19.11 

	

8.37 / 	8.17 	11.00 / 11.04 

	

5.42 / 	5.50 	7.98 / 	7.51 

	

1.72 / 	1.73 	3.87 / 	3.42 

	

1.11 / 	1.13 	2.54 / 	2.27 

	

2.34 / 	3.01 	5.32 / 	6.02 
PRODUCT - OBSERVED/PREDICTED 

2.00 	 4.00 

8/10M 	 0.00 
10 7 14M 	0.00 
14 7 20M 	0.00 
20 7 28M 	0.00 
28 7 35M 	0.00 
35 7 48M 	0.00 
48 7 65M 	28.83 
65 7 100M 	38.70 
100/150M 	21.78 
150/200M 	5.34 
200/270M 	1.78 
PAN 	 3.56  

	

0.00 / 	0.00 
0.00 / 0.00 

	

0.00 / 	0.00 

	

0.00 / 	0.00 

	

0.00 / 	0.00 

	

0.00 / 	0.00 
22.52 / 22.07 
35.61 / 35.94 
23.00 / 24.14 

	

8.01 / 	7.81 

	

3.49 / 	3.13 

	

7.38 / 	6.90 

0.00 / 0.00 
0.00 / 0.00 
0.00 / 0.00 
0.00 / 0.00 
0.00 / 0.00 
0.00 / 0.00 
18.36 / 16.89 
33.04 / 32.73 
23.74 / 25.73 
9.94 / 10.10 
4.49 / 4.43 
10.43 / 10.10 

B MATRIX 
0.000 
.737 0.000 
.072 .724 0.000 

	

.052 	.076 	.711 0.000 

	

.038 	.055 	.079 	.697 0.000 

	

.028 	.040 	.057 	.083 	.682 0.000 

	

.020 	.029 	.042 	.060 	.087 	.667 0.000 

	

.015 	.021 	.030 	.044 	.063 	.091 	.650 0.000 

	

.011 	.015 	.022 	.032 	.046 	.066 	.096 	.633 0.000 

	

.008 	.011 	.016 	.023 	.033 	.048 	.069 	.100 	.616 0.000 

	

.006 	.008 	.012 	.017 	.024 	.035 	.050 	.073 	.105 	.597 0.000 

	

.015 	.022 	.031 	.045 	.065 	.093 	.134 	.193 	.279 	.403 1.000 0.000 

RATE CONSTANTS 
.337 	.293 	.261 	.233 	.204 	.171  .134 	.096 	.061 	.034 	.016 0.000 

OPTIONS: IBOPT, IBFIX, ISOPT, ISFIX, MIXERS :00000 
NORMAL PROGRAM TERMINATION 

54 



EXECUTION OF FINDBS WITH CONTINUOUS GRINDING DATA 

FINDBS 

DISTRIBUTION AND RATE FUNCTION DETERMINATION 

CONTINUOUS GRINDING DATA TEST 

OPTIONS: IBOPT, IBFIX, ISOPT, ISFIX, MIXERS : 1 4 4 0 3 
KNOWN B CONSTANT 1: .398 
KNOWN B CONSTANT 2: .9202 
KNOWN B CONSTANT 3: 20 
KNOWN B CONSTANT 4: .1367 

ESTIMATE OF S CONSTANT 1: .5 
ESTIMATE OF S CONSTANT 2: .5 
ESTIMATE OF S CONSTANT 3: .01 
ESTIMATE OF S CONSTANT 4: .01 

KNOWN RT FRACTION FOR MIXER 1: .5293 
KNOWN  NT FRACTION FOR MIXER 2: .1593 
KNOWN RT FRACTION FOR MIXER 3: .0779 

CRITERION TYPE : 3 
SEARCH OPTION : 3 

ITERATION 	6 	 84 FUNCTION VALUES 	 F = .41769952E+01 
FINAL CONSTANTS 	(TOP SIZE = 5.718) 	S.D.RESIDS. = 	.212 	D.F. = 93 
51  = 	1.013 
S2 = 	.6549 

S3 = -.2256 
S4 = -.1297 

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.18 

+4M 	 .55 	.31 / 	.24 
4/6M 	 1.06 	.52 / 	.45 
6 7 8M 	 2.53 	1.12 / 	.96 
8 7 10M 	 3.84 	1.99 / 	1.74 
10 7 14M 	 6.71 	3.87 / 	3.35 
14/20M 	 9.57 	6.88 / 	5.98 
20 7 28M 	11.16 	9.08 / 	8.92 
28/35M 	12.66 	11.26 / 	11.65 
35/48M 	14.95 	15.05 / 	14.43 
48/65M 	11.08 	12.73 / 	12.95 
65/100M 	6.23 	8.00 / 	8.90 
100 7 150M 	4.29 	6.02 / 	6.27 
150 7 200M 	3.17 	4.74 / 	4.60 
200/270M 	1.63 	2.43 / 	2.87 
PAN 	 10.57 	16.00 / 	16.71 

	

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 .92 

+4M 	 .34 	.20 / 	.17 
4 7 6M 	 .81 	.33 / 	.39 
6 7 8M 	 2.74 	1.01 / 	1.16 
8 7 10M 	 3.96 	1.20 / 	2.11 
10/14M 	10.54 	5.44 / 	5.35 
14/20M 	11.85 	7.667 	8.69 
20 7 28M 	13.49 	10.78 / 	11.79 
28/35M 	12.94 	12.25 / 	13.25 
35 7 48M 	12.16 	13.33 / 	13.35 
48 7 65M 	 8.35 	10.84 / 	10.57 
65 7 100M 	4.80 	7.08 / 	7.03 
100/150M 	3.36 	5.39 / 	4.98 
150 7 200M 	2.61 	4.48 / 	3.75 
200/270M 	1.29 	2.29 / 	2.28 
PAN 	 10.79 	17.72 / 	15.15 
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FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.79 

+4M 	 .01 	0.00 / 	.00 
4 1 6M 	 .12 	.08 / 	.03 
6/8M 	 .50 	.08 / 	.10 
8/10M 	 2.04 	.34 / 	.41 
10/14M 	4.30 	.94 / 	1.22 
14/20M 	7.50 	2.80 / 3.00 
20/28M 	11.02 	6.10 / 	6.11 
28 1 36M 	14.33 	10.71 / 10.25 
35 1 48M 	17.03 	16.37 / 14.41 
48 1 65M 	10.84 	12.65 / 13.23 
65/100M 	6.85 	10.16 / 	9.98 
100/150M 	4.90 	7.70 / 7.41 
150/200M 	3.40 	5.80 / 5.36 
200/270M 	2.40 	3.73 / 3.75 
PAN 	 14.76 	22.53 / 24.75 

	

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.47 

+4M 	 .09 	.04 / 	.03 
4/6M 	 .22 	.12 / 	.07 
6/8M 	 1.00 	.40 / 	.26 
8/10M 	 3.02 	.94 / 	.83 
10/14M 	6.11 	2.21/ 	2.21 
14/20M 	9.50 	4.60 / 4.75 
20/28M 	14.53 	9.96 / 	9.08 
28/35M 	18.39 	15.19 / 14.35 
35/48M 	15.11 	15.25 / 15.82 
48/65M 	8.83 	11.01 / 12.44 
65 7 100M 	5.90 	8.86/ 	9.06 
100 1 150M 	3.98 	6.70 / 	6.51 
150/200M 	2.51 	4.62 / 4.52 
200/270M 	1.50 	2.78 / 2.99 
PAN 	 9.30 	17.33 / 17.06 

	

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.18 

+4M 	 .48 	.16 / 	.21 
4 7 6M 	 .53 	.16 / 	.27 
6 7 8M 	 2.40 	.70 / 	.80 
8/10M 	 5.50 	2.01 / 	2.07 
10/14M 	9.00 	4.40 / 4.35 
14/20M 	11.75 	7.30 / 7.54 
20/28M 	14.60 	11.42 / 11.43 
28/35M 	14.31 	13.43 / 13.93 
35/48M 	11.51 	13.36 / 13.45 
48/65M 	7.03 	9.38 / 10.15 
66/100M 	5.10 	7.68 / 	7.57 
100/150M 	3.59 	5.85 / 	5.56 
150/200M 	2.45 	4.22 / 3.97 
200/270M 	1.67 	2.90 / 2.75 
PAN 	 10.07 	17.01 / 15.95 
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FEED 
SIZE 

PRODUCT - OBSERVED/PREDICTED 
1.00 

+4M 	 .48 	.29 / 	.23 
4/6M 	 1.08 	.49 / 	.50 
6/8M 	 3.00 	1.00 / 	1.24 
8/10M 	 5.65 	2.63 / 	2.63 
10/14M 	 9.59 	5.37 / 	5.22 
14/20M 	12.00 	8.50 / 	8.49 
20/28M 	14.62 	11.96 / 	12.21 
28/35M 	14.95 	14.16 / 	14.68 
35/48M 	11.46 	13.17 / 	13.53 
48/65M 	 6.84 	8.91 / 	9.76 
65/100M 	5.35 	7.49 / 	7.46 
100/150M 	3.50 	5.69/ 	5.30 
150/200M 	2.19 	3.71 / 	3.60 
200/270M 	1.46 	2.39 / 	2.45 
PAN 	 7.83 	14.24 / 	12.70 

	

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.57 

+4M 	 .14 	.03 / 	.05 
4/6M 	 .30 	.05 / 	.10 
6/8M 	 2.00 	.45 / 	.44 
8/10M 	 4.03 	1.13 / 	1.16 
10 7 14M 	 7.00 	2.55 / 	2.62 
14/20M 	10.12 	5.00 / 	5.17 
20/28M 	12.80 	8.70 / 	8.68 
28/35M 	14.93 	12.82 / 	12.45 
35/48M 	12.72 	14.03 / 	13.65 
48/65M 	 7.31 	9.98 / 	10.83 
65/100M 	5.60 	8.42 / 	8.38 
100/150M 	4.20 	6.75 / 	6.44 
150/200M 	3.17 	5.12 / 	4.85 
200/270M 	2.11 	3.51 / 	3.36 
PAN 	 13.58 	21.46 / 	21.84 

	

FEED 	PRODUCT - OBSERVED/PREDICTED 
SIZE 	 1.44 

+4M 	 .21 	.04 / 	.08 
4 1 6M 	 .48 	.11 / 	.17 
6/8M 	 2.00 	.50 / 	.53 
8 1 10M 	 4.04 	1.33 / 	1.31 
10/14M 	 6.65 	2.70/ 	2.78 
14/20M 	 9.60 	5.02 / 	5.27 
20/28M 	12.42 	8.72/ 	8.71 
28 7 35M 	15.27 	13.44 / 	12.69 
35/48M 	14.24 	15.04 / 	14.52 
48/65M 	 8.33 	10.70 / 	11.59 
65/100M 	5.70 	8.30 / 	8.55 
100/150M 	4.10 	6.47 / 	6.34 
150/200M 	2.96 	4.72 / 	4.65 
200/270M 	1.97 	3.28 / 	3.20 
PAN 	 12.03 	19.64 / 	19.60 
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B MATRIX 
0.000 
.771 0.000 
.063 	.760 0.000 
.045 	.066 	.749 0.000 
.033 	.047 	.069 	.737 0.000 
.024 .034 	.050 	.072 	.724 0.000 
.017 	.025 	.036 	.052 	.076 	.711 0.000 

.013 	.018 	.026 	.038 	.055 	.079 	.697 0.000 

.009 	.013 	.019 	.028 	.040 	.057 	.083 	.682 0.000 

.007 	.010 	.014 	.020 	.029 	.042 	.060 	.087 	.666 0.000 

.005 	.007 	.010 	.015 	.021 	.030 	.044 	.063 	.091 	.650 0.000 

.004 	.005 	.007 	.011 	.015 	.022 	.032 	.046 	.066 	.096 	.633 0.000 

.003 	.004 	.005 	.008 	.011 	.016 	.023 	.033 	.048 	.069 	.100 	.616 0.000 

.002 	.003 	.004 	.006 	.008 	.012 	.017 	.024 	.035 	.050 	.073 	.105 	.597 

0.000 
.005 	.007 	.010 	.015 	.022 	.031 	.045 	.065 	.093 	.134 	.194 	.279 	.403 

1.000 0.000 

RATE CONSTANTS 
.803 1.143 1.352 1.373 1.236 1.020 	.797 	.608 	.469 	.377 	.326 	.314 	.347 

.456 0.000 

OPTIONS: IBOPT, IBFIX, ISOPT, ISFIX, MIXERS :00000 
NORMAL PROGRAM TERMINATION 

, 
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