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THEORETICAL ASPECTS OF PARALLEL COAL PROCESSING CIRCUITS 

OPTIMIZATION AND M -CURVE 

by 

A.I.A. Salama* 

ABSTRACT 

The problem of determining the optimum cutpoints of separation for 

processing different coals or different size ranges of a coal in parallel coal 

processing circuits which produce an overall product of maximum yield or mass 

flow rate at specified ash or sulphur level is investigated. The processed 

products are blended with raw coal stream. Mayer curves (M-curves) based on 

actual data are utilized to illustrate the results obtained. 

* Research Scientist, Coal Preparation Research Section, Fuel Processing 

Laboratory, Coal Research laboratories, Canada Centre for Mineral and Energy 

Technology (CANMET), Department of Energy, Mines and Resources Canada. 



ASPECTS THEORIQUES DE L'OPTIMISATION DES CIRCUITS DE TRAITEMENT DU CHARBON EN PARALLELE 
ET LeCOURBEM 

• 
par 

A.I.A. Salama* 

RESUME 

Le problème du calcul des limites optimales de séparation dans le traitement 
de différents charbons ou de différentes tranches granulométriques d'un charbon 
dans des circuits de traitement du charbon en parallèle qui maximisent le rendement 
ou le débit massique d'un produit final qui a une teneur donnée en cendres et 
en soufre est abordé. Les produits traités sont mélangés à un courant de charbon 
brut. Des courbes de Mayer (courbes M) basées sur des données réelles sont utilisée4 , 

 pour illustrer les résultats obtenus. 
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INTRODUCTION 

Modern coal processing plants are designed by carefully selecting sets of 

screening, cleaning, crushing and dewatering units. One of the design criteria 

is to produce clean product at a given ash and/or sulphur content and to maximize 

the yield of the product. In the past two decades, a considerable effort 

utilizing new technological advancements has been devoted to improvements in the 

design of screening, cleaning, crushing and dewatering units. This has resulted 

in considerable improvement in unit operation efficiency and in turn increased 

product yield and impurity rejection. In an operating plant, the maintenance of 

equipment is essential to enable it perform close to the manufacturer's 

specifications to achieve desired performance. It is to be expected that poorly-

adjusted equipment will perform below the expectations of both coal operator and 

manufacturer. Another consideration in product yield maximization is the feed 

variation due to the inherent characteristics of coal. It is also natural to 

expect that wide feed variation can cause a diverse effect on the operation of 

different units in any coal cleaning facility and will therefore decrease the 

overall product yield. However, the effect of feed variation can be minimized by 

utilizing raw coal homogenization or blending. The cutpoints in case of multiple 

vessel or processing of different size ranges of a coal in different circuits can 

be optimally selected in a way to maximize the overall product yield or mass flow 
rate (Sarkar et al., 1960; Abbott, 1977; Cierpisz and Gottfried, 1977 and Stanly 

Jacobson, 1979). 	Computer simulation is utilized to optimize coal preparation 

plant yields (Walters and Ramani, 1976 and Abara and Gottfried, 1979). 	Circuit 
analysis approach is employed to analyze and optimize mineral processing circuits 
(Meloy, 1983). Recently, an algorithm on the direct determination of washing 

parameters to maximize yield at a given ash content is reported (Rayner, 1987). 

In this paper, the problem of determining the optimum cutpoints for 

processing different coals or different size ranges of a coal in parallel coal 
processing circuits so as to maximize the overall product yield or mass flow rate 

at specified ash and/or sulphur content is investigated. The overall product is 

a blend of the processed coals and middlings or raw coal streams. While the 

focus will be on ash content specification, the same principles could easily be 

applied to sulphur content. 
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FUNDAMENTAL CONCEPTS AND THE  MATER CURVE 

Let us present some well known concepts for a typical coal whose constituent 

particles differ in relative density p (Cierpisz and Gottfried, 1977). If the 

effect of size variation in the individual coal particles is neglected, we can 

define the mass fraction of the material having density in the range p to p+dp as 

m(p)dp. Integration of m(p) with respect to p determines the cumulative mass 

or theoretical yield (in case of ideal density separation) distribution M(p) as 

M(P) = f m(P)c17,  
o  

where  i  is a dummy variable. Referring to Table 1 and assuming p to take the 

upper limit value of a density fraction, then M(pk=1.35).68.47 per cent. Since 

M(p) represents a cumulative distribution function its value must approach 100 

per cent for large values of p. 

Let us define a(p) as some attribute of coal particles which varies with 

density. Typical attributes are ash content, sulphur content and heat value 

(Table 1). Ve can define cumulative attribute A(p) as the mass-averaged integral 

of the mass elementary attribute product with respect to relative density p i.e. 

A(P) = 	a(P)m(P)dP]/M(p) 
o 

Table 1 - Elementary and cumulative washability data of a coal. 

Relative 	 Elementary Float Data 	 Cumulative Float Data 
Density 
Fractions 	Mass% 	Asia 	St' 	KJ/kg 	Mass% 	Ash% 	SZ 	KJ/kg 

(A) 	(B) 	(C) 	(D) 	(E) 	(F) 	(G) 	(H) 

Float-1.250 	37.27 	2.10 	2.00 	33581 	37.27 	2.10 	2.00 	33581 
1.250-1.275 	17.58 	4.43 	2.97 	32566 	54.85 	2.85 	2.31 	33256 
1.275-1.300 	7.13 	7.07 	4.12 	31511 	61.98 	3.33 	2.52 	33055 
1.300-1.350 	6.49 	8.53 	5.19 	30489 	68.47 	3.83 	2.77 	32812 
1.350-1.400 	8.11 	12.91 	6.52 	29257 	76.58 	4.79 	3.17 	32435 
1.400-1.450 	1.45 	15.58 	7.80 	28075 	78.03 	4.99 	3.26 	32354 
1.450-1.500 	2.46 	17.80 	8.49 	27152 	80.49 	5.38 	3.42 	32195 
1.500-1.600 	4.02 	23.43 	9.94 	24900 	84.51 	6.24 	3.73 	31848 
1.600-1.800 	2.35 	33.39 	11.22 	20854 	86.86 	6.97 	3.93 	31551 
1.800-2.000 	1.35 	46.96 	11.16 	15358 	88.21 	7.58 	4.04 	31303 
2.000-2.170 	0.69 	58.07 	11.29 	10913 	88.90 	7.98 	4.10 	31145 
2.170-Sink 	11.10 	84.50 	6.95 	2394 	100.00 	16.47 	4.41 	27953 

Eq 1 

Eq 2 



Eq 3 

Eq 4 

Eq 5 

Let A(p) designate ash content, then A(pk=1.5) = 5.38 per cent (Table 1). In the 

case where p becomes very large, then A(p) represents the mean value of the 

attribute for the entire sample. Referring to the data of Table 1 the average 

attributes: ash, sulphur and heat value of the whole sample are 16.47, 4.41 per 

cent and 27953 KJ/kg respectively. 

For a particular coal a relationship between the elementary, cumulative 

attributes and the cumulative mass distribution can be established. From Eq 2 we 

obtain: 

d[A(p)M(p)]/dp = a(p)m(p) 

Differentiating both sides of Eq 1 we get; 

d[M(p)]/dp = m(p) 

Substituting Eq 4 in Eq 3 we obtain; 

d[A(p)M(p)]/dp = a(p)d[M(p)]/dp 

Eq 5 can be rewritten as; 

d[A(p)M(p)1/d[M(p)] = a(p), or 

A(p)+M(p)[dA(p)/dM(p)] = a(p) 	 Eq 6 

From Eq 6 if [A(p)M(p)] is plotted against  [M(p)J, the local slope of the curve 

at any point [M(p), A(p)M(p)] is equal to the elementary attribute a(p) at the 

corresponding value of p. Also the slope of the line joining the origin to the 

point [M(p), A(p)M(p)] is equal to the cumulative attribute A(p) of all coal 

particles whose relative density is less than or equal p. There is no loss of 

generality by rotating the curve -90 degrees. This mathematical presentation 

will lay the basis for the M-curve (an abbreviation of Mittelwert-Kurve in German 

or Mayer-curve) which will be discussed next. 

In 1950, F.W. Mayer proposed to plot for a particular coal sample 

Cumulative[a(p)m(p)dp] = A(p)M(p) as an abscissa and Cumulative [m(p)dp] = M(p) 

as an ordinate, where the attribute is the ash content and M(p) designates the 

theoretical yield in per cent at the relative density p, the curve obtained is 

known as the M-curve (Mayer, 1950, 1953, 1957; Aso, 1954 and Venkatesan, 1976). 

Using the washability data given in Table 1 we can generate the data (given in 
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Table 2 - Data generated for M-curve. 

	

Elementary 	Cumulative 
Data 	 Data 

Relative 
Density 	Mass% 	Ash% 	Mass% 	AUM% 
Fractions 	 x100 

(B) 	(C) 

Float-1.250 	37.27 	2.10 	37.27 	0.78 
1.250-1.275 	17.58 	4.43 	54.85 	1.56 
1.275-1.300 	7.13 	7.07 	61.98 	2.07 
1.300-1.350 	6.49 	8.53 	68.47 	2.62 
1.350-1.400 	8.11 	12.91 	76.58 	3.67 
1.400-1.450 	1.45 	15.58 	78.03 	3.89 
1.450-1.500 	2.46 	17.80 	80.49 	4.33 
1.500-1.600 	4.02 	23.43 	84.51 	5.27 
1.600-1.800 	2.35 	33.39 	86.86 	6.06 
1.800-2.000 	1.35 	46.96 	88.21 	6.69 
2.000-2.170 	0.69 	58.07 	88.90 	7.09 
2.170-Sink 	11.10 	84.50 	100.00 	16.47 

Table 2) required to construct the M-curve of the coal sample. By plotting 

columns (B) and (C) as ordinate and abscissa respectively we obtain the M-curve 

shown in Fig. 1. 

As shown earlier the local slope (abscissa/ ordinate) at any point is the 

elementary ash a(p) in per cent, and the slope (abscissa/ordinate) of the line 

joining the origin and any point on the curve is the cumulative ash A(p) in per 

cent (Fig. 1). 	It is also beneficial to define an ash value (Supplement Ash 

(SA(p))) as SA(p)4A(p)M(p)+(100-M(p))a(p)1/100 in per cent. On the M-curve, the 

SA(p) value is determined by extending the elementary ash line at a point 

[A(p)M(p),M(p)] until it intersects the A(p)M(p) axis, the point of intersection 

determines SA(p) (Fig. 1). The significance of introducing the SA(p) value will 

be apparent later in our development. 

A useful characteristic of the M-curve is worth stating. Since the local 

slope of the M-curve is the elementary ash in per cent which is always 

monotonically non-decreasing function of the relative density, then it can be 

shown that the M-curve is convex downward. In other words, for every two points 

on the M-curve, the points on the curve between these two points are below the 

straight line joining the two points. 
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TYPICAL PARALLEL COAL PROCESSING CIRCUIT 

Let us consider a typical coal processing circuit where processed size 

ranges of a coal are blended with middlings or raw coal as shown in Fig. 2a 

(Mishra and Klimpel, 1987). The blending is performed to control the overall 

product ash at a specified ash content. The feed characteristics (washability) 

of the feed streams and the cumulative ash of the middlings or raw coal stream 

(Ar  in per cent) are assumed to be known. The circuit shown in Fig. 2a can be 

replaced with the simplified circuit shown in Fig. 2b so that we can present 

different symbols needed in our development. 

Let the stream processed in circuit i, when cut at a relative density psi 

 produces theoretical yield Mi (psi ) and cumulative ash content A i (psi ) in per 

cent. The overall mass flow rate of the product is given as: 

where Fr F 	i=1,2,....,n are the mass flow rates (tph say) of the middlings or 

raw coal stream and the streams 1,2,.... and n feeding the coal processing 

circuits respectively and n is the number of size ranges under consideration. In 

the above expression psi' i=1,2,....,n are used instead of p to emphasize the 
fact that for each stream there is a relative density variable associated with 

it. The ash balance of the products is given by: 

F A + E F.A (
si
p )M.(p si .)/100 	[Fr+ EFM (p .)/1001A rr 	ii 	 i i si i=1 	 i=1 

where A is a desired overall product cumulative ash in per cent and is assumed 
to be less than A

r . From Eq 8 we can express Fr as: 

n 	 A si Fr . E FiM i (psi
)  p i 

i=1 	100(A -A ) r p 

Substituting Eq 9 into Eq 7 we get: 

Eq 8 

Eq 9 

A r  -Ai  (p .) si 
Fp (Ps1' Ps2" — " P5n )  = E FiM i (Psi ) 	 i=1 	100(A r  -A p ) 

Eq 10 
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similarly we can express the overall circuit theoretical yield as 

100Fp 

	

( 	Y 	 ) = 	  

	

M p 	Ps2 	Psn 

Fr + E F i i=1 

Substituting Eq 10 into Eq 11 we get 

100 E F iM i (psi )(Ar-Ai (psi )) 
i=1 

Mp (P51 P52 	 = 	  

E F.[M.(p si  ,)(A -A.i (psi  ))+100(A r  -A p )] 
i=1 	 p  

Eq 11 

Eq 12 

in per cent. 

In the following sections different aspects of the optimization of parallel 

coal processing circuits will be discussed. Emphasis will be given to the ash 

content, however the same principles could be easily applied to sulphur content. 

OPTIMIZATION OF PARALLEL COAL PROCESSING CIRCUIT : 

COAL PROCESSING STREAMS OF FIXED MASS FLOW RATES 

MASS FLOW RATE MAXIMIZATION (MID )LINGS STREAM OF VARIABLE MASS FLOW RATE)  

In the formulation presented in the previous section, let us assume the 

individual mass flow rates FF2'.'Fn are fixed and the mass flow rate of the 

middlings or raw coal stream is variable. Also let the cumulative ashes 

associated with streams F1 ,F2 ,.... and Fn  be designated as A1 ,A2 ,.... and An 
respectively. 

The objective is to determine the optimum cutpoints p * ., i=1,2,....,n 	such si 
that the overall mass flow rate F given by Eq 10 is maximized. 

Necessary Conditions for Optimization 

Since the ash balance condition given by Eq 8 is incorporated in the 

expression of F (Eq 10), then the necessary conditions for maximization are 

(Adby and Dempster,1969 and Mitra, 1976): 



or 
* * 

ap (psp ) . Ar 
Eq 15 
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aF 	F 	'JPp (Psp )1 	(111.1  (P )A (P )1 
P 	11 	 p sp p sp 

. 	 ] . 0 
UP--  r:r[Ardp dp 

sp 	r p 	si 	 su  

Eq 13 

Assuming F and d[M 
p 
 (p 

 sp 
 )1/dp

sp 
 are not zeros, then Eq 13 can be reduced to: 

dIM„(P„,)An (P)] * 
(Ar- 	" "" "" )= A r  -a* (p*  ) 0, p sp 

d[Mp  (Psp)] 

,n 

Eq 14 

,n 

where the asterisks indicate at optimum values and a
*
(p
sP 

 ) is the incremental 
P  

ash of size range p at the cutpoints p
* 

. Equation 15 indicates that the 
sp 

processing will be at the same incremental ash equal to the middlings or raw coal 

cumulativeashAr irrespectiveofthemassflowratesF.'s. It must be stressed 

that the necessary conditions given by Eq 15 are only valid at local maximum. 

The results of Eq 15 could be explained by utilization of the M-curve approach. 

Let us consider two size ranges of a coal with washability and M-curve data as 

given in Table 3 and the corresponding M-curves are shown in Fig. 3. 

Table 3 - Washability and M-curve data for two size ranges of a coal. 

	

Size Range # 1 	 Size Range # 2 

Relative 	Elementary 	Cumulative 	Elementary 	Cumulative 
Density 	Data 	 Data 	 Data 	 Data 
Fractions 	  

	

Mass% 	Ash% 	Mass% 	AUM% 	Mass% 	Ash% 	Mass% 	A%xM% 

	

x100 	 x100 

Float-1.30 	13.40 	4.20 	13.40 	0.56 	2.40 	2.20 	2.40 	0.05 
1.30-1.35 	38.50 	5.20 	51.90 	2.56 	34.90 	3.80 	37.30 	1.38 
1.35-1.40 	21.50 	7.80 	73.40 	4.24 	17.30 	8.20 	54.60 	2.80 
1.40-1.45 	7.90 	11.90 	81.30 	5.18 	10.80 	13.50 	65.40 	4.26 
1.45-1.50 	3.30 	17.40 	84.60 	5.76 	5.30 	18.40 	70.70 	5.23 
1.50-1.60 	4.20 	27.00 	88.80 	6.89 	7.00 	24.30 	77.70 	6.93 
1.60-1.80 	4180 	43.60 	93.60 	8.98 	5.20 	40.58 	82.90 	9.04 
1.80-2.00 	2.90 	56.90 	96.50 	10.63 	3.60 	57.30 	86.50 	11.10 
2.00-2.17 	0.90 	66.00 	97.40 	11.23 	2.20 	72.20 	88.70 	12.69 
2.17-Sink 	2.60 	80.00 	100.00 	13.31 	11.30 	88.60 	100.00 	22.70 
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Close examination of F in Eq 10 indicates that we are maximizing the 

algebraic weighted sum of the quantities Z i  =Mi (psi )(Ar-A i (psi )), i=1,2,....,n 

(see Fig. 3 for the case n=2). Since psi , i=1,2,....,n are independent, then it 

is obviousthateachZ.is maximized when the local slope (incremental ash 

a i (psi )) on the ith M-curve is equal to Ar . If for index i, the condition given 

by Eq 15 is not satisfied, then the strategy for maximizing the overall product 

mass flow rate is to choose the largest value of psi  for which the quantity 

Z i M i (psi )(Ar-Ai (psi )) is positive , i = 1,2,....,n. For a given Ar , there 

is a limiting value A such that if A < A then there is no contribution from 
P 	P 

the middlings or raw coal stream. This point will be illustrated graphically and 

numerically next. 

Let us consider the two (n=2) M-curves shown in Fig. 3. To implement any 

optimization scheme to the problem under consideration a smoothing scheme is 

employed. A smoothing cubic spline routine for interpolating along the given M-

curves and an optimization scheme are employed to maximize the overall product 

mass flow rate. Without loss of generality it can be assumed that F 1.F2.1.0. 

For given Ar and A as 25.00 and 12.00 per cent respectively, the overall product 

mass flow rate is maximum at p1 (M1.86.20 per cent) and p2  (M2=74.90 per cent) and 

F
*
=0.519 (i.e. F

* 
is 51.9 per cent of F 1  ), and the necessary conditions given by r 	 r 	 * 

Eq 15 are satisfied. 	Examining Eq 9, it is obvious that F r can be determined 

using the algebraic weighted sum of the lengths pi p3  and p,p,• 	For the case *" 
under consideration these lengths are positive and Fr . 0.519 which is in 

agreement with the numerical result obtained using the optimization scheme. 

Examination of Fig. 3 indicates that for the given Ar.25•00 the limiting value 

A at which the algebraic weighted sum of the lengths from p i  and p2  to the A_ 
P 
line is zero (or Fr  is zero i.e. no contribution from the middlings or raw coal 

stream) is  A=7.54 per cent. 

For the special case of processing one size range (i.e. n.1) the results 

reported in the literature are in agreement with the results given by Eq 15, 

however the assumption of A1(psl)<Ap<Ar is removed (Cierpisz and Gottfried,1977). 

YIELD MAXIMIZATION (MIDDLINGS STREAM OF VARIABLE MASS  FLOW RATE)  

Let us consider the same problem as in the previous subsection except in 

this case the objective is to determine the optimum cutpoints p
* 
	1=1,2,....,n si 

such that the overall yield M given by Eq 12 is maximized. 
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Necessary Conditions for Optimization 

Since the ash balance condition given by Eq 8 is incorporated in the 

expression of M (Eq 12), then the necessary conditions for maximization are 

(Adby and Dempster, 1969 and Mitra 1976): 

0 	 Eq 16 
ap su 

p=1,2,....,n 

implementing Eq 16 and after some manipulations we can arrive at: 

3M 
P 

n * * * * 	* * 	* * 
E Fi [(Mi (p5i )Ai (p5i

)+a
p
(p

sp
)(100-M i (psi ))] = 100Ar , 

i=1 

p =1, 2,....,n 

where (A r  -A  p  ) and d[Mp (psp )]/dp are assumed not equal to zero and sp 

F i = Fi / E F i  
j.1 

Eq 17 

Eq 18 

Close examination of Eq 17 indicates that the maximum yield will occur at the 
* 	* 	 * * 

same incremental ash (i.e. a1 (p*sl )=a2 (p*s2 )- 	=a( 	)) for all streams, n Psn 
however its value is not defined as in the previous case. In terms of the 

supplement ashes SAi (psi ), i=1,2,....,n Equation 17 can be rewritten as, 

n. 	* * 
SA (Pe 	 ) 	E Fi SAi (psi ) = 100Ar 

	

' Ps2" — " psn 	i=1  Eq 19 

Equation 19 indicates that the weighted sum of the Supplement Ashes SA (n i.,s i), 
i=1,2,....,n is equal to Ar . It must be emphasized that the necessary condition 

given by Eq 19 is only valid at local maximum. 

Since the processing will be at the same incremental ash, then at a • 

particular value of incremental ash let us determine the overall yield Mw , ash 

yield product AMw , and ash Aw  as: 
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n . 
Mw(Ps1' Ps2' .6..,Psn ) = E F iM i (Psi ) 

1.1 n . 
AMw (psl' ps2'

....,p
sn
) . E F M.(p )A (P 5j ) i 1 si i si 1.1 

Aw(Psl' Ps2" — " psn )  = AMw (Psl' Ps2" — " psn )/Aw (Psl' Ps2" — " Psn )  

Eq 20 

where the subscript w designate processing circuits. When Aw ( ‘ Psl' Ps2" — " Psn )  

equals A , the corresponding overall supplement ash SAw is given as P 

n. 
§il
w 

. { E F i SAi (Psi )) p 
 1.1 

It is also beneficial to introduce the quantity Aw  as 

n . 
Aw . E F A. 1.1  ii 

Eq 21 

Eq 22 

Based on the quantities  SAw  and Aw  there are several cases to be investigated. 

Also as in the case of mass flow rate maximization there is a limiting value A 1
, 

such that if A < A there is no contribution from the raw coal stream. 	The p - p 

value A is determined when the cumulative ashSAw = Ar . 
P 

Case # 1, SA < A and A < A < A w 	r 	p 	r 	w 

In this case the maximum yield is determined by using the processing 

circuits only (no raw coal stream contribution). The processing is at the same 

incremental ash and the overall ash Aw(psl' p52'....,psn)  is equal to  A. 
P 

Case # 2, SA > A and A < A < A w 	r 	p 	r 	w 

The necessary conditions given in Eq 19 are applicable in this case. The 

intersection of the line, tangent to the (AwMw ,Mw ) curve and passing through the 

point Ar on the A(p)M(p) axis, and the A -line will determine the proportion of 
P 

FrelativetothemassflowratesF.'s. r   1 
Case # 3, A <A <A 

P 	w 	r  

In this case we obtain the same results as in Case #1 and the largest A is 
P 

equal to  A. 
Case *4, A <A <A 

W 	p 	r  

This case is unrealistic since the maximum yield is 100 per cent and is 
* 

obtained by raw coal blending (no processing). The optimum value of Fr depends 
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on the location of A relative to the Ai ' s and Ar . Since A lies between Aw and 

A r then a solution is guaranteed for Fr . 

These cases will be illustrated graphically and numerically utilizing the 

following special case. 

Single size range stream (n=1) 

For single size range of a coal to be processed, Eq 17 reduces to: 

* * * * 	* * 	* * 
M1 (psl )A1 (psl )+a1 (psl )(100-M 1 (psl

)) . S4(p51 ) =100Ar Eq 23 

This condition and cases # 1 to # 4 discussed earlier can be'st be 

illustrated by utilizing the M-curve representation. In this case the M-curve of 

the single size range is given in Fig. 4, where the Al  = 16.47 per cent. 	There 
is no loss of generality by assuming F 1 	1.0. A smoothing cubic spline for 

interpolating along the M-curve and an optimization scheme are used to determine 

the optimum yield M1 and Fr to maximize the overall yield. In this case the 

value of A7.00  per cent. The numerical results obtained are given in Table 4. 

Table 4 - Yield maximization results (case n=1) 

* 
SA <A w- r 	Ar=12.00% 	M1=83.58Z 

Case #1 	A <A <A 	A =06.00% 	F
*

=00.00 	 M
*
=83.58% p- r 	w 	P 	 r 	 P 

* 	* 
SA <12.00Z 
w- 	

A1 (ps 1)=Ap  

* 
SA >A w 	r 	Ar.12.00% 	M1=87.35Z 

Case #2 	A <A <A 	A =10.007; 	F
*
r=1.2316 	 M*=94•33Z p- r 	w 	P 	 P 
* 	* 

SAw>12.00% 	A1(ps1 )=07.18% 

* 
Ar=19.00% 	M1  =91.66% 

Case #3 	A <A <A 	A =10.00% 	F
*
=00.00 	 14

*
=91.66Z p 	w- r 	P 	 r 	 P 

* 	* 
Aw=16.47Z 	A1 (psl )=Ap  

A =20.00% 	M
*

=100.00Z r 	1 
* 

Case #4 	A <A <A 	A =18.00% 	F.0.765 	• M
*

=100.00% w- p 	r 	P 	 r 	 P 
* 

A=16.47% 	A =A w 	
P 	P 



60 

70 

80 

90 

15 

4 

t 

\k, 
\ v, 

\ \`, 10 1 \ \\ 
\ \ \ 

\ \ \ \ \ \ \ 
\ , \ 

-11 	\ \ 20 . 	\ \ \ \\\ 

\ \ \ 
■ 	\\ 
\ \\ 
\ \\ 

3011 	\ 	\ \ 
\ \\ 
\ \\ 
\ \\ 

	

\ 	\ \ 

401 	\ ■ 	\ 
\ 	

\ \\ 
	 ' 

	

\ 	\ 	\ 

	

\ 	\ 	\ 

	

\ 	\ 

\\ 	
\ 
\ 	

\ 
\ \ 

\ 

.---. 	 \ 	\ 	\ 

	

\ 	\ 
\ 

\ 	\ 	
\ 

\ 	 \ 
\ 	\ 

\ 	\ 	\ 
\ 	 \ 	\ 

	

\ 	 \ 	\ 

	

\ 	 \ 	\ 

	

\ 	 \ 	\ 

	

\ 	 \ 	\ 

	

\ 	 \ 	\ 

	

\ 	 \ 	\ 

\ 	 \ 	\ 

\ 	 \ 	\ 

\ 	 \ 	\ 

\ 	 \ 	\ 
\ 	\ 

\ 	 \ 	\ 
\ 	 \ 	\ 
\ T1 	 \ 	\ 

\ Ei 	 \ 	\ 

\ 	
\ 
\ 

\ 

100 
12 	14 	16x100 

A(P)m(P) 

Fig. 4 Yield maximization (case n=1) 



* * 	* * 
ap+1 (pp+1 ) = ap (pp ) 

,n-1 

Eq 24 
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Cases # 1, # 3 and # 4 are extreme cases (F r 	0.0 or M 1 	100.00 per cent) and 

do not represent local minimum, consequently condition given by Eq 23 is not 

applicable. However in case # 2 we have a local minimum and condition given by 

Eq 23 can be applied. A graphical approach to determine the optimum solution 

for case # 2 is suggested. The graphical construction is described as follows 

(Fig. 4) : 

- from the point Ar 	12.00 per cent on the A(p)M(p) axis we draw the 

tangent to the M-curve where point p, can be located, 
* 

- at point p l  the supplement ash SA, 
(Pe) 	Ar 	12.00 per cent, i.e. 

condition given by Eq 23 is satisfied, 
* * 

- point p l  will determine the optimum yield (Ml(Ps1))  and ash (Al  
(Psi ))  

of the processed coal, 

- location of point p2  relative to p l  and Ar  will determine the optimum 

F r • relative to F 1 . 

This will complete the analysis of the special case. 

FIXED MASS FLOE RATES 

Let us assume that there is no raw coal blending and the mass feed rates 

F.'s are fixed. In this case the overall product yield maximization is 

equivalent to the overall product mass flow rate maximization, i.e. the optimum 

cutpoints for overall product yield or mass flow rate maximization are the same. 

It can be derived that the necessary conditions for maximization are (Adby 
and Dempster, 1969 and Mitra, 1976): 

Eq 24 indicates that the optimum cutpoints occur when the elementary ash content 
of the products in the different processing circuits are equal. This result is 
independent of the blending ratios. Through the use of blending ratios and the 
M-curves for coal streams the graphical and numerical techniques developed by 
Salama (1986) for optimum coal blending could be applied. In the case where one 
of the streams bypasses its processing circuit (i.e. raw coal blending) can be 

handled in a similar way and a codition similar to Eq 24 is• obtained (Salama, 

1986). 



Fr + E F. = F (constant) f 1=1 
Eq 25 
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OPTIMIZATION OF PARALLEL COAL PROCESSING CIRCUIT : 

FREE STREAM MASS FLOW RATES 

Considering the parallel coal processing circuit shown in Fig. 2 where the 

mass flow rates F 	i=1,2,....,n and Fr are assumed to be free and greater than 

zero. However, the overall mass flow rate F f  is assumed constant. 	These 

conditions imply that the coal characteristics (washability) for the streams to 

be processed and raw coal stream are the same and Ar=A1=A2......An . This 

particular situation appears in the case of cleaning coal in a modular 

arrangement. Since the overall mass flow rate is fixed then it is obvious that 

the overall mass flow rate maximization is equivalent to the overall yield 

maximization, i.e. the optimum cutpoints for overall product yield or mass flow 

rate maximization are the same. 

The objective is to determine the optimum sets of cutpoints
*
. and mass 

Psi 
flowratesF9.%i=1,2,....,n, such that the overall product mass flow rate F 

given in Eq 10 is maximized subject to the mass balance condition : 

where Fr is given by Eq 9. 

Necessary Conditions for Optimization 

Since the problem under consideration contains an equality (Eq 25), then the 

necessary conditions can be obtained by introducing the Lagrangian • as (Adby and 

Dempster, 1969 and Mitra, 1976): 

A -A (p .) 	n 	A -Ai (psi ) n 
E F.M (p .) 	 4-kd E F.M.(p .)  P 	+ E F.-F ] 

1 i si 	 1 	1 1 si i=1 1 f i=1 	A -A 	i=1 	A -A r p 	 r p 

Eq 26 

where Xi  is a scalar multiplier. The necessary conditions for optimization are: 

3. 	a n 	A -A.(p ) 	n r 1 si 	 A -A.(p .) 
[ E F.M (p .) 	 +X.1  E F.14„(p • 	p1 si 

) 	0 
57-- 	 1 	si A -A 	1...1 	A 1 -A 'si 	'si - 	 r p 	 r p 

Eq 27 



Eq 29 

* * 
SA (p ) =A  sp Eq 32 

3a=1,2,....,n 
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af 	 A -A (p ) 	 A -A (p ) 

n  M(Pgd  r 
V Sp 

4.À1M (P  )  P e  "  -m A _A 	 su 	 = J  
p 	 A -A rp 

11 -1,2,061 , 4,11 

and 

* * 
* * * Ap-Ai (psi ) 	n * 

E F i M i (psi ) 	  + E F
i
= F

f i=1 	A -A 	i=1 r p 

After some simplifications, Eqs 27 and 28 reduce to 

a
* 

 (p
* 

) = (A  +X *A )/(1+X ) aM ( su 	r 	p 

* * 	* * 
su r p su X = 

(A r  -A  p )+M
*
(p

* 
)(A -A

*
(psu

* 
)) su p p  

p =1,2,....,n 

Eq 30 

Eq 31 

where (A r  -A  p  ) and d[M (psP 
 )]/dpsu  are assumed not equal to zero. 	Equation 31 P  

indicates 	that 	the 	incremental 	ashes a (p ), u=1,2,....,n are equal. su 
Substituting Eq 31 into Eq 30 and after some manipulations we arrive at the 

following condition 

Eqs 30 and 32 indicate that the processing will be at the same incremental ash 
and the optimum supplement ash for each stream is equal to Ar . Since each stream 
has the same washability and Ar=A1=A2=.....An then it can be shown that Eq 32 

will only be satisfied when there is no coal processing and A p  =A  r  . However if 
A p  <Ar  and noticing that Eq 32 is identical to Eq 23, then the maximum overall 
yield will occur when the processing in each circuit is at the same ash level A 
and no middlings or raw coal contribution (Cierpisz and Gottfried, 1977). 
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CONCLUSIONS 

The 	problem of determining the optimum cutpoints of separation for 

processing different size ranges of a coal in parallel coal processing circuits 
which produce an overall product of maximum yield or mass flow rate at specified 
ash or sulphur level is investigated. In the case of fixed mass flow rates and 
free raw coal mass flow rate the overall product mass flow rate is maximum when 

the processing occurs when the elementary ash of product in each circuit equals 
the middlings or raw coal cumulative ash. However the overall product yield is 

maximum when the weighted sum of the supplement ashes is equal to the middlings 
or raw coal cumulative ash. The case of free mass flow rates with fixed overall 
feed mass flow rate is also investigated, however in most practical cases the 

mass flow rates are specified. 

While in our investigation we assumed the coal processing is ideal density 

separation, but in practise we encounter non-ideal separation. In such 
situations, if the M-curve is replaced by a pseudo M-curve which represents 

actual overall yield and cumulative ash characteristics of the processing unit 
when processing a particular coal, then most of the results reported in this 
paper can be applied on the pseudo M-curve. 

The results obtained along with the M-curves of coal streams could be used 
to determine graphically the theoretical yield and ashes of the products. These 
results present to coal preparation engineer an effective and easy to apply 
methods to evaluate the processing and enables him to set processing parameters. 
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