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ABSTRACT 

Gamma-ray densitometry has been applied in developing 

processes for upgrading heavy oils, refinery residua, tar sand 

bitumen and coal into synthetic crudes. These processes normally 

operate at high temperatures and pressures thus non-invasive 

monitors are highly desirable. 	Examples of applications at 

CANMET are given for the following three areas: gas-liquid and 

gas-liquid-solid multiphase flow hydrodynamic studies, monitoring 

of ash concentration and measurement of thermal expansion 

coefficient of liquids. 
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INTRODUCTION 

CANMET is the technological research centre of the 

Department of Energy, Mines and Resources Canada. 	Established in 

1907 as the federal Mines Branch, the name was changed in 1974 to 

the Canada Centre for Mineral and Energy Technology, to reflect 

more accurately the growing range of activities in two areas - 

mineral and energy technologies. 

The development of techniques to produce synthetic 

fuels is important because the depletion of conventional crudes 

cannot be prevented. One of the major programs in CANMET is the 

development of processes to convert heavy oil, refinery residues, 

bitumen and coal to synthetic fuels [Pruden 1987,Lunin 1981]. 

The objective of these processes is to produce lighter, low 

boiling point hydrocarbons with a higher hydrogen to carbon ratio 

(H/C) from heavier high boiling hydrocarbons with a lower H/C 

ratio containing mainly pitch with a boiling point >524 ° C. 	The 

process unit is usually integrated into an existing refinery, 

e.g., the 5000 b/d CANMET hydrocracking demonstration plant has 

been built in Petro-Canada's Montreal refinery. 	Its products are 

then blended in various streams for secondary upgrading such as 

hydrotreating to remove sulphur and nitrogen. 

In order to increase the H/C ratio in the products, two 

primary upgrading approaches can be taken. One is thermal 

cracking where the H/C ratio of a portion of products is enhanced 

at the expense of the remaining portion which has a very low H/C 

ratio. The other is to increase the H/C ratio by adding 

hydrogen, e.g., hydrocracking and coal liquefaction. 

Our research has been focused on the hydrogen addition 
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approach. 	Because heavy crudes are used and enhancement of 

hydrogen transfer from gas phase into the reactive liquid phase 

is required, multiphase flow reactors operating at high 

temperatures and pressures are used. Much of the development 

involves continuous pilot operation. 	On-line monitoring of 

operating parameters such as voidage or of ash concentration in 

process streams is required, but adequate instruments are often 

unavailable. The use of probes commonly used for monitoring 

liquid-solid multiphase flows is impractical at high pressures 

and temperatures. 	It should be noted that in multiphase flow 

chemical reactors, the volume occupied by the individual phases 

and the mixing of materials are vital factors which affect 

conversion efficiency and reactor performance. Therefore, 

techniques which do not involve the penetration of instruments 

through the reactor wall thus reducing reactor volume and 

disturbing the flow are highly desirable. 	The demand for non- 

invasive "probes" for hydrodynamic studies and instruments for 

rapid ash measurements prompted a study of the application of 

radiation methods. 

This paper describes examples of applications which 

have been made in the last few years. The instruments which were 

used to generate information for this paper were designed, 

constructed and assembled by the Atomic Energy of Canada Limited 

- Chalk River Nuclear Laboratories (AECL-CRNL). 
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MULTIPHASE FLOW REACTOR HYDRODYNAMIC STUDIES 

SCANNING DENSITOMETRY  

A Cs-135 scanning densitometer equipped with a NaI(T1) 

detector was used (Fig. 1). 	A Canberra multichannel analyzer 

(MCA) was used to record the counting rates as a function of time 

by using its multichannel scale recurring (MCSR) mode. 	The 

combination of a rate meter with an MCA allows the probability 

density distributions (PDD) to be directly measured by using its 

sampling voltage analysis (SVA) mode. 

Although the scanner has been used for fundamental 

studies in which transparent columns were employed, it has been 

used mainly for on-line pilot plant reactor measurements using 

thick-wall steel vessels. 	In the latter case, the gamma-ray 

scanner can be positioned at one of four fixed locations using a 

movable platform. The scanner itself has a vertical scan range 

of 1 m. 	Combining this with the four platform positions, almost 

the entire 3.9 m long reactor can be scanned. 

The scanner allows a narrow-beam gamma ray to be 

positioned precisely in a vertical and horizontal two-dimensional 

(2D) space for stationary measurements as well as for scanning in 

both directions. 	Scan speeds can be adjusted continuously. 

The precise 2D positioning of the gamma ray is needed 

because of thermal expansion of the reactor and the associated 

pipes. 
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PILOT PLANT  

On-line measurements were made in the hydrocracking 

pilot plant, a brief description of which is presented here. 

Figure 2 shows a schematic of the pilot plant. 	Feed is kept in a 

stirred tank at a convenient temperature. The feed is pumped 

into the system by a piston pump. 	The liquid combines with a 

recycled gas stream before passing through a series of preheaters 

operating at selected elevated temperatures. The gas/liquid 

mixture is then injected into the reactor bottom. The reactor 

temperature is maintained at a desired value by electric heaters 

(Fig. 3). 	The product flows through a cross-over line at the top 

into a series of two separators where the heavy and light oils 

are separated and discharged. The gas continues to flow through a 

water scrubber and then an oil scrubber which control the 

hydrogen purity. 	Fresh hydrogen is introduced into the system to 

make up the amount consumed in the reaction and the losses along 

with discharged streams. The gas is recirculated by a 

compressor. This gas stream is then preheated to the inlet feed 

temperature before merging with the liquid feed to enter the 

preheater. Flowrates of various streams are monitored 

continuously. 

POSITIONING OF GAMMA RAY  

The reactor hydrodynamics were studied by using a 

scanning gamma-ray densitometer. A view of the densitometer and 

a portion of the reactor without insulation is shown in Fig. 3. 

The top of the reactor is fixed. 	The reactor has an internal 
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diameter of 3.8 cm and has 1.9 cm walls. The thermal expansion 

of the reactor and the inlet line at the bottom cause the reactor 

position to vary with changes in temperature. Once the scanner 

is moved to a selected position, the MCSR spectra can be recorded 

for constant speed scans. 

The gamma ray can be located readily at a desired 

vertical reactor position because the top of the reactor is fixed 

and each section of the vertical scan MCSR spectrum has a 

characteristic pattern (Fig. 4) caused by the attenuation of 

heaters and flanges. 

To locate the gamma ray across the axis of the reactor, 

a constant horizontal scan is made across the reactor and its 

MCSR spectrum is recorded. The minimum count rate occurs when 

the gamma-ray beam just grazes the inside of the reactor wall. 

Figure 5 shows an MCSR spectrum for the scan from one side of the 

reacior wall to the other and back to the centre. The time for a 

scan across an inner diameter of the reactor is the duration 

between the first two minima of the MCSR spectrum (Fig. 5). 	It 

is equal to the product of the dwell time, i.e., the time 

required for one channel measurement, multiplied by the channel 

number between these two minima. 	Half of this time is used to 

move the gamma ray from one side to the centre of the reactor. 

HYDRODYNAMIC MEASUREMENTS  

Information on holdups and flow regimes is important 

for control and scale up of multiphase flow reactors [Shah 

1978]. Hydrodynamic phenomena can be different from one location 

to another in both commercial and pilot-scale reactors. 
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Therefore, measurements were made at 12 points along the reactor. 

The techniques involve the measurements of MCSR spectra and 

probability density distribution (PDD) functions. 	The flow 

regimes can usually be identified from the MCSR spectrum 

according to its features, for instance, a peak appears whenever 

a large bubble passes through the gamma ray (Fig. 6), a relative 

flat low count rate spectrum may result from a homogeneous bubble 

flow and a flat high count-rate spectrum may be obtained from an 

annular, dense fine bubble or foaming flow. 	Ambiguity in the 

determination of the flow regime by MCSR spectrum alone could 

occur. 	It is therefore necessary to examined carefully the PDD 

spectrum, which will provide unambiguous information [Lipsett 

1986, Liu 1985]. 

The spatial local voidage G(z) was determined by the 

spectrum analysis methods described [Lipsett 1986]. 	Figure 7 

shows the results of local voidage measurements along the reactor 

carried out at 380 ° C and 13.9 MPa for a hydrogen/vacuum tower 

bottoms (VTB) system at low and high superficial velocities 

(quotient of volumetric rate/cross-sectional area). A pronounced 

change in voidage was observed at about the 1/4 length of the 

reactor from the bottom when a high superficial gas velocity was 

used. 

The temporal-spatial mean void fraction <et> was 

determined by: 

(1) > = e(z).dz 
ts  

0 
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where 

is the length of the reactor 

is the distance from the reactor bottom 

For multiphase flows operating at ambient conditions, 

the mean void fraction is commonly determined by the pressure 

drop across the length of the reactor if the density of fluid is 

known or by measuring the volume occupied by liquid when the gas 

flow is stopped. The latter approach can be conveniently carried 

out by the gamma-ray scanner. 	Figure 4 shows a vertical scan to 

find the liquid level when the gas flow bypasses the reactor. 

The discontinuity in the count rate at the liquid level is sharp 

thus the location of the interface between liquid and gas can be 

easily determined. 

The liquid level search method should, in principle, 

result in the same values as those derived from Eq. 1. 	Figure 8 

shows a comparison of measurements carried out at 13.8 MPa and 

various high temperatures. The overall voidage obtained from 

local measurements are considered to be highly accurate. One 

reason for the small difference between results of the two 

methods could be vaporization of liquid during the scan to find 

the liquid level. 

These experiments show the advantages of using scanning 

densitometry to measure hydrodynamic phenomena in continuous 

processes at high temperatures and pressures. Accurate 

measurements can be made without perturbing the system. 
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ASH MEASUREMENT 

FUNDAMENTALS  

Ash concentration, [Ash], is measured by burning a 

sample according to the standard method given by the American 

Society for Testing and Materials [ASTM 1980]. 	Although this 

parameter is only a qualitative measure because the elemental 

composition is not considered, it is often used as a quantitative 

control parameter in the petroleum and coal industry. 

An ASTM ash assay requires more than 8 h. As ash 

measurements are often required for process control, a much 

quicker method is desirable. A narrow-beam dual-energy gamma-ray 

densitometer was therefore developed in collaboration with AECL-

CRNL. The principle of dual-energy gamma-ray densitometry for 

analyzing samples containing two elements has been described 

previously [Taylor 1985]. The theory is extended for ash 

measurement below. 

Defining the attenuation ratio, R, for two energies E l  

and E 2 as: 

R = ln(I i /I i. )/1n(I 2 /I 20 ) 	 (2) 

where 

I i 	is the intensity of the attenuated beam 

I. 	is the intensity of the unattenuated beam 

The atomic ratio for an absorber (sample) consisting of 

two elements (AB) can be determined by [Taylor 1985]: 
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N /N 	= (o-# 	- Rcr )/(Ra- 	- Cr 
A 	B 	1B 	2B 	2A 	1A 

where 

	

N. 	is the number of atoms of the j
th 
 element per unit 

volume of the absorber (j = A or B). 

	

j 	
is the attenuation cross-section per atom of the th 

element (A or B) of the absorber for the energy  E. 

Equation 3 shows that the atomic ratio is independent 

of the absorber thickness. This is a great asset for industrial 

applications. 

Assuming that the process samples consist of two 

components, i.e., metal for j = A and hydrocarbons for j = B, 

and N B >> N A , we can approximate the ash concentration as: 

[Ash] • N MN + N B ) A 	A 	B 

= ( CM 	- R o- ) / [ R ( o-,  
1B 	28 	 2A 	2B 	 1A 	1B 

where " is defined as approximately proportional to. 

By selecting E l  in the photoelectric domain and E 2  in 

the Compton domain, i.e., 
(c".1A 	c'13 )  >> ( %A 	c '2B ) 	E  q  • 

4 can 

be simplified to: 

[Ash] " 
(Rce2B 	 (G-IA 	13/13 )  

(3) 

(4) 

(5) 

A linear relationship between [Ash] and R is therefore expected 
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for low ash concentration samples. 

DUAL-ENERGY DENSITOMETER AND TESTS  

A Cd-109 densitometer was designed and constructed by 

AECL-CRNL under contract to EMR. The system consists of a 

source, a compartment to house the metal sample cans and a 

NaI(T1) detector. The Cd-109 radiates two energies at "22.6 keV 

(E 1  ) and 88 keV (E 2 ). 

Two series of pilot plant runs were carried out using a 

refinery VTB with a small amount of additive. The additive 

concentration in the feed for the series B was twice that in the 

feed for the series A. The experiments were conducted at 13.9 

MPa and selected high temperatures. Samples were withdrawn from 

the reactor at the bottom, middle, upper quarter and top 

positions and directly discharged into their own metal cans. 

Count rates for the metal sampling cans without and 

with samples were measured separately by a Canberra MCA in peak 

height analysis (PHA) mode for 100 s and 600 s, respectively. 

Areas under the peaks were integrated to provide  I. and I i  from 

which R was derived according to Eq. 2. 	Following the gamma 

densitometry measurements, the ash concentration was determined 

by the ASTM method. 	Results are shown in Fig. 9. 	They indicate 

that, as expected according to Eq. 5, the correlation of [Ash] 

with R is close to linear. 	The correlation is very reproducible 

for the same type of additive used and is independent of the 

initial amount of additive. 	The large deviation from the trend 

shown in Fig. 9 was due to the deviation in ASTM ashing caused by 

difficulties in the sample preparation. 
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Applications in monitoring ash in samples with a wide 

range of concentration, a non-linear correlation may be 

necessary. 	This is because the assumption for Eq. 4 that [Ash] 

is proportional to  NA/(NA  + N B ) may not be true when the ash 

concentration is high. 	In this case, a polynomial correlation 

can be easily derived for practical applications. 

This method is quick as long as the correlation between 

R and ash concentration has been predetermined. Clearly, the 

correlation can easily be obtained by measuring selected samples 

over the range of interest using both methods. The tedious and 

sometimes troublesome sample preparation procedure for ASTM 

ashing has been eliminated for routine monitoring. 

LIQUID THERMAL EXPANSION COEFFICIENT 

The thermal expansion coefficient (or volume 

expansivity) is defined as [McCabe 1976]: 

J3 = (1/V)(BV/aT) p 	 (6) 

where P, T and V are pressure, temperature and volume, 

respectively. 

Considering a mass m of a liquid in a volume V, the 

temperature derivative of its density,jp, at constant pressure 

i s: 

E = dip/dT = d(m/V)/dT = -(m/V 2 )dV/dT 

(7) = -(m/V)P =  -fi  
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This equation shows that by measuring the density of 

liquid as a function of temperature in a sealed constant pressure 

vessel, the thermal expansion coefficient can be determined. 

Gamma-ray densitometry is an ideal technique for this 

application. 	In a series of tests, a sealed stainless steel 

container of 0.0368 m ID welded to a bellows, designed and 

constructed by AECL-CRNL, was used as the sample container. 

This vessel was suspended within a pressure vessel which was 

heated to various temperatures up to 300 ° C. The pressure vessel 

was connected to a high pressure tank of nitrogen to maintain 

13.8 MPa. The gamma-ray attenuations were then measured at 

various temperatures. The measurements were repeated when the 

sample vessel was full of light Arabian VTB. The measurements 

provide information on the density of a liquid as a function of 

temperature. 	From this function, the temperature derivatives 

(Eq. 7) were obtained to determine the thermal expansion 

coefficients. 

It was found that a precise alignment of gamma ray with 

respect to the vessel is not necessary. 	Details of theory and 

experimental have been described by Liu et al [Liu 1988]. 

CONCLUSIONS 

Gamma-ray densitometry has been extensively applied 

in our laboratory to develop primary upgrading processes for 

producing synthetic fuels. 
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Gamma-ray gauges can be used to measure hydrodynamic 

parameters in thick-wall reactors at high temperatures and 

pressures. The long assay time required using ASTM-482 method to 

measure ash concentration in hydrocarbon samples can be shortened 

dramatically, and the expansion coefficient of liquid at high 

temperatures and pressures can be easily measured. 
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FIGURES 

1. CANMET gamma-ray densitometry scanner 
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reactor without insulation 
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9. Ash concentration as a function or attenuation ratio 



Fig. 1. CANMET gamma-ray densitometry scanner 
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