

Energy, Mines and Resources Canada Énergie, Mines et Ressources Canada

Canada Centre for Mineral and Energy Technology Centre canadien de la technologie des minéraux et de l'énergie

Energy Research Laboratories

Laboratoires de recherche sur l'énergie

a 3068 70 POROUS MEMBRANES FOR HIGH TEMPERATURE RECOVERY OF HYDROGEN

ERL 90-0100 CPUB

Canada

PC10-06 12

a 306 8 70 porous membranes for high temperature recovery of hydrogen

- 3

ERL 90-0100 CRUB

Brian Farnand and Craig Fairbridge January 1990

ENERGY RESEARCH LABORATORIES

THIS REPORT IS CONFIDENTIAL. ACCESS TO IT IS RESTRICTED TO EMPLOYEES OF ENERGY, MINES AND RESOURCES AND TO PERSONS AUTHORIZED BY THE HYDROGEN INDUSTRY COUNCIL.

CPUB

Porous Membranes for High Temperature Recovery of Hydrogen

<u>Synopsis:</u>

The separation of hydrogen from other gases at high temperature by the use of membranes shall be investigated. Novel membrane materials such as metals, ceramics, high service temperature polymers and glasses shall be investigated. Further, the performance of membranes for the generation of hydrogen by the catalytic decomposition of hydrogen sulphide at the membrane surface shall also be investigated.

Objectives:

1. To test high temperature porous membranes for the separation of hydrogen from other gases.

- 3

2. To evaluate new formulations and materials for their performance as membranes in the high temperature separation of hydrogen.

3. To determine the limits of performance for high temperature separations in the presence of corrosive gases.

4. To use membranes as a support for catalysts that cause the dissociation of hydrogen sulphide to elemental sulphur and hydrogen, and to use Knudsen flow to create a purified hydrogen stream.

Benefits/Risks:

+ A separation of hydrogen at high temperature and low pressure shall improve the economics and safety of hydrogen generation.

+ Near commercial membrane technology can be exploited for the generation of hydrogen.

+ Hydrogen is removed without the use of solvents.

+ The replacement of the Claus process with a process which produces hydrogen as a byproduct.

+ The replacement of absorption in natural gas sweetening with a membrane reaction process eliminates a pernicious waste stream (stripper sludge).

- Operation at 500 $^\circ\text{C}$ and higher may be too challenging for most membranes in the presence of H_2S .

- Economic benefits may not be adequate for commercial operation or for displacement of proven technology.

- Porous membranes may not perform as expected at elevated temperatures.

- Catalysts may not be active enough to exploit the membrane supported catalysts within limiting membrane temperatures.

Background:

A spinoff of nuclear weapons technology is the high temperature membranes developed for nuclear isotope separation which have become commercially available for other processes. While the original use was for the high temperature diffusion separation of isotopes according to Graham's law, advances in ceramics have permitted the preparation of small pore membranes suitable for the separation of elemental gases. These membranes and high operating temperature can be used to exploit the large molecular difference of H_2 and other gases such as H_2S , CO_2 , COS, CO, S_2 and CH_4 . These are the waste products of natural gas sweetening operations that are currently processed by the Claus process or other similar sulphur reduction processes.

An example of the membranes that have become available is the recently introduced ALCOA Membralox ceramic membranes for food processing and other service to 425°C that take advantage of the inertness of the ceramic membranes, their resistance to thermal stress, and the ruggedness of the membrane for backflushing and cleaning. Their application to the separation of gases is limited to high temperatures where Knudsen flow is dominant because of their large pore size distributions.

Some polymers show excellent temperature resistance to 350°C, such as polybenzimidazole(350°C), polybenzothiazole(300°C), and polyimide(320°C) which are used for jet turbine manufacture because of their light weight. Use of such polymers for membrane manufacture has been reported in the scientific literature, though there are no commercial units available.

Two approaches are considered for a process to recover hydrogen. They are:

- 1, the use of a membrane process to treat hydrogen rich effluent for the removal of hydrogen and recycle H_2S for further reaction;
- 2, the use of membranes that combine the catalytic dissociation of H_2S with the selective removal of hydrogen by Knudsen flow.

From a brief review of similar studies, there has not been a comprehensive assessment of the removal of hydrogen from polar gases at the conditions that would be present in an H_2S decomposition reactor effluent rich in hydrogen such as in a thermal diffusion reactor with thermal/catalytic dissociation of H_2S to H_2 and elemental sulphur. The dissociation reaction is favoured by high temperature, which may preclude the use of polymeric membranes even at the temperatures described above. However, the possibility of a membrane surface shift in the decomposition reaction by the immediate permeation of hydrogen with rejection of elemental sulphur and H_2S has not been well investigated. This provides an opportunity for a selective membrane process to remove hydrogen from an H_2S containing natural gas stream.

<u>References:</u>

Al-Shamma,L. and Naman,S.A., "Kinetic study for thermal production of hydrogen from hydrogen sulfide by heterogenous catalysis of vanadium sulfide in a flow system", Int. J. Hydrogen Energy, <u>14</u>, 173 (1989).

Bandermann,F. and Harder, K.B., "Production of H_2 via thermal decomposition of H_2S and separation of H_2 and H_2S by pressure swing absorption", Int. J. Hydrogen Energy, $\underline{7}$, 471 (1982).

Kameyama,T.; Dokiya,M.; Fujishige,H.; Yokokawa,H.; Fukuda, K., "Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes", Int. J. Hydrogen Energy, <u>8</u>, 5 (1983).

,

.

Work Plan

Task 1 Literature Survey

A survey of the existing gas processing literature shall be made in scientific journals, patent disclosures and technical literature. Producers of candidate membranes and membrane materials shall be contacted for detailed product information. A brief report describing the state of the art shall be prepared along with an assessment of the viability of the project.

Task 2 Polymer Membrane Testing

Preliminary experiments with polymeric membranes shall be performed at temperatures in the range of 100° C. Membranes shall be fabricated by literature methods, obtained from manufacturers, or modified for high temperature operation. The permeation experiments shall be performed with gases that are expected to be in hydrogen rich reactor effluent streams containing mainly H₂ with H₂S, CO₂, COS, CO and CH₄. The goal of this separation is to produce a purified H₂ stream. Special high temperature polymeric membranes shall then be reevaluated at higher temperatures, approaching their limiting service temperatures. These polymers shall include both pure resin and composites of polybenzimidazoles, polybenzothiazoles, and polyimides, as well other high temperature polymer systems identified in the literature survey. These membranes shall be tested with the same gases as before at higher temperatures up to their failure point. A minimum total of 10 experiments shall be performed.

Task 3 Inorganic Membrane Testing

As in Task 2, inorganic membranes shall be evaluated for selective permeation of synthetic hydrogen rich reactor effluent streams with the goal of producing a purified hydrogen stream. The membranes used in this task shall be obtained from manufacturers or made in-house from literature descriptions of methods. These shall first be tested at 100° C for their ability to produce a hydrogen rich product from a blend of the same gases as used in Task 2. They shall then be tested at temperatures approaching their thermal limitations with the same gases. A minimum total of 10 experiments shall be performed.

Task 4 Membrane Reactor Fabrication and Testing

Various catalysts that cause the dissociation of hydrogen and sulphur from H_2S shall be added onto the surface of inorganic membranes. These shall include MoS₂ and other successful catalysts identified in the literature survey or ongoing in-house projects. These shall be evaluated up to the limiting operating temperatures of the membrane supports. Feed gases to be tested shall include synthetic H_2S rich streams representing natural gas sweetening conditions, synthetic gas representing a hydrogen generation reactor effluent with H_2S , and synthetic well head natural gas containing H_2S . A minimum total of 10 experiments shall be performed.

Task 5 Final Report

Ł

The experimental results and their interpretation shall be included in a final report. A brief economic assessment based upon textbook values and M&S indices shall be used to evaluate the most promising configuration with a design basis suitable for an operating natural gas sweetening plant. Recommendations for the direction of future work shall be made.

<u>Timetable</u>

Year 1 Task Month <u> 8 9 10 11 12</u> 3 5 6 0 2 4 7 1 1. Literature Survey **** 2. Polymer Membrane Test ***** 3. Inorganic Membrane Test **** . . 3 4. Membrane Reactor , 5. Final Report

Year 2

Task		Month											
	_0	1	2	3	4	5	6	7	_8	9	10	11	12
1. Literature Survey	cor	nplet	te										
2. Polymer Membrane Test	cor	nplet	te										
3. Inorganic Membrane Test		****											
4. Membrane Reactor			*	****	****	****	****	****	****	***	****	****	
5. Final Report												*	***

Price Proposal

Project Team and Physical Resources:

Dr. Brian Farnand will be the project leader and a principle investigator. Dr. Craig Fairbridge will be the other principle researcher. Mr. Terrance Giddings is the research chemist that will perform most of the experiments.

	Days	\$/h	Total	Task Total
Task l Research Scientist Research Chemist	20 5	86 58 _{.3}	12900 2175	\$15 075
Task 2 Research Scientist Research Chemist	33 40	". 86 58	21285 17400	\$38 685
Task 3 Research Scientist Research Chemist	44 40	86 、 58	28380 17400	\$45 780
Task 4 Research Scientist Research Chemist Metal Analyses	50 30 25	86 58 84	32250 13050 2100	\$79 650
Task 5 Research Scientist Research Chemist	20 05	86 58	12900 2175	\$15 O75

Total For Project

\$194 265

BRIAN A. FARNAND

<u>CLASSIFICATION</u>	Research Scientist 02			
EDUCATION		University of Ottawa (Chemical Engineering) University of Ottawa (Chemical Engineering)		
<u>EMPLOYMENT</u>	1978-82 1	University of Ottawa, Dept. Chemical Engineering -Graduate Student		
	1978-82	National Research Council Canada, Division of Chemistry -Guest Researcher		
	1982 to present	Energy Mines and Resources Canada, Ottawa, Ont. -Research Scientist		

RECENT PROJECTS

 Processing Sludge Derived Oil The oil product of sewage sludge pyrolysis was treated to create raw materials for petroleum refining.

2. Membrane Processing of Petroleum Distillate Reverse osmosis and pervaporation were studied for the removal of aromatics from naphtha and middle distillate.

PATENTS AND PUBLICATIONS

2 Patents issued

15 Refereed publications

Craig Fairbridge

-

CLASSIFICATION	Research Scientist (SE RES 02)	
EDUCATION	Ph. D. Chemistry, University of St. Andrews M. Sc. Chemistry, Lakehead University H.B. Sc. Chemistry, Lakehead University	1981 1976 1973
EMPLOYMENT	,	
1987-1989	Assistant Program Director, Fuels Technology CANMET Research Program Office Energy, Mines and Resources Canada, Ottawa, Ontario	
and ma	 preparation of policy and program planning documer coordination of CANMET Energy Conversion Program development of guidelines for communications rketing coordination of all oil and gas contracted-out R&E 	
1981-1987	Research Scientist, Catalytic Hydroprocessing CANMET Energy Research Laboratories Energy, Mines and Resources Canada, Ottawa, Ontario	
of	 evaluation of catalysts for the hydroprocessing coal-derived distillates design of novel catalyst characterization methods 	
1976-1977	Research Assistant, Chemistry Department Lakehead University, Thunder Bay, Ontario	
	- design, fabrication and maintenance of reactor systems for studying gas-solid reactions	
1968-1970	Laboratory Technician, Science Instrumentation Laboratory, Lakehead University, Thunder Bay, Ontaric)
	- chemical analyses	
RECENT PROJECTS		
	 application of fractal geometry to problems in su chemistry review of characterization of porous solids 	rface.
PUBLICATIONS		
Ň	21 papers in refereed journals 4 papers in conference proceedings 3 internal reports 18 presentations at conferences	

<u>Terrance Giddings</u>

...

•

<u>CLASSIFICATION</u> Research Chemist 02

EDUCATION		
<u> </u>	1985	B.Sc., Carleton University (Chemistry)
EMPLOYMENT	1986-87	Agriculture Canada, Sault Ste.Marie, Ont. -Technician, Pesticide Accountability and Analyses
	1987-88	Agriculture Canada, Ottawa, Ontario -Technician, Pesticide Analyses
	1988-89	Department of National Defence, Hull, Que. -Technician, Textile and Gas Analyses
	1989 to present	Energy Mines and Resources Canada, Ottawa -Research Chemist