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ABSTRACT 

Hydrocracking runs were carried out in a 1 bbl/d pilot 

plant using vacuum tower bottoms (VTB) from a blend of Western 

Canadian heavy crudes. 	The effect of the superficial gas 

velocity on the reactor dynamics and on the conversion of VTB to 

distillate was examined for several sets of superficial gas 

velocities and various temperatures. 	A gamma-ray interrogation 

method was applied to examine the hydrodynamics of multi-phase 

flows in the bubble column reactor. 

Because hydrocracking reactions occur in the liquid 

phase, the pitch (524 ° C+) conversion is strongly affected by the 

liquid holdup which is a function of the superficial gas 

velocity. 	In these runs, the effect of gas velocity on pitch 

conversion was strong enough to offset the normal increase in 

pitch conversion with temperature so that similar pitch 

conversion could be obtained for different combinations of 

temperature and gas velocity. 	Product distributions were 

uniquely correlated with the pitch conversion and a first order 

lumped parameter kinetic model was applicable. 	Sulphur 

conversion was also correlated with pitch conversion. 
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INTRODUCTION 

Hydroprocessing is an important approach to upgrade 

resid. 	The hydrogen is used to increase the H/C ratio in the 

products, and to hydrodesulphurize and hydrodenitrogenate the 

resid. 	All commercial processes require high temperatures and 

pressures to achieve high conversions: the temperature is 

normally chosen to achieve the desired high rate of the chemical 

reaction, whereas the high pressure enhances the mass transfer of 

hydrogen into the liquid phase for reaction with the residue. 

The CANMET hydrocracking process is a typical example. 	It was 

developed as part of a continuing program at the Energy Research 

Laboratories of CANMET to develop hydroprocessing technologies to 

upgrade the Canadian tar sands bitumen and refinery vacuum tower 

bottoms (VTB) using bubble column reactors (1). 

Careful investigations on the coupling of hydrodynamics 

and upgrading kinetics are absolutely necessary in the 

development of hydroprocesses in order to ensure that the 

fundamental data decoupled from physical factors are obtained for, 

the application to predict the reaction in commercial-scale 

reactors. Although bubble column reactors have the advantage of 

being easily constructed, 	the scaleup rules are not 

straightforward because of the complexity of the multi-phase flow 

hydrodynamics (2). 	This is especially true in the resid 

upgrading applications, in which additional complexity arises 

from the lack of knowledge concerning the detailed chemical and 

physical properties of the reaction medium. 	In this study, the 

effect of gas rate on hydrodynamics in a bubble column resid 

hydrocracker is discussed in relation to the reaction kinetics 

and the final product yield and distribution. 

EXPERIMENTAL 

A CANMET primary upgrading pilot plant equipped with a 

tubular reactor was used for this study. 	A schematic of the 
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pilot plant is shown in Fig. 1. 	Liquid feed containing fine 

powdered additive was combined with the hydrogen-rich recycle gas 

and the mixture was fed through a preheating section into the 

bottom of the reactor. 	The reactor was operated in the 

concurrent bubble column mode. 	Four electric heaters were used 

to control the internal temperatures, allowing the fluid to be 

essentially isothermal along the length of the reactor. 	The 

product effluent from the top of the reactor was fed into a hot 

separator where the heavy liquid product is let down to 

atmospheric pressure. 	The vapour in the hot separator was 

discharged into a cold separator where the C 4 + products were 

condensed and let down to ambient conditions. 	The noncondensable 

gas was then passed through a water scrubber in series with an 

oil scrubber to control the hydrogen purity. 	The scrubbed gas 

was then combined with make-up hydrogen and recirculated to the 

reactor by a gas pump. 	The maximum superficial gas velocity 

through the reactor was 12 cm/s. 

The feed used was a blend of Western Canadian heavy 

crude vacuum tower bottoms (VTB) obtained from Petro-Canada's 

refinery at Montreal. The properties of the feed are given in 

Table 1. 

Twenty-five steady state hydrocracking runs were 

carried out at five temperatures. At each temperature, five runs 

were carried out at different superficial gas velocities. 	The 

run lengths ranged from 11 to 34 h. 	Including the time between 

runs, the total duration of the experiment was longer than 53 d. 

The superficial gas velocities were estimated by using van der 

Waals equation of state based on the compositions of recycle gas 

at the point of entering the reactor. 

The hourly and cumulative volumetric and mass rates for 

input and output streams were measured during each run. Samples 

from each stream were taken to measure the properties. The pitch 

concentration in the feed and in the samples obtained from the 
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bottom of the hot separator were measured by a Podbielniac 

distillation apparatus. 	Distillate fractions were obtained by 

Hempel distillation. 

Reactor fluid densities, which are directly related to 

hydrodynamic parameters, were measured for each set of 

temperature/flow rate hydrocracking conditions using a single 

beam gamma-ray densitometer (Fig. 2)(3). 

RESULTS AND DISCUSSION 

The pitch conversions are plotted against reactor 

temperatures in Fig. 3 and against superficial gas velocities in 

Fig. 4. 	The conversion is a strong function of temperature and 

gas velocity. 	The reaction rate increased as the temperature 

increased, whereas it decreased as the gas rate increased. 	The 

plot of pitch conversion against reactor temperature in Fig. 3 is 

smoother than the plot against gas velocity in Fig. 4 indicating 

that the temperature has a stronger effect than the gas rate. 

A one-dimensional dispersion model (4) using the first order 

Arrhenius rate expression and taking into account the effects of 

liquid holdup (Fig. 5) and dispersion, and product vapourization, 

is capable of describing the observed pitch conversions. 

Calculated values are shown as dots in Fig. 4. 

Note that some experiments gave similar pitch 

conversions for very different combinations of temperatures and 

gas velocities. 	Despite the large difference in operating 

conditions, both weight and volumetric yields of distillates (C 4 + 

to 524 ° C) were uniquely correlated with pitch conversion (Fig. 6 

and 7), consistent with the mo'del predictions. 

The boiling point can conveniently be used as the 

parameter to represent the continuous product distributions (5). 

The total'liquid products were cut into three fractions to examine 
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the distributions in more detail. 	Figure 8 shows the yields in 

wt % of feed for heavy gas oil (HGO 343 ° C - 524 ° C), light gas oil 

(LGO 204 ° C - 343 ° C), 	naphtha (C 4 + - 204 ° C) and C 1  - C 3  gases as 

functions of pitch conversion. 	The product distributions are 

again similar for runs with similar pitch conversions despite the 

use of different temperatures and gas velocities. 

Figure 9 shows simulated product distributions 

represented by a modified Gaussian distribution function at 40, 

60, 80 and 90 wt % pitch conversions based on the results shown 

in Fig. 8. 	The distribution of products progressively shifted to 

the lower boiling points as the pitch conversion increased. 	It 

is also shown clearly in Fig. 9 that the secondary cracking of 

high boiling point HGO is important at high pitch conversions. 

Figure 10 shows sulphur conversion plotted against 

pitch conversion. 	Clearly the sulphur conversion, like product 

yields, depends on pitch conversion regardless of the different 

combinations of temperatures and pressures. 	This allows the 

pitch conversion to be considered as the only effective parameter 

in the modelling of the kinetics of sulphur conversion. 

CONCLUSIONS 

Increasing the gas velocity decreases the liquid 

holdup, which results in a decrease in pitch conversion. 	This 

can be modelled using a first order reaction model and a 

hydraulics model. 

Identical pitch conversions can be obtained from 

combinations of temperatures  and  gas velocities. 	Correlations of 

product yields and sulphur conversion with pitch conversion were 

obtained. 
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Table 1. 	Feed Properties 

t,  

à 

Gravity 

Ash, 

Carbon, 

Hydrogen, 

Sul  phur, 

 Nitrogen, 

R.C.R., 

Pentane insolubles, 

Toluene insolubles, 

Softening point, 

Pour point, 

Vanadium, 

Nickel, 

Iron, 

Sodium, 

Potassium, 

Aluminum, 

° API 
wt 

wt 

wt 

wt 

wt 

wt 

wt 

wt 

° C 

° C 

PPm 

PPm 

PPm 

PPm 

PPm 

PPm 

6.95 

0.02 

85.4 

10.8 

2.06 

0.46 

15.4 

13.4 

0.79 

37.5 

39.0 

78 

38 

72 

24 

10 

14 
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