01-7995437

# ERP/ERL 84-23(I)

0721

COMPARISON OF CaO, ZnO AND Fe<sub>2</sub>O<sub>3</sub> AS H<sub>2</sub>S ADSORBENTS AT HIGH TEMPERATURES

by

Motoo Yumura and Edward Furimsky

Energy Research Laboratories, Department of Energy, Mines and Resources 555 Booth Street, Ottawa, Ont., CANADA KIA OGI

# ABSTRACT

CaO, ZnO and Fe<sub>2</sub>O<sub>3</sub> oxides were compared as solid adsorbents for  $H_2S$  removal from hot gas. Increasing the temperature from 600° to 800°C increased the  $H_2S$  removal in the presence of CaO but decreased it in the presence of Fe<sub>2</sub>O<sub>3</sub>. For ZnO, the temperature change had little effect on its adsorption. The bulk adsorption capacity was the largest for Fe<sub>2</sub>O<sub>3</sub> followed by CaO and ZnO. When the results were normalized to a unit of surface area, the adsorption capacity for ZnO was the largest followed by Fe<sub>2</sub>O<sub>3</sub> and CaO.

The adsorption of  $H_2S$  was accompanied by its decomposition. In the early stages, decomposition was the most extensive in the presence of CaO. With time on stream the difference in  $H_2S$  decomposition, measured by  $H_2$  yields, became smaller.

## INTRODUCTION

Purification is an essential step prior to utilization of combustible gases. In this respect the particulate matter and corrosive components must be removed to avoid detrimental effects on material and the environment. Among the latter, a great deal of attention has been directed to sulphur-containing species, where  $H_2S$  is usually the most abundant and the most stable compound.

The formation of  $H_2S$  accompanies many industrial processes, e.g., pyrolysis, cracking, hydrocracking, hydrorefining, in which  $H_2S$  is usually in the mixture with  $H_2$ ,  $CH_4$  and higher hydrocarbons. After  $H_2S$  removal these gases could be used as valuable fuels or as a source of petrochemicals. On a commercial scale  $H_2S$  is removed by wet scrubbing techniques. This step results in a loss of  $H_2$  bound in  $H_2S$ . It would be a significant achievement if  $H_2S$  could be decomposed in order to reuse the  $H_2$ . Inevitably, such a route would require a solid catalyst and temperatures higher than those applied in wet purifications processes.

Another group of gases containing  $H_2S$  are those from gasification. Under reducing conditions, such as those usually applied during moving bed and fluidized bed gasification a substantial portion of S present in the feedstock is converted to  $H_2S$ . The  $H_2S$  removal is essential prior to utilization of gasification products either as fuel gas or as synthesis gas. In the former, the use in combined cycle power generation has been thoroughly investigated. The present status of this route indicates that the purification at a near gasification temperature is required to make this route economically viable.

Attempts to commercialize the combined cycle prompted the search for solid adsorbents which can efficiently and economically remove S-containing species. Most of the effort has been devoted to materials containing Zn, Co, and Fe. Among those CaO, ZnO and  $\text{Fe}_2O_3$  have been frequently tested. However, a study comparing the performance of these oxides on a similar basis has not yet been published. The approach used in the present study involves a normalization of the H<sub>2</sub>S adsorption to a unit of surface area of the oxides.

# EXPERIMENTAL

#### Materials

The CaO and ZnO oxides were certified Fisher products and  $Fe_2O_3$  was a reagent product of J.T. Baker Co. The powders of these oxides were pelletized using 2% binder (stearic acid) to produce pellets of 1.5 mm in diameter and 1.5 mm high. To remove the binder the pellets were roasted at 500°C overnight.

The mixture of  $N_2+H_2S$  (10 vol % of  $H_2S$ ) was of the UHP grade and was supplied by the Liquid Air Co.

## Apparatus and Procedure

The experimental system consisted of a vertical reactor made of Vycor glass (10 mm ID). The pellets were supported in the middle of the reactor by a quartz wool. For each experiment about 2 g of accurately weighed adsorbent were used. The reactor was externally heated by a Lindberg furnace. The gas mixture entered the reactor at the bottom.

The flow of gases was monitored by a Brookes flowmeter. The gas exiting the reactor passed a Bolston filter before entering the analysis system.

Prior to the experimental run the reactor, loaded with pellets was heated in the stream of  $N_2$ . After the experimental temperature was reached and stabilized the  $N_2$  was replaced by a mixture of  $N_2$  and  $H_2S$ . From that point the changes in the composition of exiting gas were followed. The flow rate of the gas mixture was maintained at 0.1 L/min.

# Analytical Procedure

A multicomponent on line mass spectrometer was used to analyse the exiting gas. This involved the determination of  $H_2S$ ,  $H_2$  and  $SO_2$  in the mixture with  $N_2$ . A data system attached to the mass spectroscope provided composition printouts every 2 min.

The arrangement of the mass spectroscope allowed the determination of  $H_2S$  in concentrations lower than 2.5 vol %. The amount of  $H_2S$  in excess of 2.5% was estimated from the peak of mass 32 which was the second most abundant peak from fragmentation of  $H_2S$ . It was established from the calibration curve that this peak was a 0.4 fraction of the parent peak which was the most adbundant. The detection limit of the system was 0.01 vol % of  $H_2S$ .

#### RESULTS AND DISCUSSION

# Adsorption Capacity of the Oxides

The concentration-time profiles for the reaction of  $H_2S$  with CaO, ZnO and  $Fe_2O_3$  were obtained at 600°, 700° and 800°C in the presence of about 2 g of adsorbent using the  $N_2 + H_2S$  mixture containing 10%  $H_2S$ . The pattern in reactions of  $H_2S$  with the oxides may be obtained when the sum of  $H_2 + H_2S$ concentrations in exiting gas is subtracted from 10. At the same time the change in  $H_2$  concentration reflected the pattern in  $H_2S$  decomposition. These trends at 700°C are shown in Fig. 1. These profiles were used to estimate the break points, i.e., the time at which the  $H_2S$  concentration in exiting gas reached 1000 ppm (Table 1). This point was chosen arbitrarily to make a comparison of the adsorbent performance. The data suggests that ZnO is the least whereas  $Fe_2O_3$  the most efficient except at temperature of 800°C when CaO appears to be the best.

The results shown in Table 1 indicate the effect of temperature on the reaction of  $H_2S$  with the oxides. Thus, in case of CaO the gradual increase of temperature from 600° to 800°C resulted in an increase of the break point time indicating an improved performance of CaO at higher temperatures. For ZnO little change in the break point time was observed. On the other hand in case of  $Fe_2O_3$  the time at which the  $H_2S$  concentration in exiting gas reached 1000 ppm decreased with increasing temperature.

In addition to  $H_2S$  and  $H_2$  the concentrations of  $SO_2$  were also followed. For CaO and ZnO the  $SO_2$  was present in the exiting gas in trace quantities only. In the presence of  $Fe_2O_3$ , relatively large quantities of  $SO_2$  were formed in the initial stages of adsorption. Thus, after about 10 min of adsorption at 600° and 800°C the  $SO_2$  concentration in the exiting gas was 0.7% and 1.2%, respectively. At break times shown in Table 1 at 600° and 800°C the concentration of  $SO_2$  in the exiting gas was about 2500 ppm and 6000 ppm, respectively. It is believed that the  $SO_2$  formation is associated with the conversion of  $Fe_2O_3$  to FeO.

It is assumed that at the point where the sum of  $H_2$  and  $H_2S$  is equal to 10 no further sulphur uptake via the exchange of oxygen ions by sulphur ions takes place. These times, together with concentration of  $H_2$  in the exiting gas in the saturation region are summarized in Table 1. In all cases the  $H_2$  concentration was higher than that from the blank run (e.g., at 700°C the

 $\rm H_2$  concentration was about 0.2%) suggesting some catalytic effects of the sulphided solids on  $\rm H_2S$  decomposition.

The trends in  $H_2$  formation for each oxide were different. In the initial stages the  $H_2$  yields were largest for CaO followed by ZnO. For Fe<sub>2</sub>O<sub>3</sub>, even at 800°C, the  $H_2$  yield was much lower than that observed in the blank run. After about 50 min the  $H_2$  concentration in the presence of Fe<sub>2</sub>O<sub>3</sub> began to increase, presumably due to the catalytic effects of FeS (Nishizawa et al, 1979). It appears that the main differences in trends of  $H_2$  formation can be traced to the first 10 min of adsorption. For example, for CaO the steep increase in  $H_2$  concentration occurs earlier than that of  $H_2S$  concentration, whereas for ZnO the  $H_2$  appearance coincides with the steep increase of  $H_2S$  concentration. This suggests that CaO may catalyze the  $H_2S$  decomposition. As soon as the sulphidation of CaO reached a certain level the rate of  $H_2$  formation attained a steady state. Low  $H_2$  yields in the early stages in the presence of ZnO suggest that  $H_2S$  reacts preferentially via anion exchange leading to ZnS and  $H_2O$ .

The curves shown in Fig. 1 are suitable for estimating the amount of  $H_2S$  being either adsorbed or decomposed in the presence of corresponding oxides. The calculation of the results shown in Fig. 2 was based on the Simpson's method. The temperature increase from 600° to 800°C had little effect on the  $H_2S$  adsorption by ZnO and  $Fe_2O_3$ , whereas in the presence of CaO the adsorption increased. According to these results the  $Fe_2O_3$  had the highest adsorption capacity per gram of oxide followed by CaO and ZnO. The estimated adsorption capacities are in agreement with the S content of the adsorption bents determined at the end of experiments (Table 2).

As the results in Fig. 2 show the relative trends in  $H_2S$  decomposition differed from those of  $H_2S$  adsorption. The decomposition was fastest in the presence of CaO followed by ZnO and Fe<sub>2</sub>O<sub>3</sub>. In the presence of CaO and ZnO the decomposition increased with increasing temperature.

Using the stepwise integration of the curves such as shown in Fig. 1 cumulative amounts of  $H_2S$  either adsorbed or decomposed could be obtained. The results of these calculations for the experiments performed at 600° and 800°C are shown in Fig. 3. These correlations indicate the difference in the rate of reactions, which for Fe<sub>2</sub>O<sub>3</sub> appears to be the highest. For CaO and ZnO the rate of adsorption began to decrease at early stages.

Relative rates of adsorption changed drastically when the data in Fig. 3 were normalized to the unit of surface area (Fig. 4). For these calculations the initial surface area of oxides was used (e.g., CaO 12.8 m<sup>2</sup>/g, ZnO  $3.0 \text{ m}^2/\text{g}$  and Fe<sub>2</sub>O<sub>3</sub> 10.4 m<sup>2</sup>/g by N<sub>2</sub> BET). Thus, in the whole time interval, the ZnO exhibited a markedly higher rate of adsorption than CaO. The data further suggest that the state of Fe<sub>2</sub>O<sub>3</sub> saturation by S is reached faster than that of ZnO and CaO. This difference may be attributed partly to the difference between surface structures attained during the adsorption. Therefore, the replacement of O by S for relatively small Ca cations at the surface of crystal may effectively block unconverted sites thus making them unavailable for reactions. Because of the larger size of Fe cations, such effects in the presence of Fe<sub>2</sub>O<sub>3</sub> should be less pronounced. In the case of ZnO the time of saturation is affected by a relatively small surface area. Here, the diffusion limitations caused by the product layer on the outer parts of particles will be the most pronounced, compared with CaO and Fe<sub>2</sub>O<sub>3</sub>.

# Mechanism of $H_2S$ Action with the Oxides

For all three oxides only trace quantities of  $H_2S$  were present in exiting gas in the early stages of adsorption. This confirms extensive reactions of  $H_2S$  with the oxides. Besides the  $H_2S$  adsorption some other reactions occurred as well. This is indicated by the presence of  $H_2$  and  $SO_2$  in the exiting gas.

For CaO a rapid  $H_2$  build up was observed in very early stages of adsorption. This was accompanied by the accumulation of elemental sulphur on cold parts of the reactor. The  $H_2$  build up leveled off at about break point time. Then, at least two different reactions of CaO with  $H_2S$  take place, i.e., one in which  $H_2S$  is being decomposed and the other in which  $H_2S$  is being consumed presumably via the reaction in which O ions are being replaced by S ions. Some other minor reactions may also occur as indicated by the presence of trace quantities of SO<sub>2</sub> in the exiting gas.

In case of ZnO the conversion to ZnS is believed to be the main reaction taking place during the early stages of adsorption. The  $H_2$  concentration increase in the exiting gas, over that observed during the blank run, was noticed only after certain level of sulphidation has been reached. This suggests that the ZnS may have some catalytic effects on  $H_2S$  decomposition.

The presence of relatively large quantities of  $SO_2$  in exiting gas in the early stages, suggests that the mechanism of  $H_2S$  action with  $Fe_2O_3$  is more complex. To explain the origin of  $SO_2$  the following set of reactions is proposed:

According to this mechanism the SO<sub>2</sub> was formed via oxidation of  $H_2S$  and of elemental sulphur by  $Fe_2O_3$ . The positive log K values for the reactions 2 and 3 at 1000°K (Barin and Knacke, 1973) are in support of this mechanism. The consumption of  $H_2$  via the reaction 4 is thermodynamically favorable as well. This may then explain the absence of  $H_2$  in exiting gas in the early stages of adsorption.

A highly unfavorable thermodynamics for the oxidation of  $H_2S$  and of elemental sulphur by CaO and ZnO as well as for their reduction by  $H_2$  represent a major difference in comparison with  $Fe_2O_3$ . It is believed that also in case of  $Fe_2O_3$  it is the FeO species which is effectively trapping  $H_2S$  at high temperatures via the exchange of O ions, similarly as in the case of CaO and ZnO.

# CONCLUSIONS

Based on the time at which the concentration of  $H_2S$  in the exiting gas reached 1000 ppm the temperature increase from 600° to 800°C increased the  $H_2S$  removal from hot gas in the presence of CaO but decreased it in the presence of  $Fe_2O_2$ . In case of ZnO the temperature change had little effect. The amount of  $H_2S$  adsorbed per gram of oxide, calculated from the area under curves as shown in Fig. 1, increased in the presence of CaO but exhibited little change in the presence of ZnO and  $Fe_2O_3$  with the temperature increase. Also the amount of  $H_2S$  decomposed, calculated in similar manner as that of  $H_2S$ adsorbed, increased for CaO and ZnO but changed little for  $Fe_2O_3$ .

Among the oxides,  $Fe_{203}^{0}$  had the largest capacity for sulphur per gram followed by CaO and ZnO. However, this order changed when the capacity was expressed per unit of surface area, i.e., the largest capacity had ZnO fol-

lowed by  $Fe_2O_3$  and CaO. This proves that the surface structure of oxides is the essential parameter influencing their adsorbtion capacities.

The mechanism of intimate action of  $H_2S$  differed from oxide to oxide. For CaO, the presence of  $H_2$  in exiting gas confirmed the  $H_2S$  decomposition during the rapid  $H_2S$  adsorption. In the presence of ZnO and Fe<sub>2</sub>O<sub>3</sub> the  $H_2$ appearance coincided with a rapid build up of  $H_2S$  in the exiting gas. Relatively large concentrations of SO<sub>2</sub> in the exiting gas in the presence of Fe<sub>2</sub>O<sub>3</sub> during the early stages were attributed to the oxidation of elemental sulphur and of  $H_2S$  by the oxide. Such reaction is thermodynamically unfavorable for ZnO and Fe<sub>2</sub>O<sub>3</sub>.

#### REFERENCES

- Barin, I., and Knacke, O. "Thermochemical properties of inorganic substances", Springer-Verlag, 1973.
- 2. Nishizawa, T., Tanaka, H., and Hirota, K., Int. Chem. Eng., 1979, 19, 3, 517.

f.

| Oxide                          | Temperature | Break point time <sup>1</sup> | Saturation time <sup>2</sup> | H <sub>2</sub> concentration |
|--------------------------------|-------------|-------------------------------|------------------------------|------------------------------|
|                                | •C          | min                           | min                          | vol %                        |
| Ca0                            | 600         | 4                             | 170                          | 0.7                          |
|                                | 700         | 8                             | 140                          | 1.1                          |
|                                | 800         | 17                            | 140                          | 1.9                          |
| Zn0                            | 600         | 4                             | 150                          | 0.5                          |
|                                | 700         | 5                             | 130                          | 1.0                          |
|                                | 800         | 5                             | 140                          | 2.0                          |
| Fe <sub>2</sub> 0 <sub>2</sub> | 600         | 32                            | 100                          | 0.7                          |
| ر <i>ب</i>                     | 700         | 20                            | 110                          | 1.2                          |
|                                | 800         | 15                            | 150                          | 1.7                          |

Table 1 - Break point time, saturation time and hydrogen concentration in exiting gas at this time

<sup>1</sup> time at which the concentration of  $H_2S$  in exiting gas reached 1000 ppm <sup>2</sup> time at which the sum of  $H_2 + H_2S$  in exiting gas reached 10

> if. .

|              | Temperature | Content of S, | wt %           |
|--------------|-------------|---------------|----------------|
| Adsorbent    | °C          | determined    | stoich. of MeS |
| CaO          | 600         | 29.7          |                |
|              | 700         | 32.9          | 44.4           |
|              | 800         | 35.0          |                |
| Z <b>n</b> 0 | 600         | 25.9          |                |
|              | 700         | 26.1          | 32.8           |
|              | 800         | 25.8          |                |
| Fe203        | 600         | 36.5          |                |
| - 3          | 700         | 36.8          | 36.4           |
|              | 800         | 34.8          |                |

i"

# Table 2 - Content of sulphur in adsorbents at the end of experiments

•

## Captions to Figures

- Fig. 1 Concentration of  $H_2S$  and  $H_2$  in exiting gas versus time at 700°C in the presence of ZnO, CaO and Fe<sub>2</sub>O<sub>3</sub> (2 g) (solid symbols for  $H_2S$ )
- Fig. 2 Effect of temperature on the amount of  $H_2S$  adsorbed and decomposed per one gram of oxides
- Fig. 3 Cumulative amount of  $H_2S$  (in grams per gram of oxide) either adsorbed or decomposed at 600° and 800°C in the presence of CaO, ZnO and Fe<sub>2</sub>O<sub>3</sub>

ï۳

Fig. 4 Cumulative amount of  $H_2S$  (in grams per square meter of oxide) adsorbed at 600° and 800°C in the presence of CaO, ZnO and Fe<sub>2</sub>O<sub>3</sub>



TIME, min.





. . . . . . .

