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THE SPOC MANUAL

The SPOC* manual consists of eighteen chapters, published separately. Their numbers and short titles are as follows:

1. Summary
2. Sampling Methodology
2.1 SAMBA Computer Program
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3.1 BILMAT Computer Program
3.2 MATBAL Computer Program
4. Modelling and Simulation
4.1 Industrial Ball Mill Modelling

5. Unit Models: Part A
5.1 Unit Models: Part B
5.2 Unit Models: Part C
6. Flowsheet Simulators
7. Model Calibration
7.1 STAMP Computer Program
7.2 FINDBS Computer Program
7.3 RTD and MIXERS Computer Programs
8. Miscellaneous Computer Programs

These chapters are available from: CANMET, Energy, Mines and Resources Canada
Technology Information Division
555 Booth Street
Ottawa, Ontario

*Simulated Processing of Ore and Coal
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FOREWORD 

High energy costs and depleting ore reserves combine to make process evaluation and optimization a challenging 
goal in the 80's. The spectacular growth of computer technology in the same period has resulted in widely available 
computing power that can be distributed to the most remote mineral processing operations. The SPOC project, 
initiated at CANMET in 1980, has undertaken to provide Canadian industry with a coherent methodology for process 
evaluation and optimization assisted by computers. The SPOC Manual constitutes the written base of this meth-
odology and covers most aspects of steady-state process evaluation and simulation. It is expected to facilitate 
industrial initiatives in data collection and model upgrading. 

Creating a manual covering multidisciplinary topics and involving contributions from groups in universities, industry 
and government is a complex endeavour. The reader will undoubtedly notice some heterogeneities resulting from the 
necessary compromise between ideals and realistic objectives or, more simply, from oversight. Critiques to improve 
future editions are welcomed. 

D. Laguitton 
SPOC Project Leader 
Canada Centre for Mineral and Energy Technology 

AVANT-PROPOS 

La croissance des coûts de l'énergie et l'appauvrissement des gisements ont fait de l'évaluation et de l'optimisation 
des procédés un défi des années 80 au moment même où s'effectuait la dissémination de l'informatique jusqu'aux 
concentrateurs les plus isolés. Le projet SPOC, a été lancé en 1980 au CANMET, en vue de développer pour 
l'industrie canadienne, une méthodologie d'application de l'informatique à l'évaluation et à l'optimisation des pro-
cédés minéralurgiques. Le Manuel SPOC constitue la documentation écrite de cette méthodologie et en couvre les 
différents éléments. Les retombées devraient en être une vague nouvelle d'échantillonnages et d'amélioration de 
modèles. 

La rédaction d'un ouvrage couvrant différentes disciplines et rassemblant des contributions de groupes aussi divers 
que les universités, l'industrie et le gouvernement est une tâche complexe. Le lecteur notera sans aucun doute des 
ambiguïtés ou contradictions qui ont pu résulter de la diversité des sources, de la traduction ou tout simplement 
d'erreurs. La critique constructive est encouragée afin de parvenir au format et au contenu de la meilleure qualité 
possible. 

D. Laguitton 
Chef du projet SPOC, 
Centre canadien de la technologie des minéraux et de l'énergie 





ABSTRACT 

A simple kinetic ball mill model proved adequate after testing with 100 sets of industrial grinding data. The essential 
components of the nnodel are (a) a breakage function determined from laboratory tests; (b) a mixers-in-series residence 
time distribution; and (c) a selection function derived from industrial data. Results show that the absolute selection 
function (Si H) is statistically invariant with changes in feedrate, feedsize distribution, and pulp density over the normal 
operating range. All the experimental and calculational procedures used in the calibration of the model are fully 
documented. This includes an examination of model residuals and a discussion of model reliability. 

RÉSUMÉ 

Un modèle cinétique simple de broyeur à boulets s'est avéré suffisant pour simuler 100 régimes stationnaires échantil-
lonnés en usine. Les éléments de base du modèle sont (a) la fonction de broyage, déterminée par des essais en labora-
toire, (b) une distribution de temps de séjour décrite par un modèle de mélangeurs en série, et (c) une fonction de sélection 
déterminée à partir de mesures obtenues en usine. Les résultats montrent que la fonction de sélection absolue (S iH) est 
statistiquement constante quel que soit le débit, la distribution granulométrique ou le pourcentage de solides dans 
l'alimentation. Les méthodes de mesure et de calcul utilisées pour calibrer le modèle sont exposées en détail, de même 
qu'une discussion des résidus et de la fiabilité du modèle. 

ACKNOWLEDGEMENTS 

The SPOC project has benefited from such a wide range of contributions throughout the industry, the university, and 
the government sectors that a nominal acknowledgement would be bound to make unfair omissions. The main groups 
that contributed are: the various contractors who completed project elements; the Industrial Steering Committee 
members who met seven times to provide advice to the project leader; the various users of project documents and 
software who provided feedback on their experience; the CANM ET Mineral Sciences Laboratories staff members who 
handled the considerable in-house task of software development, maintenance, and documentation; the EMR 
Computer Science Centre staff who were instrumental in some software development; and the CANMET Publications 
Section. Inasmuch as in a snow storm, every flake is responsible, their contributions are acknowledged. 
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1. INTRODUCTION 

Many researchers have contributed to the development 
and refinement of ball nnill models (1,2,3,4). Based on their 
work, it is now possible to present a reasonably complete 
model which is detailed in a related report (5). Its essential 
components are reiterated here. 

Statement 1 — Grinding is governed by two independent 
functions: breakage (b) and selection (S). 

The breakage distribution function describes the suite of 
daughter particles produced by a single breakage event. 
Specifically, the breakage element bu  is the weight 
fraction of particles in size interval i formed by the 
breakage of a larger particle in size interval j. In this 
context, ior j refers to a size fraction with 1=1 being the top 
size fraction and i=n being the pan fraction. 

The selection function measures the rate at which 
breakage events occur for each particle size. 

Statement 2 — Grinding is a first-order rate process. 

= _s p 
 dt 	i i 

(P i  = weight fraction in size interval 1) 

Particles in any given size interval break at a rate propor-
tional only to the weight of particles in that interval. The 
proportionality constant is independent of time and 
independent of other sized particles. 

Statements 1 and 2 lead to the batch grinding equation (6). 

i-1 
dP. 	 buSi Pi 	 Eq 2 
—tdt = 

As in any finite difference formulation, the size interval — 
here the sieve size ratio — must be small enough to 
define the curvature of the continuous functions. For that 
reason a complete square-root-of-two sieve series is 
recommended. 

Statement 3 — Breakage functions are not mill-
dependent. 

The progeny of a particle is invariant, whether it is broken 
in either a small or a large mill. It is also independent of 
time and of all operating variables (7). This allows the 
breakage function to be measured in laboratory mills and 
then to be used for simulation of industrial mills. 

Although this property is theoretically unnecessary, it is 
of practical importance because it is difficult to study the 
breakage behavior of particles in production mills. 
Furthermore, when designing a proposed mill, at least 
some suppositions must be drawn from laboratory data. 

Statement 4 — The residence time distribution is identical 
for all sizes of particles and is independent of nnill ope-
rating conditions. 

The batch-grinding equation must be integrated over the 
time that particles remain in the mill. This can be compli-
cated, but the simplifying assumption of Statement 4 
provides adequate results for average particles in ave-
rage mills (8,9). 

Studies indicate that the shape of the residence time 
distribution is of minor concern, provided the average 
residence time is well known. The average residence 
time of very large particles may be longer than that of 
particles of average size. However, coarse particles are 
usually only a small fraction of the mill load and, there-
fore, do not significantly affect mill simulation. 

Because the shape of the residence time distribution is of 
minor importance, the curve may be conveniently para-
meterized by a few constants. 

Statement 5 — The absolute selection function (S i ll) is 
constant in the normal operating range. 

The absolute selection function is the absolute mass of 
material ground per unit time. Experience has indicated 
that this quantity is independent of operating variables 
over the norma/operating range (5). This report confirms 
this fact. 

Summary Statement — Taken together, the above five 
statements constitute a kinetic ball mill model. The pur-
pose of this report is to validate the model. 

Discussion begins with an effort to determine the break-
age function from laboratory test data. Next, the role of 
the residence time distribution is briefly examined. Then, 
the model is tested using 100 sets of industrial data 
covering a wide operating range (10,11,12,13). Finally, 
the identification of possible correlations between opera-
ting variables and the absolute selection function is 
attempted. 

Eq 1 
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(repeat) 

8.6 
26.5 
23.3 
13.9 
7.7 
5.5 
4.6 
2.4 
1.8 
1.3 
1.3 
3.1 

2. BREAKAGE FUNCTION DETERMINATION 

2.1 LABORATORY GRINDING TESTS 

The batch-grinding tests followed SPOC procedures 
previously published (5), especially for the preparation of 
special mixtures of single-size fractions. The tests were 
done on rod mill feed samples collected during sampling 
campaign numbers 7 and 9 at Brenda Mines in 1977 (11). 

The rod mill feed was easy to handle. However, in order 
to prepare sufficient amounts of material from ball mills in 

the size fractions of interest, the feed had to be crushed in 
a dual-roll crusher, which may have introduced anoma-
lous flaws in the particles. To eliminate any possible 
flaws, the crushed product was placed in the mill and 
pre-ground for 15 seconds. 

Table 1 - Run #7 1977 special feed breakage test results 

Weight per cent retained on size  

Mesh 	 Size (iim) 	Feed 	1.5-min product 	3.0-min product 

	

8 	 2400 

	

10 	 1700 	 31.4 	 14.5 	 8.6 

	

14 	 1200 	 56.3 	 38.9 	 26.4 

	

20 	 850 	 11.7 	 22.5 	 22.7 

	

28 	 600 	 0.3 	 9.4 	 13.8 

	

35 	 425 	 0.1 	 4.4 	 7.7 

	

48 	 300 	 0.1 	 3.1 	 5.8 

	

65 	 212 	 0 	 2.2 	 4.2 

	

100 	 150 	 0 	 1.2 	 2.5 

	

150 	 106 	 0 	 0.8 	. 	 1.9 

	

200 	 75 	 0 	 0.7 	 1.5 

	

270 	 53 	 0 	 0.7 	 1.5 

	

-270 	 -53 	 0.1 	 1.6 	 3.4 

	

14 	 1200 	 1.4 

	

20 	 850 	 49.0 	 26.0 	 14.5 

	

28 	 600 	 45.3 	 40.0 	 32.0 

	

35 	 425 	 4.3 	 15.0 	 19.3 

	

48 	 300 	 0 	 6.9 	 11.7 

	

65 	 212 	 o 	 4.2 	 7.4 

	

100 	 150 	 0 	 2.2 	 4.0 

	

150 	 106 	 0 	 1.5 	 2.9 

	

200 	 75 	 0 	 1.1 	 2.0 

	

270 	 53 	 0 	 1.0 	 1.8 
- 270 	 -53 	 0 	 2.1 	 4.4 

	

28 	 600 	 2.7 

	

35 	 425 	 43.1 	 28.8 	 19.2 

	

48 	 300 	 45.7 	 41.8 	 36.3 

	

65 	 212 	 8.5 	 16.5 	 21.1 

	

100 	 150 	 0 	 4.4 	 7.6 

	

150 	 106 	 0 	 2.4 	 4.5 

	

200 	 75 	 o 	 1.6 	 3.1 

	

270 	 53 	 o 	 1.4 	 2.6 
- 270 	 -53 	 0 	 3.1 	 5.6 

	

48 	 300 	 1.0 

	

65 	 212 	 54.9 	 43.6 	 35.8 

	

100 	 150 	 39.7 	 38.1 	 36.6 

	

150 	 106 	 3.4 	 8.8 	 11.4 

	

200 	 75 	 0.3 	 3.1 	 5.0 

	

270 	 53 	 0.3 	 2.2 	 3.8 
- 270 	 -53 	 0.4 	 4.2 	 7.4 
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The milling conditions for all the tests were as follows: 

Mill 	-16.5-cm smooth steel shell, 
29 cm in diameter; 

Ball charge -15.52 kg of 2.5-cm cast iron; 
- 6.54 kg of 1.9-cm cast iron; 
- 1.94 kg of 1.2-cm cast iron 
(bulk ball volume 40% of mill 
volume, approximately equal 
numbers of each size); 

Ore charge -2.500 kg (filled ball void 
volume); 

Mill speed -57 rpm (73% critical). 

Size (p.111) 

2400 
1700 
1200 
850 
600 
425 
300 
212 
150 
106 

75 
53 

- 53  

1200 
850 
600 
425 
300 
212 
150 
106 
75 
53 

-53  

600 
425 
300 
212 
150 
106 
75 
53 

- 53  

300 
212 
150 
106 
75 
53 

- 53  

Feed 	 1.5-min product 	 3.0-min product 

36.8 
56.7 

6.1 
0.2 
0.1 
0.1 
0 
0 
0 
0 

46.7 
45.0 

7.6 
0.6 
0.1 
0 

42.8 
45.2 
11.5 
0.5 
0 
0 

0.5 
50.3 
41.9 

4.4 
0.9 
0.8 
1.2 

o 
O  

O  
o 
o 
O  

O  
O  

17.1 
40.4 
19.4 
8.5 
4.3 
2.9 
2.2 
1.2 
0.9 
0.7 
0.7 
1.7 

23.6 
38.9 
17.1 
7.8 
4.4 
2.3 
1.6 
1.2 
1.0 
2.1 

26.4 
41.7 
18.6 
4.7 
2.5 
1.7 
1.4 
3.0 

40.0 
39.7 

8.8 
3.7 
2.8 
5.0 

9.0 
27.7 
21.3 
13.3 
7.6 
5.8 
4.3 
2.6 
1.8 
1.5 
1.5 
3.6 

12.9 
29.9 
20.7 
12.6 
7.8 
4.4 
3.0 
2.3 
2.1 
4.3 

17.2 
36.9 
22.0 

7.8 
4.6 
3.1 
2.6 
5.8 

32.5 
37.5 
11.6 
5.4 
4.4 
8.6 

The special feed ore charges were dry ground for 1.5 
minutes, then removed for size distribution analysis. After 
analysis, the mill product was replaced, ground for a 
further 1.5 minutes, and again removed for size distri-
bution analysis. Tables 1 and 2 list the results. 

Additional test data were available for rod mill discharge 
samples collected during a sampling campaign at 
Brenda Mines in 1981 (5). The tests were done under 
conditions similar to those described above, except the 
samples were ground for 2.0 minutes instead of for 
1.5-minute intervals. Table 3 lists the results. 

Table 2 - Run #9 1977 special feed breakage test results 

Weight per cent retained on size 

3 



Table 3 - 1981 special feed breakage test results 

Weight per cent retained on size 

Size (ii,m) 	 Feed 	 2.0-min product 	 4.0-min product 

2400 

	

1700 	 62.9 	 30.5 	 15.4 

	

1200 	 36.7 	 40.4 	 34.3 

	

850 	 0.2 	 11.6 	 15.9 

	

600 	 0 	 6.0 	 10.4 

	

425 	 0 	 3.0 	 5.8 

	

300 	 0 	 2.2 	 4.4 

	

212 	 0 	 1.5 	 3.1 

	

150 	 0 	 1.1 	 2.3 

	

106 	 0 	 0.8 	 1.8 

	

75 	 0 	 0.7 	 1.7 

	

53 	 0 	 0.5 	 1.2 

	

-53 	 0.3 	 1.7 	 3.7 

1200 

	

850 	 59.3 	 33.4 	 19.4 

	

600 	 25.3 	 30.9 	 27.3 

	

425 	 7.8 	 14.3 	 17.5 

	

300 	 4.3 	 8.7 	 12.0 

	

212 	 2.0 	 5.1 	 7.6 

	

150 	 0.6 	 2.4 	 4.4 

	

106 	 0.2 	 1.5 	 3.0 

	

75 	 0.2 	 1.0 	 2.5 

	

53 	 0 	 0.7 	 1.7 
- 53 	 0.2 	 2.0 	 4.6 

	

600 	 0.8 	 0.2 

	

425 	 47.6 	 31.0 	 20.0 

	

300 	 32.5 	 33.4 	 29.6 

	

212 	 10.6 	 16.4 	 19.7 

	

150 	 5.1 	 8.4 	 11.0 

	

106 	 3.4 	 5.4 	 8.0 

	

75 	 0 	 1.7 	 3.9 

	

53 	 0 	 1.1 	 2.5 
- 53 	 0 	 2.4 	 5.3 

	

300 	 0.1 

	

212 	 41.2 	 28.8 	 22.5 	 18.4 

	

150 	 38.0 	 38.7 	 35.6 	 33.0 

	

106 	 18.5 	 21.8 	 23.0 	 23.7 

	

75 	 2.0 	 5.3 	 8.0 	 9.9 

	

53 	 0.2 	 1.8 	 3.5 	 4.5 
- 53 	 0 	 3.6 	 7.4 	 10.4 

6.0-min product 
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FIRST ORDER DECAY PLOTS 

-- ESTIMATED BY PROGRAM 

2.2 ESTIMATING THE BREAKAGE FUNCTION 

The breakage function cannot be calculated. However, an 
estimated breakage function can be used in the batch-
grinding equation (Eq 2) to calculate a predicted size dis-
tribution. Then, the predicted size distribution, P, can be 
compared to the observed size distribution, P', by evalu-
ating the sum of squared residuals, F, between the pre-
dicted and observed distributions. 

F = E [P i(t) - P(t)12 	 Eq 3 

The sum, F, is called the objective function — because 
the objective of the program is to minimize the sum of 
squared residuals by judicious estimation of the break-
age function. The estimation procedure is an iterative 
one using a computer program which tirelessly calculates 
F for various estimated breakage functions (5). 

In performing the laboratory tests, it is assumed that the 
breakage function measured in the batch mill applies 
equally to industrial mills. Only the selection (rate) 
function is mill-dependent. The selection function of the 
batch mill is of no interest, except for the fact that it is 
needed to estimate the breakage function. 

Theoretically both functions can be simultaneously esti-
mated and this has often been done (14,15). There are 
three disadvantages to this approach: 

1. The batch mill selection function can easily 
be calculated directly from special feed 
data without recourse to the breakage 
function. 

2. The computer time required to estimate 
model parameters increases approximately 
with the square of the number of para-
meters. Therefore, using the computer to 
search for the selection function can signi-
ficantly increase the computer costs. 

3. The results are less accurate because 
errors in the estimated breakage function 
can be compensated by errors in the esti-
mated selection function. This leads to 
good simulation of the laboratory data by 
entirely incorrect functions. For example, 
Figure 1 shows a batch mill selection func-
tion estimated for the 1981 single-size frac-
tion test results by simultaneous estimation 
of both the selection and breakage func-
tions. Compare this to the more probable 
selection function calculated by the simple 
method explained below. 

2.3 CALCULATING THE BATCH MILL 
SELECTION FUNCTION 

To ensure that the correct breakage function is found, the 
correct batch mill selection function must first be known. 
The simplest means of determining the selection function 
is to use Equation 1. If the first-order rate hypothesis is 
true, then the weight of top size material in a batch-
grinding test should decrease logarithmically in time. 

0.50 

T 0.40 
c 

 

E 0.30 

cri 
1— 
LLI  

_1 
W  0.10 

0.08 

w0  0.06 

(r) 

0.02 
0.063 0.126 	0.25 	0.51 	1.01 	2.02 

GEOMETRIC MEAN SIZE Xi, mm 

Fig. 1 - Batch mill selection functions — estimated vs cal-
culated 

To observe this, note that the general solution of Equation 
1 is: 

P 1 (t)/P i(0) = exp[-S it] 	 Eq 4 

When the logarithm of the weight is plotted as a function 
of time, the result should be a straight line. 

In[ P i(t)/P 1 (0)] = -Sit 	 Eq 5 

The slope of the line gives directly the selection element, 
Si . 

Figures 2, 3, and 4 show the first-order decay plots for the 
batch-grinding test data in Tables 1, 2 and 3. Most of the 
plots are linear (as hoped) and support the assumption of 
Equation 1. Therefore, the kinetic model is valid. The 
minor deviations from linearity may be due to a combina-
tion of screening errors, anomalous particle flaws, and 
preferential grinding of a softer mineral component. 
These deviations may be safely ignored by using the 
average slope as the selection element, S i. 

Unfortunately, the pronounced non-linearity of the 48/65 
mesh fraction in the 1981 RMD sample (Fig. 4) seriously 
violates the fundamental assumption of the kinetic 
model, and any breakage or selection functions esti-
mated from such data would be meaningless. 

The decay plot for the 48/65 mesh fraction becomes, 
however, nearly linear after two minutes. Therefore, 
some data could be salvaged by treating the two-minute 
mill product as the mill feed for the next four minutes. 
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The average slopes of the decay plots in Figures 2, 3, and 
4 give only the selection elements of the top size fractions. 
Some of the remaining elements could be interpolated. 
However, extrapolation was necessary to find elements 
for the finest size intervals. The extrapolation was based 
on a power function, since selection functions often fit 
power functions (7,14). 

Si  = a(x i)b 

Or equivalently: 

In(Si) = In(a) + (b)In(x i) 	 Eq 6 

Here xi  is the geometric mean size of size fraction i; b is 
usually between approximately 0.5 and 1.5; and a is 
dependent on the time scale. 

Figure 5 is a plot of In(S i) versus In(x i) for each of the three 
ore samples. The two 1977 samples have almost identical 
selection functions, because they are the same ore and 
were tested under identical conditions. 

The 1981 sample resulted in a slightly different selection 
function, possibly because the ball load, ore load, etc. 
were slightly different. The functions are markedly curved 
in the coarse sizes, but the power function does seem to 
apply to the finer sizes. Even if the extrapolated values 
are mildly in error, it is not a serious handicap because 
the breakage function estimation procedure is relatively 
insensitive to the fine-size selection elements when 
using coarse single-size fraction data. 
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Fig. 3 -  First order decay plot - run  #91977 RMF ore sample 
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Fig. 4 - First order decay plot - 1981 RMD ore sample 
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where: 

= b2  + b5In(x j)/In(R) 

e2  = b3  +1:161n(xj)/In(R) 

R = screen size ratio = .7071 

Figure 6 shows a comparison of the estimated cumulative 
size distributions for the above three functional forms. 

The increased flexibility of the non-normalized forms 
resulted in better predicted size distributions and lower 
standard errors (see Table 4). More importantly, the extra 
flexibility minimized the risk that the breakage function 
would bias the production mill model. 

Remember that the ultimate objective of this study is to 
determine the behavior of production mills selection 
functions over a range of operating conditions. Unfor-
tunately, the breakage functions themselves can cause 
significant changes in nnill selection functions. This is 
graphically illustrated in Figures 7 and 8 which compare 
various production mill selection functions estimated for 
data collected at Brenda Mines in 1981 (5). 

This indicates that the proper selection of a breakage 
function requires some advance experimentation with 
the production mill model. 

2.4 FORM OF THE BREAKAGE FUNCTION 

If there are n screen sizes, there are (n-j) breakage ele- 
ments b.. for each parent size j, and there are n parent u 

	

sizes. It Is mpractical to estimate all of these elements 	 100.0  
independently. Instead, it is assumed that the elements fit 
a smooth function which can be parameterized by a 
small number of constants, such as b 1 , b2, b3... 

It was assumed that the breakage function was normal-
ized. This means that the size distribution produced by 
breakage does not depend on absolute particle size, but 
only on the relative daughter-to-parent size ratio. 

The cumulative size distribution has frequently been 
found to fit the following three-parameter equation 
(14,15): 

B.. = b (x./x.) b2  + [1-b (x./x.) b3  B11 	1 	j 	 1 	j 	 Eq 7 

(The breakage elements  b1  are calculated as 41 = 

Later, this restriction was lifted and two non-normalized 
forms were tried. The first form uses one extra parameter. 

B.. = b (x /x.)b 4(x./x.) b2  B11 	1 0 	j 	j 	 2.0 

+ [1 	(X0 / Xi)b4] (X i /Xi)b3 	 Eq 8 

	

(x0  = reference size = 1 mm). The second form used a 	 1.0 
further two parameters. 

B..j  = b1  (x0  /xj)b4(x. j/x.)el 1,  

[1-b1 (xo I  /x.) b4] (x./x.)e2 	 Eq 9 Fig. 6 - Primary breakage distributions - 3, 4, and 6 para-
meter forms 
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2.5 A NOTE ABOUT OBJECTIVE FUNCTIONS 

The minimization of the objective function (Eq 3) is the 
sole criterion for estimation of the breakage function. 
Unfortunately, the objective function is poorly understood; 
for instance, should the objective function compare 
cumulative per cent passing size distributions or per cent 
retained on size fractions? What weighting factors 
should be used? What are the effects of different sieve 
series? 

To illustrate the first question, Figure 9 shows a compari-
son of breakage functions estimated, using both cumula-
tive and on-size objective functions. It is difficult to know 
which function is correct. Similarly, Tables 4, 5, and 6 
compare various quantities resulting from using cumula-
tive or on-size objective functions. And in Section 4.2, the 
problem of missing screen sizes is addressed but not 
satisfactorily resolved. 

Because of the lack of firm answers to the above ques-
tions, the objective function has usually been with 
unweighted cumulative per cent passing size distribu-
tions. This was done because it frequently resulted in 
lower objective functions and because cumulative per 
cent passing values are more meaningful to plant 
engineers. By not including weighting factors, the 
magnitude of the pure errors is implicitly assumed to be 
independent of screen size. Although simple, this is not 
generally true. 

Fig. 8-  Effect of B functional form on hump- type  selection 
function 
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Fig. 9-  Primary breakage distributions - cumulative F vs 
on-size F 
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Table 4 - Comparison of breakage functional forms using Table 3 (1981) data 

3 parameter 
breakage function 

4 parameter 	 6 parameter 
breakage function 	 breakage function 

on size F 	cum F on size F 	cum F on size F 	cum F 
b 1 	 .3561 	.3323 	.3678 	.3371 	 .3547 	.3317 
b2 	 .7815 	.8035 	.9216 	.8556 	 .7347 	.7360 
133 	 20.00* 	20.00* 	20.00* 	20.00* 	20.00* 	20.00* 
b4 	 .3049 	.2939 	 .5140 	.5859 
ba 	 .1157 	.1306 
b6 	 -1.40 	-.827 
deg. freedom 	69 	 61 	 68 	 60 	 66 	 58 
Obj. func. (F) 	141.5 	179.8 	111.7 	84.1 	 99.2 	 61.3 
Std. error** 	1.43 	 1.72 	 1.28 	1.18 	 1.23 	1.03  

*The maximum value of this exponent was limited to 20.00, because greater values are numerically insignificant. 
**The standard error is the square root of the objective function divided by the number of measured screen size fractions (not 
including the pan) minus the number of breakage function parameters, i.e., Std. error = {F/(n-npara)} 0 . 5  

Table 5 - Effect of B choice on estimated cubic selection function constants 

1981 RMD ore sample 	 #7 1977 	#9 1977 
3-param- 	4-param- 	6-param- 	6-param- 	 6-param- 	6-param- 

eter B 	eter B 	eter B 	eter B 	 eter B 	eter B  
cum F 	cum F 	cum F 	on-size F 	 cum F 	cum F 

s 1 	 .4200 	.4371 	.4307 	.4231 	 .4231 	.4291 
s2 	 .4875 	.5433 	.6146 	.6292 	 .6204 	.6290 
sa 	 - .2239 	- .2777 	- .2282 	- .2282 	 - .2282 	- .2331 
54 	 - .1364 	- .1357 	- .1357 	- .1357 	 - .1357 	- .1343 
Std. error 	.31 	 .28 	 .26 	 .25 	 .26 	 .26 

Table 6 - Effect of B choice on estimated hump -type selection function constants 

1981 RMD ore sample 	 #7 1977 	#9 1977 
3-param- 	4-param- 	6-param- 	 6-param- 	6-param- 

eter B 	eter B 	eter B 	 eter B 	eter B  
cum F 	cum F 	cum F 	 cum F 	cum F 

s 1 	 .3898 	.4092 	.4081 	 .3966 	.4091 
s2 	 .4023 	.5519 	.5910 	 .5623 	.5942 
sa 	 5.792 	4.171 	3.589 	 4.227 	4.130 
S4 	 12.48 	5.194 	5.118 	 7.331 	3.798  
Std. error 	.51 	 .35 	 .53 	 .50 	 .50 
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2.6 COMPARISON OF ORE SAMPLES 

The breakage functions calculated from the 1981 and 
1977 ore samples are slightly different (see Table 7 and 
Figure 10). Fortunately, the differences are small and do 
not lead to large changes in estimated production mill 
selection functions (Fig. 11 and 12). Nonetheless, the 
breakage function estimated for the #7 1977 ore sample 
was chosen as best, because it resulted in the lowest 
objective functions (Table 7). A part of the breakage 
matrix is shown in Table 8. 

It is interesting to note that it is impossible to discriminate 
between the various breakage functions using only pre-
dicted size distributions. Table 9 shows that all the 
breakage functions produce nearly equivalent product 
size distributions. 

GEOMETRIC MEAN SIZE, mm 

Fig. 10-  Primary breakage distributions - all ore samples 
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Fig. 11 - Effect of B choice (by ore sample) on cubic selec-
tion function 
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selection function 
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Table 7 - Comparison of estimated breakage 
parameters 

1981 	#7 1977 	#9 1977 

b 1 	 .3317 	.3786 	.3663 
b2 	 .7360 	.9193 	.8428 
133 	 20.00 	14.19 	20.00 
b4 	 .5859 	.4138 	.5311 
136 	 .1306 	.0474 	.0856 
b6 	 -.827 	-1.93 	.5024 

Obj. func. 	61.3 	45.6 	46.5 
Std. error 	1.03 	 .89 	0.90 

Table 8 - The best breakage distribution matrix (incomplete) - Run #7, 1977 

Size (iim) 2400/1700 1700/1200 1200/850 850/600 600/425 425/300 300/212 212/150 150/106 

2400/1700 	0 
1700/1200 	.788 	0 

	

1200/850 	.057 	.758 	0 

	

850/600 	.040 	.070 	.722 	0 

	

600/425 	.030 	.047 	.085 	.678 	0 

	

425/300 	.022 	.034 	.055 	,106 	.626 	0 

	

300/212 	.016 	.025 	.039 	.064 	.132 	.562 	0 

	

212/150 	.012 	.018 	.028 	.045 	.075 	.165 	.485 	0 

	

150/106 	.009 	.013 	.020 	.032 	.051 	.090 	.201 	.401 	0 

Table 9 - Effect of B choice on predicted product size distributions 

Predicted product* 

1981 RMD ore sample 	 #7 1977 	#9 1977 

3-param- 	4-param- 	6-param- 	6-param- 	6-param- 	6-param- 
Experimental (5) 	eter B 	eter B 	eter B 	eter B 	eter B 	eter B  

	

Size 	(p,m) 	Feed 	Product 	cum F 	cum F 	cum  F 	on-size F 	cum F 	cum F  

	

6730 	99.9 	99.9 	99.9 	99.9 	99.9 	99.9 	99.9 	99.9 

	

4760 	99.7 	99.8 	99.8 	99.8 	99.8 	99.8 	99.8 	99.8 

	

3360 	98.9 	99.5 	99.5 	99.5 	99.5 	99.5 	99.5 	99.5 

	

2400 	96.1 	98.5 	98.5 	98.5 	98.5 	98.5 	98.5 	98.5 

	

1700 	92.2 	97.3 	96.8 	96.7 	96.7 	96.7 	96.7 	96.7 

	

1200 	81.6 	91.8 	92.3 	92.1 	92.1 	92.1 	92.1 	92.1 

	

850 	69.8 	84.2 	84.6 	84.3 	84.2 	84.4 	84.4 	84.3 

	

600 	56.3 	73.4 	73.5 	73.2 	73.1 	73.4 	73.4 	73.3 

	

425 	43.3 	61.1 	60.5 	60.3 	60.4 	60.8 	60.8 	60.6 

	

300 	31.2 	47.8 	46.9 	47.1 	47.4 	47.9 	47.8 	47.7 

	

212 	22.8 	37.0 	35.8 	36.4 	36.8 	37.3 	37.1 	37.1 

	

150 	18.0 	29.9 	28.2 	29.1 	29.5 	29.9 	29.8 	29.8 

	

106 	14.7 	24.5 	22.9 	24.0 	24.1 	24.4 	24.4 	24.4 

	

75 	12.1 	20.0 	19.0 	20.1 	20.0 	20.3 	20.3 	20.4 

	

53 	10.8 	17.7 	16.6 	17.7 	17.5 	17.8 	17.7 	17.9 

Std. error 	 .84 	.42 	.32 	.22 	.22 	.24 

*Using best selection function (cubic, Table 14) and observed RTD (Brenda, Table 10) 
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Fig. 13 - A simple residence time distribution 

3. RESIDENCE TIME DISTRIBUTIONS 

3.1 USE OF RESIDENCE TIME DISTRIBUTION 

A residence time distribution is a probability distribution. 
It is a statistical description of how long particles stay in 
the mill. For example, consider a mill where 30% of the 
feed particles leave in less than two minutes, 50% leave 
between two and five minutes, and 20% leave between 
five and ten minutes after entering the mill. The residence 
time distribution of the mill would be as shown in Figure 
13. 

The batch-grinding equation (Eq 2) applies strictly to 
batch mills and to idealized continuous mills exhibiting 
only plug flow behaviour. But with the residence time 
distribution, it can extend to all continuous mills. 

A reasonable model might predict the product size distri-
bution PF of a continuous mill as the weighted average of 
size distributions produced by batch grinding P i  for 1 
minute, 3.5 minutes, and 7.5 minutes. 

= 0.3P1 (1 min) + 0.5P(3.5 min) 

+ 0.2P 1(7.5 min) = E[h(t) tIT]P i(t) 

A more exact model would use vanishingly-narrow time 
intervals (dT), so that thesummation becomes an integral 
(5). 

This equation also assumes, not only that the batch-
grinding equation applies as long as particles remain in 
the mill, but also that the breakage and selection func-
tions do not change as particles move through the mill 
and grinding progresses. 

Again, experience has shown that in most cases these 
assumptions lead to acceptable mill simulation and, 
therefore, can be used. For a detailed discussion of 
residence time distributions, see Chapter 7.3 of the 
"SPOC Manual" (16). 

3.2 THE MIXERS-IN-SERIES MIXING MODEL 

The integral in Equation 10 is costly and time-consuming 
to evaluate. It is more expedient to express the residence 
time distribution as a simple known function, solve the 
integral analytically, and calculate only the solution. 

From experience it has been found that the most easily 
integratable functions, which fit observed residence time 
distributions, are exponential functions of the form xe-x. 

Coincidentally, such functions also describe the resi-
dence time distributions of perfect-mixers-in-series. 
Therefore, ball mill models using these functions are said 
to use a mixing model of perfect-mixers-in-series. 

However, this is misleading because the mass transport 
properties of mills are certainly not those of perfect 
mixers. It can only be noted that the exponential equa-
tions apply and are convenient. 

Various authors have used, and been satisfied with, resi-
dence time distributions fitted to the following function 
(7,8,9,17): 

1 	(t 
h(t) = 	_ „„ [ 

h-  - m  0P)  {expktirm  - )/0 1} 
el 	

p 	1 

02 - —1 
	{exp[-(t/T., - e ryei ]} 

e 
02 - 0 1 

eXpKtfrrm  - 0 p)/021} Eq 11 

p9 = f h(t)P i (t)dt 
t=c■ 

This corresponds to the residence time distribution of 
Eq 10 two perfect mixers 01  of equal size, in series with a larger 

mixer 02, as well as a plug flow component ep. 

The parameter Tm  is the overall average residence time of 
the mill. This is called a lumped parameter model 
because the flow parameters are lumped into a discrete 
series of tanks. 

e 2 	 

This equation implicitly ignores the possibility of different 
residence time distributions for particles of different 
sizes. Although this may not be valid in every case, it has 
been found to be valid for particles of average size in 
mills operating in the normal range of pulp densities, etc. 
(8,9). 
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Typical values for the model constants are given in Table 
10. The functions generated by those constants are so 
close to the observed residence time distributions (as 
determined by tracer tests) that they may be considered 
representative of the actual observed residence time 
distributions. 

Table 10 — Typical perfect mixers-in-series 
model constants 

Brenda 1981 	Geco 1982 

01 	 0.0973 	0.1424 

02 	 0.5597 	0.6388 

0 	 0.2457 	0.0764 P 

Mill diam (ft) 	 13.5 	 12 

Mill length (ft) 	 22 	 14 

% solids 	 75 	 74 

Feed rate (SDTPH) 	847 	 195 

3.3 EFFECT OF RESIDENCE TIME 
DISTRIBUTION ON THE MODEL 

Fig. 14 - Residence time distributions 

As Marchand et al. (9), as well as Austin et al., (8) have 
shown, the product size distribution predicted by Equa- 
tion 10 is quite insensitive to the shape of the residence 	 i.o 
time distribution. Therefore, an accurate determination of 
the residence time distribution is unnecessary. 	 " 

b-I 

 

Table 11 compares the predicted product size distribu-
tions using the three different residence time distributions 
shown in Figure 14 (using data fronn Reference #5). 
Notwithstanding gross differences in the residence time 
distributions, the predicted size distribution is fairly 
similar. A single perfect mixer residence time distribution 
appears to be the least adequate, but all the other forms 
produce results as accurate typical screening errors. 

VVhen calibrating a ball mill model, the best residence 
time distribution should be used. Inaccuracies in the 
residence time distribution combine with screening 
errors to generate sizeable fluctuations in the estimated 
selection function. 

Figures 15 and 16, as well as Tables 12 and 13, serve to 
compare various estimated selection functions. The dif-
ferences between the functions is of the same order of 
magnitude as the variations caused by changes in opera-
ting variables (Section 4.4). Therefore, to prevent possible 
bias, use of the three-mixers-in-series-plus-plug-flow 
model is warranted ("observed RTD" in Figures 15 and 
16). 

Fig. 15 - Effect of RTD on cubic selection function 
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Table 11 - Effect of RTD choice on predicted product size distributions 
(cumulative per cent passing) 

Experimental (5) 	 Predicted product*  

	

Size 	(p,m) 	Feed 	Product 	Batch 	Single PM 	Two PM 	Three PM + plug = obs. RTD 

	

6730 	99.9 	99.9 	99.9 	99.9 	99.9 	 99.9 

	

4760 	99.7 	99.8 	99.8 	99.8 	99.8 	 99.8 

	

3360 	98.9 	99.5 	99.5 	99.4 	99.4 	 99.5 

	

2400 	96.1 	98.5 	98.7 	98.2 	98.4 	 98.5 

	

1700 	92.2 	97.3 	97.1 	96.0 	96.5 	 96.7 

	

1200 	81.6 	91.8 	93.0 	90.7 	91.7 	 92.2 

	

850 	69.8 	84.2 	85.5 	82.6 	83.8 	 84.4 

	

600 	56.3 	73.4 	74.4 	71.7 	72.9 	 73.4 

	

425 	43.3 	61.1 	61.5 	59.4 	60.4 	 60.8 

	

300 	31.2 	47.8 	48.2 	46.9 	47.5 	 47.7 

	

212 	22.8 	37.0 	37.3 	36.7 	37.0 	 37.1 

	

150 	18.0 	29.9 	29.8 	29.6 	29.8 	 29.8 

	

106 	14.7 	24.5 	24.3 	24.4 	24.4 	 24.4 

	

75 	12.1 	20.0 	20.2 	20.5 	20.4 	 20.3 

	

53 	10.8 	17.7 	17.5 	18.0 	17.8 	 17.7 

*Using best breakage function (Table 8) and best selection function (cubic, Table 14) 

GEOMETRIC MEAN SIZE, mm 

Fig. 16 - Effect of RTD on hump-type selection function 

Table 12 - Effect of RTD choice on cubic 
selection function constants 

Batch Single PM Two PM Obs. RTD 

s 1 	 .3971 	.4986 	.4418 	.4207 
s2 	 .5758 	.8330 	.6694 	.6146 
s3 	-.2209 -.1865 	-.2211 	-.2282 
84 	 -  .1362 	-.1290 	-.1321 	-.1357 
Std. error 	.28 	.20 	.23 	.26 

Table 13 - Effect of RTD choice on hump-
type selection function constants 

Batch Single PM Two PM Obs. RTD 

s1 	.3696 	.4650 	.4177 	.4081 
s2 	.4872 	.7263 	.6181 	.5910 
s3 	4.273 	75.00 	4.276 	3.589 
84 	5.614 	30.00 	6.399 	5.118  
Std. error 	.44 	.53 	.51 	.53 
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4. PRODUCTION MILL SELECTION FUNCTION DETERMINATION 

4.1 ESTIMATING THE PRODUCTION MILL 
SELECTION FUNCTION 

Production mill selection functions cannot be directly 
calculated. They can only be estimated and used to pre-
dict product size distributions that match as closely as 
possible a measured size distribution. The best esti-
mated selection function is the one whiC results in the 
lowest sum of squared residuals F in Equation 3. If the 
measured size distribution is wrong because of sampling 
or screening errors, then the chosen best selection 
function will also be wrong. 

The batch-grinding equations (Eq 2 and Eq 10) are used 
to calculate product size distributions. In addition to an 
estimated selection function, these equations also require 
a breakage function and residence time distribution. If 
either is incorrect, the sum of squared residuals F will be 
adversely affected, and an incorrect bestselection func-
tion will be chosen. 

In Section 2 a common best breakage function (Table 8) 
was determined from laboratory tests on ore from the 
Brenda Mines. In Section 3, the residence time distribu-
tion of Brenda Mines' ball mill was parameterized (Table 
10). Those results are used in this section to estimate 
selection functions for Brenda Mines' ball mill. Through-
out the development, the various assumptions underlying 
the estimation procedure should be kept in mind. 

The simplest selection functions fit a power function 
similar to a Schuhmann distribution (7). 

Si  = s 1 (x 1 /x0)52 

Or equivalently: 

In(s i) = 	+ s2  In(x 1 /x0) 

where xo  = lmm 

However, this equation does not have sufficient flexibility 
to fit most observed selection functions. Therefore three 
extensions were tried. 

The Quadratic 

In(S 1) = 	+ s2  In(x1 /x0) + s3  [In(x1 /x0)]2  
Eq 13 

The Cubic 

In(S i) = In(s i ) + s2  In(x 1 /x0) + s3  [In(x1 /x0)]2 

 + s4  [In(x 1 /x0)13  

The Hump or Modified Schuhmann 
si (x i /x0)2  

S i =  1 + Rx 1 /x0) /531 s4  

These equations were fitted to the selection function of a 
sampling campaign at Brenda Mines in 1981. Table 14 
gives the constants which resulted in the minimum 
objective functions. The estimated selection functions 
are shown graphically in Figure 17. Finally, Figure 18 
shows a comparison of the respective product size 
distributions. 

Table 14 - Comparison of estimated selection 
function constants 

Schuhmann Quadratic Cubic Hump 

	

.3929 	.3868 	.4207 	.4081 

	

.5592 	.5924 	.6146 	.5910 

	

.04043 	- .2282 3.589 
-.1357 5.118  

	

.817 	3.31 

15-4 	15-4 

.26 	.53 

GEOMETRIC MEAN SIZE, mm 

Eq 12 

Eq 14 

S1 

S2 

S3 

S4  

Obj. 
function 
Deg. 
freedom 
Std. 
error 

Eq 15 	Fig. 17 - Comparison of selection functional forms 
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Fig. 18 - Comparison of product size distributions 

All four types of selection functions simulate the pre-
dicted product size distribution admirably. The simplest 
type, the power or Schuhmann distribution, worked well 
for the medium-sized particles, but is too inflexible to 
predict perfectly the observed size distribution in the 
very-coarse and very-fine size ranges. The quadratic is a 
slight improvement, but not enough to be significant. The 
hump or modified Schuhmann equation permits reduced 
grinding rates in the coarse sizes which allowed it to 
predict the coarse size fractions better than the simple 
Schuhmann. 

However, in terms of the standard deviation of residuals, 
the modification provides no real advantage because the 
reduction in the sum of squared residuals is not enough 
to compensate for the additional two parameters. 

The cubic is far superior to other forms. Unfortunately, 
although selection functions have frequently been 
observed to deviate from simple power functions (18,19), 
it is difficult to explain why the grinding rate would 
increase as particle size decreases below 100 mesh. 
One can speculate about possible causes: 

- A large fraction of soft material between 150 
and 270 mesh could elevate the grinding 
rate for those sizes. 

- A large fraction of hard material between 65 
and 100 mesh depresses the grinding rate 
there. Perhaps the action of the mill is 
exceptionally effective for 150/270 mesh 
particles. 

- Invalid model assumptions or data lead to 
this curiosity; for instance, the measured 
product size distribution could be in error. 

Most of the differences between predicted and measured 
distributions occur in the finest two-size intervals. Unfor-
tunately, Figure 18 shows that the measured distribution 
would have to be seriously in error to meet the size distri-
bution predicted by a selection function fitted to a 
Schuhmann or hump-type equation. Only the cubic 
equation has the flexibility to predict the observed size 
distributions. 

As a final note, it must be pointed out that the calculation 
of the constants in Table 14 is subject to some uncer-
tainty. Different initial estimates of the constants lead to 
different final values. In some cases, particular sets of 
constants provide lower objective functions than other 
sets of constants, and so the better sets were chosen. 

However, in other cases, two or more quite different sets 
of constants result in very comparable objective 
functions. Perhaps the objective function surfaces are 
very flat near the minima, and so the stopping point 
depends on the step size, on the approach direction, and 
even possibly on the search method. 

4.2 EFFECT OF MISSING SCREEN SIZES 

Size distribution data for the 1975 Brenda sampling 
campaigns are available only for a 2:1 geometric sieve 
series (10). Data for the 1977 campaigns were recorded 
on an incomplete square root of two sieve series (11). As 
mentioned in Section 2.5, the sieve series is closely 
linked with other questions about the objective function. 
Therefore, it was thought necessary to study the effects 
of missing screen sizes. 

0.063 0.126 0.25 0.51 1.01 2.02 4.04 8.09 

GEOMETRIC MEAN SIZE, mm 

Fig. 19 - Effect of sieve series on hump-type selection 
function 

6.800 
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In any discrete size analysis the properties of all particles 
in a size fraction are lumped together and averaged. If the 
size interval is too large to discriminate important 
changes in the properties of the particles, then serious 
calculation errors are introduced. 

When narrow-size fraction data are not available, the 
effect of interval averaging can be somewhat negated by 
doing all calculations on narrow-size fractions, and then 
using an abbreviated objective function which includes 
only the measured-size fractions. Unfortunately, Figure 
19 shows that even this approach can lead to serious 
mistakes in the estimation of the selection function. 

The procedure is most inadequate in the coarse size 
fractions where the cumulative size distribution is nearly 
constant. Normally with a square root of two sieve series, 
the coarse sizes contribute little to the objective function. 
In a reduced s.  ieve series, it becomes practically impos-
sible to estimate the selection function in the coarse 
sizes. Therefore, it was deemed necessary to interpolate 
the missing screen sizes by plotting the cumulative size 
distribution for the 1975 and 1977 sampling campaign 
data. Then, at least the objective functions would be 
comparable. 

4.3 EFFECT OF NOT KNOWING 
THE AVERAGE RESIDENCE TIME 

The average residence time must be accurately known 
to estimate the selection function. Unfortunately, the 
average residence times were not measured for the 1975 
and 1977 sampling campaigns. However, the feed rates 
Q were measured, therefore the absolute selection func-
tion S i H can be calculated. This corresponds to calcu-
lating the amount of material ground without knowing 
how much vvas in the mill, or how long it stayed in the mill. 

In 1981 the residence time distribution h(t) of Brenda 
Mines' mill was measured. The model constants are 
given in Table 10. 

When Tm  is not known, a new variable 'Y =t/TmQ can be 
defined. 

By substituting t=  Y 7",.„Q into Equation 11, the variable  Tm  
is eliminated. The new distribution h('Y ) can then be used 
in Equation 10 which does not change when a different 
dummy variable is used. 

PF = f h(7 )P i('Y )d Y 	 Eq 16 
-y =0  

But remember that P i(t) is calculated from the batch-
grinding equation, which must now be modified to be a 
function of Y instead of t. 

dP.(t) = dPi('Y) = _s i p i  + i1 
b11S.P. 1 	1 

dt 	7QdY 	j=1 

dPi('Y ) _ (sirmQ)pi 	b (s17. rmp. 
1TM)  1 

d 	 j=1 

1-1 
= -o i P i  + E b 1 S 1 P 	 Eq 17 

j=1  

Now Equations 16 and 17 can be used to estimate S i  just 
as Equations 2 and 10 were used to estimate S i . 

The quantity g i  = (S i  TmQ) is best interpreted by noting that: 
= H/Q where H is the mill holdup mass. Therefore, 

S i  = S i H. It is called the absolute selection function 
because it represents the absolute mass ground per unit 
time. 

4.4 EFFECT OF OPERATING VARIABLES 

A quantitative knowledge of S i H is crucial to predicting 
mill performance. Therefore, .an attempt was made to 
detect the possible effects of operating variables on S i H. 

Absolute selection functions were calculated for all 47 
sets of sampling campaign data collected at Brenda 
Mines in 1975 and 1977. To compare the functions they 
were scaled by the factor 1/H0 , where H o  is the holdup 
mass calculated from the 1981 sampling campaign and 
residence time distribution data (5). If the holdup mass 
were constant, this scaling would result in the actual 
selection function S i . 

Tables 15 and 16 contain the parameters for the hump-
type selection functions which minimized the sunn of 
squared residuals. If S i H were affected by changes in the 
feed rate Q, pulp per cent solids %S or feed size distri-
bution %-65M, then the parameters of the selection 
function should, in some way, be correlated to those 
variables. For instance, plots of S 1 H / H 0  versus feed rate 
might show some trend. However, there are no reliable 
correlations between any of the variables in Tables 15 
and 16. 

The fact that the variable S i H /H0  is not correlated to 
operating variables does not mean that the mill holdup 
does not change with operating parameters. It only 
means that, if H changes, then Si  changes inversely to 
negate any potential change in the product S i H. 

This result has an important interpretation. It indicates 
that the absolute selection function, S i H, or the mill 
grinding capacity does not change with changes in 
operating variables over the normal operating range. The 
mill product can be adjusted by altering the feed rate, but 
the total amount of grinding remains constant. 

If the absolute selection function is not correlated to 
operating variables, then a single absolute selection 
function should apply to all data sets. The hypothesis 
was tested by calculating predicted size distributions for 
all 47 runs using the average function parameters from 
Tables 15 and 16. 

The column labelled SEm  in the tables shows that the 
standard error per screen remained below 1% in most 
cases. This is less than the standard deviation calculated 
for the measured distributions from replicate runs (11). 
Moreover, the standard errors (model residuals) are not 
correlated to the operating variables or time. For 
example, in Figures 20 and 21 the standard errors are 
plotted against feed rate, and in Figure 22 the standard 
error is plotted against run sequence. 
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Table 15 - EstiMated selection function parameters - 1975 data 

Run 	s 1 H/H0 	s2 	s3 	S4 	Q(SDTPH) 	%S 	%-212 p,M 	SEb** 	SEm*** 

1 	.342 	.603 	5.88 	9.74 	733 	75.62 	25.1 	.86 	.85 
2 	.361 	.641 	16.0* 	10.0* 	817 	75.59 	21.3 	.93 	.84 
3 	.370 	.695 	16.0* 	10.0* 	838 	75.50 	23.7 	.82 	.71 

4 	.360 	.725 	5.14 	7.80 	885 	76.12 	21.9 	.77 	.80 
5 	.390 	.800 	4.97 	10.0* 	655 	70.45 	25.1 	.73 	.75 
6 	.388 	.650 	4.42 	5.15 	849 	75.15 	22.2 	.76 	.87 

7 	.384 	.731 	4.90 	10.0* 	591 	72.70 	24.4 	1.0 	.88 
8 	.418 	.796 	3.61 	5.43 	756 	74.69 	23.9 	.53 	.64 
9 	.371 	.678 	4.10 	7.29 	906 	74.30 	26.7 	.64 	.57 

10 	.389 	.794 	5.14 	5.91 	988 	75.84 	24.9 	.48 	.48 
11 	.392 	.793 	3.09 	7.21 	909 	74.26 	26.5 	.53 	.53 
12 	.355 	.685 	4.34 	5.27 	885 	75.70 	24.4 	.64 	.68 

13 	.387 	.804 	16.0* 	10.0* 	692 	71.08 	24.8 	.88 	.89 
14 	.402 	.729 	3.83 	5.25 	788 	75.77 	23.0 	.46 	.57 
15 	.350 	.653 	6.55 	7.41 	697 	73.50 	22.6 	.74 	.73 

16 	.388 	.755 	4.82 	4.80 	839 	74.56 	21.2 	.65 	.58 
17 	.413 	.776 	4.24 	5.31 	889 	74.19 	25.8 	.65 	.68 
18 	.379 	.689 	4.01 	5.30 	860 	76.31 	23.3 	.73 	.66 

19 	.401 	.693 	3.75 	4.56 	791 	76.30 	22.8 	.65 	.79 
20 	.381 	.809 	3.36 	3.26 	930 	75.88 	18.8 	.25 	.61  

df 	19 	19 	16 	14 	 19 	19 	19 	19 	19 
Avg 	.381 	.725 	4.48 	5.98 	815 	74.67 	23.6 	.68 	.71 
SD 	.020 	.064 	0.90 	1.61 	102 	1.73 	2.0 	.18 	.13 

*Maximum permitted value 

*"SEb  = standard error using a variable four-parameter selection function = [I(P-M)2/10] 0.5  

where P = predicted cumulative per cent passing 
M = measured cumulative per cent passing 
10 = (14 screens  - 4  adjustable parameters) 

***SEm  = standard error using a constant selection function = [X(P -M)2/14]0 . 5  
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Table 16 - Estimated selection function parameters - 1977 data

Run siH/Ho s2 s3 s4 Q(SDTPH) %S %-212 µm SEb** SEm***

1 .440 .805 4.31 10.0* 651 68.17 31.7 .37 .88
2 .412 .708 4.80 8.65 694 69.65 27.2 .38 .62
3 .368 . 652 3.30 10.0* 667 71.83 23.0 .61 1.3

4 .431 .635 4.85 4.69 880 73.02 25.4 .38 .64
5 .437 . 627 3.83 3.56 876 72.51 24.0 .33 .66
6 .415 .495 6.02 6.34 997 76.72 18.5 .42 .96

7 .416 .878 3.68 10.0* 558 65.17 32.3 .58 2.1
8 .380 .670 16.0* 10.0* 672 70.01 25.0 .59 1.1
9 .348 .582 16.0* 10.0* 679 70.90 23.2 .62 1.3

10 .412 . 583 6.54 6.85 845 72.26 22.9 .43 .56
11 .405 .515 4.78 8.25 1002 74.18 20.3 .44 .71
12 .397 . 698 4.80 2.82 636 69.43 28.6 .53 .84

13 .392 .694 5.33 7.06 693 70.88 26.8 .69 .98
14 .394 .619 5.60 10.0* 804 70.64 24.9 .79 .70
15 .411 .570 4.47 4.09 873 73.38 25.0 .34 .52

16 .394 .528 5.94 3.67 857 74.08 22.7 .61 .68
17 .388 .635 4.30 2.85 919 75.89 20.1 .26 .67
18 .374 .541 6.35 7.98 778 74.28 21.7 .51 .61

19 .377 .661 3.98 4.67 634 71.13 25.3 .35 1.1
20 .370 .589 16.0* 10.0* 678 70.30 23.8 .59 .81
21 .404 .609 4.30 4.09 834 73.18 23.9 .48 .44

22 .396 .470 6.62 6.87 1073 75.67 17.5 .44 .78
23 .388 .491 4.68 4.33 1277 72.27 22.4 .29 .52
24 .379 .500 5.59 7.70 1683 71.21 23.4 .33 .39

25 .432 .606 5.40 8.49 861 73.64 21.8 .64 .94
26 .439 .695 5.09 10.0* 570 74.09 23.7 .73 .82
27 .422 .492 3.91 4.09 1088 74.93 19.0 .36 .99

df 26 26 23 18 26 26 26 26 26
Avg .401 .613 4.94 5.64 843 72.20 23.9 .48 .84
SD .024 .098 0.93 2.03 240 2.56 3.5 .14 .35

*Maximum permitted value

.*SEb = [:Ê (P-M)2/10]0.5

^(P-M)z/14]o.s.SE,7, = [2
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Table 17 shows that about 99% of the variation on any 
screen was explained by the simple model (columns 
entitled "mod1") using a constant absolute selection 
function. 

The impressive power of the simple model to mimic 
measured results is graphically shown in Figures 23 
through 26. This proves that the simple model is ade-
quate and explains all significant variation in the 
observed size distributions. 

Finally, Tables 18 and 19 show a breakdown of the 
standard error for each screen size. In the 1977 data set, 
the simple model seemed to do most poorly in the finest 
screen sizes. This resulted from accumulated errors, 
because the size distributions were expressed on a 
cumulative per cent passed basis. When restated on a 
per cent retainedbasis, the model predicted equally well 
in the coarse and fine sizes. 

In both the 1975 and 1977 data sets, the errors in the pan 
fractions (-270 M) were greater than any other sizes. Fur-
thermore, the predicted pan fractions were always less 
than the measured pan fractions. This is a direct result of 
using the hump-type selection function. 

Figure 18 compares a typical example of a measured-size 
distribution and that predicted by a model using a 
hump-type selection function. 
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Fig. 20 - Standard error vs feed rate — 1975 data 

0 0 
o 	o 

0 
5 

0 
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 170 

FEEDRATE, sdtph 

Fig. 21 - Standard error vs feed rate — 1977 data 
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Table 17 - Correlation coefficients by screen - 1975 and 1977 data 

1975 campaigns 	 1977 campaigns 

Cumulative 	 On-size 	 Cumulative 	 On-size 

	

Size 	(p,m) 	Best 	Modl 	Best 	Modl 	Best 	Modl 	Best 	Modl 

	

6730 	 .976 	.970 	.976 	.970 	.791 	.960 	.791 	.960 

	

4760 	 .959 	.966 	.945 	.951 	.897 	.988 	.653 	.977 

	

3360 	 .976 	.958 	.968 	.947 	.948 	.968 	.862 	.898 

	

2400 	 .948 	.887 	.849 	.750 	.994 	.986 	.986 	.979 

	

1700 	 .992 	.982 	.952 	.979 	.998 	.990 	.990 	.984 

	

1200 	 .995 	.990 	.988 	.985 	.998 	.992 	.991 	.988 
.. 

	

850 	 .998 	.991 	.994 	.977 	.999 	.994 	.998 	.992 

	

600 	 .999 	.991 	.995 	.987 	1.000 	.995 	.987 	.975 

	

425 	 1.000 	.992 	.987 	.979 	.999 	.992 	.955 	.851 

	

300 	 .999 	.998 	.963 	.956 	1.000 	.991 	.968 	.848 

	

212 	 .997 	.982 	.998 	.987 	1.000 	.990 	.989 	.961 

	

150 	 1.000 	.976 	.976 	.956 	1.000 	.988 	.990 	.989 

	

106 	 .999 	.968 	.956 	.942 	.999 	.985 	.987 	.984 

	

75 	 .993 	.962 	.923 	.912 	.998 	.983 	.958 	.951 

	

53 	 .980 	.955 	.790 	.748 	.992 	.979 	.942 	.992 

Note: The correlation coefficient used here is the normalized covariance. It is employed because both the predicted 
and measured product size distributions were subject to error (20). 

r - 
cov(predicted, measured)  

- 	  
[var(predicted)var(measured)f. 5 	[10D-iIV I(rV1 - r7.4)1 (3.5  

Table 18 - Standard error breakdown by screen - 1975 data 

Cumulative 	 On-size 
Average size distribution 	 Standard variation** 	 Standard error***  

	

Size 	(p.m) 	Feed 	Dis. 	Best 	Modl 	Feed 	Dis. 	Best 	Modl 	Best 	Modl 	Modl  

	

6730 	100.0 	100.0 	100.0 	100.0 	.0 	.o 	.o 	.o 	.o 	.o 	.0 

	

4760* 	99.7 	99.9 	99.8 	99.8 	.2 	.1 	.1 	.1 	.1 	.1 	.1 

	

3360 	99.4 	99.8 	99.7 	99.7 	.3 	.2 	.2 	.2 	.1 	.1 	.0 

	

2400* 	97.6 	99.1 	99.3 	99.4 	1.1 	.4 	.4 	.3 	.3 	.3 	.4 

	

1700 	93.9 	97.8 	98.0 	98.1 	2.0 	1.0 	.9 	.8 	.3 	.4 	.3 

	

1200* 	88.3 	95.3 	95.1 	95.1 	3.0 	1.7 	1.6 	1.6 	.3 	. 3 	.6 

	

850 	79.1 	89.8 	89.3 	89.4 	3.9 	2.6 	2.6 	2.6 	.5 	.6 	.3 

	

600* 	65.8 	80.0 	79.6 	79.7 	4.7 	3.9 	3.7 	3.8 	.4 	.6 	.3 

	

425 	50.8 	66.9 	66.6 	66.6 	4.5 	4.5 	4.3 	4.4 	.4 	.6 	.2 

	

300* 	35.0 	50.8 	51.5 	51.5 	3.0 	3.7 	3.8 	3.9 	.7 	.9 	1.1 

	

212 	23.6 	37.4 	38.2 	38.7 	2.0 	2.9 	3.0 	3.0 	.9 	1.0 	.2 

	

150* 	16.9 	28.3 	28.7 	28.7 	1.4 	2.4 	2.4 	2.4 	.5 	.7 	.4 

	

106 	12.6 	21.9 	21.9 	21.9 	1.2 	2.1 	2.1 	2.0 	.1 	.5 	.6 

	

75* 	9.9 	17.7 	16.9 	17.0 	1.1 	1.9 	1.8 	1.7 	.8 	.9 	.7 

	

53 	8.3 	15.1 	13.4 	13.4 	1.0 	1.7 	1.5 	1.5 	1.7 	1.8 	1.0 

* Interpolated data 

**Standard variation - [1(M -M )2/19]0 . 5  or [/(P- P) 2/1 9 ]O . 5  

***Standard error ----- [2,(P-M)2/1910.5 
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Cumulative 	 On-size 

Average size distribution Standard variation** 	 Standard error' 

	

Size 	(en) 	Feed 	Dis. 	Best 	Modl 	Feed 	Dis. 	Best 	Modl 	Best 	Modl 	Modl 

	

6730 	99.9 	99.9 	99.9 	99.9 	.1 	.1 	.1 	.1 	.1 	.0 	.0 

	

4760 	99.6 	99.8 	99.8 	99.9 	.3 	.2 	.2 	.1 	.1 	.1 	.1 

	

3360 	99.0 	99.6 	99.6 	99.7 	.6 	.3 	.4 	.2 	.1 	.2 	.1 

	

2400* 	96.6 	98.8 	98.9 	99.0 	1.6 	.8 	.8 	.7 	.1 	.3 	.2 

	

1700 	91.8 	96.8 	97.0 	97.2 	2.9 	1.8 	1.8 	1.6 	.2 	.5 	.3 

	

1200* 	84.0 	93.0 	93.0 	93.2 	4.4 	3.4 	3.3 	3.1 	.2 	.5 	.4 

	

850 	73.1 	86.4 	86.0 	86.1 	5.5 	5.2 	5.1 	5.0 	.5 	.6 	.4 

	

600 	59.6 	76.3 	75.8 	75.9 	6.1 	6.7 	6.5 	6.7 	.6 	.8 	.4 

	

425 	44.5 	62.8 	62.8 	62.9 	5.5 	7.1 	7.0 	7.5 	.2 	1.0 	.8 

	

300 	31.6 	48.7 	49.5 	49.7 	4.2 	6.2 	6.3 	7.1 	.8 	1.6 	1.0 

	

212 	23.9 	38.8 	39.0 	39.3 	3.5 	5.3 	5.3 	6.2 	.3 	1.4 	.6 

	

150* 	18.4 	30.7 	30.9 	31.2 	3.1 	4.4 	4.4 	5.4 	.2 	1.3 	.2 

	

106 	14.5 	24.6 	24.6 	24.9 	2.9 	3.7 	3.7 	4.7 	.2 	1.2 	.2 

	

75 	11.9 	20.1 	19.8 	20.0 	2.5 	3.1 	3.1 	4.0 	.4 	1.1 	.5 

	

53 	10.2 	17.2 	16.1 	16.3 	2.3 	2.7 	2.6 	3.3 	1.1 	1.3 	.8 

Table 19 - Standard error breakdown by screen - 1977 data 

* Interpolated data 

**Standard variation = [I(M-M) 2/26]0 . 5  or [ o- -Ï5) 2/26]0 . 5  

***Standard error  = [1. (P-M) 2/26]° . 5  
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Power draw varies with operating conditions (22): 

P/H = Kb D0.3  0,(1 -0.937 J) [1-0.1 /(29-1001 

Kb  = proportionality constant 
D = mill diameter 

= fraction of mill critical speed (c--20.7) 
eJ = apparent fraction of mill filled by balls 

(0.2 <J <0.6) 

Holdup mass varies with mill geometry (21): 

H = KH D2L 

= proportionality constant 
L = mill length 

5. POSSIBLE MODEL EXTENSIONS 

Simulation outside the normal range is usually not 
required for mill control. However, for scale-up and 
design, the following plausible relationships are offered. 
They were extracted from a literature search and could 
not be validated with the Brenda Mines data set. There-
fore, they should be used with reservation. 

Relationships 

The selection function is proportional to power draw 
(7,21): 

S i  = 

P = mill power draw (kW) 
H = mill holdup mass (t) 
Sr = proportionality constant (t/kWh) 

The selection function is inversely proportional to the 
Bond work index (22): 

S i  = (K iW i) (P/H) 

= Bond work index (kWh/t) 
= dimensionless constant 
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6. CONCLUSIONS 

In these equations the following apply: 

- The breakage function bq  is non-normalizable 
for both the Brenda and Bell Copper ore. 

- The residence time distribution h(t) is more 
than adequately modelled by a three-
perfect-mixers-in-series-plus-plug-flow 
mixing model. 

Ball nnill models have rarely benefitted from examination 
with a large industrial database. But now, the utility of a 
kinetic model has been proved using 100 sets of indus-
trial data collected from two different mines and spanning 
a period of two years at each mine. The selected model is 
described in the introduction, but can be abbreviated 
mathematically as: 

{ weight fraction in 	
f size interval "i" of 	} = Pf = 	h(t)P i(t)dt 

production mill discharge 	t=0 

where !D (t) is the solution of the batch-grinding equation: 

isiH)pi(t) 	

b"

i.(simpe  
dt  
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APPENDIX A 

BELL COPPER MILL MODELLING 
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BELL COPPER MILL MODELLING 
Additional data from Noranda Mines Limited (Babine 
Division — Bell Mine) corroborated the conclusions 
derived from the Brenda Mines data that the absolute 
selection function is independent of feed rate, feed size 
distribution, and pulp per cent solids over the normal 
operating range. The additional grinding circuit data 
consisted of 37 sets of sampling campaign data collected 
in 1977 (Reference Al) and a further 16 sets collected in 
1979 (Reference A2). The raw data were balanced using 
BILMAT (Reference A3). 

Ore samples for breakage tests were not obtained in 
either 1977 or 1979, however, samples of the ore milled in 
1982 were available. After confirming that the operating 
work index of the ore had not changed since 1979 
(Reference A4), single-size fraction batch grinding tests 
were done under conditions identical to those described 
in Section 2.1. The results appear in Table Al. 

A six-parameter non-normalized breakage function was 
determined from the laboratory data. Table A2 gives the 
breakage distribution function constants, and Table A3 
gives a portion of the breakage matrix. The constants 
were estimated using only the first and second product 
size distributions for each feed in Table Al. The third set 
of product-size distributions was not used, because 
the grinding kinetics became markedly non-first-order 
as grinding progressed (see Fig. Al). Figure A2 shows 
the corresponding selection function for the batch 
experiment. 

Only the cubic-type selection function shown in Figure 
A3 adequately modelled the production mill selection 
function. When hump-type selection functions were 
fitted to the data, the standard deviation of the residuals 

was consistently higher. Therefore, modelling efforts 
concentrated on using the cubic function. To facilitate 
interpretation of the results, Tables A4 and A5 list the 
absolute selection function values (grinding rates) for 
(28/35 M) particles 0.5 mm in diameter and the slopes of 
the selection functions at 0.5 mm. F1 0  was not known for 
the Bell Copper mills, and so the functions could not be 
scaled as was done for the Brenda Mill data. For con-
venience, however, the listed values of Si  (0.5) have been 
reduced by a factor of 1000. Evidently the selection func-
tions varied much less than the feed rate, feed size dis-
tribution or pulp per cent solids did. 

In the same tables the standard errors for a model with a 
variable selection function (SEb ) and for a model with a 
fixed selection function based on average constants 
(SEm ) are listed. While the standard deviations for the 
simple model are higher, they are still reasonably low 
averaging less than 1%. Table A6 displays the correlation 
coefficients by screen and demonstrates that the simple 
model explains most of the variation in product-size 
distributions. Finally, Tables A7 and A8 list the standard 
errors per screen. Generally, the model predicted size 
distributions with better than 1% accuracy. 

0.063 0.126 0.253 	0.51 	1.01 	2.02 

GEOMETRIC MEAN SIZE, mm 

Fig. A2 - Batch mill selection function — 1982 Bell copper 
ore 
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Fig. Al - First order decay plot — 1982 Bell copper ore 
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Table Al - 1982 Bell copper single-size fraction breakage test results 

Weight per cent retained on size 

Size (p,rn) 	 Feed 0.50-min product 1.50-min product 	 2.50-min product 

	

1700 	 75.1 	 59.8 	 36.9 	 24.8 

	

1200 	 24.1 	 28.4 	 33.2 	 31.3 

	

850 	 0.1 	 4.3 	 10.5 	 13.5 

	

600 	 0 	 1.8 	 4.9 	 7.4 

	

425 	 0 	 1.0 	 3.1 	 5.3 

	

300 	 0 	 0.7 	 2.2 	 3.6 

	

212 	 0 	 0.7 	 1.8 	 3.1 

	

150 	 0 	 0.5 	 1.3 	 1.8 

	

106 	 0 	 0.5 	 1.1 	 1.7 

	

75 	 0 	 0.5 	 1.2 	 1.7 

	

53 	 0 	 0.4 	 0.9 	 1.1 

	

-53 	 0.7 	 1.4 	 2.9 	 4.7 

	

850 	 78.2 	 62.9 	 38.5 	 27.2 

	

600 	 21.1 	 25.2 	 30.9 	 26.1 

	

425 	 0 	 4.7 	 10.6 	 14.9 

	

300 	 0 	 2.1 	 6.1 	 9.2 

	

212 	 0 	 1.3 	 3.8 	 6.1 

	

150 	 0 	 0.6 	 2.2 	 3.5 

	

106 	 0 	 0.6 	 1.6 	 2.8 

	

75 	 0 	 0.5 	 1.6 	 2.6 

	

53 	 0 	 0.1 	 0.8 	 1.8 

	

-53 	 0.7 	 2.0 	 3.9 	 5.8 

	

425 	 73.1 	 60.6 	 43.2 	 32.0 

	

300 	 24.2 	 28.2 	 32.1 	 31.5 

	

212 	 2.2 	 5.6 	 11.0 	 14.7 

	

150 	 0 	 1.6 	 3.8 	 6.1 

	

106 	 0 	 1.1 	 2.7 	 4.2 

	

75 	 0 	 0.9 	 2.0 	 3.3 

	

53 	 0 	 0.5 	 1.0 	 3.1 

	

-53 	 0.5 	 1.5 	 4.2 	 5.1 

	

212 	 44.9 	 38.8 	 29.9 	 23.9 

	

150 	 47.2 	 46.0 	 42.6 	 39.8 

	

106 	 7.4 	 10.2 	 14.0 	 16.2 

	

75 	 0.2 	 2.1 	 5.3 	 7.7 

	

53 	 0 	 0.7 	 2.2 	 3.8 

	

-53 	 0.3 	 2.2 	 6.0 	 8.6 
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1.-0- 1977 DATA 

-- 1979 DATA 
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Fig. A3 - Estimated cubic selection functions - 1977 and 
1979 Bell copper data 
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Table A2 - Breakage function constants - 
1982 Bell copper ore 

Value 

b 1 	 .4085 
b2 	 .8332 
b3 	 15.49 
b4 	 .3399 
136 	 .0922 
b6 	 -1.440 

Table A3 - Breakage distribution matrix (incomplete) - 1982 Bell copper ore 

Size (ii,m) 2400/1700 1700/1200 1200/850 850/600 600/425 425/300 300/212 212/150 150/106 

2400/1700 	0 
1700/1200 	.742 	0 

	

1200/850 	.053 	.718 	0 

	

850/600 	.041 	.065 	.692 	0 

	

600/425 	.033 	.049 	.079 	.663 	0 

	

425/300 	.026 	.038 	.057 	.095 	.632 	0 

	

300/212 	.021 	.029 	.043 	.066 	.113 	.597 	0 

	

212/150 	.017 	.023 	.032 	.048 	.076 	.134 	.558 	0 

	

150/106 	.013 	.018 	.024 	.035 	.053 	.086 	.158 	.516 	0 
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1.740 	 .1739 

	

.5281 	 .1256 

	

-.5682 	 .1065 

	

-.2107 	 .0279 

S i  

S2 
S3 

sa 

Table A4 - Selection function slope and scale - 1977 Bell copper data 

Run 	 S 1 (0.5) 	 Slope 	 Q 	 %-212  p.m 	 SEb 	SEm  
1 	 .892 	 1.045 	 1029.0 	 34.0 	 .3 	 .8 
2 	 .981 	 1.044 	 926.5 	 39.9 	 .5 	 .6 
3 	 .920 	 1.019 	 893.5 	 44.1 	 .5 	 1.0 

4 	 .934 	 .994 	 985.6 	 41.0 	 .3 	 .5 
5 	 .981 	 .985 	 682.3 	 39.8 	 .4 	 .4 
6 	 .972 	 .971 	 672.1 	 42.5 	 .3 	 .3 

7 	 .959 	 1.049 	 590.7 	 43.1 	 .5 	 1.3 
8 	 .932 	 1.013 	 621.9 	 39.3 	 .2 	 .9 
9 	 .981 	 1.002 	 652.8 	 36.6 	 .3 	 .4 

10 	 .948 	 .973 	 615.7 	 34.7 	 .4 	 .7 
11 	 .975 	 1.000 	 550.7 	 37.3 	 .3 	 .7 
12 	 .920 	 1.051 	 613.8 	 39.5 	 .4 	 1.3 

13 	 .927 	 1.020 	 973.2 	 37.6 	 .5 	 .6 
14 	 .901 	 .967 	 753.9 	 33.9 	 .4 	 .9 
15 	 .845 	 .918 	 716.6 	 37.9 	 .3 	 1.8 

16 	 .910 	 1.027 	 869.9 	 38.6 	 .5 	 1.0 
17 	 .911 	 1.060 	 767.4 	 35.9 	 .4 	 .7 
18 	 .853 	 .983 	 535.2 	 30.6 	 .6 	 2.2 

19 	 .941 	 .942 	 594.5 	 34.5 	 .4 	 .7 
20 	 .916 	 1.037 	 833.2 	 34.4 	 .4 	 .7 
21 	 .940 	 1.037 	 537.3 	 38.0 	 .4 	 1.5 

22 	 1.004 	 .967 	 722.8 	 42.1 	 .3 	 .3 
23 	 1.007 	 .997 	 711.5 	 37.6 	 .4 	 .4 
24 	 1.049 	 1.016 	 1044.5 	 39.5 	 .4 	 .6 

25 	 .976 	 1.004 	 647.0 	 41.5 	 .3 	 .7 
26 	 1.079 	 1.044 	 904.1 	 44.8 	 .3 	 .5 
27 	 1.055 	 1.044 	 749.5 	 40.7 	 .3 	 .5 

28 	 1.126 	 1.037 	 931.8 	 42.4 	 .4 	 .8 
29 	 1.058 	 .979 	 959.4 	 47.8 	 .3 	 .5 
30 	 1.031 	 .979 	 1025.9 	 46.2 	 .2 	 .4 

31 	 1.065 	 1.053 	 977.1 	 40.3 	 .3 	 .8 
32 	 .967 	 1.078 	 903.7 	 37.8 	 .3 	 .8 
33 	 1.009 	 1.093 	 993.7 	 41.3 	 .3 	 .5 

34 	 1.061 	 1.104 	 971.4 	 37.7 	 .6 	 1.0 
35 	 .965 	 1.170 	 688.4 	 45.9 	 .3 	 1.2 
36 	 1.080 	 1.193 	 852.1 	 54.0 	 .4 	 1.7 
37 	 1.099 	 1.105 	 657.3 	 40.5 	 .4 	 .9 

Avg 	 .978 	 1.027 	 788.0 	 39.8 	 .37 	 .82 
Sd 	 .069 	 .057 	 161.6 	 4.5 	 .09 	 .44 

Average cubic selection function 
parameters 

Value 	 Std. dev. 
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Table A5 - Selection function slope and scale - 1979 Bell copper data 

Run 	5 1 (0.5) 	Slope 	 Q 	 %S 	%-212 	rim 	SEb 	SEm  

	

1 	 .996 	1.007 	764.8 	74.0 	 29.1 	 .2 	 .5 

	

2 	 .982 	.943 	869.8 	73.3 	 33.2 	 .3 	 .8 

	

3 	 .985 	.998 	932.1 	74.6 	 29.4 	 .4 	 .5 

	

4 	 .988 	.962 	1060.1 	75.0 	 26.4 	 .7 	 .7 

	

5 	 1.074 	.967 	1162.9 	74.7 	 26.2 	 .8 	1.4 

	

6 	 1.048 	.994 	1129.6 	72.1 	 29.9 	 .7 	 .7 

	

7 	 1.045 	.996 	875.9 	76.0 	 33.0 	 .5 	 .6 

	

8 	 1.042 	.950 	910.2 	75.0 	 34.7 	 .5 	 .9 

	

9 	 1.129 	.989 	774.7 	76.8 	 33.0 	 .5 	 .9 

	

10 	 1.049 	.999 	719.4 	69.0 	 27.5 	 .7 	 .5 

	

11 	 1.071 	1.020 	645.3 	74.1 	 29.9 	 .5 	 .6 

	

12 	 1.072 	.977 	696.0 	71.8 	 30.2 	 .6 	 .6 

	

13 	 1.005 	1.052 	798.3 	73.1 	 33.0 	 .3 	 .5 

	

14 	 .937 	.999 	874.0 	74.2 	 28.6 	 .6 	1.0 

	

15 	 .957 	.977 	1035.4 	75.1 	 24.5 	 .6 	 .7 

	

16 	 .970 	.682 	1396.6 	74.0 	 26.4 	 .5 	1.0  

Avg 	1.022 	.970 	915.3 	74.0 	 29.7 	 .53 	.75 

	

Sd 	 .052 	.081 	199.2 	1.9 	 3.0 	 .16 	.24 

Average cubic selection function 
parameters 

Value 	 Std.  dey.  
s 1 	 1.784 	 .1064 
s2 	 .5312 	 .0707 
s3 	 -.5458 	 .1128 
S4 	 - .2208 	 .0349 

Table A6 - Correlation coefficients by screen - Bell copper 

1977 campaigns 	 1979 campaigns 
Cumulative 	 On-size 	Cumulative On-size 

	

Size 	(iim) 	Best 	Modl 	Best 	Modl 	Best 	Modl 	Best 	Modl 

	

4760 	 - 	- 	- 	- 	.786 	.659 	.537 	.385 

	

3360 	 .799 	.798 	.799 	.798 	.772 	.688 	.688 	.646 

	

2400 	 .879 	.819 	.868 	.768 	.917 	.886 	.951 	.935 

	

1700 	 .889 	.829 	.870 	.815 	.969 	.959 	.980 	.973 

	

1200 	 .964 	.899 	.786 	.735 	.998 	.989 	.936 	.953 

	

850 	 .992 	.950 	.922 	.894 	.999 	.993 	.983 	.985 

	

600 	 .996 	.960 	.982 	.959 	.999 	.994 	.992 	.987 

	

425 	 .998 	.966 	.989 	.963 	.999 	.993 	.991 	.968 

	

300 	 .999 	.968 	.975 	.932 	.999 	.987 	.912 	.927 

	

212 	 .999 	.969 	.965 	.874 	.999 	.989 	.966 	.946 

	

150 	 .999 	.968 	.984 	.971 	.998 	.993 	.957 	.951 

	

106 	 .999 	.963 	.995 	.985 	.999 	.988 	.995 	.991 

	

75 	 .998 	.938 	.993 	.977 	.999 	.971 	.985 	.991 

	

53 	 .990 	.827 	.980 	.970 	.996 	.967 	.924 	.915 

	

-53 	 - 	- 	.990 	.827 	- 	- 	.996 	.967 
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Table A7 - Standard error breakdown by screen - 1977 Bell copper data (Wong) 

Cumulative 	 On-size 

Average size distribution 	 Standard variation 	 Standard error 

	

Size 	(p.m) 	Feed 	Dis. 	Best 	Modl 	Feed 	Dis. 	Best 	Modl 	Best 	Modl 	Modl 

	

3360 	99.65 	99.94 	99.82 	99.83 	.24 	.09 	.13 	.12 	.15 	.13 	.13 

	

2400* 	97.73 	99.34 	99.22 	99.26 	.73 	.40 	.36 	.33 	.22 	.24 	.23 

	

1700 	95.44 	98.65 	98.44 	98.50 	1.57 	.75 	.68 	.63 	.40 	.45 	.22 

	

1200* 	90.69 	97.01 	97.11 	97.19 	2.39 	1.00 	1.12 	1.03 	.32 	.49 	.45 

	

850 	84.28 	94.80 	94.67 	94.79 	3.41 	1.77 	1.74 	1.58 	.26 	.56 	.51 

	

600* 	77.14 	90.85 	90.58 	90.73 	4.13 	2.54 	2.51 	2.29 	.35 	.74 	.26 

	

425 	67.16 	83.74 	83.71 	83.91 	4.65 	3.36 	3.33 	3.06 	.20 	.90 	.38 

	

300* 	53.29 	72.00 	72.59 	72.85 	4.94 	4.14 	4.13 	3.85 	.63 	1.36 	.77 

	

212 	39.82 	58.88 	58.98 	59.35 	4.47 	4.25 	4.26 	4.12 	.21 	1.16 	.45 

	

150* 	28.24 	45.74 	45.61 	46.06 	3.27 	3.53 	3.61 	3.74 	.20 	1.00 	.38 

	

106 	19.52 	34.70 	34.48 	34.98 	2.13 	2.64 	2.69 	3.11 	.26 	.95 	.32 

	

75* 	13.46 	26.26 	26.11 	26.69 	1.32 	1.91 	1.90 	2.51 	.19 	1.07 	.34 

	

53 	9.49 	20.25 	20.35 	21.01 	1.16 	1.61 	1.57 	2.13 	.24 	1.43 	.50 
- 53 	 1.43 

* Interpolated data. 

Table A8 - Standard error breakdown by screen - 1979 Bell copper data 

Cumulative 	 On-size 

Average size distribution 	 Standard variation 	Standard error  

	

Size 	(p.m) 	Feed 	Dis. 	Best 	Modl 	Feed 	Dis. 	Best 	Modl 	Best 	Modl 	Modl 

	

4760 	99.74 	99.99 	99.79 	99.77 	.26 	.05 	.20 	.23 	.26 	.30 	.22 

	

3360 	98.70 	99.89 	99.27 	99.22 	.89 	.35 	.53 	.61 	.73 	.83 	.56 

	

2400 	95.13 	98.64 	98.02 	97.96 	1.88 	.83 	.90 	1.15 	.73 	.90 	.23 

	

1700* 	89.51 	96.67 	96.14 	96.06 	2.98 	1.69 	1.55 	1.86 	.70 	.83 	.31 

	

1200 	81.67 	93.36 	93.23 	93.19 	3.63 	2.62 	2.43 	2.75 	.27 	.45 	.56 

	

850 	72.37 	88.43 	88.72 	88.70 	4.15 	3.68 	3.61 	3.78 	.35 	.52 	.49 

	

600* 	61.91 	81.47 	81.89 	81.87 	4.82 	5.00 	4.93 	4.93 	.50 	.68 	.31 

	

425 	50.85 	72.38 	72.46 	72.42 	4.95 	5.91 	5.93 	5.82 	.21 	.70 	.43 

	

300* 	39.95 	61.41 	61.16 	61.14 	3.92 	5.72 	5.87 	5.76 	.41 	.97 	.51 

	

212 	29.69 	49.51 	49.17 	49.19 	3.03 	5.19 	5.24 	5.25 	.39 	.85 	.23 

	

150 	20.63 	37.65 	37.88 	37.93 	2.39 	4.52 	4.51 	4.79 	.34 	.68 	.74 

	

106 	14.47 	29.16 	29.04 	29.13 	1.70 	3.67 	3.65 	4.06 	.24 	.72 	.41 

	

75 	10.03 	22.25 	22.50 	22.64 	1.06 	2.79 	2.82 	3.33 	.29 	1.00 	.54 

	

53 	8.37 	18.98 	18.82 	18.96 	.94 	2.37 	2.36 	2.92 	.27 	.88 	.47 
- 53 	 .88 

* Interpolated data. 
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APPENDIX B 

AN EXPERIMENT WITH BREAKAGE FUNCTIONS 
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AN EXPERIMENT WITH BREAKAGE FUNCTIONS

Figure B1 shows that the estimated selection functions
deviated strongly from simple power functions. While
reduced grinding rates forvery large particles have been
explained (B1), increased grinding rates for very small
particles are not commonly supposed.

It should be remembered that the model selection func-
tions were not measured; they were simply chosen,
because when used with the laboratory breakage function
they most closely predicted the measured product-size
distributions. As an experiment, the selection function in
Figure B1 was modified by extrapolating it as a simple
power function through the fine sizes. Then, the new
selection function was used with the Bell copper industrial
data to re-estimate breakage functions.

Figure B2 shows a comparison of the breakage function
initially estimated from laboratory data to one estimated
from industrial data. For all sizes below 14/20 M(1.0 mm)
the industrial mill breakage distribution was finerthan the
laboratory mill distribution. This is a logical result which
compensates for the imposed difference in the selection
functions.
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Fig. B1 - Estimated cubic selection functions - 1977 and
1979 Bell copper data
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Fig. B2 - Primary breakage distributions - laboratory vs
production mill

With the original cubic selection function, the model
produced fines byaccelerated grinding of 150/200 M and
200/270 M particles. With the modified selection function,
the model produced fines by using a finer breakage distri-
bution function. The essential question is: which pair of
breakage and selection functions is correct; i.e., more
representative of the actual grinding mechanism?
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