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FOREWORD 

High energy costs and depleting ore reserves combine to make process evaluation and optimization a challenging 
goal in the 80's. The spectacular growth of computer technology in the same period has resulted in widely available 
computing power that can be distributed to the most remote mineral processing operations. The SPOC project, 
initiated at CANMET in 1980, has undertaken to provide Canadian industry with a coherent methodology for process 
evaluation and optimization assisted by computers. The SPOC Manual constitutes the written base of this meth-
odology and covers most aspects of steady-state process evaluation and simulation. It is expected to facilitate 
industrial initiatives in data collection and model upgrading. 

Creating a manual covering multidisciplinary topics and involving contributions from groups in universities, industry 
and government is a complex endeavour. The reader will undoubtedly notice some heterogeneities resulting from the 
necessary compromise between ideals and realistic objectives or, more simply, from oversight. Critiques to innprove 
future editions are welcomed. 

D. Laguitton 
SPOC Project Leader 
Canada Centre for Mineral and Energy Technology 

AVANT-PROPOS 

La croissance des coûts de l'énergie et l'appauvrissement des gisements ont fait de l'évaluation et de l'optimisation 
des procédés un défi des années 80 au moment même où s'effectuait la dissémination de l'informatique jusqu'aux 
concentrateurs les plus isolés. Le projet SPOC, a été lancé en 1980 au CANMET, en vue de développer pour 
l'industrie canadienne, une méthodologie d'application de l'informatique à l'évaluation et à l'optimisation des pro-
cédés minéralurgiques. Le Manuel SPOC constitue la documentation écrite de cette méthodologie et en couvre les 
différents éléments. Les retombées devraient en être une vague nouvelle d'échantillonnages et d'amélioration de 
modèles. 

La rédaction d'un ouvrage couvrant différentes disciplines et rassemblant des contributions de groupes aussi divers 
que les universités, l'industrie et le gouvernement est une tâche complexe. Le lecteur notera sans aucun doute des 
ambiguïtés ou contradictions qui ont pu résulter de la diversité des sources, de la traduction ou tout simplement 
d'erreurs. La critique constructive est encouragée afin de parvenir au format et au contenu de la meilleure qualité 
possible. 

D. Laguitton 
Chef du projet SPOC, 
Centre canadien de la technologie des minéraux et de l'énergie 
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ABSTRACT 

This chapter of the SPOC manual has been developed for the participants to a workshop on material balance 
computation. The various methods of material balance calculation are reviewed in order of increasing complexity. The 
two packages BILMAT and MATBAL are largely documented in Chapters 3.1 and 3.2 to which the reader is referred. 
The justification of methods requiring computers is presented on the basis of a search for best estimators, 
i.e., estimators that take into consideration as much experimental information as possible in order to provide "well 
informed" estimates. Each family of methods is illustrated by numerical exercises. 

RÉSUMÉ 

Ce chapitre du manuel SPOC a été écrit pour les participants à un atelier sur les bilans matière. Les diverses 
méthodes d'equilibrage de bilans matière y sont passées en revue par ordre de complexité croissante. Les deux 
programmes BILMAT et MATBAL sont amplement décrits dans les chapitres 3.1 et 3.2, auxquels le lecteur est 
renvoyé. Les méthodes requérant un ordinateur sont justifiées par la recherche d'estimateurs améliorés qui tiennent 
compte du maximum d'information possible. Des exercices numériques illustrent chaque groupe de méthodes. 

ACKNOWLEDGEMENTS 

The SPOC project has benefited from such a wide range of contributions throughout the industry, the university, and 
the government sectors that a nominal acknowledgement would be bound to make unfair omissions. The main groups 
that contributed are: the various contractors who completed project elements; the Industrial Steering Committee 
members who met seven times to provide advice to the project leader; the various users of project documents and 
software who provided feedback on their experience; the CANMET Mineral Sciences Laboratories staff members who 
handled the considerable in-house task of software development, maintenance, and documentation; the EMR 
Computer Science Centre staff who were instrumental in some software development; and the CANMET Publications 
Section. Inasmuch as in a snow storm, every flake is responsible, their contributions are acknowledged. 
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1. INTRODUCTION 

The material balance problem in a process flowsheet 
arises from the necessity for the process engineer to 
make periodical inventories of the distribution of mate-
rial through the various process streams. It may be 
dictated by bookkeeping requirements (e.g., concen-
trate inventories, daily, monthly, yearly), by trouble 
shooting or process control requirements (e.g., circulat-
ing load calculations), by environmental requirements 
(e.g., tailing flow rates and assays) or by other require-
ments. This problem is also designated as a "mass 
balance", "metallurgical inventory", or "process audit". 

Ideally, if one could measure the true value of every 
assay and flow rate in a flowsheet, the material balance 
problem would not exist. However, the reality of process 
instrumentation is such that 1) only a few process vari-
ables can be measured and these are mostly assays, 
2) the experimental estimates of these variables are 
subject to errors from various sources and do not satisfy 
mass balance principles. 

The mass balance principle is that in our usual environ-
ment, the total mass of material undergoing a physical 
or chemical transformation remains constant. This 
stops being true in relativistic mechanics where mass 
can be converted into energy and vice versa. 

In all mineral processes therefore, the mass of con-
sumed elements is equal to that of produced elements. 
For instance, the mass of copper or chalcopyrite enter-
ing a mill or a cyclone or a flotation cell per unit of time is 
equal to that leaving the same unit per unit of time 
provided the steady-state conditions have been 
reached. 

In a single unit such as shown in Figure 1, if W i  repre- 
sents the solid flow rate of stream i, and Xj an assay for 

species 1 in the solid of stream j, the following mass 
conservation equations are valid: 

= 

Wprii = 

where the asterisk denotes the true value of the vari-
ables. 

In practice, one can only measure an experimental esti-
mate of W1  and X and it is essential to keep in mind that 
its use as a true value is a decision that bears con-
sequences on the confidence level associated with any 
figure resulting from such an assumption. Intuitively it is 
obvious that the better the experimental precision, the 
more valid the assumption that it is the best estimate. In 
practice, we will see that better estimates than W1  and Xj 
can be calculated. They will be called Wi  and Rj, the 
maximum likelihood estimates. 

The material balance calculations can be divided into 
two families; one where the experimental estimates are 
taken as best estimates, and the other where improved 
estimates are calculated. The following discussion will 
cover successively the traditional methods correspond-
ing to the former case, and more recent methods corre-
sponding to the latter. 

Fig. 1 - One product 
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2. SYMBOLS AND DEFINITIONS 

2.1 SYMBOLS 
Symbols are to equations what words are to a text. In all 
likelihood two different authors will select different sym-
bols to represent the same theory unless a general 
convention has been established through years of prac-
tice in a field of science. 
Such conventions do not exist in material balance com-
putation. The two packages MATBAL and BILMAT have 
evolved from two distinct groups and suffer from this 
heterogeneity. For instance, the symbol for flow rates in 
MATBAL is W (for Weight) while it is D in BILMAT (for 
Débit, French for Flow Rate). The MATBAL symbols 
were kept as in the original papers by Wiegel et al. in 
order to maintain a coherence within a family of pro-
grams and papers. Only through years of practice will 
these differences vanish. 
The following Table 1 is an attempt to define uniform 
series of symbols for a material balance context and will 
be adhered to in this chapter. 

Table 1 — Symbols for material balance 

general symbol for flow rate 
pulp flow rate 
solid flow rate 
water flow rate 
feed flow rate of a cyclone 
overflow flow rate of a cyclone 
underflow flow rate of a cyclone 
assay i of the feed, overflow or 
underflow 

imbalance for element i across node j 

residual in stream j for water, 
pulp, solids, assay i or assay k 
in class i. 

error in stream j for water, pulp, 
etc. 

assay for element k in class i in 
branch j 

true value (any symbol with asterisk) 
estimate (any symbol with hat) 
standard deviation, e.g., of 
estimate of CF, e.g., sr 
variance (or 0-2) 

estimate of V (or S2) 

solid weight fraction in pulp, in liquid 
liquid weight fraction in pulp, in solid 
per cent solid 

Note: To avoid confusion with exponents, assay XI is repre-
sented by Xi  for i = 1, Xffor = 2, Xi'for i = 3, etc. In prac-
tical examples, one can use Cui , Zni , Pbi , Fei , etc. 

2.2 DEFINITIONS 
Chapters 3.1 and 3.2 contain their own glossary of 
terms. For the purpose of this chapter the following are 
useful. 
Random or stochastic variable 
A variable which can take different values from one 
measurement to another, depending on the random 
error. 
Deterministic, or error-free, variable 
A variable which can be determined without random 
error (e.g., number of increments in a composite 
sample). 
True-value of a random variable 
That value which cannot be exactly determined. 
Estimate 
The value of a variable obtained via an estimator. 
Estimator 
A method to try to access the true value of a variable. 
Maximum likelihood estimates 
In the case of a material balance problem based on 
normal error models, these are the minimum variance 
estimates of the process variables. They are the best 
available estimates. 
Error 
The difference between the true value and the estimate. 
Residual 
The difference between the estimate and the experi-
mental value. 
Probability distribution 
A graph or table giving the probability that an estimate of 
a variable takes a given value. 
Normal probability distribution (or gaussian, or bell 
shaped) 
A distribution characterized by two parameters; its 
mean and its standard deviation. It is usually followed by 
random errors resulting from several contributing errors. 
Biased estimator 
An estimator is said to be biased when the mean value 
of the estimate it produces does not approach the true 
value as the number of estimations increases. 

2 



WI  
X2 

W3 Xi 
1X3  

3 

2 

4 

Fig.  3-  Three products 

3. TRADITIONAL METHODS 

These are known under the name of n-product formulae. 
They consist in calculating n-product variables around a 
process unit where experimental variables can be mea-
sured. Usually the unknown variables are the flow rates 
and the known variables are the assays. The symbol, n, 
refers to the number of streams in which the flow rate 
must be calculated. In the following, W represents the 
flow rate of interest and could apply to pulp, solid, or 
liquid depending on which is analyzed. 

The simplest case is the one-product-formula valid for a 
simple unit, such as represented in Figure 1. The valid 
equations are: 

wi = W2 

W1X1 = W2 X12 
The variables are: W 1 , W2, X II,X12 

In order to calculate, for example W2, it is only neces-
sary to know W 1 . No assay XI is required. Similarly, Xi2  is 
known if only XII  is known. In both cases, the value of the 
calculated variable has the same error as that of the 
measured variable. 

3.1 TWO-PRODUCT FORMULA 
A two-product problem corresponds to the illustration in 
Figure 2. The valid equations are: 

wi =  w2  + 

wixil = W2X I2 W3X6 
These two equations allow us to calculate a maximum of 
two unknowns. W2  and W3 are the usual variables to be 
calculated. By simple elimination one can easily show 
that: 

vv3  =Xi —  2 ■■■ , 1  	w and W2  -= X1 — X3  WI  
X3 — X2 	 X2 — X3 

It is important to note that all conservation equations 
remain valid to a scale factor, i.e., if the total mass of 
material in the circuit is, for example, doubled, the above 
formulae apply and it is therefore customary to express 
all flow rates as a ratio to a feed of 1 or 100 flow units. 

Note that for a two-product unit, all streams can be 
determined if one assay is known in each stream. 

3.2 THREE-PRODUCT FORMULA 
In a three-product situation, as in Figure 3, the valid 
equations are: 

wi = W2 + ± W4 

wixi = W2X2 W3X3 W4X4 

If the three-product streams' flow rates are to be calcu-
lated, one must measure a second assay Xi  in all 
streams in order to obtain a third equation: 

WiX; = W2; ± WA + W4X4' 
The same elimination technique used above gives the 
following results: 

W4 = (XY — X2'  )(X3 — X2) + (X1 — X2)(X2 — X3'  )  

Wi 	(X4'  — ;)(X3 — X2) + (X4 — X2)(X2  — X'3) 

and others by permutation: e.g., 

W3 = (X1'  — X2)(X4 — X2) + (X 1  — X2)(X2'  — X4' )  

Wi 	(X3'  — ;)(X4 — X2) + (X3 — X2)(; — X;4) 

Note that for a three-product unit, all streams can be 
determined if two assays are known in each stream. 

3.3 n-PRODUCT FORMULA 
As a generalization of the above cases, an n-product 
problem can be solved if n-1 assays are known on 
each stream. As n grows bigger, the substitution method 
of solving the equation becomes cumbersome and the 
determinant method can advantageously be used. 

This method simplifies the solution of a system of linear 
equations to a calculation of determinants. 

Consider the system: 

aix i  + b 1 x2  + C1X3 = di 

a2x1  + b2x2  + c2x3  = d2 

 a3x 1  + b3x2  + c3x3  = d3  

Fig. 2 - 71,vo products 
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2216.07  
- 0.1 

22160.7 

and similarly: W4 = 0.2, W5  = 0.60 

using the determinant method: 
11  
21  

W2 

1 	1 

	

7.1 	1 

	

5.7 40 	2 2 

	

2.26 1 	10 

	

1 	1 	11  

	

60 1 	2 1 

	

140 	22  

	

1 	1 	10 0.1 

0.1 

1 	1 	11  

	

60 7.1 	2 1 

	

15.7 	22  
1 2.26 10 0.1 

22160.7 
2216.02  

- 0.1 
22160.7 

W3  

al  ID1  cl  
a2  b2  C2  
a3  b3  C3  

=  a1  (b2c3  - b3c2) 
-  b1  (a2c3  - a3c2) 

+  c1  (a2b3  - a3b2) 

det M = 

Cu % 

2.26 
1 
1 

10 
0.1 

Zn % 

5.7 
1 

40 
2 
2 

It can also be written in matrix notation: 
M X = D 

(al  b 1  
= a2 b2 C2 

a3  b3  C3  
(Xi 

X 	 X2) 
X3  

c 
2  d) D 

d3  

By definition, the determinant of matrix M is: 

with 

Any determinant can be calculated along any row or 
column by carefully alternating the +1 and -1 factors in 
front of the various terms. The solution of the system of 
equations M X = D is given by: 

_ M* - 

where M i*designates the determinant of matrix M after 
column i has been replaced by the values in D. 
This can be illustrated by an example from Taggard's 
handbook of mineral dressing, (pages 12 - 123), for a 
four-product circuit. 
The following assays are known: 

Pb % 

7.1 
60 

1 
2 
1 

The valid equations, according to Figure 4, are: 

Wi = W2 + W3 + W4 + W5 
7.1W1  = 60 W2  + W3  + 2 W4 + W5  
5.7W1  = W2 +  40 W3  +  2 W4  +  2 W5  
2.26 W i  = W2  + W3  +  10W4  +  0.1W5  

3 
4 

• 
Fig.  4- Four products 

3.4 LIMITATION OF THE n-PRODUCT 
FORMULA 

The limitation of the n-product formula comes from the 
fact that the calculated variables are influenced by the 
precision of the observed variables in a non-quantified 
way. Consequently, when more than n-1 assay types are 
known in each stream each subset of an n-1 assay will 
give a different answer which can discredit the results 
completely to the plant engineer's eyes. Let's, for 
instance, consider a two-product circuit where the fol-
lowing data are known: 

Cu 	Zn % Fe % 
1. Feed 	 0.163 	3.93 11.57 
2. Conc 	0.657 52.07 14.67 
3. Tail 	 0.140 	0.49 13.09 

Although three assay types have been measured in 
each stream, only one is required to calculate the con-
centrate and tailing flow rates; W2  and W3  by the two-
product formula. 
For a feed of 100 t/h, the results corresponding to each 
mode of calculation are: 

with Cu data: W2  = 4.5 W3  = 95.5 
with Zn data: W2  = 6.7 W3  = 93.3 
with Fe data: W2  = -96.2 W3  = 196.2 

These three sets of results are quite different due to the 
large variations in assay values and precisions. 
A conventional error calculation performed on the two-
product formula gives the following result: 

AW2  < AW1  AX1  + AX3  AX2  + AX3  

W2 	W1 	X1 -X3 	X2  - X3  
The relative error on a calculated flow rate depends, 
therefore, not only on the magnitude of the errors on all 
assays but also on the differences,  X1  - X3  and X2  - X3, 
which are proportional to the quality of the separation 
being performed. 

Feed 
Pb conc 
Zn conc 
Cu conc 
Tail 
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For an ideal separation, one has:

X3 = 0 and '^'W2 :5; '^^Wi + ^Xi + ^X2
W2 Wi Xi X2

If all assays are known with a 6.0% accuracy in the
example above, the maximum relative error on W2 is
found to be 19.2% with Cu assays, 13.1% with Zn, 156%
with Fe.

A more realistic estimate of the sensitivity of the solution
to assay errors can be obtained by a technique called
Monte-Carlo Simulation which requires a computer. In
this method, a perturbation similar to the suspected
random error present in all assays is imposed on the
measured value in order to simulate a set of synthetic
assay values. These are used for an n-product solution
and the process is repeated enough times to accumu-
late a number of possible solutions. The mean and
standard deviation of these possible solutions can be
calculated.

This method, applied to the problem above, gave the
following results:

,^W2 = 72% with Cu assays, 8% with Zn,
W2 1000% with Fe

The problem of selecting the best subset of assays in
order to calculate the unknown variables becomes
especially acute when the assays consist of size dis-
tributions with up to a dozen intervals or more. Process
evaluation around a hydrocyclone is typical of this situa-
tion as shown in Figure 5.

Fig. 5 - Hydrocyclone. CIR = ô

o

In most cases, the variable of interest is the circulating
load ratio U/O, i.e., the ratio of solid flow rates in the
underfiow and the overflow respectively. Using the two-
product formula, with f,, u,, and o,, the non-cumulative
per cent retained on size interval i, one has:

CIR, = U = f, - o,
O u, - f,

each interval i gives a different value of CIR, as shown in
Table 2.

Having so many possible estimates of CIR, one can
start thinking of a method to determine a best estimate.
Several methods of obtaining such an estimate are sub-
sequently described.

Table 2A - Hydrocyclone experimental data (non-cumulative)

F U O F-U O-F (F-U)(F-U) (O-F)(O-F)

3.97 5.95 0.00 -1.98 -3.97 3.92 15.76
15.25 21.45 0.00 -6.20 -15.25 38.44 232.56
14.80 20.70 0.00 -5.90 -14.80 34.81 219.04

9.71 13.05 0.00 -3.34 -9.71 11.16 94.28
8.27 11.05 0.80 -2.78 -7.47 7.73 55.80
4.70 6.03 0.00 -1.33 -4.70 1.77 22.09

10.06 9.44 0.00 0.62 -10.06 0.38 101.20
4.01 4.53 1.82 -0.52 -2.19 0.27 4.80
2.25 1.56 6.61 0.69 4.36 0.48 19.01
1.92 1.23 16.83 0.69 14.91 0.48 222.31
2.26 1.04 22.32 1.22 20.06 1.49 402.40
2.56 0.50 20.70 2.06 18.14 4.24 329.06
2.67 0.99 16.04 1.68 13.37 2.82 178.76
3.07 0.65 9.85 2.42 6.78 5.86 45.97
3.38 0.31 3.21 3.07 -0.17 9.42 0.03
3.63 0.56 1.39 3.07 -2.24 9.42 5.02
2.29 0.23 0.42 2.06 -1.87 4.24 3.50
5.20 0.73 0.01 4.47 -5.19 19.98 26.94

SUMS
100.00 100.00 100.00 0.00 0.00 156.92 1978.52

MEANS
5.56 5.56 5.56 0.00 0.00 8.72 109.92

(F - U)(O - F) CIR

7.86 2.01
94.55 2.46
87.32 2.51
32.43 2.91
20.77 2.69

6.25 3.53
-6.24 -16.23

1.14 4.21
3.01 6.32

10.29 21.61
24.47 16.44
37.37 8.81
22.46 7.96
16.41 2.80
-0.52 -0.06
-6.88 -0.73
-3.85 -0.91

-23.20 -1.16

323.64 65.17

17.98 3.62
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Table 2B - Hydrocyclone experimental data (cumulative passing) 

F 	U , 	0 	F-U 	0- F (F-U)(F- U) (0- F)(0 - F) (F- U)(0 - F) 	CIR  

	

96.03 	94.05 	100.00 	1.98 	3.97 	3.92 	 15.76 	 7.86 	2.01 

	

80.78 	72.60 	100.00 	8.18 	19.22 	66.91 	 369.41 	 157.22 	2.35 

	

65.98 	51.90 	100.00 	14.08 	34.02 	198.25 	1157.36 	479.00 	2.42 

	

56.27 	38.85 	100.00 	17.42 	43.73 	303.46 	1912.31 	 761.78 	2.51 

	

48.00 	27.80 	99.20 	20.20 	51.20 	408.04 	2621.44 	1034.24 	2.53 

	

43.30 	21.77 	99.20 	21.53 	55.90 	463.54 	3124.81 	1203.53 	2.60 

	

33.24 	12.33 	99.20 	20.91 	65.96 	437.23 	4350.72 	1379.22 	3.15 

	

29.23 	7.80 	97.38 	21.43 	68.15 	459.24 	4644.42 	1460.45 	3.18 

	

26.98 	6.24 	90.77 	20.74 	63.79 	430.15 	4069.16 	1323.00 	3.08 

	

25.06 	5.01 	73.94 	20.05 	48.88 	402.00 	2389.25 	980.04 	2.44 

	

22.80 	3.97 	51.62 	18.83 	28.82 	354.57 	 830.59 	542.68 	1.53 

	

20.24 	3.47 	30.92 	16.77 	10.68 	281.23 	 114.06 	179.10 	0.64 

	

17.57 	2.48 	14.88 	15.09 	-2.69 	227.71 	 7.24 	-40.59 	-0.18 

	

14.50 	1.83 	5.03 	12.67 	-9.47 	160.53 	 89.68 	-119.98 	-0.75 

	

11.12 	1.52 	1.82 	9.60 	-9.30 	92.16 	 86.49 	-89.28 	-0.97 

	

7.49 	0.96 	0.43 	6.53 	-7.06 	42.64 	 49.84 	-46.10 	-1.08 

	

5.20 	0.73 	0.01 	4.47 	-5.19 	19.98 	 26.94 	-23.20 	-1.16 

SUMS 	 • 

	

603.79 	353.31 	1064.40 	250.48 	460.61 	4351.56 	25859.50 	9188.98 	24.29 

MEANS 
35.52 	20.78 	62.61 	14.73 	27.09 	255.97 	1521.15 	540.53 	1.43 
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1. Regression of y on x: 

2. Regression of x on y: 

3. Regression of x and y: 

4. Regression of orthogonal: 

16.00 	24.00 -8.00 32.00 4.1.1 Orthogonal Regression 0 - F 
0.00 	8.00 

O 

o 

o 

o 

o 
' 

if /X 1  # 0 

if /X i  = 0 

4. METHODS OF IMPROVING ESTIMATES 

Confronted with a situation where a method provides 
several estimates for some process variables, two dif-
ferent avenues are open to produce unique best esti-
mates. One consists in taking the means as the most 
efficient estimates of the variables; the other in using a 
different method of estimation which would give a 
unique estimate of each variable and could be justified 
as giving the best estimate. 

4.1 REGRESSIONS 
As discussed above, a typical case with several esti-
mates available is the calculation of the circulating load 
ratio of a hydrocyclone when the size distribution of its 
feed and product streams is known. The two-product 
formula gives: 

CIR 1  — U  — 
0 	u— f1  

The mean of all values obtained for the n size intervals is 
often used as a best estimate: 

CIR = ClR  

or 	CIR — 
	oI ) 

(u 1  — fl ) 

It must be noted that the size distributions used in 
conjunction with these formulae can be cumulative or 
non-cumulative. The non-cumulative is preferred 
because of a less complex error correlation among the 
various sizes. Table 2 gives the results obtained with 
both formulae. 

Another method of extracting a best estimate of CIR is to 
plot the values of fi  —0  against those of u i  —  f 1 . The slope 
of the best fit curve to those values can be taken as a 
best estimate of CIR. This can be done graphically as 
shown in Figure 6. 

If non-cumulative values are used, the graph neces-
sarily goes through the origin since the mean values of 
fi  — o i  and u i  are zero, and a best fit curve always goes 
through the mean coordinates of its points. 

The calculation of the best fit curve can also be done 
by regression, using a computer program such as 
STAMP (1). 

The regression consists in calculating the best esti-
mates 9, of variables y i  =  f1  — 0 1 , and/or 5 1  = u i  —  f 1 , as 
those which minimize a figure of merit or minimization 
criterion which can be one of the following: 

1(9 — 9)2  
— x) 2  

Ma+ bx—y)2  (p2  + 1)  

(p — b) 2  

1h
2 
 = Ma+ bx—y) 2  

b2  + 1 

h i  = distance from point i to regression 
curve 

split coefficient 

slope of regression line 

The regression coefficients for a linear regression 
Y = a+ bX are obtained by the following formulae: 

p = 
 b=  

Slope = b — 

where 

1e2  g2 e  

o 

e = (1Y1)2  — (/X 1 ) 2  — n (/Y — 

g = 2(nX 1Y 1  — 1,X 11Y i) 

intercept = a — /Y1 
— b/X1  

7'4 

o 

o 

00  

o 

Fig. 6 — Raw data 4" hydrocyclone (non-cumulative) 

4.1.2 Other Regressions (Y on X, X on Y, 
on X and Y) 

Slope = b = 	• — na 

b  = (nee n/Yr +  np/X 1Y 1 

 np/XF — n/X1Y 1  

O  
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The method can be refined further by weighting each 
variable in the regression inversely to its assumed vari-
ance so that it contributes to the regression curve only in 
proportion to its precision. 

where 
intercept = a 

a  = X 1 Y — YX 1Y1  + p(IY I ZXF — 

— nX iY i  + p(nUF — IX IEX 1 ) 

split coefficient = p = slope of residuals 
p = 0 for regressions of X on Y 
p = 00 for regressions of Y on X 

p I = —2  for regressions on Y and X 
E l  

E i  ---- relative error on variable i 

p = — 1  for orthogonal regression 

4.1.3 Regression Forced Through the 
Origin When X,Y 0,0 

a = 0 	b = Ç'/)—< 

The results obtained for several types of linear regres-
sion applied to non-cumulative and cumulative size dis-
tributions of Table 2 are given in Figures 7 and 8. The 
poor correlation coefficient obtained in particular with 
non-cumulative data confirms that some points are defi-
nite outliers and might as well be remeasured or deleted. 

4.2 NODE IMBALANCE MINIMIZATION 
The mass conservation equations satisfied by the flow 
rates and assays in a two-product circuit can be written: 

— W2 — W3 

— W2X2  — W3X3  = 

where Is and Ix are the node imbalances, or departure of 
the mass conservation equation from balance, or 
residuals. Several equations with lx residuals can be 
written if several assay types are known. 
The node imbalance minimization method consists in 
saying that rather than choosing the minimum subset of 
the assays that allows the use of a n-product formula, 
one uses as best estimates of Wi  the values that mini-
mize the sum of the squares of all imbalances: 

F = mir>2 I(lr)2 = minimum 
Intuitively one can indeed accept that since there are no 
Wi 's that balance exactly all equations, those which 
come closest to an overall balance qualify as best esti-
mates. The calculation of these Wi 's requires the deriva-
tives of F with respect to all unknown Wis. The solution 
values are such that all derivatives are zero at the same 
time. 

Fig.  7—  Regressions on hydrocyclone non-cumulative data. 
Correlation coefficient: 0.58 

Fig. 8 —Regressions on hydrocylone cumulative data. Correlation 
coefficient: 0.81 
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Therefore: 

	

8[I(Is) 2  + Z(I)o) 2] 	0  
8w2 

8[1(p)2 	/012] 

SW3  

F = I(Is)2  + I(lx) 2  = – 	+ ‘fq + Wî 

2W1W2  2W1W3  2W2W3  VW1 IX?! 

	

+ We 1Xe w g 	- 2w1 w2  )( 1 )(2  
2W1W3  X1X3 2W2W3  1,X2X3 

= 2 (W2  – W 1  + W3 + WgXe — W1IX1 X2 

W31X3X2) = 0 

By symmetry: 

SF 
 8W 
= 2 (W3  – W 1  + W2 + W3 1,Xe — W1 1X1X3 

3  
+ W2 1X3X2) = 0 

By standard elimination technique: 

W3  = (1 + EXiX3)(1 +1Xe) — (1 +IX 1 X2)(1 +1X2X3) 
W1 	(1  +X)(1  +IXe) — (1 +1X2X3) 2  

W2  and —
W1 

is obtained by symmetry. 

If one has only one assay type, the 	sign can be 
removed and the equation simplifies to: 

W3 = X1 — X2 
W1 X3  — X2 

which is the two-product formula corresponding to the 
special case (1s) 2  + (1 ) 2  0: the equations have an 
exact solution. 

4.3 GENERALIZED LEAST-SQUARES 
METHOD 

All methods of material balance computation reviewed 
above assume that the experimental values of the 
assays are their best estimate. In the following, a 
method is discussed in which the experimental values 
are also adjusted by an amount which is such that the 
sum of squares of all adjustments is minimum, whence 
the name "least squares" method. 

If best estimates and W are associated to each assay 
X and flow rate W, the maximum-likelihood estimators 
for a normal population of X and W are such that: 

– 5Q 2  1(W — W) 2  minimum 

This estimator is also called an estimator of minimum 
variance. 

In a process where X and W have been measured, one 
may want to calculate the best estimates SC and W. 
These can be obtained by solving  al  valid mass balance 
equations in the flowsheet. 

These equations are of the type: 

W i  – — W3 = 0 

W1 5‘(1 *25'(2 ‘Â/35(3 = 0  

The second type of equation can be written: 

(W 1  – 131)(X 1  – 	– (W2  – R5)(X2  – 

– (W3  – Rg)(X3  – 1:1) = 0 

using the relation 

X = X* + Ex 

i.e., experimental value = true value + experimental 
error which is approximated by X =  X  + Rx. (Experi-
mental value = estimate + residual.) 

The number of unknown Rs and Rx in a general mass 
balance problem is usually much larger than the 
number of mass convervation equations. This implies 
that an infinite number of solutions exist that satisfy the 
mass balance equations. The objective of a mass bal-
ance method is, therefore, to produce the maximum-
likelihood solution. 

As stated above, if the assay and flow rate populations 
can be considered as normally distributed as well as 
randomly sampled (i.e., unbiased and uncorrelated), the 
maximum-likelihood estimates are such that: 

– the estimates variance is minimum; 

– the mass balance equations are satis-
fied. 

The reader of Chapters 3.1 and 3.2 (2,3) will notice that 
the notion of data redundancy is sometimes very subtle 
and hard to grasp at first. In particular the BILMAT 
presentation is based on the concept that the only true 
variables to be estimated are the flow rates and that the 
number of equations is therefore usually much larger 
than the number of unknowns. The solution to this prob-
lem also happens to produce better estimates of the 
assays. The MATBAL presentation, from the onset, 
classifies assays and flowrates as problem variables for 
which better estimates are sought. In that case the 
number of equations is smaller than the number of 
variables. Nevertheless, both programs solve essen-
tially the same problem. (See also Section 7.2.5.) 

4.3.1 Lagrange Multipliers 
The problem configuration described above is called a 
constrained minimization problem which has the gen-
eral form: 

Min {F(x)} 	 minimum criterion 

G 1 (x) = 0 	 constraints 

It can be shown that the values of x that are solutions to 
this problem are also solutions to: 

Stat {L(x 1 ,X 1 )} 	Stat = Stationary point 

SF 
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where 

L(xiX i) = F(x) +  Z  Xp i (x) 

X I  is called a Lagrange coefficient or multiplier; 
L is called a Lagrangian. 

The material balance problem can therefore be solved 
by calculating the stationary point of the corresponding 
Lagrangian. 

+ /(W — W) 2  + G I  (5'(,W) 

where G I  (5C,W) are the mass conservation constraints 
and X 1  the Lagrange unknown coefficients or multipliers. 

As discussed later on, various methods can be used 
to compute this stationary point. 

4.3.2 Weighting Factors 
One further refinement can be introduced in the method 
by weighting each variable adjustment in proportion to 
its precision. 

The analogy with a weighted mean for several scores in 
school can illustrate this point. For scores of 60, 60, and 
90 in three subjects equally weighted, the mean score is 
70. If the scores are weighted 4, 2, and 1 respectively, 
the weighted mean is: 

60 x 4 + 60 x 2 + 90 x 1  = 64.3 
(4 + 2 + 1) 

More weight has been given to a low score; therefore, 
the mean has been lowered. 

In the minimization of the Lagrange function, it is appro-
priate to weight each adjustment of a variable by the 
inverse of its variance. The larger the variance (i.e., the 
less precise the assay), the lower the weighting factor 

The stationary-point coordinates will not be as affected 
by an imprecise assay as by a precise one. This adds to 
the efficiency of the estimator. 
The most efficient Lagrangian is, therefore: 

1(x _ jso2 	oN _ W%2 
	 + Z X.G. (SC W) 

, 

0-2  X 	
2 Crw 

The necessity for the user to provide a realistic estimate 
of the variances of all measurements is an intrinsic part 
of the mass balance problem. This is referred to as 
providing an error model for the experimental values. 
This error model is characterized by assumptions: nor-
mal distribution; unbiased, uncorrelated variables; and 
by data: variable variances; or standard deviations. 
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5. ERROR STRUCTURE IN THE EXPERIMENTAL DATA 

The problem of error structure in the experimental data 
is the subject of a separate chapter in the "SPOC Man-
ual", Chapter 2 (4). The main facts about error models 
for material balance computation are summarized in this 
section. 

5.1 COMPONENTS OF THE TOTAL 
ERROR FOR AN ASSAY VALUE* 

The total error is a combination of: 

1. the sampling fundamental error; 

2. the errors due to time and space variations in 
the lot; 

3. the errors due to sampler design and opera-
tion; 

4. the errors due to sample preparation and 
analysis. 

Factors 1 and 4 cannot be eliminated; 2 and 3 can be 
minimized. 

5.1.1 Fundamental Error (FE) 
P.Gy (5) shows the variance of FE to be: 

FE 

1 	1 02  = Cef g d3  [
M  — 
	] 

S ML 

where 

sample mass (g) 

lot mass (g) 

composition factor (g/cm3) 

liberation factor (0 or 1) 

particle shape factor (0.5) 

size distribution factor 

maximum particle size (cm). 

C, the most variable coefficient is given by: 

C  ,____ 1 —  XL  [(1 — XL) pc  + XLpgj 
XL  

where 

XL  = critical concentration 

PC  = specific gravity of critical component 

pg  = specific gravity of non-critical compo-
nent (g/cm3). 

One easily sees that for a trace element, Xi.<< 1. 

Therefore, C is large and, consequently, creE  is large 
unless Ms  itself is very large (large sample). 

Inversely, for a concentrate, X L  --- 1, and ŒFE  can remain 
small when smaller samples are collected: 

£ — for slurry sampling should be given a 
value of 1; 

f — for most concentrated solids should be 
given a value of 0.5; 

for material containing several sizes of 
particles, should be 0.25 for single size 
material, g = 1. 

5.1.2 Errors Due to Time and Space 
Variations in the Lot 

These errors can follow various patterns, such as long-
range and short-range variations. The periodicity of 
these variations, however, can introduce another source 
of error. 

The only way to reduce these errors is to collect com-
posite samples. Systematic sampling (at regular inter-
vals) is preferable to random sampling unless a cyclic 
variation exists in the lot. 

5.1.3 Errors Due to Sampler Design and 
Operation 

These errors occur when all particles do not have the 
same probability to enter the sampler. 

The basic rules to minimize them are: 

— The cutter edges must be parallel. 

— The cutter must move perpendicular 
to the axis of the stream, at a constant 
speed (-. 0.6  mis).  

— The cutter width must be at least 
10 mm and greater than three-times 
the largest particle. 

5.1.4 Errors Due to Sample Preparation 
and Analysis 

The sources of such errors are numerous; e.g., con-
tamination, loss, alteration, sub-sampling, analysis 
method. They normally represent a minor fraction of the 
total error. 

In the solution of material balance problems, the stan-
dard deviation of the experimental data is an essential 
part of the input data. It is used to distribute the data 
adjustment in proportion to the data accuracy and also 
to calculate the resulting error on the variable estimates. 
In a first approximation, all errors are assumed to be 
normal, unbiased, and uncorrelated. 

M5 =  

ML =  

C=  

e = 
f= 

g = 
d =  

g - 
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Fig. 9 — Principle of the two-error estimators 
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6. SENSITIVITY ANALYSIS 

6.1 INTRODUCTION 
No material balance problem is complete without a 
value being calculated for the precision of the flow rate 
estimates and, ideally, for the adjusted assays. In other 
words, the confidence interval of the material balance 
results must be estimated. The benefits of a sensitivity 
analysis are, therefore: 

— assessment of the error on the esti-
mates; 

— reflexion on the experimental results 
and the error model used to perform 
the computation. 

A few basic principles of statistics must be reviewed 
before the sensitivity analysis can be understood: 

— For a normally distributed variable, 
the mean value and the standard 
deviation of a series of measure-
ments (sample) are the maximum-
likelihood estimates of the distribution 
parameters. They are estimates of 
minimum variance. 

— In a material balance problem, the 
experimental variables, the esti-
mates, the residuals, and the errors 
are assumed to be normally distrib-
uted. The estimates being of mini-
mum variance, the variance of the cal-
culated variables is smaller than, or 
equal to, that of the experimental vari-
ables. Similarly, the variance of the 
residuals is smaller than that of the 
errors. 

The sensitivity analysis consists in studying the rela-
tionship between the error model of the experimental 
data and that of the calculated estimates. It can be done 
by two different approaches; the analytical method, and 
the Monte Carlo method illustrated in Figure 9. 

6.2 THE ANALYTICAL METHOD OF 
SENSITIVITY ANALYSIS 

6.2.1 Principle 
The principle of the method is illustrated by the calcula-
tion of the variance of a linear combination of two ran-
dom variables, X, and X2 . 

If Y = aX„ + bX2, then (4 = a2cyli  + b2(42  
—2abu x„ x2 . 

If X1  and X2 are independent, the covariance term, 
CrX/X2, is zero. 

The variance of the dependent variable, Y, is therefore a 
function of the functions of the independent variables. 

In a material balance problem, the mass conservation 
equations are non-linear and the variance relationships 
are more complex. They must be linearized around a 
consistent set of values of the variables in order to derive 
the suitable relationships. 

Ideally, the linearization should be done around the true 
values of the variables. In practice, it is done around a 
set of estimates generated by the material balance pro-
gram. 

If W and k represent these estimates, one can define 
the following variations: 

= W —W 

SX = X — 

= 

85'c 	5'( — 
When Wand X are considered as true values, the first 
two variations approximate the errors on flow rates and 
class fractions. Therefore, the variances of SW and SX 
are the variances of the measured variables W and X. 
Similarly, the variances of SW and SX are the variances 
of the variable estimates. 

The BILMAT User's Guide shows how the values of 
0-ei  and d can be calculated by variance algebra as a 
function of ot and cr?<. The resulting variances are con-
servative; i.e., larger than their true values, but very 
often accurate. 

6.2.2 Factors Influencing the Variance 
Estimates 

The following factors contribute to the validity of the 
variance estimates obtained by the analytical method: 

— The measurement errors follow a nor-
mal distribution. 

— They are uncorrelated. 
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- The assumed error variances are rea-
sonable. 

- The estimate used as a true value is 
accurate. 

The following cause-to-effect relationships must be 
underlined: 

- The better the data, the smaller the 
estimate variances. 

- The more redundant the data, the 
smaller the estimate variances. 

- The more efficient the process with 
respect to the problem variables (e.g., 
good concentration ratio), the smaller 
the estimate variances. 

- The fewer recycle streams that exist, 
the smaller the estimate variances 
are. 

6.2.3 Practical Use of the Estimate 
Variances 

6.2.3.1 Confidence interval 

If 0-2  = 10 -4  and 5( = 5% = 0.05, 
then crR  = 10 -2  = 0.01. 

This means that there is a 68% chance that X* is 
between 5( - 0-5z  and 5( + 0-5 : i.e., between 0.04 and 
0.06. 

The chances of X* being within 5(.± 20- i<  (i.e., 0.03 and 
0.07) are 95%. 

6.2.3.2 Residuals analysis 

The residuals (e.g., W - W) are random variables with 
their own distribution. Their variances are given by: 

and  w w 	x 

Using the example abcive where ŒR = 0.01 and 
(iX = 0.02, the 95% confidence interval of the residual 
X - X is: 

± 2 	— cre = -± 2 1410-4  - 10-4  

= ± 3.56 10-2  

If the calculated residual 5( - X is outside this interval 
(- 3.56 10-2  + 3.56 10-2), the possibilities are: 

1. The experimental data X have been 
accidentally altered. 

2. The sampling procedure has intro-
duced a significant bias, or the sam-
pling variance is underestimated. 

3. The assay procedure (sample prepa-
ration and analysis) has introduced a 
significant bias. 

Case 1 is more likely if only one Xi is out of range. 

Case 2 is more likely if several Xi's are out of range in the 
same stream j for different species i. 

Case 3 is more likely if several )(I's are out of the range 
for the same species i in several streams j. 

Repeated positive (or negative) values in the residuals 
obtained for several material balances of the same cir-
cuit can also help to detect bias in the experimental 
data. Usually, residuals with values outside a ± 3 o-x  
range are considered as outliers and should lead to 
either data rejection or error model modification. 
Repeated abnormally-small residuals should also sug-
gest a reassessment of the assumed error variance. 
The overall contribution of some data to the material 
balance solution can also be estimated and suggest 
new sampling strategies. 

6.3 THE MONTE-CARLO ANALYSIS 
A digital computer can generate random numbers 
belonging to a given probability distribution. For 
instance, given a mean and a standard deviation, a 
program can generate as many samples of a normal 
population as required. 

In a material balance problem, each measurement - X 
and W - is characterized by: 

- its standard deviation (from the error 
model); 

- its best estimate 5( and W (from the 
result). 

It is, therefore, possible to generate pseudo-experimen-
tal values belonging to the same population. In other 
words, we can simulate assay values that are equivalent 
to those that could be obtained in repeated sampling. 
This can be done only if the assumed error model is 
valid. 

After one mass balance calculation has been com-
pleted, all the experimental values can be renewed by 
simulation and solved for a new series of calculated 
variables. The accumulation of several such series 
allows the computation of their means and standard 
deviations. These quantify the sensitivity of the calcu-
lated flow rates to the natural variations in the observed 
variables. 

The larger the number of repeats, the more reliable the 
errors estimate. 
The potential of this method to check the sensitivity of 
the results to the error model must be emphasized. If the 
error model used for the Monte-Carlo simulation is dif-
ferent from that used in the mass balance solution, the 
magnitude of the variations in the estimates and their 
standard deviation are an indicator of the importance of 
using the proper error model in a particular problem. 
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7. MATERIAL BALANCE PROGRAMS 

An exhaustive survey of all published material balance 
programs is beyond the scope of this text and the reader 
is referred to such a survey by Reid, Smith, Voiler and 
Cross (6). 

Material balance programs can be classified into four 
broad families depending on the method of solution of 
the material balance equations: 

1. programs using an iterative Lagrange 
solution, e.g., MATBAL; 

2. programs using a hierarchical solu-
tion, e.g., BILMAT; 

3. programs using a two-step node 
imbalance + GLS solution; 

4. miscellaneous. 

The following discussion covers types 1 and 2 more 
extensively. 

7.1 MATBAL: ITERATIVE 
LAGRANGE SOLUTION TO THE 
GLS PROBLEM 

In the MATBAL approach, the stationary point of the 
Lagrangian is obtained by a classical calculus method: 
the cancellation of all derivatives with respect to the 
variables. 

81_ — = 0 

8L = 0 
Sw 

8L = 0 

Ôxi  

The above system of equations has necessarily as 
many unknowns as equations. 

All equations can be derived by hand in order to bring 
the system to the form: 

M X = C 

where X is a vector of variables )k, W, xi , and M and C are 
matrices of coefficients. 

These equations have been coded in FORTRAN and 
can be solved automatically by the program. The user 
has to input a flowsheet description that is suitable, 
using MATBAL nomenclature. 

As one can imagine, the systems to be solved are large 
and the applicability is strictly restricted to the type of 
mass constraints that have been considered in the 
derivatives calculation. In this family, several other pro-
grams have been published especially by Cutting (7). 

For full narrative, mathematical, and programming 
details on the MATBAL program, the reader is referred to 
Chapter 3.2 of the "SPOC Manual" (3) which is a user's 
guide. 

7.2 BILMAT: HIERARCHICAL SOLUTION 
TO THE GLS PROBLEM 

7.2.1 Flowsheet Variables 
BILMAT has been designed to simultaneously balance 
data describing various subdivisions of a pulp stream. 
The first level of division consists of two phases; usually 
one solid and one liquid. Each phase can itself be 
described by classes (e.g., particles in a size interval). 
Each class can be divided into sub-classes (e.g., parti-
cles in a specific gravity range within a size interval). 
Each class or subclass can be described by charac-
teristics (e.g., chemical assay, mineralogical assay, 
etc.). 

This is summarized in Figure 10. The upper two levels of 
the stream description (e.g., pulp, solid and/or liquid) are 
called macroscopic. The lower two levels are called 
microscopic. Specific variables can describe each level 
and they are referred to as macroscopic and micro-
scopic variables. 

Level one is described by flow rate measurements. 
Level two is described by flow rate and phase concen-
tration in the pulp (e.g., liquid fraction in the pulp, or solid 
fraction in the pulp). Level three is described by mass 
fractions of each class in one of the level-two phases 
(e.g., mass fractions of a particle size distribution). Level 
four can either be described by mass fractions of sub-
classes within a level-three class, or assays of level-
three classes. 

The scale of four levels can be translated by considering 
one phase as level one, classes of that phase as level 
two, sub-classes as level three, and characteristics as 
level four. In comparison, MATBAL handles only data 

!SOLIDS 	• SOLIDS 
COMPO- 	SUB-COMPONENTS 

	  ILVEA/ 

MACROSCOPIC 
VARIABLES 

LEVEL I 	LEVEL 2 	LEVEL 3 LEVEL 4 

•FO-F FLOW RATE .S0,.IDS AND WATER•CHEMICAL •CHEMICAL -CONCEN- 
FLOW RATES 	CONCEN- 	TRATIONS IN 

: 	 TRATIONS 	PARTICLE SIZE 
-.PARTICLE . INTERVALS 

SIZE DISTRI., 
BUTIONS 

RESTRICTEO DOmAIN 

OF VARIABLES FOR 
THE SENSITIVITY 
ANALYSIS 

Fig. 10 — Various levels of the mass balance variables 

MICROSCOPIC 
VARIABLES 
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relative to two adjacent levels; e.g., (pulp + solid and
water), or (solid + assay), or (size interval + assay) etc.
The BILMAT User's Guide gives examples of flowsheet
variables.

7.2.2 Flowsheet Analysis
Flowsheet analysis in terms of networks is a prerequisite
to using the BILMAT program. A network is a graphical
representation of the mass conservation across process
units.
Each level of subdivision of the process streams must
be considered for network definition. A total of eight
different networks can be described: one at level one,
one at level two, four at level three, and two at level four.

Details on network definition are given in the BILMAT
User's Guide. For computation purposes, networks are
expressed as matrices according to the definitions of the
User's Guide.

7.2.3 Mass Conservation Equations
The mass conservation equations corresponding to the
existing networks are described in Sections 2.4.2 to
2.4.5 of the BILMAT User's Guide and in Chapter 3.1 of
the "SPOC Manual" (2).

7.2.4 Independent Variables
Independent flowsheet variables are those that allow
the others to be calculated by the material balance
equations. For instance, in a solid network consisting of
q nodes and p branches, there are q equations of con-
servation, p flow rates and, consequently, p- q indepen-
dent flow rates. There may be several sets of indepen-
dent flow rates, but no set of p- q values is a set of
independent flow rates.

This concept of independence can be applied to vari-
ables of several levels in the global material balance
context.

For instance, if we consider solid flow rates Wj
(j = 1, ..., p) and mass fractions X] in classes
i= 1, ..., n, the valid material balance equations are:

q - solid conservation equations

nq - class conservation equations

The number of independent variables is:

(p+np) - (q+nq) - p = n(p-q) - q

If the set of classes is complete ( i.e., the total mass
fraction is one), the number of independent class mass
fractions must also be reduced by one per stream.
Therefore, the actual number of independent variables
in the above problem is:

(p+np-1) - (q+nq) = (n+1)(p-q) - 1

7.2.5 Data Redundancy
This concept is a consequence of the variable indepen-
dence described above. If a set of independent vari-
ables has been measured, all variables can be
calculated; the problem is said to be exactly determined,
or to correspond to a minimal experimental design. If
fewer variables have been measured, no complete solu-
tion can be calculated and the problem is called under-
determined. If extra variables have been measured,
they constitute redundant data.

A problem can be redundant with respect to some vari-
ables, and underdefined - or exactly defined - with
respect to others. The checking of redundancy is an
important and sometimes delicate prerequisite to using
BILMAT. This is illustrated by the following example.

Consider a two-stage flotation circuit (as illustrated in
Figure 11). The following four data sets can be analyzed
for redundancy:

A: W1, W2, X2, X3, X4, X?, X3

B: Wÿ, W2, X2, X3, X4, X5, X?, X3, X4

C: Wi, W2, X2, X3, X4, X5, X;, X2, X3

D: W,, W2, Ws, X2, X3, X4, X5, X6, X2,

X2, X3, X4, X5

The data describe one phase (solid), and two classes X1
and X2. The number of independent variables is:
(6 + 12) - (3 + 6) = 9 (assuming that Xj + Xj :1/- 1).

Case A is underdefined.

Case B is exactly defined.

Case C is overdefined for all variables except Xj
(j = 4,5,6) which are not calculable.

Case D is overdefined.

The program can produce meaningless results when
underdefined data are used. If only one flow rate is
measured (or fixed), no adjustment of its value can be
done, the measured value is the best estimate and the
number of independent variables should be reduced by
one (p-q-1) or n(p-q)-q-1.

Fig. 11 - Sample flowsheet for data redundancy test
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where 

A 

Xi 

is the incidence matrix describing the 
flowsheet 

is the solid flow-rate column vector 

is the diagonal matrix of assay Xi. 

7.2.6 BILMAT Algorithm 
In conformity with the GLS method, the following crite-
rion is to be minimized: 

	

J = 	— WF) 2/(01)) 2  a) pulp flow rates 

+ (Wr — 
W/( r )2 b) water flow rates 

+ (vvr _ Wr)2/(c,f)2 c) solid flow rates 

• Z 	_ )2/(4L,2 ) 	d) solid/liquid ratio 

+ _ )ki)2/(02 ) 	e) class fractions J) 2/(Œj)2 

 5(Ik)2/(01k)2 	f) characteristic 
k 	 fractions. 

This weighted sum of squares is minimized (subject to 
the valid mass conservation equations), by a hier-
archical method fully detailed in Section 4 of the BILMAT 
Manual. In a first step, an adjustment is made for the 
relative solid flow rates (WIWI ); then, the class mass 
fractions are adjusted; finally, the remaining variables 
are adjusted (a,b,d). These steps are repeated until all 
variables converge to steady-state values. 

7.3 NODE IMBALANCE + GLS 
COMBINATION METHODS 

When experimental data have been collected around 
several units in a complex flowsheet, the node 
imbalance minimization method described in Sec-
tion 4.2 can be generalized. 

The valid mass balance equations are of two types: 

— solid mass balance, AW = Is 

— characteristic mass balance, 
AWX 1  = 

It can be shown that the estimate of W (that minimizes 
the sum of squares of the node-imbalances) is given by: 

W = M+ I 

where 

M is the stack of matrices A and AX 1  

M+ is (MTM) -1  MT (also called the 
pseudo-inverse of M) 

I 	is the stack of right hand side vectors 
Is and lxi 

Xi is used as the best estimate of  

SAMBA is a conversational program to calculate such 
estimates and has been developed by Smith, Bur-
roughs, and Laguitton. Its documentation constitutes 
Chapter 2.1 of the "SPOC Manual" (8). 

If a refined solution is needed, a second stage of cal-
culation consists in using the estimates of the mass flow 
rates obtained above as constants. The experimental 
assays can then be adjusted according to a least-
squares method using the mass conservation equations 
as constraints. 

A variation of the above method consists in using the 
sum of squares of the node imbalances as criteria to be 
minimized and the mass conservation equations as con-
straints in a Lagrange-multipliers method. The com-
putation of the inverse of the derivative coefficients 
matrix requires that all constraints be linearly indepen-
dent. 

This is used in the COEF subroutine of the MATBAL 
program. This requirement for independent equations 
does not apply to the pseudo-inverse algorithm 
described above. Both methods provide useful first 
approximations for the iterative general least-squares 
methods. 

7.4 MISCELLANEOUS 
The White technique (9) does not require the calculation 
of a Lagrangian. First, a minimum set of independent 
variables is selected from which all other variables can 
be calculated. This set is optimized, variable by variable, 
in a direct, unidimensional search program so that the 
minimization criterion, /(X — X) 2/0- 1% + /(W — W) 2/u, 
can be computed at each step of the search. 
The variables entering this criterion are obtained by 
means of the valid mass conservation relations that exist 
between them and the search variables. 

A review of data-adjustment procedures was published 
by A. Mular in Computer Methods for the 80's in the 
Mineral Industry (10). 
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5.95 
21.45 
20.70 
13.05 
11.05 
6.03 
9.44 
4.53 
1.56 
1.23 
1.04 
0.50 
0.99 
0.65 
0.31 
0.56 
0.23 
0.73 

0.00 
0.00 
0.00 
0.00 
0.80 
0.00 
0.00 
1.82 
6.61 

16.83 
22.32 
20.70 
16.04 
9.85 
3.21 
1.39 
0.42 
0.01 

8. EXERCISES ON MATERIAL BALANCE COMPUTATION 
8.1 EXERCISE 1: n-PRODUCT FORMULA 
1. Derive the two-product formula. 
2. Consider the four-product circuit illustrated here-

after, in which each stream has been assayed for six 
species. 

a) How many solutions can be obtained by 
the n-product formula? 

b) Calculate several of them using the 
NPRD* program. 

c) If you were responsible for calculating 
inventories on this circuit, what would 
you do? 

FEED 26.03/48.84/0.34/0.39/0.105/4,248 
1 

72.5/5.6/0.007/0.02/0.011/7.73 
31  \4  

15.9/64.2/1.63/1.82/0,44/4.19 

0,71/70.2/0,013/0,024/0,014/0,35 4.44/66.3/0.049/0.073/0,05/4.93 

SIX ASSAYS IN A FOUR PRODUCT CIRCUIT 

*NPRD is one of the miscellaneous utility programs documented in Chapter 8 of the SPOC Manual (11). 

8.2 EXERCISE 2: REGRESSION 
Consider the attached data collected around a hydro-
cyclone. F is the feed, U the underflow; 0 the overflow. 
These data are the size distribution of the solids. 
1. Using the two-product formula, calculate the ratio 

U/O for several size intervals. What conclusions do 
you draw? 

2. The circulating load is given by: 
X0  - XF = CIR 

XF - Xu 

Calculate the mean circulating load. 
Plot X0  - XF VS XF -  X.  What is the best value of CIR 
that you can get from your plot? 

3. Use the STAMP* program to determine CIR by 
linear regression. 

Xu 	XC, 	XF - Xu X0 - XF 
- 1.98 	-3.97 

	

-6.20 	-15.25 
- 5.90 	-14.80 

	

-3.34 	-9.71 

	

-2.78 	-7.47 

	

-1.33 	-4.70 

	

0.62 	-10.06 
- 0.52 	-2.19 

	

0.69 	4.36 

	

0.69 	14.91 

	

1.22 	20.06 

	

2.06 	18.14 

	

1.68 	13.37 

	

2.42 	6.78 

	

3.07 	-0.17 

	

3.07 	-2.24 

	

2.06 	-1.87 

	

4.47 	-5.19 

XF 

3.97 
15.25 
14.80 

9.71 
8.27 
4.70 

10.06 
4.01 
2.25 
1.92 
2.26 
2.56 
2.67 
3.07 
3.38 
3.63 
2.29 
5.20 

100.00 	100.00  100.00 0.00 	0.00 

*See SPOC Manual, Chapter 8 (11). 
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ASSAYS 
1 	2 	3 

	

0.163 	3.93 	11.57 

	

0.447 	11.63 	12.79 

	

0.466 	8.11 	14.35 

	

0.140 	0.49 	13.09 
0.960 34.64 14.37 
0.657 52.07 14.67 

	

1.020 42.73 	14.66 

	

0.440 	11.86 	13.75 

1 STREAM 1 
2 STREAM 2 
3 STREAM 3 
4 STREAM 4 
5 STREAM 5 
6 STREAM 6 
7 STREAM 7 
8 STREAM 8 

MILL 
PEED 

18 

Zn 
2nd,3rd,4th 

CLNR 

ZINC  
CONC. 

Cu RGHR 

Cu CLNR 

COPPER  
DONC.  

LEAD 
CCNC. 

8.3 EXERCISE 3 
Consider  the  attached flowsheet. All eight streams have 
been assayed for Cu, Zn, Fe with results as given on the 
flowsheet. 

1. For a feed of 100 t/h of solids, calculate flow rates 
W4  and W6 by the two-product formula. 

2. Calculate the precision, AW6, when all assays 
W6 

are known with a 6% relative precision and 

 	0.1 
W1 

3. Calculate W4 and W6 , using the node imbalance 
formula. 

4. Use the SAMBA program to calculate the general 
node imbalance minimization.* 

8.4 EXERCISE 4 
Consider the attached flowsheet. Ten numbered sam- 
pling points have bee assayed for four species, except 
2, 3, 7 and 8 which have been assayed for three species. 

Assays are as follows: 

1. Mill Heads 	 .87 	1.27 	3.69 	1.61 
2. Blk Scav Tls 	.27 	.52 	3.54 
3. Cu-Pb Conc 	10.45 13.06 4.05 
4. Pb Conc 	 1.50 16.70 	3.62 11.22 
5. Cu Conc 	25.29 	4.22 	4.63 11.51 
6. Zn Conc 	 .87 	1.37 	48.4 	2.39 
7. Zn Scav Tls 	.22 	.49 	.80 
8. Zn Cl Scav Tls 	.37 	.99 	1.63 
9. Final Tails 	 .21 	.51 	0.89 	0.67 

10. Str. Cntrl 	 .90 	.95 	30.0  

1. For a feed of 100 t/h, calculate the three concen-
trates and the final tailings flow rates. 

2. Prepare the MATBAL input file for this problem. The 
Table of assay precisions is given below.* 

3. What can you say about sampling point No. 10? 

Table of assay precisions 

VG G VG F 

	

F F 	G F 

	

F F 	F F 

	

VG F 	F F 

	

F F 	VG F 

	

F F 	G F 

	

F F 	F F 

	

G G 	G F 

	

F F 	F F 

*See "SPOC Manual", Chapter 2.1 (1). 

Zn CLNR 
SCAV 

9 
MILL 
TAILS 



8.5 EXERCISE 5 
1. Solve Sample Runs 1 and 2 provided in the 

MATBAL User's Guide "SPOC Manual", Chap-
ter 3.2 (3). 

8.6 EXERCISE 6 
1. Solve Sample Runs 1 and 2 provided in the BILMAT 

User's Guide ("SPOC Manual", Chapter 3.1). 

8.7 EXERCISE 7: SENSITIVITY ANALYSIS 
BY THE MONTE-CARLO METHOD 

1. Rerun the NPRD program with data from Exer-
cise 3 and activate the Monte-Carlo simulation 
option. 

a) Impose a 5% relative standard deviation on all 
assays. 

b) Impose a 10% relative standard deviation. 

c) Impose a 2% relative standard deviation. 

Conclusions? 

2. Solve Exercise 3 with MATBAL, Monte-Carlo option 
"on" (ICON = 1, NMC = 10) and successively 
mask the various assays (10 = 3, 1, 2, 3; 
10 = 2, 1, 2; 10 = 2, 1, 3; etc.). 

Conclusions?  

8.8 EXERCISE 8: SENSITIVITY ANALYSIS 
BY THE ANALYTICAL METHOD 

Execute the BILMAT program for sample Run 1 (Chap-
ter 3.1). 

1. Using the results of the sensitivity analysis, explain 
the variation of the precision of flow rates from .06% 
to 19%. 

2. Calculate the 95% confidence interval on the con-
centrate flow rate and its Nb assay. Compare to the 
measured values and comment. 

3. Can the flow rates be determined with an accept-
able precision without using the Nb assays? 

4. Determine the accuracy of the estimated values of 
the cleaner-4 concentrate assays, if experimental 
values were poorly known for that stream. 

5. If you had to reduce the cost of a sampling cam-
paign, which of Mg or P assays would you delete? 

6. Suppose a value of 3.09 is entered instead of 3.69 
for the Fe assay in the rougher tailing. How does this 
error affect all the results? Can it be detected with 
the sensitivity analysis? 
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9. ANSWERS TO EXERCISES 

9.1 EXERCISE 1 
1. See Section 3.1. 

2a. 20 solutions (there are 20 combinations of six 
assays, 3 by 3). 

2b. See CIM Bull. Vol. 75, No = 840, p 166-170. 

2c. Use MATBAL or BILMAT. 

9.2  EXERCISE 2 
1. See Table 2A. 

2. 3.62 (see Table 2A and Fig. 6). 

3. See the STAMP program user's guide, Chapter 7.1, 
SPOC Manual. 

9.3 EXERCISE 3 
1. Using assay type 1, W4 = 4.5 

Using assay type 2, W4 = 6.7 

Using assay type 3, W4 = -96.2 

2. Using assay type 1, AW6  = 

W6 

Using assay type 2, AW6=  
W6 

Using assay type 3, AW6= 
W6 

3. Using the formula given in Section 4.2: 

" 

a ,„ 	(1+  374.47)(1+171.6)-(1+ 153.4)(1+ 217.6)  x 100  
6 = 

(1  +2926.9)(1 +171.6)-(1 +217.6) 2  

6.81; W4 = 93.19 

4. Solution given by SAMBA: 
W1  to We = (100.0, 236.6, 207.5, 93.6, 29.0, 6.4, 

22.66, 113.9) 

9.4 EXERCISE 4 
1. By the four-product formula (the NPRD program) 

Using assays 1, 2, 3: W1  = 100, W4 = 3.88, 
We = 2.29, W6 = 5.49, W9  = 88.34 
Using assays 2, 3, 4: W 1  = 100, W4 = 3.37 
W5  = 4.55 We = 5.34 W9 = 86.74 

2. The MATBAL4 input file for this problem is: 

DATA FOR EXERCISE 4 CHAPTER 3, SPOC MANUAL 
9 4 1 3 0 9 1 1 10 
0 0 0 0 1 0 0 8 0 0 0 99 0.1 0,1 

1 MILL HEADS 
2 BLK SCAV TLS 
3 CU-PB CONC 
4 PB CONC 
5 CU CONC 
G ZN CONC 
7 ZN SCAV TLS 
8 ZN CL-SCAV TLS 
9 FINAL TAILS 
1 .87 1.27 3.69 1.81 
2 .27 .52 3.54 0 
3 10.45 13,06 4,05 0 
4 1.5 18.7 3.32 11.22 
5 25.29 4.22 4.83 11.51 
G .87 1.37 48.4 2.39 
7 .22 .49 .80 0 
8 .37 .99 1.33 0 
9 .21 .51 .89 .87 

1 ASSAY 1 
2 ASSAY 2 
3 ASSAY 3 
4 ASSAY 4 

VG G VG F 
FFGF 
FFFF 
FFFF 

VG F F F 
F F VG F 
FFGF 
FFFF 
GGGF 
1 5 1 -4 -5 -8 -9 
1 3 1 -2 -3 
2 3 3 -4 -5 
3 3 2 -8 -9 
1 100 .01 
1 3 1 2 3 
2 3 1 2 3 
3 3 1 2 3 
4 1 2 3 4 

3. Sampling point No. 10 is not useful in calculating a 
material balance. It was probably sampled for con-
trol purposes. 

9.5 EXERCISE 5 
See "SPOC Manuar, Chapter 3.2 (3). 

9.6 EXERCISE 6 
See "SPOC Manual", Chapter 3.1 (2). 

we  = 95.5 

W6 = 93.3 

W6 = 196.2 

0.72 

0.08 

10.0 
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9.7 EXERCISE 7 	 2. Cleaner-5 concentrate: 95% confidence interval. 

1. Using the NPRD program and data for Exercise 3, 
the following results were obtained for 20 repeats of 
the Monte-Carlo option, using assay types 1, 2, 3, 
successively. 

Assay type 1 	5% pre- 	10% pre- 2% pre- 
cision 	cision 	cision 

	

95.55 ± 1.8 	± 4.23 ± 0.78 

	

5.29 ± 1.8 	± 4.23 ± 0.78 

	

93.33 ± 0.43 	± 1.05 ± 0.19 

	

6.67 ± 0.43 	± 1.05 ± 0.19 

196.2 ± 103.4 ± 555.8 ± 21.5 
-96.2 ± 103.4 ± 555.8 ± 21.5 

The estimate of the precision of the calculated flow 
rates is more reliable when the experimental data 
are more reliable. 

2. By masking successively the various assays, it is 
found that assay type 2 is the only data that seem 
acceptable in this data set. The solution obtained 
when this assay alone is used is less sensitive to 
experimental errors: 

W 1  = 100.0 

W2  = 339.8 ± 84 

W3  = 297.3 ± 78 

W4 = 93.26 ± 0.7 

W5  = 42.5 ± 15 

We = 6.74 ± 0.7 

W7 = 35.78 ± 15.6 

We  = 204.0 ± 78. 

See also the treatment of this problem by the 
SAMBA program in Chapter 2 of the "SPOC Man-
ual", example 5.3 (4). 

9.8 EXERCISE 8 
1. The value of the relative standard deviations of a 

relative ore flow rate depends mostly on the value of 
the flow rate. A low flow rate generally has a high 
relative standard deviation. 

Absolute standard deviations are affected by the 
error model defined by the user and by the general 
structure of the plant network. 

Measured 	Estimated 

.025 ± .004 
.295 ± .176 	.337 ± .066 

36.27 ± 14.51 33.48 ± 6.17 

The Nb assay reliability is improved by a large factor 
greater than two. Its standard deviation is still around 
10% but could be lowered if Nb were assayed with a 
better accuracy (see Section 5.2.5 of Chapter 3.1 [2]). 

3. Using the results of the mass balance calculation, 
redo the sensitivity analysis without using the Nb 
assay. Results and discussion are in Section 5.2.5, 
Chapter 3.1. 

4. Use the sensitivity analysis editor to change the 
error model of the cleaner-4 concentrate assay and 
to mask the solid flow rate on that stream. Then run 
the sensitivity analysis program. 

The results are: 

Relative standard deviation (°/0) 

35.86 
72.11 
41.33 
21.25 
13.81 
14.49 
8.54 

An error model of 100% was used on that stream. 

After computation, the same values have an acceptable 
accuracy. But this has destroyed the reliability of the 
assay of the cleaner-5 output streams. Therefore, 
cleaner-4 concentrate should be assayed with accuracy. 
By performing the same experiment with cleaner-1 con-
centrate, one would see that this stream is well known 
after computation and that it has no significant effect on 
other streams. 

5. Use the sensitivity analysis editor to mask Mg assay 
and then P assay. Observation of the relative ore 
flow rate accuracies leads to the conclusion that 
deleting P assays does not significantly affect the 
reliability of the results (see Section 5.2.5 of Chap-
ter 3.1 [2]). Therefore, P could not be assayed in a 
future sampling campaign. 

6. Use the mass balance editor to modify the Fe assay 
in the rougher tailing. Run BILMAT and then the 
sensitivity analysis program. The mass balance 
results are affected by that modification and, at first 
glance, nothing wrong can be detected. However, 
the sensitivity analysis results show that the outlier 
flag is equal to 3 for that assay in that stream. 

W4 
We 

Assay type 2 
W4 
W6 

Assay type 3 
W4 
W6 

Relative ore flow 
rate 
Solid flow rate 
Nb assay 

Nb 
Mg 
Si 

Ca 
Fe 
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