

9/ERL 83-25(TR)

Energy, Mines and Energie, Mines et Resources Canada Resources Canada

CANMET

Canada Centre for Mineral and Energy Technology Centre canadien de la technologie des minéraux et de l'énergie

CHEMICAL CHARACTERIZATION OF A NUMBER OF RESIDUAL PITCHES

M.A. POIRIER AND E.S. DAS

MAY 1983

ENRGY RESEARCH PROGRAM ENERGY RESEARCH LABORATORIES REPORT ERP/ERL 83-25 (TR)

[]

[]

Į

Į

(]

٦)

1

Ę

and the second

Energy, Mines and Énergie, Mines et Resources Canada Resources Canada

CANMET

Canada Centre for Mineral and Energy Technology Centre canadien de la technologie des minéraux et de l'énergie

CHEMICAL CHARACTERIZATION OF A NUMBER OF RESIDUAL PITCHES

-

. . . .

M.A.POIRIER AND B.S.DAS

MAY 1983

ENRGY RESEARCH PROGRAM ENERGY RESEARCH LABORATORIES REPORT ERP/ERL 83-25 (TR)

Page

TABLE OF CONTENTS

.

Í

Ĩ

	SUMM	ARY
1.	INTR	ODUCTION
	1.1	Objective
	1.2	Statement of Work
2.	METH	ODOLOGY
	2.1	Isolation of Benzene Solubles and Deasphaltening with n-Pentane and n-Heptane
	2.2	Separation of the Acids and Bases from Pentane Maltenes by Ion-Exchange Chromatography 4
	2.3	Hydrocarbon Type Separation of Ion-Exchanged Maltenes by Liquid-Solid Chromatography 6
	2.4	Porphyrin Determination in Benzene Soluble Fraction 7
	2.5	Metal Analysis in Asphaltene Fractions 7
	2.6	Elemental Analysis
	2.7	Molecular Weight Distribution by Gel Permeation Chromatography
	2.8	Infra-red Spectroscopy
3.	RESU	LTS & DISCUSSION
	3.1	Molecular Size Characterization by Gel Permeation Chromatography
	3.2	Deasphaltening and Characterization of Pitch Maltenes and Asphaltenes
	3.3	Fractionation of Pitch Maltenes by Ion-Exchange and Liquid Solid Chromatography and Characterization 17
	3.4	Major Functional Groups Analysis of Ion-Exchange Eluate Fractions by Infra-red Spectroscopy
	3.5	Analysis of Porphyrins and Metals (V, Ni, Fe) in Pitch Fractions
4.	REFE	RENCES

TABLE OF CONTENTS

																							1	Pag	<u>je</u>
Continued																									
TABLES 1 - 55 .	•	•	•	•	•	•	•	•	•	. •	•	•	•	•	•	•	•		•	•	•	•	32	-	86
FIGURES 1 - 38	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	87	-	124

APPENDIX A-1 - A-102

ł

ł

ł

١.

ORF

Final Report ORF 83-3

(i)

CHEMICAL CHARACTERIZATION OF A NUMBER OF RESIDUAL PITCHES (Distillation Residue Boiling Above 524°C)

SUMMARY

This work conducted jointly by the United Technology and Science Inc. (UTS) [a member of the Proctor and Redfern Group] and the Ontario Research Foundation (ORF) describes the separation and chemical characterization of twelve residual pitch samples (distillation residue boiling above 524°C) provided by the Energy Research Laboratory (ERL) of the Canadian Institute of Minerals and Energy Technology (CANMET).

Two schemes were used for the separation of pitches - one scheme based on physical method of separation into maltene and asphaltene fractions by means of precipitation with n-pentane and n-heptane, and the second scheme based on chemical method of separation of pentane maltenes into acids, bases and neutral hydrocarbons type fractions by ion-exchange and liquid solid chromatography (LSC). Methods for characterization included gel permeation chromatography (GPC), infra-red (IR) spectroscopy and elemental, porphyrin and metal analysis.

Methods were developed for the determination of average molecular weights [weight average molecular weight (Mw) and number average molecular weight (Mn)], polydispersity (Mw/Mn) and molecular weight distribution (MWD) in pitch samples by GPC using Ultra-Styragel columns, UV detection and computer MWD program for automation. Mono-disperse polystyrene standards of known molecular weight were used for calibration and therefore the average molecular weights determined by GPC represented relative molecular sizes of the pitches.

Prior to deasphaltening, the samples were separated into benzene solubles and insolubles. Of the twelve pitches, sample #2 contained the highest (28%) and samples #5 and 8 yielded only traces of benzene insolubles. The amount of insolubles in the remaining nine samples ranged between 4-9%.

(ii)

Deasphaltening studies with both pentane and heptane indicated that the asphaltene content in the pitch samples increased in the following order: #11, 8, 5, 1, 6, 3, 10, 12, 2, 4, 7 and 9. As expected, pentane precipitated more asphaltene than heptane in all pitch samples. Sample #2 with the higher heptane asphaltene was the only exception to this.

GPC studies have shown that the average molecular weights and polydispersity in the pitch samples and in their maltenes and asphaltenes fractions decreased in the following order: #5, 1, 8, 11, 3, 7, 4, 6, 2, 12, 10 and 9. Interestingly, the first four whole pitch samples with low asphaltene content displayed high Mw values of about 3200, 2700, 1400 and 1100 respectively. Mw of the second seven samples in the above series ranged between \sim 700-300, and the high asphaltene pitch sample #9 exhibited the lowest Mw (\sim 260) and polydispersity. Mn values obtained with all pitch samples were in the medium to low hundreds. As expected, both pentane- and heptane-asphaltenes displayed higher weight average molecular weights and polydispersity than the whole pitches. Conversely, Mw values were lower in both maltenes types than in the whole pitches. These differences in Mw values were more pronounced in samples #5, 1, 8 and 11 than others. No appreciable differences were observed in average molecular weights and MWD between the two asphaltene fractions in any one of the pitch samples.

All pitch samples were characterized by a decrease in H/C ratio and an increase in hetero atom (N, S) content in both of their pentane- and heptane-asphaltenes. In addition, nine samples were also characterized by very high oxygen content in both asphaltene fractions. Asphaltenes of three samples (7, 9 and 11) contained no oxygen. No marked difference in H/C ratio and hetero atom (N,S,O) distribution was noticed between the two asphaltene fractions in each sample. Four samples (#1, 5, 8 and 11) were characterized by their high H/C ratios and absence of any nitrogen in the whole pitch, benzene solubles and in their two maltenes fractions. As expected, nitrogen was concentrated more in the asphaltene than in the maltene. Nitrogen contents in pentane asphaltenes were slightly higher than in heptane asphaltenes in the majority of the pitch samples. All pitch samples contained high sulfur. The highest sulfur values were observed with samples #1, 3 and 5 and in all their fractions. Sulfur (iii)

content was relatively low only in two samples, #11 and 12.

The acid, base and neutral hydrocarbon fractions isolated by the ion-exchange chromatography of the pentane maltenes of the twelve pitch samples were analyzed for molecular weights and MWD by GPC. The results indicated that the average molecular weights of the ion-exchange eluates decreased in the order similar to that recorded for the whole pitches and their maltene fractions: #5, 1, 8, 11, 3, 7, 4, 6, 2, 12, 10 and 9. Pentane eluates of all samples displayed lower molecular weight values and the cyclohexane eluates of four samples #5, 1, 8 and 11 had slightly higher values than the corresponding maltenes. The three acid- and three base subfractions exhibited molecular weight values higher than the maltenes in all samples. This was more pronounced in samples #5, 1, 8 and 11 than others. Between the three acid subfractions, the highest Mw, Mn and Mw/Mn values were observed with A-3 fractions. Three base subfractions showed no appreciable differences. All ion-exchange eluate fractions were also characterized by elemental analysis.

The compound type fractions (saturates, monoaromatics, diaromatics, polyaromatics and polar polyaromatics) isolated by LSC of the ion-exchanged maltenes were characterized by % wt. distribution and elemental analysis.

The ion-exchange eluate fractions of pitch samples were analyzed for major functionalities by IR Spectroscopy. A number of model compounds was studied to obtain molar extinction coefficients of functional groups that would be similar to those of the acidic and basic compound types expected in the eluate fractions. The only major functional groupsidentified in the eluate fractions were carboxylic acid and pyrrolic type of compounds. Carboxylic acids were identified and quantitated in all A-3 acid subfractions of the twelve pitch samples except sample #2. A-3 fraction of sample #5 showed the highest carboxylic concentration expressed as millimoles benzoic acid/g residual pitch. Pyrrolic compounds were concentrated in the A-2 subfractions of all samples except samples #1, 5, 8 and 11. These four samples had pyrrolic compounds concentrated in either pentane eluates or A-1 acid subfractions. These samples also contain the least amounts of pyrrolic compounds when expressed as millimoles carbazole/g residual pitch. Of the three base subfractions, no

pyrrolic compounds were identified in C-3 base subfractions and only traces were identified in the other two subfractions.

(iv)

Other parameters studied in the characterization of residual pitch samples and their pentane- and heptane-asphaltenes included distribution of trace metals (V, Ni, Fe) and porphyrin. Pitch asphaltene samples showed wide variation in iron contents. The highest concentration was observed with sample #1 (\sim 1300-1500 ppm). Only two samples #9 and 10 which contained no porphyrin showed very low concentrations of iron (\sim 3 ppm). The asphaltenes of most of the pitch samples were characterized by substantial amounts of V and Ni. Sample #3 with the highest porphyrin content gave the highest concentration of V and Ni (\sim 1500-1600 ppm V and \sim 450 ppm Ni). Three other samples, #1, 5 and 8, with high porphyrin content also exhibited high V and Ni concentration. A comparatively low value of V and Ni were observed with porphyrin free pitch samples #9 and 10. The above indicated that a decrease in metals content, vanadium in particular was accompanied by a decrease in porphyrin content with most of the pitch samples. Similar distribution of metals was observed in both pentane- and heptane-asphaltene fractions of each of the twelve pitch samples.

In conclusion, methods have been developed for the separation and characterization of residual pitches. The various characterization data generated in the study provided information for studying compositional differences between pitch samples.

Final Report ORF 83-3

CHEMICAL CHARACTERIZATION OF A NUMBER OF RESIDUAL PITCHES (Distillation Residue Boiling Above 524°C)

1. INTRODUCTION

This report on the above characterization study is submitted to DSS Consignee, the Department of Energy, Mines and Resources, CANMET, Energy Research Laboratories, Ottawa, Ontario. The work was carried out jointly by the United Technology & Science, Inc. (UTS) of Proctor and Redfern Group and the Ontario Research Foundation (ORF), with ORF acting as subcontractors for UTS.

Sample preparation (initial fractionation and deasphaltening) and ion-exchange chromatographic part of the work was carried out at UTS, and studies on the other aspects of the project were performed by ORF.

1.1 Objective

The objective of the work is the separation and characterization of twelve residual pitch samples provided by the Energy, Mines and Resources (CANMET). The chemical properties of the pitch dictate the behaviour of this fraction during upgrading in terms of yields and quality of products as well as operational problems, e.g. coke formation, catalyst poisoning. Therefore, knowledge of the types and distribution of major structural and functional groups in the residual pitches is needed for effective utilization of the pitches by upgrading to lower boiling distillates. In addition, such knowledge is also necessary for other economic uses for these residual pitches, e.g. heat and power generation, building and road construction, additives in the production of coke briquettes. The objective as specified in the RFP is as follows:

"Hydrocracking processes are conducted with the purpose of optimizing pitch conversion (conversion of the residual fraction +524°C to lower boiling distillates). The chemical properties of the pitch dictate the behaviour of this fraction during upgrading in terms of production of distillates as well as their coking propensity. The objective of this study is to determine the chemical differences between the pitch from various sources and to correlate these differences to the product properties, response to upgrading parameters, and behaviour of these pitches in other utilizations."

-2-

1.2 Statement of Work

The work statement on the chemical characterization of the twelve CANMET residual pitch samples was specified in the RFP. This was further modified by the Scientific Authority. The modified work program is as follows:

- Fractionation of the pitch into benzene-solubles and insolubles; and separate deasphaltening of the benzene solubles with n-pentane and n-heptane.
- 2) Quantitative separation of the "acids" and "bases" from the pentane maltenes on anion and cation exchange resins.
- Quantitative separation of the pentane maltenes that have been pretreated with ion-exchange resins into compound type concentrates of saturates, aromatics and polar material on silica-alumina liquid chromatographic columns.
- 4) Determination of porphyrin in the benzene solubles and metals (V, Ni, Fe and Sb) in the pentane- and heptaneasphaltenes; and elemental analysis (C,H,N,S,O) of pitches and their fractions.

5) Molecular size characterization by gel permeation chromatography of pitches and their maltenes and asphaltenes fractions, and their pentane maltene ion-exchange eluate fractions.

-3-

 Characterization of the most acidic and most basic fractions for each pitch sample by infra-red spectroscopy.

2. METHODOLOGY

The overall objective of this study was to provide a comparative study of chemical characteristics of twelve pitch samples. Pitch was defined as distillation residue above 524°C. The pitch samples supplied by EMR/CANMET were identified by numbers (Sample #1 - Sample #12). Methods used for the present characterization study were partly based on the recommended procedures developed at CANMET, namely, ion-exchange chromatography (IEC), liquid-solid chromatography (LSC), porphyrin analysis and infra-red spectroscopy. A fractionation and analytical scheme for the characterization of residual pitches is shown in Figure 1.

2.1 <u>Isolation of Benzene Solubles and Deasphaltening</u> with n-Pentane and n-Heptane

Each pitch sample was fractionated in benzene soluble and benzene insoluble fractions by extraction with benzene. About 80 g of the pitch sample was dissolved in 350 mL benzene (Baker-Analytical grade) with stirring at room temperature until the sample was completely dissolved. The solution was then allowed to stand for 24 hours and filtered; the insoluble fraction was washed with 50 mL of benzene, dried under vacuum and weighed. The soluble fraction was recovered by evaporating most of the solvent in a rotary evaporator; the last traces of benzene solvent were removed in the spinning band distillation column at 50°C and 2 mm Hg. Results are shown in Table 1.

The benzene soluble fraction from each pitch sample was fractionated into maltene and asphaltene fractions by deasphaltening with n-pentane and n-heptane in separate experiments. Asphaltenes were precipitated by adding about twenty volumes of solvent (glass distilled HPLC grade, Burdick-

Jackson) to one volume of the benzene soluble with occasional shaking for 24 hours at room temperature. The asphaltenes were first separated by filtration, and then extracted with solvent in a Soxhlet extractor until the solvent was colourless. The asphaltenes from the extractor were then air-dried and the weight recorded. The Soxhlet extract and the main maltene filtrate were combined and the solvent removed under reduced pressure at 50°C followed by distillation in the spinning band distillation column at 50°C and 2 mm Hg to recover the maltene fraction. The weight of this fraction was then recorded. Table 2 summarizes the amount of pitch benzene solubles used, and the yield of maltene and aspahltene obtained in deasphaltening with n-pentane and n-heptane.

-4-

2.2 <u>Separation of the Acids and Bases from Pentane</u> <u>Maltenes by Ion-Exchange Chromatography</u>

The maltene fractions obtained with n-pentane from each pitch were separated into three acid fractions and three base fractions by chromatography on ion-exchange resins. Published procedure developed at Energy Research Laboratory, EMR/CANMET, was used for ion-exchange column chromatographic work.¹

The anion exchange and the cation exchange resins were exhaustively cleaned prior to use. The following procedures were used:

Rohm and Hass Amberlyst A-27 reagent grade macroreticular strong base (type 1) anion exchange resins (500 g) were washed with 3 x 600 mL methanolic HCl solution (10% volume aqueous HCl in methanol) and rinsed with about 6 L of distilled water until the washings were neutral to litmus paper. The resin was then activated with 600 mL of 10% KOH solution in methanol for one hour with intermittent stirring, and the resin washed with about 6 L of distilled water until the washings were neutral. The resin was then subjected to Soxhlet extraction for 25 hours with 2.5 L each of the following solvents in the following order: methanol, benzene and pentane. The extracted resin was then dried for 24 hours at 40° C in a vacuum oven.

As cation exchange resin, Rohm and Hass Amberlyst A-15 reagent grade macroreticular strong acid resin was used. This resin was cleaned as follows: 500 g of the resin placed in an ice bath were washed with 4×600 mL 10% KOH solution in methanol at ambient temperature with intermittent stirring and rinsed with 4×500 mL methanol. The washed resin was then subjected to Soxhlet extraction (25×20 g) for 24 hours with 25×200 mL of methanol. The resin was then activated by slow addition of one litre methanolic HCl solution (10% by volume aqueous HCl in methanol) for one hour with constant stirring using a magnetic stirrer. The resin was washed with about 6 L of distilled water until the washings were neutral. The resin was then subjected to Soxhlet extraction for 24 hours with 2.5 L each of the following solvents in the following order: methanol, benzene and pentane. The extracted resin was then dried for 24 hours at 40° C in a vacuum oven.

-5-

The column chromatographic system was set up as follows: Two stainless steel columns (10 mm I.D. x 100 cm each) - one packed with about 40 g cleaned Amberlyst A-27 anion exchange resin in OH^- form and the other packed with about 50 g cleaned Amberlyst A-15 cation exchange resin in H^+ form were connected initially in series during adsorption (ion-exchange) mode and then disconnected for separate operation during the desorption (elution) mode. The bed volume in each column was about 75 mL. A pumping system (Model Milton Roy Instrument Mini-Pump) was used to deliver the solvents through the columns at 2 mL/min flow rate.

The ion-exchange chromatographic separations were carried out by dissolving the pentane maltenes (5-10 g) in a minimum amount of 20 mL pentane-cyclohexane mixture (15:5), introducing to the column system via a separatory funnel, and then eluting immediately with the solvent systems in the following order:

Ion-exchange columns in series

Pentane (360 mL)} Maltenes less "acids" and "bases". Cyclohexane (200 mL)}

Columns disconnected

Anion exchange resin column

Benzene (150 mL) - Acid Subfraction (A-1) } Benzene - 40% MeOH (120 mL) - Acid Subfraction (A-2) } "Acids" Benzene - 20% HOAC (150 mL) - Acid Subfraction (A-3) }

-6-

Cation exchange resin column

Benzene Benzene -	(120 mL) - Base Subfraction (C-1) 40% MEOH (80 mL) - Base Subfraction (C-2)	} }
Benzene -	37% MeOH	} "Bases"
-	8% Isopropylamine (140 mL)	}
	- Base Subfraction (C-3)	}

The pentane and cyclohexane eluates, anion eluates and the cation eluates were collected, and the solvents were removed using a rotary evaporator under reduced pressure at 35°C, and Kuderna-Danish evaporative concentrator, and the weights recorded. Each sample was run with fresh batches of activated resins and each sample was run in duplicate. However, for duplicate experiments, both anion and cation exchange resins from the first experimental run were exhaustively washed with large volumes of benzene prior to use.

2.3 <u>Hydrocarbon Type Separation of Ion-Exchanged</u> Maltenes by Liquid-Solid Chromatography

The pentane and cyclohexane eluates from the ion-exchange chromatography contained maltenes less "acids" and "bases." They were combined and the maltenes were separated into compound type concentrates of saturates, monoaromatics, diaromatics, polyaromatics and polar polyaromatics on a dual-packed silica gel-alumina liquid solid chromatographic system (LSC) developed by the USBM-API Project 60 and modified at the CANMET EMR Laboratory.² The procedures used were as follows:

A stainless steel column, 10 mm x 100 cm was packed top-half with about 25 g activated silica (Davidson Grade 12, 28-200 mesh, activated at

25°C for 24 hours) and bottom half of the column packed with about 35 g activated alumina (ALCOA F-20, 38-200 mesh, activated at 400°C for 20 hours). The unfilled space at the top was filled with glass beads, and both ends of the column were plugged with glass wool.

-7-

A solution of the ion-exchanged pentane maltene fraction of the pitch sample in pentane-cyclohexane (1:1 v/v) (\sim 1.0 g in 15 mL) was then placed at the top of the column and the solvents listed in Table 28 were used for the consecutive elution of the hydrocarbon types. A Milton Roy pumping system (LDC Mini-Pump) was used to deliver solvents through the column.

The fractions of the column effluents were collected in test tubes and solvents evaporated using rotary evaporator under reduced pressure at 35°C, and Kuderna-Danish evaporative concentrator. After most of the solvents were evaporated, the fractions were transferred quantitatively to pre-weighed vials using appropriate solvents. The solvents were removed, and the vials were reweighed to determine the weight of the fraction.

2.4 <u>Porphyrin Determination in</u> <u>Benzene Soluble Fraction</u>

The benzene soluble fractions of the twelve pitch samples were analyzed for porphyrins following a published procedure³ with slight modification. The isolation and analytical scheme is shown in Figure 2. Porphyrin isolated in a large scale experiment from ~ 80 g benzene soluble of pitch sample #8 was used as reference standard and absorbance values in the UV/VIS wavelength at between 400-410 nm was used to measure the porphyrin content.

2.5 Metal Analysis in Asphaltene Fractions

Both pentane- and heptane-asphaltenes fractions of the pitch samples were analyzed for V, Ni and Fe. The procedure used is as follows: The samples were digested with aqua regia and sulfuric acid, and then diluted to known volume for analysis by DC Plasma Emission Spectrophotometry (Model 3A Spectrametrics/Beckman). Atomic absorption spectrophotometry was used to verify the Fe and Ni results.

-8-

2.6 Elemental Analysis

The twelve pitch samples and their fractions (benzene solubles, maltenes, asphaltenes, ion-exchange eluates, hydrocarbon compound type fractions) were analyzed for C,H,N and S. C,H,N were analyzed using Perkin Elmer Model 240 and Hewlett-Packard Model 165B instruments. Sulfur was determined by oxygen flask method. Oxygen was determined by difference. Elemental analysis was performed by The Guelph Chemical Laboratory, Guelph, Ontario.

2.7 <u>Molecular Weight Distribution</u> by Gel Permeation Chromatography

Gel permeation chromatography (GPC) was used to determine the average molecular weights (Mw and Mn) and the molecular size or the molecular weight distribution (MWD) of the pitches and their fractions. MWD measurements were made using two GPC systems – one system using 500Å and 100Å Ultrastyragel columns (Waters Associates) in series [System #1] and the other system with 1000Å and 100Å Ultrastyragel columns (Waters Associates) in series [System #2]. Tetrahydrofuran (THF) [Burdick & Jackson HPLC grade without any inhibitor] was used at 1 mL/min flow rate as the mobile phase. The concentrations of the samples in THF were limited to 0.1-0.25% in order to avoid "concentration effects" on the peak positions in the chromatograms. The solutions were prefiltered through 0.5 μ m Fluoropore filter (Millipore Corporation) prior to injection. The GPC conditions for both systems #1 and #2 are shown in Table 3.

2.8 Infra-red Spectroscopy

The absorbance of eighteen (18) model compounds and the ion-exchange eluate fractions in the regions of $3800-3200 \text{ cm}^{-1}$ and $1900-1450 \text{ cm}^{-1}$ were obtained in methylene chloride or in unstabilized THF solution with the use of Perkin-Elmer 267 Infra-red Spectrophotometer. Two different sets of scanning conditions were used: M-1-7 and 5X-1-7. The first set of conditions gives

moderate scan and chart speeds, fast pen response and wide slits to permit good records in areas of stronger solvent absorbance. The second set of conditions gives a slow scan speed and a faster chart speed which expands the wave number scale five times so that band absorbance is not changed, but band wave number may be measured more accurately. A 0.5 mm thickness cell was used.

-9-

The wave number scale was calibrated with polystyrene, and band positions were measured on M-1-7 records. For quantitation of pyrrolic, carboxylic acid and aromatic functions, band absorbance was measured on 5X-1-7 records using the Baseline Method (ASTM E.168). This method was modified for shoulder bands whose baselines extended from adjacent absorbance minima instead of from fixed wave numbers. In the case of carboxylic acids, both the monomer and the dimer bands were measured from a single baseline. For pyrrolic functions the absorbance of carbazole was used as a reference. The absorbance of benzoic acid as a reference was used for quantitation of carboxylic acids in the ion-exchange eluate fractions.

3. RESULTS & DISCUSSION

Pitch residuals are mainly composed of maltenes and asphaltenes. Molecules comprising both the asphaltene and maltene fractions in the pitch are broadly distributed with respect to molecular weight, aromaticity, polarity (acids, bases), heteroatom content (0,N,S) and hydrocarbon functionality, and there is substantial overlap between asphaltenes and maltenes with respect to the above functionalities. However, such functionalities whether in asphaltene or in maltene fractions are unique properties of a residual pitch sample and are useful for characterizing and differentiating pitch samples from various sources.

This report deals with our separation and characterization work for studying compositional differences in twelve (12) CANMET residual pitch samples. Separation methods used in this study involved solvent fractionations, ionexchange chromatography (IEC) and liquid-solid chromatography (LSC), and

techniques used in characterization included GPC for determination of average molecular weights and molecular weight distribution (MWD), IR for functional group analysis, porphyrin analysis and elemental analysis for H/C ratio, heteroatoms (N, S, and O) and metals (V, Ni and Fe) distribution in pitch samples and their various fractions.

3.1 <u>Molecular Size Characterization</u> by Gel Permeation Chromatography

One major objective in the present study was the molecular size characterization of the pitch samples by GPC. The theory and mechanism of GPC are well known and are described in various publications.⁴,⁵,⁶ It is a liquid chromatographic technique which separates molecules according to their size. In such a technique, the sample is introduced into the mobile phase and separated on a column packed with rigid porous microparticulates (e.g. polystyrene-divinylbenzene). Separation is accomplished by repeated exchange of the sample molecules between the mobile bulk solvent and the stagnant solvent within the pores of the column packing. Thus, the pore size of the column packing particles determines the range of molecular size which can be separated. Sample molecules with the largest size (highest molecular weight) elute out from the column first followed by the smaller molecules. Two important elution limits are defined for every column, and are called total exclusion and total permeation limits. Sample molecules which are too large to access any of the column packing pores elute from the column at the total exclusion limit. Sample molecules small enough to access all pore volume elute at the total permeation limit. Between these two limits is the separation-range of the column.

In the present study, initially various GPC columns, e.g. μ -Styragels and Ultra-Styragels were evaluated for proper pore size selection in order that the chromatographic separation of the pitch samples ranges within the exclusion and permeation limits of the column. Two GPC systems were finally adopted - System #1 with 500Å and 100Å Ultra-Styragel in series and System #2 with 1000Å and 100Å Ultra-Styragel column in series. The Ultra-Styragels are

-10-

the newest types of GPC column packings from Waters Associates. These controlled pore size "ultra" microparticulate columns gave slightly better resolution of the pitch samples than the μ -Styragels under identical chromatographic conditions. GPC conditions for both Systems #1 and #2 are shown in Table 3.

-11-

Pitch is not a single molecular weight compound. Instead, it represents a mixture of molecular weights (molecular size) with a particular molecular weight distribution (MWD). Since the components in pitch materials consist of a distribution of molecular weights, only average molecular weights can be measured. The molecular weight averages that are normally measured are: weight average molecular weight, Mw, and number average molecular weights, Mn. Mw is normally determined from light scattering measurements and it provides information on the strength of the material. High molecular weight species particuarly influence the value of Mw. Mn is frequently determined by one of the colligative property methods such as vapour pressure osmometry, boiling point elevation and others. It provides information on the pliability of the material. The value of Mn is influenced mostly by species at the lower end of MWD.

Average molecular weights can be calculated using the following equations:

 $Mn = \Sigma (MiNi) / \Sigma (Ni) \dots Eq.(1)$ $Mw = \Sigma (NiMi^2) / \Sigma (NiMi) \dots Eq.(2)$

where

Ni = the number of moles having molecular weight Mi.

GPC is becoming an important tool to determine the Mw, Mn and MWD. GPC will produce well resolved peak whose whose total area is proportional to weight or concentration of the solute. This definition also holds true for area slices. If a given peak is sliced in equal increments then the area and the amplitude of that slice are proportional to the solute species eluting during that time that slice is taken. Any given slice or integral has a defined retention volume or retention time (with a constant flow GPC system).

Using a standard calibration curve (log molecular weight of standards against retention times or retention volumes of the standards), one can extrapolate back the molecular weight for that area slice. This gives a value of Mi for area slice i. If the area slice i is used to represent Ni, then the above equations (Eq. 1 and 2) become:

> $Mn = \Sigma \operatorname{Area}_{i} / \Sigma (\operatorname{Area}_{i} / \operatorname{Mi}) \dots \operatorname{Eq.}(3)$ $Mw - \Sigma (\operatorname{Area}_{i} \operatorname{Mi}) / \Sigma \operatorname{Area}_{i} \dots \operatorname{Eq.}(4)$

It would be a tedious process if the average molecular weights from the GPC curves are calculated manually. In the present study, a Spectra-Physics 4100 computing integrator equipped with Autolab GPC MWD software, Spectra-Physics MWD 5.0 (written in Basic) was used for data acquisition and reduction. It provided calibration [log molecular weight of standard vs eluation time (Beckman HPLC used was constant flow pumping system)], acquisition of MWD data in area slices, processing of the acquired data to calculate Mw, Mn and Mw/Mn (polydispersity) and generated MWD normalized and cumulative curves.

In order to determine the average molecular weights and MWD from a GPC chromatogram, it is necessary to derive a calibration curve that represents the relationship between retention or elution time and molecular weight. In the present work, the calibration of the instrument was performed with narrow distribution samples of polystyrene (Mw/Mn = \sim 1) of known molecular weights. For the molecular size characterization of pitch samples and their fractions in GPC System #1 (see conditions in Table 3), two calibration curves shown in Figures 3 (see Table 4 for retention time data) and 4 (see Table 5 for retention time data) were used. Calibration curve used in GPC System #2 (see conditions in Table 3) for characterization of pitch samples is shown in Figure 5 (see Table 6 for retention time data). One must bear in mind that the MWD data obtained by GPC do not represent actual absolute values of molecular weights of pitch samples, since the system has been calibrated using monodisperse polystyrene standards. Thus, the average molecular weights determined by GPC represents relative molecular size only. However, a comparison of

differences in molecular size between pitch samples and their fractions is possible by the calibration method used in the present study.

-13-

A typical MWD-GPC profile showing area slices, MWD data, Mw, Mn and Mw/Mn values and MWD normalized and cumulative curves is presented in Figure 6. This was obtained with pitch sample #4 in GPC System #1 using calibration curve #2 shown in Figure 4. MWD-GPC profiles of the twelve pitch samples in both GPC Systems #1 and #2 are given in the Appendix (24 profiles). Profiles of thirteen (13) fractions (2 maltenes, 2 asphaltenes and 9 ionexchange eluates) of six individual pitch samples #1-#6 in GPC System #1 are also in the Appendix (78 profiles).

Average molecular weight values (Mw, Mn) and the polydispersity index, Mw/Mn of the twelve pitch samples are listed in Table 7. Values from duplicate runs in each system shown in the table indicate good reproducibility. Mw, Mn and Mw/Mn in pitch samples were found to decrease in the following order: 5, 1, 8, 11, 3, 7, 4, 6, 2, 12, 10, 9. Sample #5 showed the highest Mw (\sim 3200) among the pitch samples followed by samples #1 (Mw \sim 2700), #8 (Mw \sim 1400), #11 (Mw \sim 1100), and #3 (Mw \sim 700). Mw of five pitch samples, namely #7, 4, 6, 2, and 12 ranged between 500-350. The lowest weight average molecular weight (Mw \sim 300) was found in samples #10 and #9. These two samples also showed the lowest polydispersity (Mw/Mn \sim 1.8). Number average molecular weights (Mn) in most of the pitch samples were in the low hundreds, e.g. Mn (\sim 200) in samples #3, 7, 4, 6, 2, and 12; Mn (\sim 150) in samples #10 and 9. Samples with high Mw, namely #5, 1, 8 and 11 also showed low Mn values (\sim 500-400).

MWD-normalized curves (plot of % weight fraction vs log MW) of the twelve (12) pitch samples are compared and are presented in Figure 7. It clearly shows the differences in MWD between the pitch samples.

3.2 <u>Deasphaltening and Characterization</u> of Pitch Maltenes and Asphaltenes

After separation of the benzene insolubles, the pitch samples were subjected to physical separation into maltenes and asphaltenes by the addition of n-pentane. Similar separation of the pitch benzene solubles were also made with n-heptane. The % distribution of benzene insolubles, pentane- and heptane-maltenes and asphaltenes in the twelve pitch samples is presented in Table 8.

-14-

Of the twelve samples, nine samples gave varying amounts ranging between 4-9% of benzene insolubles. Sample #2 contained the highest amount (\sim 28%). Only traces of insolubles were found in samples #5 and #8.

As shown in Table 8, the highest yield of pentane asphaltene (conversely the lowest yield of maltene) was observed with sample #9 which was about 67%. Seven samples (#7, 4, 2, 12, 10, 3 and 6) yielded pentane asphaltene in the 35-48% range, whereas the yield of the insoluble precipitate from samples #1 and 5 was almost identical ($\sim 28\%$). Samples #8 and 11 gave the lowest yield ($\sim 11-14\%$). Trends similar to the above were also observed with the yield of heptane asphaltenes for all samples except sample #2. It is interesting to note that the samples with an increase in asphaltene content show a decrease in average molecular weights and less wider MWD (i.e. decrease in polydispensity, Mw/Mn). For example, sample #9 with the highest asphaltene ($\sim 67\%$) displayed lowest average molecular weights (Mw = 261, Mn = 148, Mw/Mn = 1.76). On the contrary, samples #1, 5, 8 and 11 with low asphaltene content gave high values of molecular weights, e.g. sample #1 (asphaltene content $\sim 28\%$) gave Mw = 2563, Mn = 470 and Mw/Mn - 5.21.

The yield of insoluble asphaltenes is known to decrease with the increasing carbon number of the precipitating agent.⁷ For example, it is known that n-pentane precipitates more asphaltenes than n-heptane. In our deasphaltening studies, eleven pitch samples gave yields of asphaltenes higher in pentane than in heptane. The only exception was pitch sample #2 which showed heptane asphaltene yield higher than pentane asphaltene (cf. 47.00 and 37.70%). The % decrease observed in the heptane asphaltene yield of the pitch

samples is as follows: #11 (34.64), 8 (23.66), 7 (19.55), 5 (19.26), 10 (16.18), 9 (12.99), 1 (11.87), 12 (5.68), 3 (4.24), 4 (3.31), 6 (2.84) [#2 - % increase of 24.69%].

-15-

It is generally believed that the amounts of asphaltene precipitated depend not only on the n-alkanes solvents, but also on the initial composition of the residual pitch materials, e.g. ratio of polar to non-polar compounds and ratio of low molecular weight to high molecular weight compounds in the pitches.⁸ With higher alkanes, e.g. n-heptane, one would expect to have both less polar materials of higher molecular weight and more polar materials of lower molecular weight precipitated as asphaltenes. With lower alkanes such as pentane, in addition to the above, both less polar and lower molecular weight materials are included in the precipitate and the total amount of pentane asphaltene precipitate increases more than the heptane asphaltenes.

That precipitated pentane- and heptane-asphaltenes contain high molecular weight pitch components is reflected on their average molecular weights data shown in Tables 9-20. These tables also contain data for the corresponding pentane- and heptane-maltenes. The MWD-normalized curves generated by GPC of pentane- and heptane-maltene and asphaltene fractions of twelve residual pitch samples are illustrated in Figures 8-19. The results in Tables 9-20 clearly show the high average molecular weight values obtained with both types of asphaltenes in all pitch samples. The MWD curves in Figures 8-19 which show a wider molecular weight distribution of the asphaltenes also illustrate this. As expected, in all cases, the pentane- and heptanesoluble maltenes showed average molecular weights lower than the parent pitch materials. This is due to the removal of high molecular weight compounds from pitches in the precipitated asphaltenes. Similar to the pattern observed with the whole pitch samples, the Mw, Mn and the polydispersity of maltenes and asphaltenes fractions of all pitch samples were found to decrease in the following order: 5, 1, 8, 11, 3, 7, 4, 6, 2, 12, 10 and 9.

Some differences were expected in the average molecular weights between the pentane- and heptane-asphaltenes fractions and between the corresponding maltene fractions of individual pitch samples, particularly for -16-

ORF 83-3

samples (e.g. 11, 8, 7, 5, 10, 9 and 1) which showed substantial % decrease of asphaltenes in n-heptane. The two asphaltene fractions in any of the pitch samples failed to show any appreciable difference between them in molecular weights and MWD. However, the heptane maltenes of the above mentioned samples gave average molecular weight values higher than the corresponding pentane maltenes, e.g. for sample #5: heptane maltene-Mw = 1597, Mn = 533; pentane maltene - Mw = 1199, Mn = 483. Small differences in samples #9 and 10 are not noticeable because of the very low molecular weight values in these samples. As expected with samples #12, 3, 4 and 6 which showed very little difference in % asphaltene yield between pentane and heptane, no changes in molecular weights were observed between the two maltene fractions. Sample #2 with higher heptane asphaltene than pentane asphaltene shows no difference between the asphaltenes and between the maltene fractions in molecular size.

Both pentane- and heptane-asphaltenes were also characterized by a decrease in H/C ratio and an increase in heteroatom (N, S) content. This was observed with all pitch samples. In addition, both asphaltenes of nine samples (#1, 2, 3, 4, 5, 6, 8, 10 and 12) showed a very high oxygen content. Five of the above nine samples, namely #2, 3, 4, 10 and 12 also showed a high oxygen content in the whole pitch and the corresponding benzene soluble fractions. Three samples #7, 9 and 11 contained no oxygen in the pitch and in any of their fractions. The results of the elemental analysis (C, H, N, S and O) of the twelve pitch samples, their benzene solubles, pentane-maltenes and asphaltenes and heptane-maltene and asphaltenes are shown respectively in Tables 21-26. No marked differences were observed in H/C ratio and heteroatom (N, S, O) contents between the two asphaltene fractions in each pitch sample. Four samples #1, 5, 8 and 11 were characterized by their high H/C ratio and absence of nitrogen in the pitch and in their benzene solubles, and two maltene fractions with the exception of sample #11 which showed some nitrogen in the two maltene fractions. (These samples also gave higher average molecular weights and higher maltene than other samples). Only eight pitch samples #2, 3, 4, 6, 7, 9, 10 and 12 and their benzene soluble fraction showed nitrogen content

ranging between 1-3%. As expected, nitrogen was concentrated more in the asphaltene fractions than in maltene fractions. For instance, all pentaneand heptane-asphaltene fractions from all pitch samples contained nitrogen, whereas nitrogen was found only in the three pentane maltene samples (#6, 9 and 11) and seven heptane maltenes (2, 6, 7, 9, 10, 11 and 12) and the nitrogen content was low. Interestingly, nitrogen contents in pentane asphaltenes were found slightly higher than in heptane asphaltenes with majority of the pitch samples.

-17-

All pitch samples showed different distribution of sulfur. With the exception of two samples (#11 and 12), all samples showed high sulfur content between $\sim 4-8.3\%$ in the pitch, benzene solubles, maltenes and asphaltenes fractions. The high sulfur values were observed with samples #1, 3 and 5 in all their fractions. Only two samples #11 and 12 and their fractions contained low sulfur. Both pentane- and heptane-asphaltenes showed higher sulfur than the corresponding maltenes in all pitch samples. No marked difference was observed in sulfur content between the pentane- and heptane-maltenes and between the pentane- and heptane-asphaltenes.

3.3 <u>Fractionation of Pitch Maltenes by Ion-Exchange</u> <u>and Liquid Solid Chromatography and Characterization</u>

In order to obtain information on the compositional differences in compound types between the pitch samples, initially a quantitative separation of the pitch maltenes into three acid and three base fractions was performed by anion- and cation exchange chromatography. The neutral pentane and cyclohexane combined eluates from IEC were then separated into hydrocarbon types by silica-alumina LSC. The above separation schemes are shown in the flow chart in Figure 1. Studies were made to characterize the IEC anion-, cation-, pentane- and cyclohexane eluates fractions by % yield, MWD by GPC, elemental analysis and infra-red spectroscopy. Compound types from LSC studies were characterized by determining % distribution and by elemental analysis.

Table 27 shows the weight % distribution of the pentane and cyclohexane eluates fractions, three acid subfractions (anion eluates) and three base subfractions (cation eluates) of twelve pitch maltene samples. Table 28 shows a similar weight % distribution of compound types (saturates, mono-

aromatics, diaromatics, polyaromatics and polar polyaromatics) obtained by LSC of the combined pentane and cyclohexane ion-exchange eluates. An LSC chromatogram of pitch maltene sample #1 is shown in Figure 20. (This chromatogram was used as a reference for processing of other pitch samples by LSC). A per cent by weight distribution of all fractions, namely benzene insolubles, asphaltenes, ion-exchange eluates and compound types isolated from pitch samples is given in Table 29. Elemental analyses of the ion-exchange eluates and compound types are shown in Tables 30-33 and Table 34 respectively.

-18-

Distribution of nitrogen and sulfur heteroatoms in the whole pitch samples are shown in the four tables (Tables 35, 36, 37 and 38). Tables 35 and 36 respectively show the nitrogen content (Wt. %) of all pitch fractions, and the amount of nitrogen (g) that each fraction contributed to 100 g pitch sample. Similarly, sulfur content (Wt. %) of all pitch fractions and the amount of sulfur (g) that each fraction contributed to 100 g pitch in Tables 37 and 38 respectively.

As shown in Tables 27 and 29, the ion-exchange pentane eluates containing neutral and polar components represent the highest fraction of the pitch maltenes. This was observed with all pitch samples. The cyclohexane eluates represented amounts ranging between a low of 2% to a high value of 10.5%. The three acid subfractions combined amounted to 11.75, 19.02, 6.90, 15.46, 4.86, 6.35, 6.39, 3.96, 10.65, 6.96, 3.68 and 6.37% of the pitch maltene samples #1 - 12 respectively. The respective yield (Wt. %) of the three base subfractions combined are as follows: 12.96, 12.47, 16.78, 16.17, 14.09, 16.40, 14.91, 9.82, 6.97, 10.34, 9.5 and 17.23. Between the three acid subfractions, subfraction A-3 was the lowest fraction in all pitch samples. Except in subfraction A-3, all subfractions from both anion and cation eluates showed wide variation in yields and nitrogen contents between the twelve pitch samples, and no definite patterns were observed. The acid and base subfractions in each sample also showed similar wide variations.

The ion-exchange eluates gave average molecular weight data which are in accord with the values observed with the pitch samples and their maltene fractions. The data shown in Table 39 (compiled from data shown in Tables 9-20) clearly indicate this. The molecular weights of the eluates decrease in the

order similar to that noted for pitch and maltene samples: 5, 1, 8, 11, 3, 7, 4, 6, 2, 12, 10 and 9. As expected, the acid and base free pentane eluates show a slightly lower value than the corresponding maltenes. Higher values in the cyclohexane eluate fractions of the four samples, #5, 1, 8 and 11, indicate the presence of high molecular weight pitch components in this eluate. No marked differences were observed in molecular weights between pentane maltenes, pentane eluates and cyclohexane eluates in the last eight samples in Table 39, namely #3, 7, 4, 6, 2, 12, 10 and 9.

-19-

An interesting observation was made with GPC-MWD studies with the three acid and three base subfractions. These subfractions gave molecular weight data which are higher than the maltene fractions. This was more prominent in samples #5, 1, 8 and 11 than others. This is in agreement with the reported Mn values (determined by VPO) in acid and base subfractions from similar ion-exchange studies with asphaltenes of heavy crudes.⁹ Between the three acid fractions, the highest Mw, Mn and Mw/Mn values were observed in sub-fraction A-3 of pitch samples. No marked difference in MWD and polydispersity was observed in the three base subfractions within each pitch sample. However, an exception was the C-3 fraction of sample #11 which showed a very low Mw (604) [cf. Mw-C1 fraction (1120), Mw-C2 fraction (1342)]. This could not be explained.

A comparison of the molecular weight distribution of the ion-exchange eluate fractions of pitch sample #1 is shown in the MWD normalized curves in Figure 8. The MWD profiles of the ion-exchange eluate fractions of six pitch samples (#1-6) are given in the Appendix.

Table 28 shows the compound type distribution (Wt. %) in pentane deasphaltene maltenes of the twelve pitch samples after ion-exchange chromatography. The recoveries of the hydrocarbons on the average ranged between 85-95% of the acid and base free maltenes in the combined pentane and cyclohexane eluates. Per cent by weight distribution data of various fractions in the residual pitch samples (Table 29) indicate that the proportions of saturates, monoaromatics, diaromatics, and combined polyaromatics and polar polyaromatics decrease in the following order:

+	decreasing	saturates	:	#11,	, 8,	, 12	2, 5,	, 1,	10,	, 4,	2,	7,	3,	6,	9
+	decreasing	monoaromatics	:	#11,	, 8,	5,	, 1,	12,	7,	10,	4,	3,	2,	6,	9
+	decreasing	diaromatics	:	#8 ,	5,	11	, 1,	12,	3,	4,	10,	7,	2,	6,	9
+	decreasing + polar pol	polyaromatics yaromatics	:	#8 ,	1,	5,	11,	7,	10,	3,	4,	12,	6,	2,	9

The above order of compound types distribution is found to be closely related to the decrease in the maltene content in the pitch samples, e.g.

-20-

decreasing maltenes/
increasing asphaltene : #8, 11, 1, 5, 7, 4, 12, 3, 10, 6, 2, 9

Elemental analysis of ion-exchange eluates (Tables 30-33) indicate that atomic H/C ratio in the eluate fractions decrease in the following order:

H/C Datio		Combined Pentane &	Anio	n Elu	ate	Cation Éluate					
	aliu	Cyclohexane Eluate	A-1	A-2	A-3	C-1	C-2	C-3			
	,	#11	5	5	5	5	1	1			
		2	1	1	8	1	5	11			
		8	11	11	2	8	2	5			
		5	8	8	11	11	8	2			
bu		1	3	3	1	4	11	8			
asi		· 4	4	4	10	12	12	6			
cre		10	6	12	6	2	4	3			
De		7	2	2	4	6	3	12			
		12	12	6	12	3	6	4			
		6	7	7	3	10	7	7			
	/	3	10	9	7	7	9	10			
		9	9	10	9	9	10	9			

A pattern is noted in the H/C values of the acid and base subfractions between the pitch samples. Nitrogen and sulfur were generally found to be evenly distributed among the acid and base ion-exchange eluate fractions, and they are not concentrated in any one subfraction. Large amounts of oxygen are found in all acid subfractions but specially in subfraction A-3 which contained carboxylic acids (see Infra-red Section). Base subfractions, C-3 of samples #1 and 2, also contained large amounts of oxygen. Other C-3 fractions (#4, 5, 6, 10, 11) showed small amounts of oxygen, whereas C-3 fractions of the other five pitch samples (#3, 7, 8, 9, 12) failed to show any oxygen. With some exception, C-1 and C-2 fractions of most of the samples showed varying amounts of oxygen. As expected, the combined pentane and cyclohexane eluate of the majority of samples showed no nitrogen nor oxygen.

Elemental analysis of the compound types from LSC studies (Table 34) showed no nitrogen in the saturate, monoaromatic, diaromatic, and polyaromatic fractions. Polar polyaromatic fractions of only four samples (#2, 3, 5 and 6) showed the presence of nitrogen. Sulfur was found more concentrated in the polyaromatic and polar polyaromatic fractions. It was found to be evenly distributed in the mono- and diaromatic fractions. No sulfur was found in saturate fractions with the exception of two samples (#1 and 6) which contained only traces of sulfur.

3.4 <u>Major Functional Groups Analysis of</u> <u>Ion-Exchange Eluate Fractions by Infra-red Spectroscopy</u>

The spectroscopic technique most widely used in analyzing major functional groups in the acid, base and neutral fractions present in high boiling residuals is infra-red spectroscopy.^{10,11,12} Previous work with high boiling distillate and residue of crude oil has identified compound types such as carboxylic acids, phenols, amides, and carbazoles as the major components of the acid fractions in asphaltene. Identification of compound types such as pyridine benzologs, carbazole and amides has also been reported as the major component in the base fraction of petroleum heavy ends.

-21-

In order to gain information on the compositional differences between pitch samples, analytical studies of major functional groups in the ion-exchange eluates of deasphaltened maltenes by infra-red spectroscopy were undertaken in the present study.

-22-

Model Compounds Studies

Initially, the quantitative infra-red spectra of model compounds (see Table 40) were recorded to obtain molar extinction coefficient of functional groups that would be similar to those of the acidic and basic compound types expected in the ion-exchange eluate fractions. The spectra of the model compounds in CH_2Cl_2 and in THF are shown in Figures 21-24. Solution concentrations, functional groups bands position and intensities are given in Table 40.

Carbazole and 2-methyl indole - examples of pyrrolic compounds have characteristic N-H group absorption at about 3470 cm⁻¹ but show considerable variation in band position and intensity for ring vibrations around 1600 -1500 cm⁻¹. The 1500 cm⁻¹ band is usually least sensitive to structural change. A straight line absorbance calibration (see Figure 36) for pyrrolic compounds was obtained with carbazole at about 3470 cm⁻¹. An amide model compound such as benzamide in CH_2Cl_2 shows asymmetric and symmetric NH₂ group absorption at about 3530 and 3410 cm⁻¹. This compound in both CH_2Cl_2 and THF shows a C=0 group absorption about 1685 cm⁻¹ and the absorptivity was strongest in the latter solvent.

Infra spectra of five model carboxylic acids in CH_2Cl_2 showed two or three absorption bands around 1700 cm⁻¹ with some variations in band position. The most prominent band is assigned to dimers and the next strongest band is assigned to monomers. In THF, benzoic acid gives a single band about 1720 cm⁻¹ with strong absorptivity. Figure 35 is the absorbance calibration for the benzoic acid doublet in CH_2Cl_2 . The carboxylic O-H group is inter- or intramolecularly bonded and its absorption band is therefore broad with its maxima ranging from 3480-3500 cm⁻¹. This was observed with all carboxylic acid model compounds.

The seven phenolic model compounds with free (unassociated) 0-H groups have a single band in positions ranging from 3400-3650 cm⁻¹ depending on the rest of the structure.

-23-

Three other N-hetero aromatics type model compounds, acridine, phenanthridine, and 5,6-benzoquinoline showed several bands in the ring vibration region around 1600 and 1500 cm⁻¹ with substantial variation in relative intensity. These compounds showed no common band at about 1605 cm⁻¹ where most of the pitch fractions showed absorption.

Pentane and Cyclohexane Fractions

The infra-red spectra of the pentane and cyclohexane eluates of twelve pitch samples are shown in Figures 25-27. IR spectral data showing concentration, absorbance, band position and quantitation of major functional groups are given in Tables 41-52 respectively for pitch samples #1-12.

Spectra of most of the pentane and the cyclohexane eluate fractions were generally similar, with a sharp peak at about 3470 cm⁻¹ which was assigned to pyrrolic N-H functionality. In addition, scan between 3800-3200 region also showed presence of trace of water. There was also considerable similarity in the 1900-1450 cm^{-1} region with the principal absorption being a broad band at about 1605 cm⁻¹. Both pentane and cyclohexane eluates of pitch sample #1 showed evidence of free carboxylic acid OH at about 3500 cm⁻¹. The cyclohexane eluates of pitch samples #4, 5 and 11 had a sloping baseline in the same region which might indicate bonded acids. Weaker bands near the water bands in these five fractions (pentane and cyclohexane eluates of #1, and the three cyclohexane eluates of #4, 5 and 11) may be due to phenol but further study is needed for the characterization. Four of the above five fractions (pentane and cyclohexane eluates of #1, and two cyclohexane eluates of #4 and 5) also showed absorption bands at about 1770 and/or 1720 cm^{-1} which were stronger than their absorption at about 1605 cm^{-1} . IR spectra of the cyclohexane eluate fraction of pitch #11 was somewhat different in the region between 1700-1750 cm^{-1} . This could not be explained.

Acid Subfractions

The infra-red spectra of the three acid subfractions in the anion exchange eluate of twelve pitch samples are shown in Figures 28-32. IR spectral data showing concentration, absorbance, band position and quantitation of major functional groups are given in Tables 41-52 respectively for pitch samples #1-12.

-24-

The only sharp peak other than that due to water (contaminant) in the infra-red spectra of all three subfractions of the twelve pitch samples occurred at 3470 cm⁻¹ in the 3800-3200 cm⁻¹ scan. This peak was assigned to pyrrolic N-H functionality. This band appeared in all A-1 and A-2 fractions, but only in a few of the A-3 fractions. All A-3 fractions had a broad band at about 3400 cm⁻¹ assigned to carboxylic acids. There was no evidence of primary amides or free phenols in any of the acid subfractions.

The strongest band in the 1900-1450 cm^{-1} region occurred at about 1605 cm^{-1} in the CH₂Cl₂ solutions of A-1 and A-2 fractions of ten of the pitch samples with the exception of #4 and #5. The A-1 and A-2 fractions of pitches 4 and 5 also showed this band, but other bands at about 1770 and/or 1720 cm^{-1} were stronger. The width (sharpness) of the band at 1605 cm^{-1} varied considerably in the A-1 and A-2 fractions of the various pitch samples. Clearly the 1605 cm^{-1} band is composite and is generally indicative of aromaticity. The A-3 fractions had very strong absorption in the 1900-1450 cm^{-1} region showing several absorption bands. The band at about 1775 cm^{-1} in A-3 fractions of pitch samples #7 and 12 disappeared on dilution of the CH₂Cl₂ solutions (Figure 30), but a band at this position was present in A-3 fractions of pitch samples #4, 5 and 6 which were not diluted further (Figure 28). When the A-3 fractions were dissolved in THF, the principal band between 1800 and 1650 cm^{-1} was strong and sharp at about 1720 cm^{-1} (see Figure 31). It was assigned to carboxylic acid. Presumably bands between 1800 and 1650 cm^{-1} in the CH_2CI_2 solution result from various forms of carboxylic acid, i.e. dimer, monomer, complex with pyridine ring, etc. Even the A-3 fractions of pitch samples #11 and 8 which have no strong bands between 1800 and 1650 cm^{-1} in CH_2CI_2 show a significant acid peak at about 1720 cm⁻¹ in THF. The strong

band at about 1560 cm⁻¹ may represent an amino acid salt in the A-3 fractions of pitch samples #11 and 8. Two sharp, weak bands below 1650 cm⁻¹ in all A-3 fraction spectra are assigned to aromatic ring vibrations. These bands closely resemble those of benzoic acid. Infra-red spectra of the A-3 fraction of sample #2 in CH_2Cl_2 is somewhat different from other A-3 fractions. This is shown in Figure 32.

-25-

Base Subfractions

The infra-red spectra of the three base subfractions in the cation exchange eluate of twelve pitch samples are shown in Figures 33-34. IR spectral data showing concentration, absorbance, band position and quantitation of major functional groups are given in Tables 41-52 respectively for pitch samples #1-12. In the $3800-3200 \text{ cm}^{-1}$ region, spectra of base subfractions in methylene chloride showed a peak at about 3470 cm^{-1} which was assigned to pyrrolic N-H groups. This was observed in most of the C-1 and C-2 fractions of the twelve pitch samples. Absorption of C-3 fractions in this region of the spectrum was very weak, but many samples appeared to contain some pyrrolic compounds. Only C-3 fractions of pitch samples #1 and 5 showed the possible presence of other components in this region.

In the 1900-1450 cm⁻¹ region, methylene chloride solutions of all base subfractions showed an absorption maximum at about 1605 cm⁻¹. This was a broad composite band apparently related to aromaticity. In most base subfractions, this was the strongest absorption band, but the following fractions also showed stronger or other prominent bands: 1770 and/or 1720 cm⁻¹ bands (C-1, C-2 and C-3 fractions of #5; C-1 and C-2 fractions of #4; C-2 and C-3 fractions of #2, and C-2 fraction of #1), and an extremely strong 1560 cm⁻¹ band (C-3 fraction of #1).

Carboxylic Acid Compounds in A-3 Acid Subfractions

Tables 41-52 give the absorbance values of bands at about 1695 and 1735 cm⁻¹ in A-3 acid subfractions of all pitch samples. This was assigned to carboxylic acid functionality. The absorbance of benzoic acid (see cali-

bration curves in Figure 35) as a reference was used for quantitation of carboxylic acids in the A-3 fractions. It is possible that some forms of carboxylic acid would be missed in the measurement since absorbance was measured only in CH_2Cl_2 solution. The acids were measured in A-3 fractions of all pitch samples except #2.

-26-

Of the twelve pitch samples, nine samples (#1, 3, 4, 5, 6, 7, 8, 11 and 12) showing the presence of carboxylic acid showed no measurable amount of pyrrolic compounds. The A-3 fractions of samples #9 and 10 showed both carboxylic acid and pyrrolic compounds, and the acid concentration was higher than that of the pyrrolic compounds. The A-3 fraction of sample #2 showed pyrrolic compound but no carboxylic acid.

A-3 fraction of pitch sample #7 showed the highest carboxylic acid concentration expressed as benzoic acid (\sim 4 mmoles/g fraction. However, when expressed as wt. % of residual pitch, highest concentration is shown by the A-3 fraction of sample #5 (0.02 mmole/g residual pitch).

Pyrrolic Compounds in Pitch Ion-Exchange Eluate Fractions

The absorbance values of the band at about 3470 cm^{-1} for all ionexchange eluates fractions of the pitch samples are shown in Tables 41-52. This band was assigned to pyrrolic compounds. For quantitation of pyrrolic functions in eluate fractions, the absorbance of carbazole (see calibration curve in Figure 36) was used as a reference. The concentration of pyrrolic compounds in each fraction is expressed in millimoles of carbazole per gram of fraction.

It is evident from the results shown in Tables 41-52 that acid subfraction A-2 has the highest concentration of pyrrolic compounds (when expressed as mmole carbazole/g fraction) compared to other fractions of the same pitch for pitch samples #2, 3, 4, 6, 7, 9, 10 and 12. Other pitch samples (#1, 5, 8 and 11) did not show this clear distinction. In those samples, the pyrrolic compounds are found evenly distributed between the A-1 and A-2 fractions. For example, their pyrrolic fractions contents expressed as mmoles carbazole/g fraction are as follows: #1 (A-1, 0.310; A-2, 0.337), #5 (A-1, 0.224; A-2, 0.107), #8 (A-1, 0.306; A-2, 0.294) and #11 (A-1, 0.362; A-2, 0.363).

Concentrations of pyrrolic compounds in ion-exchange eluate fractions expressed as millimoles of carbazole per 100 g residual pitches are shown in Table 53. The results indicate that most of the pyrrolic compounds in all pitch samples except #1, 5, 8 and 11 are concentrated in either pentane eluate or acid subfraction A-1. Total pyrrolic content was found highest in sample #4, and the samples #1, 5 and 8 had the least. Most of pyrrolic compounds of samples #5, 8 and 11 were concentrated in the pentane eluate. Acid subfraction A-1 showed the highest concentration of pyrrolic compounds in sample #1.

3.5 <u>Analysis of Porphyrins and Metals</u> (V, Ni, Fe) in Pitch Fractions

Porphyrins of petroleum origin and a number of trace metals are known to be associated with the heavy components of petroleum.^{13,14} Of the various trace metals, V, Ni and Fe are the most abundant and show the highest concentration in the asphaltenes. Porphyrins are known to be distributed in both maltene and asphaltene fractions of oils. The above suggests that these metals and porphyrin content may be useful parameters for the characterization of petroleum heavy ends. These parameters were utilized for characterizing residual pitch samples in the present study.

Analysis and distribution of porphyrins in the twelve pitch samples were performed with their benzene solubles containing both maltene and asphaltene fractions. The method of isolation of porphyrins is shown in the flow chart in Figure 2. The UV-VIS spectral scan between 300-510 nm of the chloroform extracts of the processed benzene soluble fractions of the twelve samples are shown in Figure 37. As shown in the figure, an absorption maximum at between 400-410 nm is observed with most of the pitch samples. Previous work has identified this absorption as due to petroporphyrin.³ No absorption was observed with samples #9, 10 and 12. For calibration and

-27-

quantitation, porphyrin isolated from one of the pitch samples (sample #8) was used as a reference standard. A calibration curve is shown in Figure 38.

-28-

The distribution of porphyrins in the pitch benzene soluble fraction is presented in Table 54. Only three samples #1, 3 and 5 showed very high concentrations of porphyrin which ranged between 1-2%. No porphyrin was noted in samples #9, 10 and 12. Five samples showed very low concentrations (between 0.136 - 0.388%) and only trace amounts (0.036%) were found in sample #2.

Metal contents were determined in both pentane- and heptane-asphaltenes of pitch samples. Their distributions are presented in Table 55. Results indicate similar distribution of metals in both pentane- and heptaneasphaltenes. For example, in most cases both asphaltenes in each of the twelve samples were characterized by similar Fe content. Similar distributions were also observed with V and Ni content and V/Ni ratios in the two asphaltenes of each sample.

Distribution of iron between pitch samples showed wide variation in most samples. The highest concentration was in sample #1 (\sim 1300-1500 ppm). This was followed by samples #7 and 3 with \sim 400-450 and \sim 200-250 ppm respectively. Only two samples #9 and 10 showed a very low concentration (\sim 3 ppm).

The asphaltenes in most of the pitch samples were characterized by substantial amounts of V and Ni. The highest concentration of V and Ni was found in samples #3 (e.g. \sim 1500-1600 ppm V and \sim 450 ppm Ni). Porphyrin concentration was also highest with this sample. V and Ni content was found comparatively low in the asphaltenes of three pitch samples, namely #9, 10 and 12. As noted previously, no porphyrin was found with these three samples. The above distribution suggests a close relationship between the two metals, vanadium in particular and porphyrins in the pitch samples. The decrease in the V content in the two asphaltenes of pitch samples is found to be closely related to the decrease in porphyrin content in pitch benzene soluble fractions, e.g.

<u>V decreasing</u> heptane asphaltene > #3, 1, 5, 8, 7, 4, 11, 6, 2, 9, 10, 12
ORF 83-3

-29-

V decreasing pentane asphaltene #3, 1, 5, 8, 7, 4, 6, 2, 11, 10, 9, 12
Porphyrins decreasing #3, 1, 5, 8, 6, 11, 4, 7, 2, 9, 10, 12

Studies in the past have indicated that high sulfur content in crude oils correlates with high vanadium and porphyrin content and high ratios of vanadium to nickel.¹⁵ However, no such correlation was observed with most of the high sulfur pitch asphaltenes examined in the present study. Only the three high sulfur samples (#1, 3 and 5) contained high amounts of vanadium and porphyrins and have high ratios of vanadium to nickel (see Tables 54 and 55). The only pitch asphaltene sample (#12) which is low in sulfur contained, as expected, the lowest amount of vanadium and no porphyrin, and has the lowest vanadium to nickel ratio less than unity. The other eight high sulfur asphaltenes samples contained vanadium and porphyrin which did not correlate with their sulfur contents.

D. Kane, Ph.D. United Technology and Science, Inc.

B. Ś. Das, Ph.D. Ontario Research Foundation

4. REFERENCES

- ¹ Sawatzky, H., <u>et al</u>. "Separation of nitrogenous and associated polar materials from bitumen and heavy oils." ACS Preprints, Div. Petrol. Chem., Anaheim. March 12-17, 1978, p.11.
- ² Sawatzky, H., <u>et al</u>. "Hydrocarbon-type separation of heavy petroleum fractions." Fuel, 55, p.16, 1976.
- ³ Groennings, S. "Quantitative determination of the porphyrin aggregate in petroleum." Anal. Chem., <u>25</u>, p.938, 1953.

⁴ Billmeyer, F.W., <u>et al</u> in K.H. Altgelt and L. Segal (editors), Gel Permeation Chromatography, Marcel Dekker, New York, 1971, p.3.

⁵ Altgelt, K.H., <u>et al</u> in M.J.K. Cantow (editors), Polymer Fractionation, Academic Press, New York, 1967, p.123.

⁶ Ferguson, D.A., <u>et al</u>. "Characterization of deasphaltened petroleum residues by gel permeation chromatography." J. Chromatagr. <u>203</u>, p.313, 1981.

- ⁷ Boduszynski, M. M. "Asphaltenes in petroleum asphalts composition and formation." ACS Preprints, Div. Petrol. Chem., Washington. Sept. 9-14, 1979, p. 935.
- ⁸ Mitchell, D.L. and J.G. Speight. "The solubility of asphaltenes in hydrocarbon solvents." Fuel, 52, 1973, p.149.

⁹ McKay, J.F. and D.R. Latham. "Composition and distribution of classes and types of organic compounds in petroleum heavy ends." ACS Preprints, Div. Petrol. Chem., New York. August 23-38, 1981.

¹⁰ McKay, J.F., <u>et al</u>. "Petroleum asphaltenes: chemistry and composition." Analytical Chemistry of Liquid Fuel Sources. Advances in Chemistry Series, American Chemical Society, No. 170, 1978, p.128.

11 Bunger, J.W. "Techniques of analysis of tar sand bitumens." ACS Preprints, Div. Petrol. Chem., New Orleans. March 20-25, 1977, p.716.

¹² Sawatzky, H., <u>et al</u>. "Chemical changes in nitrogenous materials during hydrocracking of Athabasca bitumen." ACS Preprints, Div. Petrol. Chem., Anaheim. March 12-17, 1978, p.21.

13 Yen, T.F. "The role of trace metals in petroleum." Ann Arbor Science (1975).

¹⁴ Abu-Elgheit, M.A. "Metalloporphyrins and trace metals as geochemical indicators for petroleum heavy ends." ACS Preprints, Div. Petrol. Chem., New York. August 23-28, 1981, p.912. REFERENCES (cont'd.)

۱

¹⁵ Radchenko, O.A. "Geochemical regularities in the distribution of the oil bearing regions of the world." Leningrad, 1965. Israel Program for Scientific Translations, Jerusalem, 1968. pp. 200-206.

-31-

TABLES,

•

% Benzene Solubles and Insolubles in Residual Pitches

1

Sample #	Weight of Sample (g)	Weight of Benzene Insolubles (g)	Weight of Benzene Solubles (g)	% Benzene Insolubles	% Benzene Solubles
1	80.0	3.15	76.85	3.93	96.06
2	80.0	22.65	57.35	28.31	71.69
3	80.0	5.99	.74.01	7.48	92.52
4	80.0	4.10	75.90	5.13	94.87
5	80.0	0.73	79.27	0.91	99.09
6	75.3	2.19	73.11	2.91	97.09
7	80.0	1.89	78.11	2.36	97.64
8	89.8	0.56	89.24	0.62	99.38
9	77.8	3.77	74.03	4.84	95.16
10	74.9	4.44	70.46	5.93	94.07
11	86.9	6.28	80.62	7.23	92.77
12	76.1	6.61	69.49	8.68	91.32

Yield of Maltene and Asphaltene in Deasphaltening of Pitch Benzene Solubles with n-Pentane and with n-Heptane

	n-Pentane					n-Heptane				
Sample #	Weight of Sample (g)	Weight of Asphaltene (g)	Weight of Maltene (g)	% Asphaltene	% Maltene	Weight of Sample (g)	Weight of Asphaltene (g)	Weight of Maltene (g)	% Asphaltene	% Maltene
1	50.30	14.65	34.94	29.13	69.46	10.21	2.62	7.53	25.66	73.75
2	36.00	18 . 93.	17.06	52.58	47.39	8.89	5.83	2.99	65.58	33.63
3	50.60	25.16	25.40	49.72	50.20	10.04	4.78	5.19	47.61	51.69
4	45.60	17.42	28.00	38.20	61.40	9.18	3.39	5.78	36.93	62.96
5	54.00	15.84	36.30	29.33	67.22	10.6	2.51	7.00	23.67	66.03
6	43.10	21.37	16.80	49.58	38.98	9.01	4.34	3.50	48.17	38.84
7	44.20	15.97	25.50	36.13	57.69 ·	9.77	2.84	6.66	29.07	68.17
8	56.70	7.93	46.90	13.99	82.72	12.08	1.29	10.50	10.68	86.92
9	48.60	34.35	13.20	70.68	27.16	10.18	6.26	3.70	61.49	36.35
10	53.95	25.97	25.10	48.14	46.52	8.80	3.55	4.00	40.34	45.45
11	53.00	6.12	45.10	11.55	85.09	9.41	0.71	8.40	7.55	89.27
12	31.20	13.33	16.60	42.72	53.21	9.63	3.88	5.60	40.29	58.15

<u>GPC Conditions (System 1 and System 2)</u> in MWD Determinations of Residual Pitch Samples

GPC Parameters	System No. 1	System No. 2
Instrument	Beckman Model 112 HPLC	Beckman Model 112 HPLC
Columns	500Å Ultrastyragel + 100Å Ultrastyragel 7.8 mm I.D. x 30 cm (Waters Associates)	1000Å Ultrastyragel + 100Å Ultrastyragel 7.8 mm I.D. x 30 cm (Waters Associates)
Mobile Phase	Tetrahydrofuran	Tetrahydrofuran
Flow Rate	1.00 mL/min	1.00 mL/min
Injection Volume	10 µL	20 µL
Temperature	Ambient .	Ambient
Detector	UV @ 254 nm O.2 AuFs (Schoeffel Model SF 770)	ÚV @ 254 nm 0.32 AuFs (Beckman Model 153)
Chart Speed	0.5 cm/min	0.5 cm/min
Data System	Spectra Physics SP 4100 SP MWD-5 Program	Spectra Physics SP 4100 SP MWD-5 Program
Molecular Weight	Polystyrenes $(2.2 \times 10^3, 955, 570)$, Styrene monomer (104), Benzene (78) [for samples 2, 3, 4, 6, 7, 9, 10, 12]; above standards plus polystyrenes (35 \times 10 ³ , 17.5 \times 10 ³ and 4 \times 10 ³) [for samples 1, 5, 8 and 11]	Polystryrenes (35 x 10 ³ , 17.5 x 10 ³ , 4 x 10 ³ , 2.2 x 10 ³ , 955, 570), Styrene monomer (104), Benzene (78)

Molecular Weight/Retention Time Data of Standards for Calibration Curve #1 (Figure 3) in GPC System #1

AUL1200 LOAD"CAL" TEST ERROR 36 ISIZE 0 4953. GPC Calibration File 1. Press 'ENTER' to skip entry Ref Ret Time(Rp): Area Slice Width (mins)(Ta): .1 Initial delay (mins)(Id): End of Run (mins)(ER): 25 Baseline Times(mins)(Bb,Eb): 9,24 Data Proc Times(BP,EP): 9.5,23.5 FILE NAME? CANMET RESIDUAL PITCHES TIME FUNCTIONS... RUN TIME: TT? Universal Calibration (Y/N)(Uc): N Standards Table... Elution Time(RT): 13.31 Mol.Wt.(Mw): 2200 Elution Time(RT): 14.54 Mol. Mt. (Mw): 955 Elution Time(RT): 15.45 Mol. Wt. (Mw): 570 Elution Time(RT): 16.19 Mol. Mt. (MN): 400 Elution Time(RT): 16.79 Mol. Nt. (Mw): 300 Elution Time(RT): 17.88 Mol. Mt. (Mw): 200 Elution Time(RT): 20.53 Mol. Ht. (Mw): 104 Elution Time(RT): 21.04 Mol. Wt. (Mw): 78 Elution Time(RT): 11.22 Mol. Mt. (Mw): 35000 Elution Time(RT): 11.64 Mol. Wt. (Mw): 17500 Elution Time(RT): 12.84 Mol. Wt. (Mw): 4000 Elution Time(RT): FIT Type(0=Pt to Pt,1=linear,2=quad,3=cubic)(Ft): 3 Cal Plot(Y/N): V END OF DIALOG

-36-

Molecular Weight/Retention Time Data of Standards for Calibration Curve #2 (Figure 4) in GPC System #1

READY

BAUD 1200 LOAD "CAL" TEST ERROR 36 ISIZE 0 4953.

GPC Calibration File 1. Press 'ENTER' to skip entry Ref Ret Time(RP): Area Slice Width (mins)(Ta): .1 Initial delay (mins)(Id): End of Run (mins)(ER): 34 Baseline Times(mins)(Bb,Eb): 10,24 Data Proc Times(Bp, Ep): 11.5,23.5 FILE NAME? UTS RESIDUAL PITCHES TIME FUNCTIONS... RUN TIME: TTO 10 FUNCTION: TF2 HE RUN TIMESTT? Universal Calibration (Y/N)(Uc): N Standards Table... Elution Time(RT): 12.31 Mol. Wt. (Mw): 2200 Elution Time(RT): 14.54 Mol.Wt. (Mw): 955 Elution Time(RT): 15.45 Mol.Wt. (Mw): 370 Elution Time(RT): 20.53 Mol.Wt. (Mw): 104 Elution Time(RT): 15.19 Mol.Wt. (Mw)= 400 Elution Time(RT): 16.79 Mol.Wt. (Mw): 300 Elution Time(RT): 17.88 Mol. Mt. (Mw): 200 Elution Time(RT): 21.04 Mol. Wt. (Mu): 78 Elution Time(RT): FIT Type(0=Pt to Pt,1=linear,2=euad,3=cubic)(Ft): 3 Cal Plot(V/N): 7 END OF DIALOG

<u>TABLE 6</u>

Molecular Weight/Retention Time Data of Standards for Calibration Curve #3 (Figure 5) in GPC System #2

BAUD 175 LOAD C _ * ERROR 100 LOAD CAL. TEST ERROR 36 :SIZE 4953. GPC Calibration File 1. Press 'ENTER' to skip entry Ref Ret Time(RP): Area Slice Width (mins)(Ta): .1 Initial delay (mins)(Id): End of Run (mins)(ER): 24 Baseline Times(mins)(Bb,Eb): 9,23.5 Data Proc Times(Bp, Ep): L0.5,23 FILE NAME? CANNET RESIDUAL PITCHES TIME FUNCTIONS... RUN TIME: TT? Universal Calibration (Y/N)(Uc): N Standards Table... Elution Time(RT): 11.48 Mol. Nt. (Mw): 35000 Elution Time(RT): 12.41 Mol. Nt. (Mw): 17500 Elution Time(RT): 14.08 Mol. Nt. (Mw): 4000 Elution Time(RT): 14.71 Mol.Wt.(Mw): 2200 Elution Time(RT): 15.96 Mol. Wt. (Mw): 955 Elution Time(RT): 16.76 Mol. Nt. (Nw): 570 Elution Time(RT): 17.76 Mol. Wt. (Nw): 400 Elution Time(RT): 18.62 Mol. Nt. (Mw): 300 Elution Time(RT): 20.13 Mol. Mt. (Mw): 200 Elution Time(RT): 21.80 Mol. Wt. (Mw): 104 Elution Time(RT): 22.27 Mol. Mt. (Mw): 78 Elution Time(RT): FIT Type(0=Pt to Pt,1=linear,2=euad,3=cubic)(Ft): 3 Cal Plot(Y/N): Y

TABLE 7	
The second se	

GPC-MWD c	f	Twelve	Residual	Pitch	Samples
-----------	---	--------	----------	-------	---------

Whole Pitch	Sys	tem No.	1	System No. 2			
Sample <u>No.</u>	Mw	Mn	Mw/Mn	.Mw	Mn	Mw/Mn	
1	2563	470	5.450	2709	679	3.990	
	(2691)*	(515)	(5.213)	(2686)	(674)	(3.986)	
2	384	186	2.058	478	207	2.301	
	(398)	(169)	(2.351)	(461)	(206)	(2.274)	
3	674	214	3.149	917	326	2.811	
	(672)	(197)	(3.403)	(906)	(321)	(2.821)	
4	466	223	2.087	580	251	2.309	
	(463)	(218)	(2.123)	(581)	(251)	(2.316)	
5	3304	510	6.468	3188	658	4.839	
	(3216)	(532)	(6.038)	(3213)	(657)	(4.884)	
6	429	192	2.234	527	231	2.279	
	(412)	(196)	(2.102)	(597)	(248)	(2.409)	
7	490	228	2.143	587	284	2.067	
	(475)	(211)	(2.242)	(589)	(281)	(2.096)	
8	1362	445	3.057	1484	510	2.908	
	(1315)	(439)	(2.995)	(1508)	(510)	(2.956)	
9	261	148	1.757	306	174	1.750	
	(263)	(148)	(1.757)	(314)	(177)	(1.771)	
10	290	163	1.778	328	178	1.845	
	(267)	(148)	(1.799)	(310)	(171)	(1.815)	
11	1188	4 18	2.839	1138	464	2.450	
	(1087)	(410)	(2.648)	(1132)	(465)	(2.433)	
12	380	184	2.066	413	218	1.889	
	(347)	(196)	(1.818)	(357)	(218)	(1.889)	

* MWD data from duplicate GPC runs are in parantheses.

.

<u>% Distribution of n-Pentane- and n-Heptane-Maltene</u> and Asphaltene Content, and Benzene Insoluble Content in Twelve Residual Pitch Samples

Fraction	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Benzene Insoluble	3.94	28.31	7.48	5.12	0.91	2.91	2.36	0.62	4.84	5.93	7.23	8.68
Pentane Maltene	66.73	33.97	46.44	58.25	66.61	37.49	56.33	82.20	25.85	43.77	78.94	48.59
Pentane Asphaltene	27.97	37.70	46.00	36.24	29.07	48.14	35.28	13.90	67.26	45.28	10.71	39.02
Total Recovery	98.64	99.98	99.92	99.61	96.59	88.53	93.96	96.72	97.95	94.98	96.88	96.29
Benzene Insoluble	3.94	28.31	7.48	5.12	0.91	2.91	2.36	0.62	4.84	5.93	7.23	8.68
Heptane Maltene	70.84	24.11	47.83	59.74	65.44	37.72	66.56	86.38	34.59	42.76	82.82	53.11
Heptane Asphaltene	24.65	47.01	44.05	35.04	23.47	46.77	28.38	10.61	58.52	37.95	7.00	36.80
Total Recovery	99.43	99.43	99.36	99.90	89.82	87.40	97.30	97.61	97.95	86.64	97.05	98.59

-39-

-40-

MWD of Residual Pitch No. 1 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

CANMET Docidual Ditch No. 1	GPC	System	No. 1	GPC System No. 2			
CAMMET RESIDUAT FILCH NO. I	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn	
Whole Pitch	2563	470	5.450	2709	679	3.990	
	(2691)	(515)	(5.213)	(2686)	(674)	(3.986)	
Deasphaltening*							
Pentane Maltene	1202	488	2.463	1105	541	2.040	
	(1174)	(480)	(2.443)	(1099)	(537)	(2.048)	
Heptane Maltene	1470	536	2.743	1377	583	2.362	
	(1484)	(541)	(2.741)	(1383)	(585)	(2.364)	
Pentane Asphaltene	4764	848	5.613	4858	1039	4.671	
	(4717)	(844)	(5.586)	(5011)	(1040)	(4.815)	
Heptane Asphaltene	4772	538	8.857	5619	1132	4.962	
	(4770)	(556)	(8.567)	(5526)	(1120)	(4.932)	
Ion-Exchange Chromatography (IEC)**							
Pentane Eluate	852	407	2.095	910	435	2.092	
	[899]	[449]	[2.001]	[917]	[438]	[2.093]	
Cyclohexane Eluate	1347	461	2.923	1134	440	3.029	
	[1351]	[478]	[2.824]	[1321]	[452]	[2.921]	
Combined Pentane	1263	470	2.688	1221	439	2.780	
+ Cyclohexane Eluate	[1152]	[470]	[2.450]	[1144]	[445]	[2.568]	
Acid Subfraction I	1856	575	3.226	1783	599	2.974	
	[1788]	[589]	[3.034]	[1841]	[599]	[3.069]	
Acid Subfraction II	1471	479	3.067	1661	498	3.332	
	[1544]	[484]	[3.185]	[1684]	[500]	[3.366]	
Acid Subfraction III	3062	566	5.402	3379	721	4.680	
	[3008]	[516]	[5.824]	[3291]	[666]	[4.941]	
Base Subfraction I	1650	499	3.306	1566	511	3.066	
	[1748]	[551]	[3.169]	[1735]	[555]	[3.124]	
Base Subfraction II	1512	505	2.991	1514	494	3.061	
	[1492]	[472]	[3.156]	[1431]	[446]	[3.208]	
Base Subfraction III	1762	413	4.266	1720	411	4.177	
	[1873]	[507]	[3.689]	[1831]	[530]	[3.454]	
1	1	1	1	(1	•	

* MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.

** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

ORF 83-3

TABLE 10

MWD of Residual Pitch No. 2 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

CANMET Posidual Ditch No. 2	GPC	System	No. 1	GPC System No. 2		
CAMMET RESTURAT FILCH NO. 2	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch	384	186	2.058	478	207	2.301
	(398)	(169)	(2.351)	(461)	(206)	(2.274)
Deasphaltening*						
Pentane Maltene	345	214	1.610	370	215	1.716
	(340)	(211)	(1.609)	(368)	(214)	(1.716)
Heptane Maltene	368	215	1.713	391	214	1.824
	(367)	(217)	(1.693)	(392)	(215)	(1.820)
Pentane Asphaltene	422 (430)	188 (192)	2.244 (2.240)	456	223	2.042
Heptane Asphaltene	413 (394)	167 (147)	2:474 (2.675)	512	231	2.218
<u>Ion-Exchange Chromatography (IEC)**</u>						
Pentane Eluate	446	258	1.724	462	240	1.920
	[365]	[242]	[1.509]	[384]	[228]	[1.686]
Cyclohexane Eluate	386	224	1.723	373	202	1.851
	[332]	[212]	[1.565]	[321]	[192]	[1.671]
Combined Pentane	426	244	1.747	419	220	1.903
+ Cyclohexane Eluate	[367]	[235]	[1.564]	[356]	[212]	[1.682]
Acid Subfraction I	368	222	1.659	356	206	1.728
	[316]	[198]	[1.594]	[304]	[187]	[1.624]
Acid Subfraction II	380	224	1.694	367	203	1.806
	[398]	[243]	[1.637]	[396]	[225]	[1.759]
Acid Subfraction III	618	319	1.937	625	298	2.094
	[574]	[326]	[1.763]	[592]	[309]	[1.912]
Base Subfraction I	386	212	1.822	383	199	1.917
	[313]	[189]	[1.657]	[309]	[179]	[1.725]
Base Subfraction II	473	247	1.910	475	231	2.051
	[309]	[181]	[1.710]	[306]	[168]	[1.818]
Base Subfraction III	445	221	2.011	457	214	2.136
	[322]	[161]	[1.996]	[329]	[165]	[1.997]

MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.
 MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

-41-

ORF 83-3

TABLE 11

<u>MWD of Residual Pitch No. 3 and Its Various Maltene and Asphaltene</u>, and Ion-Exchange Extract and Eluate Fractions

CANMET Desidual Ditch No. 2	GPC	System	No. 1	GPC System No. 2			
CANMEL RESIDUAL PITCH NO. 3	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn	
Whole Pitch	674	214	3.149	917	326	2.811	
	(672)	(197)	(3.403)	(906)	(321)	(2.821)	
Deasphaltening*							
Pentane Maltene	431	268	1.604	459	273	1.682	
	(435)	(270)	(1.609)	(457)	(272)	(1.678)	
Heptane Maltene	457	275	1.664	484	279	1.734	
	(449)	(272)	(1.647)	(485)	(280)	(1.731)	
Pentane Asphaltene	879	287	3.057	1032	369	2.793	
	(883)	(290)	(3.041)	(1085)	(374)	(2.899)	
Heptane Asphaltene	791	229	3.446	1076	370	2.906	
	(812)	(233)	(3.479)	(1115)	(374)	(2.978)	
Ion-Exchange Chromatography (IEC)**							
Pentane Eluate	433	27 4	1.578	420	246	1.705	
	[426]	[282]	[1.509]	[413]	[252]	[1.637]	
Cyclohexane Eluate	413	234	1.761	404	212	1.904	
	[427]	[242]	[1.765]	[411]	[215]	[1.912]	
Combined Pentane	425	254	1.683	413	228	1.814	
+ Cyclohexane Eluate	[425]	[255]	[1.667]	[414]	[229]	[1.807]	
Acid Subfraction I	562	317	1.772	562	293	1.918	
	[506]	[291]	[1.734]	[514]	[271]	[1.893]	
Acid Subfraction II	52 4	285	1.836	530	262	2.025	
	[551]	[293]	[1.878]	[564]	[271]	[2.077]	
Acid Subfraction III	566	239	2.363	601	233	2.575	
	[470]	[211]	[2.220]	[484]	[195]	[2.485]	
Base Subfraction I	426	240	1.773	423	220	1.917	
	[455]	[252]	[1.808]	[451]	[229]	[1.970]	
Base Subfraction II	521	286	1.821	521	264	1.973	
	[397]	[214]	[1.849]	[384]	[193]	[1.984]	
Base Subfraction III	544	312	1.739	536	282	1.897	
	[417]	[206]	[2.025]	[428]	[190]	[2.245]	

* MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.

** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC
experiments.

-43-

TABLE 12

<u>MWD of Residua</u>	Pitch No. 4	and its	Various M	altene and	Asphaltene,
and	Ion-Exchange	Extract	and Eluat	e Fraction	<u>s</u>

2

Ì

CANMET Posidual Ditch No. A	GPC	System	No. 1	GPC System No. 2			
CANMET RESTAUAT FILCH NO. 4	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn	
Whole Pitch	466	223	2.087	580	251	2.309	
	(463)	(218)	(2.123)	(581)	(251)	(2.316)	
Deasphaltening*							
Pentane Maltene	397	241	1.643	434	248	1.745	
	(401)	(243)	(1.651)	(427)	(246)	(1.736)	
Heptane Maltene	404	238	1.694	427	240	1.779	
	(414)	(244)	(1.697)	(422)	(237)	(1.783)	
Pentane Asphaltene	542 (561)	216 (225)	2.512 (2.492)	539	252	2.137	
Heptane Asphaltene	608 (600)	195 (192)	3.111 (3.112)	696	288	2.417	
Ion Exchange Chromatography (IEC)**							
Pentane Eluate	395	244	1.617	394	223	1.762	
	[417]	[259]	[1.607]	[417]	[239]	[1.743]	
Cyclohexane Eluate	347	217	1.596	346	204	1.695	
	[382]	[219]	[1.743]	[390]	[205]	[1.901]	
Combined Pentane and	365	227	1.609	370	213	1.735	
Cyclohexane Eluate	[387]	[230]	[1.681]	[389]	[213]	[1.826]	
Acid Subfraction I	491	274	1.792	520	273	1.904	
	[433]	[246]	[1.757]	[449]	[240]	[1.874]	
Acid Subfraction II	504	266	1.896	531	252	2.106	
	[437]	[259]	[1.686]	[463]	[248]	[1.863]	
Acid Subfraction III	589	263	2.236	613	2 4 8	2.468	
	[538]	[282]	[1.903]	[560]	[268]	[2.083]	
Base Subfraction I	414	229	1.807	433	223	1.937	
	[415]	[226]	[1.832]	[427]	[217]	[1.971]	
Base Subfraction II	414	227	1.819	436	226	1.923	
	[347]	[205]	[1.694]	[350]	[194]	[1.802]	
Base Subfraction III	49 0	273	1.797	517	264	1.956	
	[370]	[211]	[1.747]	[355]	[199]	[1.781]	

* MWD data of deasphaltened fractions from duplicate GPC run are shown in parentheses.

** MWD data of ion exchange fractions shown in brackets are from duplicate IEC experiments.

ORF 83-3

TABLE 13

MWD of Residual Pitch No. 5 and its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

ļ

.

. . .

ł

CANMET Residual Pitch No. 5	GPC	System	No. 1	GPC S	ystem N	o. 2
	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch	3304	510	6.468	3188	658	4.839
	(3216)	(532)	(6.038)	(3213)	(657)	(4.884)
Deasphaltening*						
Pentane Maltene	1199	483	2.481	1120	519	2.156
	(1234)	(493)	(2.503)	(1122)	(521)	(2.152)
Heptane Maltene	1597	533	2.994	1497	575	2.604
	(1572)	(527)	(2.982)	(1512)	(584)	(2.589)
Pentane Asphaltene	5225	805	6.492	5494	1065	5.158
	(5367)	(816)	(6.576)	(5413)	(1056)	(5.124)
Heptane Asphaltene	5297	530	9.977	6416	1149	5.584
	(5597)	(558)	(10.030)	(6476)	(1159)	(5.585)
Ion Exchange Chromatography (IEC)**						
Pentane Eluate	1015	433	2.341	1008	408	2 .46 7
	[[948]	[433]	[2.188]	[945]	[407]	[2.318]
Cyclohexane Eluate	1543	509	3.031	1487	490	3.036
	[1482]	[498]	[2.973]	.[1538]	[499]	[3.079]
Combined Pentane	1180	373	3.160	1307	456	2.866
+ Cyclohexane Eluate	[1169]	[462]	[2.531]	[1207]	[477]	[2.699]
Acid Subfraction I	1778	558	3.182	1763	561	3.142
	[2114]	[666]	[3.172]	[1930]	[650]	[2.968]
Acid Subfraction II	1692	429	3.941	1397	395	3.537.
	[3 035]	[593]	[5.113]	[2105]	[573]	[3.669]
Acid Subfraction III	5317	751	7.074	2917	706	4.130
	[6006]	[571]	[10.516]	[3680]	[548]	[6.707]
Base Subfraction I	1771	548	3.228	1566	515	3.037
	[2091]	[604]	[3.462]	[1708]	[555]	[3.075]
Base Subfraction II	1627 [1302]	564 [470]	2.882 [2.768]	1408 [1157]	519 [440]	2.174 [2.628]
Base Subfraction III	1540	655	2.3 50	1328	589	2.253
	[2255]	[498]	[4. 520]	[1816]	[467]	[3.884]

* MWD data of deasphaltened fractions from duplicate GPC run are shown in parentheses.

** MWD data of ion exchange fractions shown in brackets are from duplicate IEC experiments.

-44-

-45-

TABLE 14

MWD of Residual Pitch No. 6 and its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

CANMET Residual Ditch No. 6	GPC	System	No. 1	GPC System No. 2			
UNITEL RESIDUAL FILCH NO. U	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn	
Whole Pitch	429	192	2.234	527	231	2.279	
	(412)	(196)	(2.102)	(597)	(248)	(2.409)	
Deasphaltening*							
Pentane Maltene		240	1.602	411	245	1.673	
		(240)	(1.594)	(413)	(245)	(1.681)	
Heptane Maltene	387	237	1.629	355	209	1.692	
	(384)	(235)	(1.632)	(376)	(220)	(1.706)	
Pentane Asphaltene	494 (482)	200 (205)	2.465 (2.348)	576	253	2.277	
Heptane Asphaltene	486 (490)	176 (180)	2.759 (2.715)	635	269	2.357	
Ion-Exchange Chromatography (IEC)**							
Pentane Eluate	415	251	1.653	367	215	1.707	
	[402]	[253]	[1.588]	[372]	[219]	[1.700]	
Cyclohexane Eluate	343	212	1.617	320	188	1.704	
	[352]	[214]	[1.642]	[330]	[190]	[1.734]	
Combined Pentane	380	232	1.633	347	202	1.721	
+ Cyclohexane Eluate	[391]	[236]	[1.655]	[365]	[207]	[1.764]	
Acid Subfraction I	450	289	1.553	428	259	1.649	
	[428]	[272]	[1.575]	[411]	[246]	[1.669]	
Acid Subfraction II	458	267	1.713	452	240	1.880	
	[414]	[261]	[1.588]	[401]	[231]	[1.731]	
Acid Subfraction III	649	278	2.335	679	260	2.611	
	[489]	[261]	[1.873]	[500]	[241]	[2.070]	
Base Subfraction I	385	222	1.734	381	207	1.835	
	[413]	[236]	[1.751]	[395]	[215]	[1.839]	
Base Subfraction II	502	267	1.878	493	248	1.980	
	[379]	[207]	[1.830]	[363]	[187]	[1.939]	
Base Subfraction III	500	290	1.723	469	256	1.830	
	[637]	[268]	[2.371]	[634]	[246]	[2.580]	

* MWD data of deasphaltened fractions from duplicate GPC run are shown in parentheses.

** MWD data of ion exchange fractions shown in brackets are from duplicate IEC experiments.

MWD of Residual Pitch No. 7 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

	GPC	System	No. 1	GPC System No. 2		
CANMET Residual Pitch No. /	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch		228	2.143	587	284	2.067
		(211)	(2.242)	(589)	(281)	(2.096)
Deasphaltening*				-		
Pentane Maltene	392	258	1.157	429	268	1.596
	(390)	(257)	(1.515)	(418)	(261)	(1.599)
Heptane Maltene	404 (399)	260 (259)	1.552 (1.539)	409	245	1.670
Pentane Asphaltene	642 (667)	231 (245)	2.773 (2.722)	772	318	2.423
Heptane Asphaltene	823 (838)	218 (225)	3.774 (3.724)	907	357	2.535
<pre>lon Exchange Chromatography (IEC)**</pre>						
Pentane Eluate	404	270	1.496	379	236	1.604
	[40 9]	[2 77]	[1.476]	[389]	[244]	[1.595]
Cyclohexane Eluate	412	247	1.669	390	219	1.781
	[397]	[242]	[1.641]	[37 3]	[213]	[1.750]
Combined Pentane						
+ Cyclohexane Eluate	402	253	1.592	392	228	1.715
	[397]	[251]	[1.581]	[379]	[223]	[1.697]
Acid Subfraction I	487	306 ⁻	1.589	477	279	1.709
	[443]	[277]	[1.598]	[443]	[255]	[1.737]
Acid Subfraction II	418	257	1.627	401	228	1.759
	[492]	[299]	[1.645]	[494]	[272]	[1.818]
Acid Subfraction III	535	248	2.152	548	226	2.418
	[600]	[320]	[1.874]	[559]	[274]	[2.038]
Base Subfraction I	442	257	1.715	418	229	1.827
	[445]	[260]	[1.708]	[422]	[231]	[1.828]
Base Subfraction II	489	276	1.771	478	252	1.894
	[412]	[228]	[1.803]	[400]	[204]	[1.962]
Base Subfraction III	502	306	1.639	475	268	1.771
	[444]	[233]	[1.906]	[429]	[204]	[2.105]

MWD data of deasphaltened fractions from duplicate GPC runs are in parentheses.
 MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

-46-

<u>MWD of Residual Pitch No. 8 and Its Various Maltene and Asphaltene,</u> <u>and Ion-Exchange Extract and Eluate Fractions</u>

CANMET Residual Pitch No. 8	GPC	System	No. 1	GPC	System	No. 2
	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch	1362	445	3.057	1484	510	2.908
	(1315)	(439)	(2.995)	(1508)	(510)	(2.956)
Deasphaltening*						
Pentane Maltene	884	429	2.058	886	460	1.924
	(881)	(428)	(2.055)	(884)	(459)	(1.926)
Heptane Maltene	987 (955)	447 (438)	2.208	994 (1008)	477 (485)	2.083 (2.079)
Pentane Asphaltene	2382	411	5.788	3116	766	4.064
	(2343)	(407)	(5.755)	(3038)	(753)	(4.034)
Heptane Asphaltene		379	6.805	3246	708	4.582
		(376)	(6.803)	(3158)	(687)	(4.594)
Ion Exchange Chromatography (IEC)**						
Pentane Eluate	821	410	1.999	787	359	2.193
	[820]	[413]	[1.983]	[797]	[362]	[2.200]
Cyclohexane Eluate	979	373	2.626	950	335	2.831
	[964]	[373]	[2.581]	[960]	[340]	[2.822]
Combined Pentane						
+ Cyclohexane Eluate	848	380	2.229	851	344	2.467
	[887]	[385]	[2.303]	[894]	[349]	[2.562]
Acid Subfraction 1	1347	490	2.738	1399	482	2.901
	[1271]	[473]	[2.683]	[1302]	[457]	[2.847]
Acid Subfraction II	1356	419	3.233	1397	407	3.431
	[1086]	[401]	[2.705]	[1152]	[390]	[2.952]
Acid Subfraction III	1226	230	5.322	1327	221	5.996
	[2514]	[553]	[4.546]	[2325]	[612]	[3.797]
Base Subfraction	1191	419	2.845	1199	391	3.061
	[1275]	[436]	[2.925]	[1297]	[411]	[3.154]
Base Subfraction II	1269	432	2.933	1229	408	3.014
	[980]	[294]	[3.332]	[1023]	[275]	[3.711]
Base Subfraction III	1191	464	2.566	1095	426	2.565
	[1447]	[354]	[4.086]	[1505]	[344]	[4.377]
	1					

MWD data of deasphaltened fractions from duplicate GPC runs are in parentheses.
 MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

-47-

MWD of Residual Pitch No. 9 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

CANMET Posidual Pitch No. 9	GP C	System	No. 1	GPC	System	No. 2
	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch	261	148	1.757	306	174	1.750
	(263)	(148)	(1.757)	(314)	(177)	(1.771)
Deasphal tening*			·			
Pentane Maltene	239	176	1.359	256	173	1.475
	(240)	(176)	(1.360)	(258)	(175)	(1.472)
Heptane Maltene	245	176	1.390	240	167	1.438
	(246)	(177)	(1.391)	(240)	(166)	(1.439)
Pentane Asphaltene	290 (292)	149 (152)	1.942 (1.919)	314	187	1.683
Heptane Asphaltene	295 (301)	135 (144)	2.177 (2.090)	322	188	1.712
<pre>Ion Exchange Chromatography (IEC) **</pre>					<i>i</i>	
Pentane Eluate	243	181	1.345	226	163	1.389
	[259]	[19 3]	[1.346]	[251]	[17 3]	[1.447]
Cyclohexane Eluate	226	166	1.363	207	150	1.382
	[221]	[166]	[1.328]	[198]	[147]	[1.345]
Combined Pentane						
+ Cyclohexane Eluate	237	174	1.361	219	156	1.400
	[236]	[176]	[1.341]	[218]	[158]	[1.383]
Acid Subfraction I	281	194	1.447	271	182	1.487
	[266]	[185]	[1.437]	[251]	[171]	[1.467]
Acid Subfraction II	303	211	1.439	300	192	1.557
	[386]	[246]	[1.565]	[360]	[212]	[1.694]
Acid Subfraction III	386	205	1.881	385	189	2.022
	[350]	[195]	[1.793]	[338]	[179]	[1.888]
Base Subfraction	233	161	1.450	217	149	1.453
	[224]	[162]	[1.386]	[208]	[148]	[1.405]
Base Subfraction II	302	193	1.562	292	183	1.597
	[221]	[157]	[1.403]	[202]	[142]	[1.425]
Base Subfraction III	315	216	1.456	301	196	1.532
	[216]	[153]	[1.407]	[202]	[141]	[1.438]

* MWD data of deasphaltened fractions from duplicate GPC runs are in parentheses.

** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

<u>MWD of Residual Pitch No. 10 and Its Various Maltene and Asphaltene</u>, <u>and Ion-Exchange Extract and Eluate Fractions</u>

CANMET Residual Ditch No. 10	GPC	System	No. 1	GPC System No. 2		
	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch	290	163	1.778	328	178	1.845
	(267)	(148)	(1.799)	(310)	(171)	(1.815)
Deasphaltening*						
Pentane Maltene	255	182	1.399	272	182	1.496
	(255)	(182)	(1.402)	(271)	(178)	(1.519)
Heptane Maltene	258	181	1.420	253	173	1.462
	(259)	(182)	(1.422)	(254)	(173)	(1.463)
Pentane Asphaltene	298 (303)	147 (154)	2.015 (1.966)	324	185	1.754
Heptane Asphaltene	310 (319)	131 (137)	2.354 (2.326)	348	193	1.804
<u>Ion-Exchange Chromatography (IEC</u>)**						
Pentane Eluate	267	191	1.398	250	171	1.462
	[276]	[200]	[1.381]	[262]	[179]	[1.460]
Cyclohexane Eluate	234	162	1.443	224	151	1.480
	[224]	[162]	[1.380]	[207]	[147]	[1.411]
Combined Pentane	250	174	1.438	235	158	1.484
+ Cyclohexane Eluate	[253]	[180]	[1.401]	[236]	[162]	[1.456]
Acid Subfraction I	304	216	1.409	289	199	1.449
	[288]	[196]	[1.466]	[274]	[182]	[1.505]
Acid Subfraction II	273	203	1.345	259	182	1.422
	[302]	[216]	[1.400]	[286]	[191]	[1.496]
Acid Subfraction III	255	175	1.453	238	158	1.501
	[429]	[242]	[1.771]	[431]	[220]	[1.953]
Base Subfraction I	265	173	1.534	246	160	1.538
	[241]	[165]	[1.458]	[222]	[151]	[1.470]
Base Subfraction II	299	182	1.638	220	150	1.467
	[216]	[152]	[1.418]	[287]	[174]	[1.644]
Base Subfraction III	331	218	1.515	197	139	1.420
	[291]	[148]	[1.480]	[296]	[190]	[1.554]

* MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.

** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

ORF 83-3

TABLE 19

MWD of Residual Pitch No. 11 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

ł

CANNET Desidual Ditch No. 11	GPC	System	No. 1	GPC System No. 2			
CANMET RESIDUAT PITCH NO. IT	Mw	Mn	Mw/Mn	Mw	Mn	Mŵ/.Mn	
Whole Pitch	1188	418	2.839	1138	464	2.450	
	(1087)	(410)	(2.648)	(1132)	(465)	(2.433)	
Deasphaltening*							
Pentane Maltene	776	405	1.915	794	435	1.824	
	(793)	(409)	(1.935)	(782)	(432)	(1.807)	
Heptane Maltene	844	408	2.066	845	435	1.942	
	(847)	(409)	(2.069)	(854)	(436)	(1.958)	
Pentane Asphaltene	2122	409	5.187	2446	654	3.740	
	(2157)	(418)	(5.157)	(2472)	(654)	(3.779)	
Heptane Asphaltene	2379	385	6.177	2883	598	4.816	
	(2464)	(392)	(6.285)	(2822)	(593)	(4.754)	
<u>Ion-Exchange Chromatography (IEC)**</u>							
Pentane Eluate	685	381	1.797	666	331	2.012	
	[672]	[378]	[1.779]	[668]	[327]	[2.041]	
Cyclohexane Eluate	88 0	401	2.196	879	368	2.382	
	[825]	[375]	[2.200]	[816]	[338]	[2.411]	
Combined Pentane	773	386	2.003	775	350	2.210	
+ Cyclohexane Eluate	[677]	[367]	[1.845]	[696]	[333]	[2.085]	
Acid Subfraction I	1272	493	2.576	1249	474	2.632	
	[1181]	[470]	[2.510]	[1182]	[448]	[2.639]	
Acid Subfraction II	1260	414	3.040	1260	393	3.206	
	[1281]	[478]	[2.677]	[1389]	[480]	[2.894]	
Acid Subfraction III	1760	378	4.656	2006	410	4. 887	
	[1460]	[348]	[4.186]	[1563]	[396]	[3.941]	
Base Subfraction I	1120	433	2.584	1038	385	2.694	
	[1113]	[438]	[2.536]	[1001]	[383]	[2.607]	
Base Subfraction II	1342	535	2.509	1152	462	2.493	
	[1065]	[398]	[2.671]	[1015]	[360]	[2.818]	
Base Subfraction III	604	340	1.776	555	300	1.851	
	[1092]	[333]	[3.271]	[1048]	[303]	[3.458]	
	•		1		1	1	

* MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.

** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

ORF 83-3

TABLE 20

MWD of Residual Pitch No. 12 and Its Various Maltene and Asphaltene, and Ion-Exchange Extract and Eluate Fractions

CANMET Dogidual Ditch No. 12	GPC	System	No. I	GPC	System	No. 2
CANMET RESTOLAT FILCH NO. 12	Mw	Mn	Mw/Mn	Mw	Mn	Mw/Mn
Whole Pitch		184	2.066	413	218	1.889
		(196)	(1.818)	(357)	(218)	(1.889)
Deasphaltening*						
Pentane Maltene	351	235	1.495	355	228	1.558
	(344)	(232)	(1.480)	(357)	(228)	(1.564)
Heptane Maltene	341 (343)	225 (227)	1.512 (1.511)	342	214	1.598
Pentane Asphaltene	361 (374)	144 (152)	2.506 (2.456)	413	220	1.873
Heptane Asphaltene	378 (382)	159 (166)	2.368 (2.294)	449	229	1.957
Ion-Exchange Chromatography (IEC)**						
Pentane Eluate	369	245	1.502	343	212	1.616
	[328]	[214]	[1.531]	[345]	[216]	[1.597]
Cyclohexane Eluate	328	214	1.531	321	190	1.691
	[346]	[219]	[1.579]	[327]	[195]	[1.674]
Combined Pentane	345	226	1.522	316	197	1.605
+ Cyclohexane Eluate	[352]	[228]	[1.543]	[338]	[203]	[1.658]
Acid Subfraction I	396	276	1.430	375	247 [°]	1.517
	[411]	[297]	[1.382]	[385]	[261]	[1.473]
Acid Subfraction II	403	261	1.541	395	234	1.687
	[345]	[234]	[1.472]	[340]	[212]	[1.598]
Acid Subfraction III	293	186	1.574	297	171	1.732
	[414]	[247]	[1.678]	[427]	[228]	[1.870]
Base Subfraction I	373	230	1.616	374	217	1.716
	[346]	[216]	[1.597]	[340]	[200]	[1.696]
Base Subfraction II	274	175	1.567	310	170	1.821
	[457]	[279]	[1.635]	[468]	[260]	[1.799]
Base Subfraction III	404	262	1.538	404	240	1.683
	[322]	[184]	[1.745]	[320]	[172]	[1.858]

* MWD data of deasphaltened fractions from duplicate GPC runs are in parantheses.
 ** MWD data of ion-exchange fractions shown in brackets are from duplicate IEC experiments.

-51-

.

Elemental Analysis (Wt. %) of Twelve Whole Pitch Samples

Whole Pitch Sample No.	% C	%Н	H/C Atomic Ratio	% N	% S	% 0*
1	83.47	9.88	1.420	0.00	6.61	0.04
2	59.22	6.26	1.268	1.45	4.14	28.93
3	67.49	6.90	1.226	1.23	6.71	17.67
4	67.29	7.19	1.282	1.36	4.24	19.92
5	82.39	10.35	1.507	0.00	7.20	0.06
6	84.51	9.16	1.300	1.90	4.37	0.06
7	86.44	7.66	1.060	1.34	4.51	0.05
8	84.62	10.60	1.503	0.00	4.73	0.05
9	85.51	8.11	1.138	1.95	4.40	0.03
10	74.72	6.69	1.074	1.30	4.44	12.85
11	85.85	11.47	1.603	0.00	2.59	0.09
12	71.08	8.02	1.158	2.63	2.01	16.26
		ł				

Elemental Analysis (Wt. %) of Benzene Solubles of Twelve Residual Pitch Samples (C, H, N, S, O*)

Benzene Soluble Sample No.	% C	% H	H/C Atomic Ratio	% N	% 5	% 0*
1	83.62	9.01	1.292	0.00	7.42	-
2	69.54	6.96	1.201	1.18	4.35	17.97
3	74.26	7.24	1.169	1.34	6.75	10.41
4	75.80	7.48	1.184	1.39	5.52	9.81
5	83.65	9.91	1.421	0.00	6.39	· 0.05
6	83.61	9.12	1.308	2.90	4.37	0.00
7	86.54	7.62	1.050	1.41	4.42	0.01
8	84.69	10.58	1.499	0.00	4.71	0.02
9	83.57	9.20	1.320	2.01	5.18	0.04
10	70.80	6.64	1.125	1.37	4.74	16.45
11	85.36	11.59	1.629	0.00	2.96	0.09
12	80.61	8.13	1.210	1.27	2.37	7.62
				· .		

Elemental Analysis (Wt. %) of

[we]	lve	Pent	tane-Ma	ltene	Samp	es

Pentane-Maltene Sample No.	% C	%Н	H/C Atomic Ratio	% N	% S	% 0*
1.	82.41	10.15	1.477	0.00	7.48	-
2	87.29	8.37	1.150	0.00	4.29	0.05
3	85.37	8.71	1.224	0.00	5.94	-
4	86.55	8.84	1.225	0.00	4.65	-
5	82.41	11.55	1.680	0.00	6.02	0.02
6	84.11	9.87	1.408	1.33	4.67	0.02
7	87.11	8.66	1.192	0.00	4.14	0.09
8	82.96	12.05	1.743	0.00	4.89	0.10
9	83.77	10.16	1.455	1.53	4.51	0.03
10	85.82	9.06	1.266	0.00	4.35	0.77
11	84.52	12.36	1.754	1.16	1.92	0.04
12	87.40	9.69	1.330	0.00	2.91	0.00
		ļ				

Elemental Analysis (Wt. %) of Twelve Pentane-Asphaltene Samples

Pentane-Asphaltene Sample No.	% C	% Н	H/C Atomic Ratio	% N	% S	% 0*
]	73.75	7.98	1.298	2.13	8.29	7.85
2	51.91	5.38	1.243	1.52	4.92	36.27
3	52.50	5.72	1.307	1.46	7.02	33.30
4	48.99	5.43	1.330	1.46	4.84	39.28
5	71.93	8.06	1.344	1.30	8.02	10.69
· 6	77.06	7.40	1.152	2.08	4.59	8.87
7	87.49	5.97	0.81	2.01	4.50	0.03
8	66.80	7.26	1.304	1.10 [.]	6.46	18.38
9	86.37	7.00	0.972	1.87	4.77	· _
10	50.91	5.15	1.213	1.62	4.66	37.66
11	85.33	8.86	1.245	1.74	4:09	-
12	57.15	5.59	1.173	1.54	2.93	32.79

* by difference

.

Elemental Analysis (Wt. %) of Twelve Heptane-Maltene Samples

Heptane-Maltene Sample No.	% C	% Н	H/C Atomic Ratio	% N	% S	% 0*
] .	82.93	11.04	1.597	0.00	6.01	0.02
2'	83.00	8.46	1.223	1.20	4.44	2.90
3	85.65	8.77	1.228	0.00	5.61	-
4	87.09	8.91	1.227	0.00	4.02	
5	82.68	10.89	1.580	0.00	6.52	-
6	84.42	10.02	1.424	1.47	4.10	-
7	85.85	8.33	1.164	1.18	4.56	0.08
8	84.76	10.81	1.530	0.00	4.24	0.19
9	84.62	9.48	1.344	1.03	4.80	0.07
10	85.79	8.36	1.169	1.08	4.64	0.16
11	84.84	12.13	1.715	0.77	2.30	-
12	87.54	8.66	1.187	1.10	2.76	- .
	ł	l	1			

I

Elemental Analysis (Wt. %) of Twelve Heptane-Asphaltene Samples

Heptane-Asphaltene Sample No.	% C	% H	H/C Atomic Ratio	% N	% S	% 0*
1	68.87	7.58	1.320	1.30	6.91	15.34
2	58.44	5.75	1.18	1.49	4.98	29.34
3	53.00	5.63	1.274	1.44	7.14	32.79
4	50.17	5.35	1.279	1.34	4.67	38.47
5	69.83	7.59	1.304	1.39	7.79	13.40
6	68.51	7.33	1.283	1.68	4.91	17.57
7	87.26	6.05	0.83	2.06	4.68	-
8	62.99	7.03	1.339	1.12	6.39	22.47
9	85.85	7.78	1.08	1.51	4.85	0.01
10	49.17	5.07	1.237	1.56	3.89	40.31
11	86.25	8.43	1.172	1.43	3.99	-
12	62.53	6.26	1.201	1.49	2.52	27.20

Eluents	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Pentane Eluate	74.62	69.91	78.45	65.99	77.24	73.09	66.81	86.44	73.29	81.91	83.97	76. 99
	(77.36)*	(68.14)	(65.95)	(72.99)	(79.20)	(73.46)	(73.55)	(85.54)	(52.04)	(69.20)	(83.13)	(76.19)
Cyclohexane Eluate	7.65	3.34	2.74	4.08	2.26	3.93	2.07	2.53	10.51	5.36	3.34	5.30
	(8.12)	(2.74)	(7.34)	(3.31)	(6.50)	(5.47)	(6.65)	(3.24)	(13.34)	(11.46)	(3.05)	(5.42)
Benzene (A-1)	10.45 (8.83)	16.81 (15.93)	4.97 (10.12)	12.20 (8.43)	1,77 (6.95)	4.30 (6.99)	4.25 (10.10)	2.67 (4.94)	8.12 (17.13)	4.32 (10.49)	2.50 (6.60)	4.39 (8.74)
60% Benzene: 40% MeOH (A-2)	1.29	1.96	1.41	2.96	1.16	1.70	1.66	0.84	2.11	1.68	0.79	1.3)
	(0.83)	(1.09)	(1.28)	(3.02)	(1.40)	(1.19)	(1.18)	(0.81)	(3.18)	(1.35)	(0.52)	(1.47)
80% Benzene: 20% HOAC (A-3)	0.0]	0.25	0.52	0.30	1.93	0.35	0.48	0.45	0.42	0.96	0.39	0.67
	(0.014)	(1.81)	(0.036)	(1.33)	(0.20)	(0.07)	(0.21)	(0.0083)	(0.30)	(0.13)	(0.015)	(0.06)
Benzene (C-1)	7.99	9.80	5.91	11.20	3.85	5.44	5.09	3.70	5.31	4.97	2.99	8.14
	(9.03)	(8.40)	(7.31)	(5.69	(7.12)	(10.77)	(8.52)	(7.03)	(11.69)	(9.44)	(6.81)	(9.56)
60% Benzene: 40% MeOH (C-2)	1.79	2.44	1.18	2.67	1.20	1.19	1.26	0.74	0.47	0.73	0.91	1.13
	(2.46)	(2.43)	(1.56)	(1.22)	(1.43)	(1.66)	(0.91)	(0.86)	(0.92)	(0.76)	(0.78)	(1.89)
55% Benzene: 37% MeOII: 8% IPA (C-3)	3.18	0.23	9.69	2.30	9.04	9.77	8.56	5.38	1.19	4.64	5.60	7.96
	(1.77)	(3.76)	(0.07)	(6.25)	(0.44)	(1.69)	(0.25)	(0.075)	(0.20)	(0.25)	(0.13)	(1.02)
TOTAL	106.89	104.74	104.87	101.30	98.45	99.77	90.18	102.75	101.42	104.57	100.49	105.89
	(108.41)	(104.30)	(93.67)	(102.24)	(103.24)	(101.30)	(101.37)	(102.50)	(98.80)	(103.08)	(101.04)	(104.35)

Ion-Exchange Chromatographic Results of Pentane-Maltenes of Twelve Residual Pitch Samples

* Results in parantheses are from duplicate experiments

-58-

ORF 83-3

•

<u>Compound Type Distribution (%) in Pentane Deasphaltened Maltenes</u> of Twelve Residual Pitch Samples After Ion-Exchange Chromatography

Eluents	1	2	3	4	5	6	7	8	9	10	11	12	
Pentane (Saturates)	11.63	18.12	10.63	12.52	16.24	10.11	11.37	20.60	8.91	14.34	31.46	25.43	
5% Benzene in Pentane (Mono-Aro	matics)	7.99	9.61	6.13	6.15	10.82	6.61	8.17	11.45	5.05	7.74	14.54	8.15
15% Benzene in Pentane (Di-Aroma	tics)	10.61	13.68	12.46	10.59	14.68	11.01	10.09	13.94	6.58	10.48	10.77	12.18
Benzene (Polyaromatics)		26.40	28.02	32.17	33.04	24.89	36.36	31.35	23.55	34.67	42.68	17.01	33.55
60% MeOH: 20% Benzene: 20% Et.Et	her)	24.01	22.64	29.14	21.14	22.12	19.86	32.79	19.73	27.48	20.81	17.48	14.27
Methanol) _{Polar}	2.16	0.65	0.70	0.59	1.27	0.45	0.54	0.36	1.92	0.81	2.76	0.46
Pyridine) Polyaromatics	5.71	0.44	0.48	0.21	3.51	0.40	0.57	1.41	0.86	0.40	0.86	0.39
Benzene)			0.15	0.36	0.10	0.18	0.13	0.21	0.07	0.39	0.04	0.16	0.13
TOTAL			93.30	92.07	84.35	93.77	84.93	95.09	91.11	85.86	97.30	95.04	94.56

T/	ABL	E	2	9	
	_	_		_	

- --

Per Cent by Weight Fraction Oistribution in Residual Pitch Samples (Deasphaltening with n-Pentane)

Fractions	5	#1	#2	#3	#4	#5	# 6	#7	#8	# 9	#10	#11	#12
Benzene Insolu	uble*	3.94	28.31	7.48	5.12	0.91	2.91	2.36	0.62	4.84	5.93	7.23	8.68
Maltene		66.73	33.97	46.44	58.25	66.61	37.49	56.33	82.20	25.85	43.71	78.94	48.59
Asphaltene*		27.97	37.70	46.00	36.24	29.07	48.14	35.20	13.90	67.26	45.28	10.71	39.02
Pentane Eluat	2	49.79	23.75	36.43	38.44	51.44	27.40	37.63	71.05	18.95	35.80	66.29	37.41
Cyclohexane E	luate	5.11	1.13	1.27	2.38	1.51	1.47	1.17	2.08	2.72	2.34	2.64	2.58
Anion Eluate,	A-1*	6.97	5.71	2.31	7.11	1.18	.1.61	2.39	2.19	2.09	1.89	1.97	2.13
	A-2*	0.86	0.67	0.65	1.72	0.77	0.63	0.94	0.69	0.55	0.73	0.62	0.64
	A-3*	0.00	0.08	0.24	0.17	1.28	0.13	0.27	0.37	0.11	0.42	0.31	0.33
Cation Eluate	, C-1*	5.33	3.32	2.74	6.52	2.56	2.04	2.87	3.04	1.37	2.17	2.36	3.96
	C-2*	1.19	0.83	0.55	1.55	0.79	0.45	0.71	0.61	0.12	0.32	0.72	0.55
	C-3*	2.12	0.07	4.50	1.34	6.02	3.66	4.82	4.42	0.31	2.03	4.42	3.87
Saturates*	- <u></u> -	6.38	4.51	4.00	5.11	8.60	2.92	4.41	15.06	1.93	5.47	21.69	10.17
Monoaromatics	*	4.39	1.99	2.31	2.51	5.73	1.91	3.17	8.37	1.09	2.95	10.02	3.26
Oiaromatics*		5.82	3.40	4.70	4.32	7.77	3.18	3.92	10.19	1.43	3.99	7.42	4.87
Polyaromatics	*	14.49	6.97	11.07	13.32	13.18	10.50	12.16	17.22	7.51	16.28	11.73	13.42
Polar Polyaro	matics*	17.50	5.90	11.43	8.95	14.24	5.98	13.37	16.75	6.56	8.55	14.54	6.05
% Total (Frac marked with	tions *)	96.96	99.46	97.98	93.98	92.10	84.06	86.68	93.43	95.17	96.01	93.74	96.95

1

ł

TABLE	30

٠

Elemental	Analysis	(Wt. %	<u>) of</u>	Ion-1	Exchange	Eluates
	for S	amples	1,	2 and	3	

		Sample No. 1							Sample	No. 2			Sample No. 3						
Eluate	% C	% H	H/C Atomic Ratio	% N	% S	% 0*	-% C	2 н	H/C Atomic Ratio	% N	% S	× 0*	% C	х н	H/C Atomic Ratio	X N	% S	% 0*	
Combined Pentane and Cyclohexane	84.32	10.55	1.501	0.00	5.19	-	85.45	11.90	1.671	0.00	2.65	0.00	83.59	8.78	1.260	0.00	6.13	1.50	
A-1	83.39	8.81	1.267	1.25	6.45	0,10	84.88	7.14	1.009	2.21	2.91	2.86	75.16	7.03	1.122	1.71	5.79	10.31	
A-2	72.33	7.96	1.320	2.41	4.16	13.14	78.29	6.44	0.987	3.95	1.76	9.56	71.84	6.69	1.117	3.01	5.27	13.19	
A-3	74.06	7.96	1.29	2.43	3.83	11.72	64.91	7.63	1.41	5.44	0.84	21.18	69.39	6.17	1.067	1.57	2.03	20.84	
C-1	83.51	9.20	1.321	1.58	5.66	0.05	87.40	7.85	1.077	1.63	3.18	-	82.53	6.79	0.987	1.72	7.23	1.73	
C-2	80.04	9.96	1.493	2.79	3.49	3.72	81.62	9.33	1.371	2.69	1.51	4.85	83.81	7.87	1.126	2.57	5.82	-	
C-3	51.64	10.73	2.490 ·	10.52	1.16	25.95	58.50	6.89	1.41	2.04	0.35	32.22	84.66	8.29	1.175	3.12	4.03	-	

TAB	LE	.31
_	_	

Elemental Analysis (Wt. %) of Ion-Exchange Eluates for Samples 4, 5 and 6

		Sample No. 4							Sample	No. 5			Sample No. 6					
Eluate	¥ C	х н	H/C Atomic Ratio	% N	x s	X 0*	xc	X H	H/C Atomic Ratio	X N	x s	X 0*	¥ C	X H	H/C Atomic Ratio	XN	xs	X 0*
Combined Pentane and Cyclohexane Eluate	85.55	9.63	1.350	0.00	4.85	-	83.59	10.71	1.537	0.00	5,55	0.15	85.78	9.01	1.260	0.00	3.47	1.74
A-1	78.56	6.84	1.044	2.52	4.53	7.55	73.49	9.34	1.525	1.32	6.00	9.85	86.27	7.44	1.034	3.02	3.43	-
A-2	78.46	6.92	1.058	2.53	4.09	8.00	77.06	9.55	1.487	1.22	7.02	5.15	84.95	6.91	0.976	4.36	2.04	1.74
A-3	65.38	6.45	1.183	0.92	4.05	23.20	73.89	9.60	1.559	0.00	5.27	11.24	67.86	6.78	1.19	1.83	0.21	23.32
C-1	80.47	7.90	1.178	1.48	4.92	5.23	75.55	9,15	1.453	1.38	7.47	6.45	86.32	7.33	1.018	2.17	3.77	0.41
C-2	78.28	7.53	1.154	1.50	6.89	5.80	76.76	9.21	1.439	1.57	5.61	6.85	84.37	7.87	1.119	3.00	3.22	1.54
C-3	77.98	7.55	1.161	2.62	4.36	7.49	79.10	9.96	1.510	2.13	4.58	4.23	85.56	8.66	1.214	3.41	2.40	-

* by difference

-62-

TABLE 32	

Elemental Analysis (Wt. %) of Ion-Exchange Eluates

Eluate	Sample No. 7					Sample No. 8						Sample No. 9						
	X C	% Н	H/C Atomic Ratio	% N	% S	% 0*	% C	% Н	H/C Atomic Ratio	% N	% S	% 0*	% C	% Н	H/C Atomic Ratio	% N	* 5	% 0*
Combined Pentane and Cyclohexane	86.50	9.61	1.333	0.76	3.17	-	85.67	11.43	1.601	0.00	3.02	-	87.48	8.35	1.145	0.00	4.18	-
A-1	87.47	7.00	0.96	3.44	2.95	-	84.71	8.19	1.160	1.91	4.26	0.93	87.34	5.94	0.816	2.38	3.55	0.79
A-2	87.64	6.68	0.914	3.65	1.96	0.07	82.99	8.47	1.224	2.26	3.63	2.65	84.95	5.85	0.826	3.67	2.46	3.07
A-3	67.36	5.75	1.024	2.48	0.41	24.0	65.44	7.82	1.433	3,99	1.01	21.74	71.95	6,08	1.014	2.90	1.70	17.37
C-1	87.77	6.68	0.913	2.37	3.20	-	85.23	8.91	1.254	1.13	4.73	0.00	87.29	6.16	0.846	1.67	4.11	0.77
C -2	86.22	7.39	1.028	3.10	3.31	-	84.34	9.46	1.345	2.02	4.28	-	83.37	7.00	1.007	2. 4 4	5.79	1.40
C-3	86.07	8.02	1.118	3.46	2.61	-	84.79	9.67	1.368	2.32	3.18	0.04	85.95	7.50	1.047	3.29	3.29	-

for Samples 7, 8 and 9

* by difference

-63-
TAB	LE	33	
-			

Elemental Analysis (Wt. %) of Ion-Exchange Eluates for Samples 10, 11 and 12

			Sample	No. 1	0				Samp] e	No. 1	1				Sample	No. 12		
Eluate	xc	x H	H/C Atomic Ratio	X N	x s	x 0*	x c	хн	H/C . Atomic Ratio	X N	x s	x 0	x c	x H	H/C Atomic Ratio	3 N	x s	% 0 *
Combined Pentane and Cyclohexane	86.84	9.70	1.340	0.00	3.41	0.05	86.07	12.52	1.745	0.00	1.09	0,32	87.49	9.62	1.319	0.00	1.18	1.71
A-1	86,20	6.72	0.935	3.04	3.04	1.00	85.39	8.86	1.245	1.88	2.07	1.80	86.21	7.20	1.002	2.94	1.15	2.50
A-2	86.13	5.88	0.819	3.95	2.31	1.73	84.39	8.65	1.230	1.98	2.01	2.97	84.75	7.00	0.991	4.03	0.98	3.24
A-3	62.53	6.60	1.270	3.31	1.20	26.36	67.91	7.64	1.350	3.29	0.81	20.35	64.12	6.18	1.160	2.37	0.18	27.15
C-1	86.12	6.72	0.936	1.56	4.23	1.37	86.07	8.87	1.236	1.25	2.64	1.17	86.40	7.99	1.109	1.95	1.75	1.91
C-2	83.59	6.69	0.96	2.08	4.85	2.79	85.12	9.53	1.343	1.84	1.96	1.55	85.16	8.60	1.211	2.85	1.65	1.74
C-3	84.51	7.59	1.077	3.24	2.67	1.99	84.30	9,35	2.038	4.13	1.03	1.19	86.54	8.63	1.196	3.18	1.11	0.54

* by difference

-64-

٠

Elemental a	Analysis ((Wt. %)) of Comp	ound Type	Fractions
of	Residual	Pitch	Samples	(C,H,H,S,)

			Saturi	ates					Mono-Aron	atics					Di-Aroma	atics			1		Polyarom	atics		;		Pol	ar Polya	romatic	;	
Sample No.	xc	хн	H/C Atomic Ratio	X N	x s	x 0	2 C	хн	H/C Atomic Ratio	X N	x 5	% 0	x c	хн	H/C Atomic Ratio	X N	xs	* D	x c	хH	H/C Atomic Ratio	X H	% 5	\$ 0	x c	хн	H/C Atomic Ratio	X N	x s	1 D
1	86.65	12.96	1.79	0.00	0.12	0.27	86.05	11.65	1.63	0.00	2,28	0.D2	84.45	10.87	1.55	0.00	4.68	0.00	83,97	9.18	1.31	0.00	6.73	0.12	84.00	9.48	1.36	D.00	6.46	0.06
2	85.77	14.27	1.99	D.00	0.00	0.00	86.28	11.99	1.67	0.00	1.76	D.D2	86.30	10.37	1.44	0.00	3.36	0.00	87.35	8.27	1.14	0.00	4.36	D.02	86.06	9.09	1.27	1.05	3.88	0.00
3	86.42	13.38	1.86	0.00	0.25	0.00	85.64	12.10	1.69	0.00	2.28	Ð.00	84,88	10.54	1.49	0.00	4.30	0.28	85.92	7.85	1.09	0.00	6.27	-	85.75	8.83	1.24	0.67	4.63	0.12
4	86.44	13.48	1.87	0. 0 0	0.00	0.08	85.61	11.97	1.68	0.00	2.44	-	85.95	10.04	1.40	0.00	3,81	0.20	86,60	7.38	1.02	0.00	5.27	0.75	83.11	10.14	1.46	0.00	6.51	0.24
5	85,36	13.60	1.91	0.00	0.95	0.09	84.83	11.74	1.66	0.00	3.55	1	83.03	11.26	1.63	0.00	5.43	0.28	82.22	9.43	1.38	0.00	6.51	1.84	85.86	.8.42	1.17	0.94	4.33	0.45
6	86.51	13.48	1.87	0.00	0.00	0.01	85.91	11.98	1.67	0.00	2.11	0.00	85.89	10.19	1.42	0.00	3.90	0.02	85.86	8.58	1.19	0.00	5.33	0.23	85.06	9.20	1.30 -	0.64	5.09	0.01
7	85,99	13.97	1.95	0.00	0.00	0.04	86.02	12.28	1.71	0.00	1.55	0, 15	86.29	10.53	1.46	0.00	3,12	0.06	86.18	9, 12	1.26	0.00	4.17	0.53	85.98	9.82	1.37	0.00	3.87	0.33
8	86.16	13.79	1.92	0. 0 0	0.00	0.05	85,22	12.53	1.76	0.00	2.42	-	85.07	11.57	1.63	0.00	3.69	-	85.62	9,39	1,32	0.00	5.00	-	84.90	9.44	1.33	0.00	5.42	0.24
9	86.22	13.78	1.92	0.00	0.00	D.00	86,77	12.72	1.76	0.00	0.33	0.18	86.29	10.66	1.48	0.00	3.15	-	86.45	7.30	. 1.01	0.00	6.34	-	87.23	7.04	0,97	0.00	5.50	0.23
10	86.77	13.24	1.83	0.00	0.00	0.00	86.15	12.60	1.76	0.00	1.39	0.00	86.39	10.24	1.42	0.00	3.34	0.03	86.96	8.05	1.11	0.00	4.80	0.19	88.01	7.39	1.01	0.00	4.58	0.02
11	86.85	13.22	1.83	0.00	0.00	0.00	88.07	11.84	1.61	0.00	0.00	0.09	86.79	11.50	1.59	0.00	1.59	0.12	86.81	10.54	1.46	0.00	2.60	0.05	86.56	10.72	1.49	0.00	2.20	0.52
12	86.82	13.04	1.80	0.00	0.00	0.14	87.51	11.80	1.62	0.00	0.62	0.07	89.03	9.25	1.25	0.00	1.69	0.03	89.91	8.02	1.07	0,00	2.05	0.02	89.81	8.17	1.09	0.00	2.00	0.00

* by difference

ORF 83-3

-65-

Nitrogen Content (wt. %) of the Fractions in Residual Pitch Samples (Deasphaltening with n-Pentane)

Fractions	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Whole Pitch	0.00	1.45	1.23	1.36	0.00	1.90	1.34	0.00	1.95	1.30	0.00	2.63
Benzene Solubles	0.00	1.18	1.34	1.39	0.00	2.90	1.41	0.00	2.01	1.37	0.00	1.27
Asphaltene	2.13	1.52	1.46	1.46	1.30	2.08	2.01	1.10	1.87	1.62	1.74	1.54
Maltene	0.00	0.00	0.00	0.00	0.00	1.33	0.00	0.00	1.53	0.00	1.16	0.00
Combined Pentane & Cyclohexane Eluate	0.00	0.00	0.00	0.00	0.00	0 .00	0.76	0.00	0.00	0.00	0.00	0.00
Anion Eluate, A-1	1.25	2.21	1.71	2.52	1.32	3.02	3.44	1.91	2.38	3.04	1.88	2.94
A-2	2.41	3.95	3.01	2.53	1.22	4.36	3.65	2.26	3.67	3.95	1.98	4.03
A-3	2.43	5.44	1.57	0.92	0.00	1.83	2.48	3.99	2.90	3.31	3.29	2.37
Cation Eluate, C-1	1.58	1.63	1.72	1.48	1.38	2.17	2.37	1.13	1.67	1.56	1.25	1.95
C-2	2.79	2.69	2.57	1.50	1.57	3.00	3.10	2.02	2.44	2.08	1.84	2.85
C-3	10.52	2.04	3.12	2.62	2.13	3.41	3.46	2.32	3.29	3.24	4.13	3.18
Saturates	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mono-aromatics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Di-aromatics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Polyaromatics	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Polar Polyaromatics	0.00	1.05	0.67	0.00	0.94	0.64	0.00	0.00	0.00	0.00	0.00	0.00

-66-

Amounts of Nitrogen (grams) in the Fractions from 100 grams

of Residual Pitch Samples (Deasphaltening with n-Pentane)

Fraction	ns	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Whole Pitch		0.00	1.45	1.23	1.36	0.00	1.90	1.34	0.00	1.95	1.30	0.00	2.63
Benzene Solub	les	0.00	0.845	1.24	1.31	0.00	2.48	1.29	0.00	1.87	1.22	0.00	1.11
Asphaltene		0.595	0.573	0.671	0.529	0.377	1.00	0.756	0.782	0.354	0.580	1.15	0.576
Maltene		0.00	0.00	0.00	0.00	0.00	0.485	0.00	0.00	0.395	0.00	0.916	0.00
Combined Penta Cyclohexane El	ane & luate	0.00	0.00	0.00	0.00	0.00	0.00	0.295	0.00	0.00	0.00	0.00	0.00
Anion Eluate,	A-1	0.087	0.126	0.039	0.179	0.015	0.049	0.082	0.042	0.050	0.057	0.037	0.062
	A-2	0.020	0.026	0.019	0.043	0.009	0.027	0.034	0.016	0.020	0.029	0.012	0.026
	A-3	0.00	0.004	0.003	0.001	0.00	0.002	0.006	0.014	0.003	0.014	0.01	0.008
Cation Eluate	, C-1	0.084	0.054	0.047	0.096	0.035	0.044	0.068	0.034	0.023	0.034	0.029	0.077
	C-2	0.033	0.022	0.014	0.023	0.012	0.014	0.022	0.012	0.003	0.007	0.013	0.016
	C-3	0.223	0.001	0.140	0.035	0.128	0.125	0.167	0.103	0.010	0.066	0.183	0.123
Saturates		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mono-aromatics	5	0.00	0.00	0.00	0.00	Ò.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Di-aromatics		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Polyaromatics		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Polar Polyaron	natics	0.00	0.061	0.076	0.00	0.133	0.038	0.00	0.00	0.00	0.00	0.00	0.00

<u>Sulfur Content (wt. %) of the Fractions</u> in Residual Pitch Samples (Deasphalting with n-Pentane)

Fractions	5	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Whole Pitch		6.61	4.14	6.71	4.24	7.20	4.37	4.51	4.73	4.40	4.44	2.59	2.01
Benzene Solubl	es	7.42	4.35	6.75	5.52	6.39	4.37	4.42	4.71	5.18	4.74	2.96	2.37
Asphaltene		8.29	4.92	7.02	4.84	8.02	4.59	4.50	6.46	4.77	4.66	4.09	2.93
Maltene		7.48	4.29	5.94	4.65	6.02	4.67	4.14	4.89	4.51	4.35	1.92	2.91
Combined Penta Cyclohexane El	ine & ua te	5.19	2.65	6.13	4.85	5.55	3.47	3.17	3.02	4.18	3.41	1.09	1.18
Anion Eluate,	A-1	6.45	2.91	5.79	4.53	6.00	3.43	2.95	4.26	3.55	3.04	2.07	1.15
	A-2	4.16	1.76	5.27	4.09	7.02	2.04	1.96	3.63	2.46	2.31	2.01	0.98
	A-3	3.83	0.84	2.03	4.05	5.27	0.21	0.41	1.01	1.70	1.20	0.81	0.18
Cation Eluate,	C-1	5.66	3.18	7.23	4.92	7.47	3.77	3.20	4.73	4.11	4.23	2.64	1.75
	C-2	3.49	1.51	5.82	6.89	5.61	3.22	3.31	4.28	5.79	4.85	1.96	1.65
	C-3	1.16	0.35	4.03	4.36	4.58	2.40	2.61	3.18	3.29	2.67	1.03	1.11
Saturates		0.12	0.00	0.25	0.00	0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mono-aromatics		2.28	1.76	2.28	2.44	3.55	2.11	1.55	2.42	0.33	1.39	0.00	0.62
Di-aromatics		4.68	3.36	4.30	3.81	5.43	3.90	3.12	3.69	3.15	3.34	1.59	1.69
Polyaromatics		6.73	4.36	6.27	5.27	6.51	5.33	4.17	5.00	6.34	4.80	2.60	2.05
Polar Polyarom	atics	6.46	3.88	4.63	6.51	4.33	5.09	3.87	5.42	5.50	4.58	2.20	2.00

-68-

· TABLE 38

Amounts of Sulfur (grams) in the Fractions from 100 grams

of Residual Pitch Samples (Deasphalting with n-Pentane)

Fractions	5	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Whole Pitch		6.61	4.14	6.71	4.24	7.20	4.37	4.51	4.73	4.40	4.44	2.59	2.01
Benzene Solub	les	7.03	3.12	6.24	5.21	6.11	3.74	4.05	4.53	4.82	4.22	2.65	2.08
Asphaltene		2.32	1.85	3.23	1.75	2.33	2.21	1.59	0.90	3.21	2.11	0.44	1.14
Maltene		4.99	1.46	2.75	2.71	4.01	1.75	2.33	4.02	1.16	1.90	1.52	1.41
Combined Penta Cyclohexane El	ane & luate	2.85	0.66	2.31	2.00	2.94	1.00	1.23	2.21	0.91	1.30	0.75	0.47
Anion Eluate,	A-1	0.45	0.17	0.13	0.32	0.07	0.06	0.07	0.09	0.07	0.06	0.04	0.02
	A-2	0.036	0.012	0.034	0.070	0.054	0.013	0.018	0.025	0.013	0.017	0.012	0.006
	$\frac{A-2}{A-3}$		0.001	0.005	0.007	0.067	0.00	0.001	0.003	0.002	0.005	0.003	0.00
Cation Eluate,	, C-1	0.30	0.11	0.20	0.32	0.19	0.08	0.09	0.14	0.05	0.09	0.06	0.07
	C-2	0.041	0.013	0.032	0.107	0.044	0.014	0.023	0.026	0.007	0.016	0.014	0.009
	C-3	0.025	0.00	0.181	0.058	0.276	0.088	0.126	0.141	0.010	0.054	0.046	0.043
Saturates		0.007	0.00	0.00	0.00	0.981	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mono-aromatics	5	0.100	0.035	0.052	0.061	0.203	0.040	0.076	0.202	0.003	0.041	0.00	0.02
Di-aromatics		0.273	0.114	0.202	0.164	0.421	0.124	0.122	0.376	0.045	0.133	0.118	0.082
Polyaromatics		0.975	0.303	0.694	0.701	0.858	0.559	0.507	0.861	0.476	0.781	0.297	0.275
Polar Polyaron	natics	1.130	0.228	0.529	0.582	0.616	0.304	0.517	0.907	0.361	0.392	0.319	0.121

 \vee

Х

-69-

ORF 83-3

.

TAB	LE	39

Comparison of Average Molecular Weights in Maltenes and Ion-Exchange Eluates of Twelve Residual Pitch Samples

											·	
	Sample No.	Whole Pitch	Pentane Maltene	Pentane Eluate	Cyclohexane Eluate	Combined Eluate	A-1	A-2	A-3	C-1	C-2	C-3
	5	3304* 510** 6.47***	1199 483 2.48	1015 433 2.34	1543 509 3.03	1180 373 3.16	1778 558 3.18	1692 429 3.94	5317 751 10.52	1771 548 3.23	1627 564 2.89	1540 655 2.35
	1	2563 470 5.45	1202 488 2.46	852 407 2.09	1347 461 2.92	1263 470 2.69	1856 575 3.22	1471 479 3.06	3062 566 5.40	1650 499 3.31	1512 505 2.99	1762 413 4.27
	8	1362 445 3.06	884 429 2.06	821 410 1.99	979 373 2.61	848 380 2.23	1347 490 2.74	1356 419 3.23	1226 230 5.32	1191 419 2.85	1269 432 2.93	1191 464 2.57
	11	1188 418 2.84	776 405 1.92	685 381 1.79	880 401 2.19	773 386 2.00	1272 493 2.58	1260 414 3.04	1760 378 4.66	1120 433 2.58	1342 535 2.51	694 340 1.78
	3	674 214 3.15	431 268 1.61	433 274 1.58	413 234 1.76	425 254 1.67	562 317 1.77	524 285 1.84	566 239 2.36	426 240 1.77	521 286 1.82	544 312 1.74
	7	490 228 2.14	392 258 1.16	404 270 1.49	412 247 1.67	402 253 1.59	487 306 1.59	418 257 1.65	535 248 2.15	442 257 1.72	489 276 1.77	502 306 1.64
	4	466 223 2.09	397 241 1.64	395 244 1.62	347 217 1.59	365 227 1.61	491 274 1.79	504 266 1.89	589 263 2.23	414 229 1.81	414 227 1.82	490 273 1,80
	6	429 192 2.23	384 240 1.60	415 251 1.65	343 212 1.62	380 232 1.63	450 289 1.55	458 267 1.71	649 278 2.33	385 222 1.73	502 267 1.88	500 290 1.72
	2	384 186 2.06	345 214 1.61	446 258 1.72	386 224 1.72	426 244 1.74	368 222 1.66	380 224 1.69	618 319 1.93	386 212 1.82	473 247 1.91	445 221 2.01
↓	12	380 184 2.07	351 235 1.49	369 245 1.50	328 214 1.53	345 226 1.52	396 276 1.43	403 261 1.54	293 186 1.57	373 230 1.62	274 175 1.57	404 262 1.54
asing M	10	290 163 1.78	255 182 1.40	267 191 1.39	234 162 1.44	250 174 1.44	304 -216 1_41	273 203 1.35	255 175 1.45	265 173 1.53	299 182 1.64	331 218 1.52
Decre	9	261 148 1.76	239 176 1.36	243 181 1.34	226 166 1.36	237 174 1.36	281 194 1.45	303 211 1.44	386 205 1.88	233 161 1.45	302 193 1.56	315 216 1.46

* Mw

** Mn

*** Mw/Mn

IR Spectral Analysis of Model Compounds in CH_2Cl_2 and THF (Concentration, Band Position, Absorbance and Functional Groups)

				Stronge	st Absorp	tion Bands			
Comment Trans	Concentration in	380	0 - 3200 cm ⁻	1		1900	- 1450 cm ⁻	1	
compound type	CH ₂ Cl ₂	Hydro	gen Stretchi	ng	С	= 0 Stretch	ing	Ring Stret	ching
		Groups cm ⁻¹	Absorbance A	A/mmole/L	Groups cm ⁻¹	Absorbance A	A/mmole/L	Туре	cm ⁻¹
Pyrrolic		N-H							
Carbazole	33.8	3470	0.263	0.008				Pyrrole	1490
2-Methylindole	47.5	3470 ·	0.423	0.009		•		Pyrrole	1555
Amide		(OCO)NHo			(OCO)NHa				
Benzamide	10.6	3530	0.049	0.005	1685	0.375	0.035	Benzene	1590
		3410	0.066	0.006		1			
	(19.5)*				(1685)	(0.997)	(0.051)		
	31.3	3530	0.167	0.005					
		3410	0.227	0.007	1685				
Carboxylic Acid		(со)он			(со)он				
Benzoic Acid	15.1	3500			1735	0.229	0.015	Benzene	1605
					1695	0.274	0.018		
	(13.8)				(1720)	(0.490)	(0.036)		
Salicylic Acid	30.9	3480			1690	0.592	0.019	Benzene	1485
Phenylacetic Acid	28.1	3490			1665	0.430	0.014		
Phenylacetic Acid	28.1	3490			1740	0.184	0.006	Benzene	1495
					1710	0.500	0.018		
Cyclohexane Carboxylic Acid	37.4	3500			1740	0.337	0.009	Saturated	
			1		1705	0.761	0.020		
Cyclohexyl Acetic Acid	44.1	3500			1750	0.328	0.007	Saturated	
					1735	0.221	0.005		
					1750	0.937	0.021		
Phenols		(Q)OH free							
2,6-Di-tert butyl phenol	26.7	3640						8enzene	1600
2.4-Di-methyl phenol	38.9	3600						8enzene	1505
2,6-Di-methyl phenol	31.7	3610						Benzene	1475
3,5-Di-methyl phenol	28.3	3590						Benzene	1595
Naphthel	29.7	3580						Benzene	1595
l-Hydroxy-isoquinoline	17.8	3400						Pyridine	1660
	37.6								
8-Hydroxy quinoline	24.3	3420						Pyridine	1510
Other N-Hetero Aromatics									
Acridine	31.7							Pyridine	1520
Phenanthridine	32.7							Pyridine	1620
5,6-Benzoquinoline	34.0							Pyridine	1495

* Values in parenthesis from analysis in THF

.

- - -

. /

٠

						<u>of</u>	#1 Residua	1 Pitch Penti	ine-Maltene in	$1 CH_2 Cl_2$						
	T			Pyrrolic Com	apounds, 34	70 cm ⁻¹		Cai	boxylic Acids	5 1695 cm ⁻⁾	i, 1735 ci	r1	<u> </u>	Aromatic	Ring 1605 cm-	1.
				Exp	pressed as	Carbazole	•		Expre	essed as Be	enzoic Act	d	1			
Fraction		Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	wmole* /g Fraction	wwole /g Maltene	mmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	Mmole* /g Fraction (Average of Two Values)	/g Maltene	mmole /g Residual Pitch	Absor- bance A	Mg Fraction	A/g Maltene	A/g Residua Pitch
Pentane Eluate		71.24	-	-	-	-	-	ND	ND	ND	ND	ND	0.12	1.73	0.09	0.06
Cyclohexane Eluate Anion Eluate, A-1	ate	41.53	0.035	0.50	0.07	D.006	0.004	. ND	ND	ND	ND	ND	0.13	3.08	0.24	0,16
Anion Eluate, /	4-1	10.02	0.037	U.52	0.31	0.03	0.02	ND	ND	ND	ND	ND	0.06	5.99	0 .63	0.42
	1-2	9.58	0.D38	0.54	0.34	D.004	0.002	ND	ND	ND	ND	ND	0.26	27.35	0.35	D.24
	-3	3.82	-	-	-	-	-	D.231 (1695 cm ⁻¹) D.205 (1735 cm ⁻¹)	1.14	2.43	0.002	0.001	0.D4	10.99 ,	0.09	0.06
Cation Eluate,	C-1	9.57	0.D17	D.24	0.15	0.D1	D.007	ND	ND	ND	ND	ND	0.05	5.12	0.41	D.27
C-2	C-2	6.69	-	-	-	-	-	ND	ND	ND	ND	ND	0.04	4.48	0.08	0.05
	C-3	5.09	-	-	-	-	-	ND	ND	ND	ND	NU	0.03	6.88	0.22	0.15

IR Analysis of Ion-Exchange Eluate Fractions of #1 Residual Pitch Pentane-Maltene in CH₂Cl₂

ND = Not determined

None detected

* * Method of calculation: MW of Carbazole 167.20

MW of Benzoic Acid 122.12

ORF 83-3

-72-

٠

IR Analysis of Ion-Exchange Eluate Fractions of #2 Residual Pitch Pentane-Maltene in CH₂Cl₂

			Pyrrolic Comp	ounds, 347	'0 cm ⁻¹		Carb	oxylic Acids	1695 cm ⁻¹ ,	1735 cm-	1		Aromatic Ri	ng 1605 cm ⁻¹	
			Exp	ressed as	Carbazole	•		Expre	ssed as Be	mzoic Aci	d				
Fraction	Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	A/g Fraction	A/g Maltene	A/g Residual Pitch
Pentane Eluate	66.95	0.03	0.42	0.04	0.03	0.01	ND	ND	NO	ND	ND	0.15	2.24	1.56	0.53
Cyclohexane Eluate	62.46	0.09	1.32	0.13	0.004	0.001	ND	ND	NO	ND	ND	0.26	4.16	0.14	0.05
Anion Eluate, A-1	9.08	0.07	0.95	0.63	0.11	0.04	NO.	NO	NO	NO	ND	0.04	4.41	0.74	0.25
Å-2	9.93	0.14	2.05	1.24	0.02	0.01	ND	ND	ND	NO	NO	0.10	9.97	0.19	0.06
A-3	1.22	0.01	0.11	0.54	0.001	0.0004	(1695 cm ⁻¹) (1735 cm ⁻¹)	-	-	-	-	0.14	11.47	0.03	0.01
Cation Eluate, C-1	8.96	0.03	0.38	0.25	0.02	0.01	NO	NO	NO	ND	ND	0.06	6.36	0.62	0.21
C-2	8.75	-	-	-	-	-	, NO	NO	NO	ND	NO	0.10	11.31	0.28	0.09
C-3	4.71	-	-	-	-	-	ND	NO	ND	NÖ	ND	0.06	12.74	0.03	0.01

Footnotes: See Table 41

.

-73-

TABLE 43 IR Analysis of Ion-Exchange Eluate Fractions

of #3 Residual Pitch Pentane-Maltene in CH2Cl2

			Pyrrolic Comp	ounds, 347	0 cm-1		Car	boxylic Acid	s 1695 cm ⁻	¹ , 1735 c	n 1		Aromatic R	ing 1605 cm ⁻¹	
			Exp	ressed as	Carbazole	••••••••••••••••••••••••••••••••••••••		Expr	essed as B	enzolc Ac	1d				
Fraction	Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve	mmole* /g Fraction	mmole /g Maltene	nmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	<pre>wmole* /g Fraction (Average of Two Values)</pre>	mmole /g Maltene	www.ole /g Residual Pitch	Absor- bance A	A g Fraction	A g Maltene	A g Residua Pitch
Pentane Eluate	81.49	0.06	0.85	0.06	0.05	0.02	ND	ND	ND	NU	ND	0.22	2.72	2.13	0.99
Cyclohexane Eluate	89.99	0.20	2.88	0.19	0.005	0.002	ND	ND	ND	ND	ND	0.36	4.00	0.11	0.05
Anion Eluate, A-1	8.10	0.07	0.95	0.70	0.03	0.02	ND	ND	ND	ND	ND	0.05	6.17	0.31	0.14
A-2	9.57	0.11	1.63	1.02	D.01	0.007	ND	ND	ND	ND	ND	0.05	5.54	0.08	0.04
A-3	3.57	-	-	• -	-	-	0.35 (1695 cm ⁻¹) 0.26	1.52	3.47	0.02	0.01 .	0.08	22.97	0.12	0.06
							(1735 cm ⁻¹)								
Cation Eluate, C-1	7.29	0.03	0.47	D. 39	0.02	0.01	ND		ND	ND	ND	0.04	6.04	0.36	0.17
 C-2	7.65	0.02	0.33	0.26	0.003	0.001	ND		ND	ND	ND	0.05	6.27	0.07	0.03
 C-3	6.77	0.01	D.16	0.14	0.01	0.006	ND		ND	ND	ND	0.07	10.34	1.00	0.46

Footnotes: See Table 41

-74-

TADLE 44

.

.

IR Analysis of Ion-Exchange Eluate Fractions of #4 Residual Pitch Pentane-Maltene in CH_2Cl_2

.

			Pyrrolic Comp	ounds, 347	0 cm ⁻¹		Cart	oxylic Acids	1695 cm ⁻¹ ,	1735 cm	1		Aromatic Rin	g 1605 cm ⁻¹	
	Concer		Exp	ressed as	Carbazole	!		Expre	ssed as Be	nzolc Aci	d				
Fraction	tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	nmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	ng/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	A g Fraction	A g Maltene	A g Residual Pitch
Pentane Eluate	39.97	0.03	0.46	0.07	0.04	0.04	ND	ND	ND	ND	ND	0.13	1.73	1.13	0.66
Cyclohexane Eluate	60.29	0.14	2.04	D.20	0.00B	0.005	ND	ND	NÐ	ND	ND	4.31	0.17	0.17	0.10
Anion Eluate, A-1	6.16	0.04	0.63	0.61	0.07	0.04	ND	ND	NÐ	ND	ND	0.05	7.30	0.61	0.36
A-2	4.69	0.06	0.86	1.10	0.03	0.02	ND	ND	ND	ND	ND	0.04	9.30	0.09	0.05
A-3	6.04	-	-	-	-	-	0.44 (1695 cm ⁻¹)	1.82	2.68	0.008	0.004	0.08	13.74	0.18	0.10
							0.32 (1735 cm ⁻¹)	2.14							
Cation Eluate, C-1	5.85	0.04	0.56	0.57	0.06	0.04	ND	ND	ND	ND	ND	0.06	10.08	0.57	0.33
C-2	6.59	0.02	0.29	0.25	0.007	0.004	ND	ND	ND .	ND	ND	0.02	3.49	0.04	0.02
C-3	7.12	-	-	-	-		ND	ND	ND	ND	ND	0.06	8.71	0.54	0.31

Footnotes: See Table 41

-75-

1

IP	<u>A</u>	nalysis (of Ion-	Exchange	Eluate	Fractions	
of	# 5	Res i dua	l Pitch	Pentane-	-Maltene	in CH ₂ Cl ₂	

			Pyrrolic Comp	ounds, 347	0 cm ⁻¹		Carb	oxylic Acids	1694 cm ⁻¹ ,	1735 cm-	1		Aromatic Rin	g 1605 cm ¹	
	6		Ext	pressed as	Carbazole	•		Expre	essed as Be	nzolc Act	đ				
Fraction	trati mg/ Solve	n Absor bance it A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	mmole ∙/g Maltene	rmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	A/g Fraction	A/g Maltene	A/g Residual Pitch
Pentane Eluate	66.4	0.03	0.40	0.04	0.03	0.02	ND	ND	ND	ND	ND	0.07	1.08	0.84	0.56
Cyclohexane Eluato	85.9	0.10	1.50	0.10	0.002	0.002	ND	ND	ND	NO	ND	0.21	2.44	0.05	0.03
Anion Eluate, A-1	B. 0	0.02	0.30	0.22	0.004	0.003	ND	ND	ND	ND	ND	0.04	4.86	0.09	0.06
A-2	7.7	0.01	0.14	0.11	0.001	0.001	ND	ND	ND	ND	ND	0.03	3.59	0.04	0.03
A-3	10.0	-	-	-	-	-	D.37 (1695 cm ⁻¹) 0.30 (1735 cm ⁻¹)	1.61 1.91	1.76	0.03	0.02	0.06	6.08	0.12	0.08
Cation Eluate, C	1 11.2	0.02	0.28	0.15	0.006	0.004	ND	ND	ND	ND	ND	0.04	3.11	0.12	0.08
	-2 8.4	0.01	D.05	0.04	0.0004	0.0002	ND	ND	ND	ND	ND	0.03	3.44	0.04	0.03
	-3 9.2	-	-	-	-	-	ND	ND	ND	ND	NÐ	0.05	4.88	0.44	0.29

Footnotes: See Table 41

1

-76-

.

IR Analysis of Ion-Exchange Eluate Fractions or #6 Residual Pitch Pentane-Maltene in CH₂Cl₂

			Pyrrolic Compo	ounds, 3470	_1 Cm		Carb	oxylic Acids	1695 cm ⁻¹ ,	1735 cm	1		Aromatic Ring	1605 cm -1	
	_		Expr	essed as C	arbazole	•		Expre	ssed as Be	nzoic Aci	d				
Fraction	Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	namole /g Residual Pitch	Absor- bance A	A/g Fraction	A/g Maltene	A/g Residual Pitch
Pentane Eluate	52.29	0.05	0.70	0.08	0.06	0.02	NO	NO	ND	ND	ND	0.19	3.71	2.71	1.02
Cyclohexane Eluate	43.17	0.13	1.89	0.26	0.01	0.004	ND	. ND	ND	ND	ND	0.23	5.33	0.21	0.08
Anion Eluate, A-1	9.48	0.11	1.60	1.01	0.04	0.02	ND	ND	ND	ND	ND	0.07	7.38	0.32	0.12
A-2	8.84	0.14	2.08	1.41	0.02	0.01	· ND	ND	ND	ND	ND	9.10	11.31	0.19	0.07
A-3	5.14	-	-	-	-	-	0.24 (1695 cm ⁻⁺¹)	1.17	1.94	0.007	0.003	0.08	14.98	0.05	0.02
							(1735 cm ⁻¹)	1.27							
Cation Eluate, C-1	8.22	0.05	0.65	0.48	0.03	0.01	ND	ND	ND	ND	ND	0.06	7.1B	0.39	0.15
C-2	8.87	0.03	0.35	0.24	0.003	0.001	ND	ND	ND	ND	ND	0.07	7.78	0.09	0.03
C-3	6.13	0.01	0.11	0.11	0.01	0.004	ND	ND	ND	ND	ND	0.06	10.44	1.02	0.38

Footnotes: See Table 41

l

ORF 83-3

-77-

IR Analysis of Ion-Exchange Eluate Fractions or #7 Residual Pitch Pentane-Maltene in CH2Cl2

		Руг	rolic Compound	ds, 3470 cm	_ _1		Carb	oxylic Acids	1695 cm ⁻¹ ,	1735 cm	1		Aromatic Ring	1605 см ⁻¹].
		<u> </u>	Expres	sed as Carb	azole			Expre	ssed as Be	nzoic Aci	d					
	Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	nmole* /g Fraction	mmole /g Maltene	numole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	nmole /g Residual Pitch	Absor- bance A	A/g Fraction	^∕g Maltene	A/g Residual Pitch	
Pentane Eluate	81.71	0.08	1.13	0.08	0.06	0.03	ND	ND	ND	ND	ND	0.25	3.00	2 .06	1.16	
Cyclohexane Eluate	47.78	D.17	2.41	0.30	D.006	0.004	ND	ND	ND	ND	ND	0.24	4.99	0.10	0.06]
Anion Eluate, A-1	8.69	0.11	1.51	1.04	0.04	0.D2	ND	ND	ND	ND	ND	0.06	5.90	0. 29	0.16].
A-2	8.06	0.13	1.89	1.40	0.D2	D.D1	ND	ND	ND	ND	ND	0.05	6.70	0.11	0.06	78-
A-3	3.52	-	-	-	-	- · ·	0.43 (1695 cm ⁻¹) 0.28 (1735 cm ⁻¹)	1.79 1.69	4.04	0.02	0.01	0.08	23.58	0.11	0.06	
Cation Eluate, C-	9.91	0.06	0.87	0.53	0.03	D.02	ND	ND	ND	ND	ND	0.06	6.36	0. 33	0.19	
C	9.39	0.04	0.61	0.37	0.005	0.003	ND	ND	ND	ND	ND	0.06	6.44	0.08	0.04	
	10.08	0.02	0.21	0.12	0.01	D.006	ND	ND	ND	ND	ND	0.09	8.83	 .76	0.43	Ĺ

Footnotes: See Table 41

ł

•

IR Analysis of Ion-Exchange Eluate Fractions of #8 Residual Pitch Pentane-Maltene in CH₂Cl₂

			Pyrrolic Comp	ounds, 347	'0 cm ⁻¹	•••	Car	boxylic Acids	1695 cm ⁻¹	, 1735 cm ⁻	1		Aromatic Ring	1605 cm ⁻¹	
	Concor		Expr	essed as C	arbazole			Expr	ressed as Be	enzoic Aci	d				
Fraction	tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	mmole /g Maltene	nmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	umole /g Maltene	unnole /g Residual Pitch	Absor- bance A	A/g Fraction	A⁄g Haltene	∧∕g Residual Pitch
Pentane Eluate	85.06	0.01	0.18	0.01	0.01	0.01	ND	ND	ND	ND	ND	0.11	1.29	1.12	0.92
Cyclohexane Eluate	65.12	0.09	1.26	0.12	0.003	0.002	ND	ND	ND	ND	ND	0.20	3.04	0.D8	0.07
Anion Eluate, A-1	9.41	0.D3	0.48	0.31	0.008	0.007	ND	ND	ND	ND	ND	0.13	13.60	D.36	0.30
A-2	12.00	0.04	0.59	D.29	0.003	0.002	ND	ND	ND	ND	ND	0.10	8.25	0.07	0.06
A-3	4.73	-	-		-	-	D.02 (1695 cm ⁻¹) 0.046 (1735 cm ⁻¹)	0.20 0.21	0.35	0.002	0.002	0.25	52.85	0.24	0.20
Cation Eluate, C-1	10.59	0.02	0.23	0.13	0.005	0.004	ND	ND	ND	ND	ND	0.05	4.62	0.17	0.14
C-2	8.50	0.01	0.09	0.05	0.0004	0.0003	ND	ND	ND	ND	ND	0.03	4.00	0.03	0.02
C-3	8.00	-	-	-	-	-	ND	ND	ND	ND	ND	0.06	7.83	0.42	0.34

Footnotes: See Table 41

1

-79-

IR Analysis of Ion-Exchange Eluate Fractions

of #9 Residual Pitch Pentane-Maltene in CH2Cl2

				Pyrrolic Comp	ounds, 347	0 cm ⁻¹		Car	boxylic Acids	1695 cm ⁻¹ ,	1735 cm ⁻¹	·····		Aromatic Ring	1605 cm-1	
				Exp	ressed as	Carbazole			Expre	essed as Ben	zaic Acid					
Fract	ion	Concen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	_mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	Munole* /g Fraction (Average of Two Values)	· mmole /g Maltene	nmole /g Residual Pitch	Absor- bance A	A/y Fraction	A/g Maltene	A/g Residual Pitch
Pentane Eluate	e	63.05	0.03	0.44	0.04	0.03	0.008	NO	NO	NO	NO	NO	0.23	3.68	2.70	0.70
Cyclohexane El	luate	80.15	0.10	1.38	0.10	0.01	0.003	ND	ND	NO	NO	NO	0.38	4.70	0.49`	0.13
Anion Eluate,	A-1	10.39	0.09	1.22	0.70	0.06	0.01	NO	NO	NO	NO	ND	0.07	6.93	0.56	0.14
	A-2	9.74	0.16	2.33	1.43	0.03	0.008	ND	ND	NO	NO	ND	0.09	9.14	0.19	0.05
-	A-3	10.30	0.04	0.51	0.30	0.001	0.0003	0,33 (1695 cm ⁻¹) 0.22 (1735 cm ⁻¹)	1.46 1.22	1.07	0.005	0.001	0.15	14.08	0.06	0.02
Cation Eluate,	, C-1	9.67	0.03	0.43	0.27	0.01	0.004	NO	ND	NO	NO	NO	0.06	6.00	0.32	0.08
	C-2	9.37	0.02	0.31	0.20	0.001	0.0002	ND	ND	ND	ND	ND	0.05	4.80	0.02	0.005
	C-3	12.73	0.01	0.13	0.06	0.001	0.0002	ND	ND	ND	ND	ND	0.12	9.19	0.11	0.03

Footnotes: See Table 41

-80-

<u>IR Analysis of</u>	Ion-Exchange Eluate F	ractions
of #10 Residual	Pitch Pentane-Maltene	in CH ₂ Cl ₂

			Pyrrolic Comp	ounds, 347	') cm ⁻¹		Carl	oxylic Acids	1694 cm ⁻¹ ,	1735 cm	1		Aromatic Rin	g 1605 cm ⁻¹	
	Concon-		Exp	pressed as	Carbazole	2		Expre	ssed as Be	nzoic Aci	d	1			
Fraction .	tration mg/g Solvent	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	√g Fraction	A/g Maltene	A/g Residual Pitch
Pentane Eluate	71.B7	0.03	0.47	0.04	0.03	0.01	NO	NO	NĐ	NO	NO	0.21	2.91	2.38	1.04
Cyclohexane Eluate	65.71	0.13	1.83	0.17	0.01	0.004	NO	NO	NO	NO	NO	0.28	4.32	0.23	0.10
Anion Eluate, A-1	10.07	0.11	1.54	0.71	0.04	0.02	NO	NO	NO	NO	NO	0.07	7.35	0.32	0.14
A-2	10.33	0.18	2.62	1.52	0.02	0.01	NO	NO	NO	NO	NO	0.07	6.5B	0.11	0.05
A-3	11.86	0.05	0.69	0.35	0.003	0.001	0.18 (1695 cm ⁻¹) 0.13 (1735 cm ⁻¹)	0.97 0.77	U.60	0.006	0.003	0.27	22.51	9,22	0.10
Cation Eluate, C-1	17.BO	0.03	0.38	0.29	0.01	0.006	NO	ND	NO	NO	NO	0.05	6.54	0.32	0.14
C-2	10.72	0.03	0.44	0.24	0.002	0.001	NO	NO	NO	NO	NO	0.07	6.72	0.05	0.02
C-3	10.05	0.01	0.14	0.0B	0.004	0.002	NO	NO	NO	NO	NO	0.09	9,45	0.44	0.19

Footnotes: See Table 41

-81-

ORF 83-3

1

IR Analysis of	Ion-Exchange	Eluate Fractions
of #11 Residual	Pitch Pentan	e-Maltene in CH ₂ Cl ₂

Fraction				Pyrrolic Comp	ounds, 347	0 cm ⁻¹		Carboxylic Acids 1694 cm ¹ , 1735 cm ⁻¹						Aromatic Ring 1605 cm ⁻¹			
				Expressed as Carbazole				Expressed as Benzolc Acid									
		Loncen- tration mg/g Solvent	Absor- bance A	mg/g Solvent (from /g Calibration Curve) Fractio		mmole /g Maltene	numole /g Residual Pitch	Absor- bance A	mg/g Solvent (from Calibration Curve)	Nmole* /g Fraction (Average of Two Values)	mmole /g Maltene	nmole /g Residual Pitch	Absor- bance A	A/g Fraction	A/g Haltene	A/g Residual Pitch	
Pentane Eluato	2	84.15	0.03	0.48	0.03	0.03	0.02	ND	NU	ND	ND	ND	0.16	1.88	1.58	1.25	
Cyclohexane E	luate	70.69	0.14	0.20	0.02	0.001	0.0004	ND	ND	ND	ND	ND	0.21	3.01	0.11	D. 09	
Anion Eluate,	A-1	9.41	0.04	0.57	0.36	0.01	0.007	ND	ND	ŅD	ND	ND	0.05	5.63	0.14	0.11	
	A-2	11.53	0.05	D. 70	0.36	0.003	0.002	ND	ND	ND	ND	ND	0.08	7.03	0.06	0.05	
	A-3	4.95	-	-	-	-	-	0.04 (1695 cm ⁻¹) 0.06 (1735 cm ⁻¹)	· 0.29 0.27	0.47	0.002	D. 002	0.18	35.35	0.14	0.11	
Cation Eluate	e, C-1	9.24	0.02	0.30	0.19	0.006	0.005	ND	ND	ND	ND	ND	0.07	7.90	0.23	0.18	
	C-2	8.19	D.01	0.11	0.08	0.001	0.0005	ND	ND	ND	ND	ND	D. 08	9.65	0.09	0.07	
	C-3	9.09	-	-	-	-	-	ND	ND	ND	ND	ND	0.12	12.76	0.71	0.56	

Footnotes: See Table 41

1

-82-

٠

IR Analysis of Ion-Exchange Eluate Fractions of #12 Residual Pitch Pentane-Maltene in CH_2Cl_2

			Pyrrolic Comp	ounds, 347	0 cm ⁻¹		Cart	oxylic Acids	1ds 1695 cm ⁻¹ , 1735 cm ⁻¹ Aromatic Ring 1605 cm ⁻¹						
			Expressed as Carbazole				Expressed as Benzoic Acid								
Fraction	Concen- tration mg/g Solvent	*Absor- bance A	mg/g Solvent (from Calibration Curve)	rmole* /g Fraction	mmole /g Maltene	mmole /g Residual Pitch	Absor- bance A	ng/g Solvent (from Calibration Curve)	mmole* /g Fraction (Average of Two Values)	-mmole /g Maltene	numole /g Residual Pitch	- Absor- bance A	A/g Fraction	A/g Maltene	∜g Residual Pitch
Pentane Eluate	85.04	0.07	0.93	0.07	0.D5	0.02	ND	ND	ND	ND	ND	0.26	3.10	2.39	1.16
Cyclohexane Eluate	68.85	0.20	2.85	0.26	0.01	0.007	NO	ND	ND	ND	ND	0.32	4.88	0.26	0.13
Anion Eluate, A-1	11.34	0.14	2.08	1.10	0.05	0.02	NO	NÐ	ND	ND	ND	0.08	7.05	0.31	.0.15
A-2	9.32	0.15	2.13	1.37	0.02	0.009	ND	ND	ND	ND	ND	0.08	8.69	0.11	0.05
A-3	6.09	-	-	-	-	-	0.44 (1695 cm ⁻¹) 0.27 (1735 cm ⁻¹)	1.81 1.62	2.30	0.01	0.005	0.10	16.91	0.11	0.05
Cation Eluate, C-1	9.49	0.D5	0.69	0.44	0.03	0.02	ND	ND	ND	ND	ND	0.04	4.42	0.36	0.17
C-2	8.19	0.02	0.25	0.18	0.002	0.001	ND	ND	ND	ND	ND	0.04	4.88	0.06	0.03
C-3	9.40	0.01	0.16	0.10	0.00B	0.004	ND	ND .	NÐ	ND	ND	0.07	7.45	0.59	0.29

.

Footnotes: See Table 41

-83-

.

ORF 83-3

l

			(Deaspr	a i tene	<u>with r</u>	i-Penta	i <u>ne</u>)					
Fractions		#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Pentane Eluat	е	-	0.90	2.26	2.47	1.85	2.19	3.12	1.05	0.80	1.39	2.24	2.43
Cyclohexane E	0.37	0.14	0.24	0.48	0.16	0.38	0.35	0.24	0.28	0.39	0.04	0.67	
Anion Eluate,	A-1	2.16	3.57	1.62	4.34	0.27	1.63	2.49	0.67	1.47	1.73	0.72	2.34
	A-2	0.29	0.82	0.67	1.89	0.08	0.89	1.31	0.21	0.78	1.12	0.22	0.87
	A-3	-	0.04	-	-	-	-		_	0.03	0.14	-	-
Cation Eluate	, C-1	0.80	0.845	1.06	3.73	0.38	0.96	1.50	0.39	.0.36	0.63	0.46	1.72
	C-2	-	-	0.14	0.38	0.02	0.11	0.26	0.03	0.02	0.08	0.05	0.10
	C-3	-	-	0.64	-	-	0.39	0.59	-	0.02	0.17	-	0.39
	[ota]	3.61	6.33	6.62	13.29	2.76	6.55	9.64	2.47	3.77	5.66	3.75	8.52

. • •

TABLE 53

Millimoles of Pyrrolic Compounds (expressed as Carbazole) in 100 g of Residual Pitch Samples `

-84-

•

٠

Porphyrin Content in Benzene Solubles of

of Residual Pitch Samples

Sample No.	Sample Weight (g)	Chloroform Extract Total Volume (mL)	Dilution	Absorbance at 400-410 cm	Porphyrin Concentration mg/mL	Porphyrin Concentration mg/g of Sample	Porphyrin % weight
]	10.0745	25	1:125	0.475	0.052	16.13	1.613
2	7.0086	25	1:25	0.03	0.004	0.36	0.036
3	9.8531	25	1:100	0.710	0.078	19.79	1.979
4	9.4699	25	1:25	0.220	0.027	1.78	0.178
5	11.0005	25	1:100	0.510	0.056	12.72	1.272
6	9.3409	25	1:50	0.290	0.029	3.88	0.388
7	10.3708	25	1:33.33	0.140	0.017	1.36	0.136
8	9.8410	25	1:25	0.540	0.060	3.81	0.381
9	7.6275	25	1:25	ND*	ND	ND	ND
10	7.7159	25	1:25	ND	ND	ND	ND
11	7.9908	25	1:25	0.360	0.038	2.97	0.297
12	8.7748	25	1:25	ND	ND	ND	ND

* ND = none detected

-85-

.

Metal Content in Pentane- and Heptane-Asphaltenes

Sample No.		Penta	ne-Asp	haltene		Heptane-Asphaltene						
	Fe	Ni	٧	V/Ni Ratio	% S	Fe	Ni	٧	V/Ni Ratio	% S		
]	1311	309	997	3.23	8.29	1476	296	1068	3.61	6.91		
2	17	271	304	1.12	4.92	14	208	197	0.95	4.98		
3	243	462	1493	3.23	7.02	190	444	1595	3.59	7.14		
. 4	8 9	325	485	1.49	4.84	84	339	476	1.41	4.67		
5	79	272	895	3.29	8.02	87	287	877	3.05	7.79		
6	36	286	334	1.17	4.59	35	282	309	1.09	4.91		
7	405	276	526	1.90	4.50	448	300	547	1.82	4.68		
8	119	106	572	5.39	6.46	149	120	589	4.91	6.39		
9	∿ 3	49	93	1.89	4.77	∿ 3	56	118	2.11	4.85		
10	∿ 5	70	106	1.51	4.66	3	79	105	1.33	3.89		
11	72	151	249	1.65	4.09	85	183	316	1.73	3.99		
12	164	68	50	0.74	2.93	166	68	48	0.71	2.52		
			1		Į	ļ						

(µg/g, ppm)

.

FIGURES

•

ł

ş

.

Fractionation and Analytical Scheme for Characterization of Residual Pitches

Figure 1

ŝ

Figure 2 Flow chart showing method of isolation of porphyrin in pitch samples

Figure 3

Standard Calibration Curve #1 for Molecular Size Characterization

of Pitch Samples #1, 5, 8 and 11 and their Fractions in GPC System #1

(See Table 3 for GPC Conditions and Table 4 for Molecular Weight/Retention Time Data)

RUN

Sum Errors Sard= 0.0060569 Coeff of Deter= 0.9029467 Fit:Y=A+B*X+C*X12+B*X13 A= 27.220027B=-3.8008813C= 0.1985471D= -.003568

GPC Cal Ret Time vs. los MW

Figure 5

Standard Calibration Curve #3 for Molecular Size Characterization

of All Pitch Samples and their Fractions in GPC System #2

(See Table 3 for GPC Conditions and Table 6 for Molecular Weight/Retention Time Data)

Sum Errors Sørd= 0.0231282 Coeff of Deter= 0.9498371 Fit:Y=A+B*X+C*X†2+D*X†3 A= 16.405324B=-1.7177578C= 0.072941 D= -.001122 GPC Cal Ret Time vs. los MW

L. 277 L. 207 L. 14 L. 076 L. 076 U. 076 U. 076 U. 076 U. 076 U. 725 U. 62 U. 725 U. 64 U. 559 U. 559 U. 559

91.1.689 84.1.89 84.1.699 84.1.699 84.1

19.0

TT PESIDUAL

ILE . IAMPLE IAL File 2. IL Aug mM - 1822. Mms 2.0071431

1921. 4950. 9721.

466.

ORF 83-3

-93-

-94-

10'

-96-

ORF 83-3

I

-100-

ORF 83-3

 $\langle \cdot \rangle$

-103-

1

Infra-red Spectra of Model Compounds - Carboxylic Acids and Phenols in CH2Cl2

ORF 83-3

-108-

Phenols in THF

.

1900 - 1450 cm⁻¹ 1 3800 - 5200 of 1900 - 1450 cm⁻¹ 3900 - 3200 cm⁻¹ ... 5,6-BENZOQUINOLINE 5.36 MG/G CH2CL2 CARBATCH F 4.23 MG/G CH2CL2 2-METHIL INDOLE 4.66 MG/G CH2CL2 ACRIDINE 4.26 MG/G CH2CL2 TITLE ali Inti -03 1-HYDROXY ISOQUINOLINE 1.94 ME/G CH2CL2 A.39 HE/G CH2CL2 11:111 11 1 tr 0/2 8-HYDROXY QUINOLINE 2.64 NG/G CH2CL2 c's o Otaliz 0.96 14 05 I HHIII ΙĦ

Figure 23

Infra-red Spectra of Model Compounds -Carbazole, 2-Methvl Indole, 1-Hydroxy Isoquinoline, 8-Hydroxy Quinoline, 5,6-Benzoquinoline, Acridine, Phenanthridine and Benzamide in CH₂Cl₂

-109-

-113-

-115-

-117-

Figure 32

Infra-red Spectra of Three (A-1, A-2, A-3) Anion Eluates of Pitch Maltene Samples #2 in CH₂Cl₂and THF

Figure 33

Infra-red Spectra of Cation Eluates of Pitch Maltene Samples #1,2,3,4,5 and 6 in CH₂Cl₂

L

-119-

Figure 34

Infra-red Spectra of Cation Eluates of Pitch Maltene Samples #7,8,9,10,11 and 12 in CH₂Cl₂

-123-

Figure 38 Calibration Curve - Porphyrin Standard (Sample No. 8)

ENERGY

energy conservation programs and analysis, thermal insulation design and evaluation, waste heat recovery, building energy systems and monitoring, heat storage systems, thermoelectric generation, combustion technology, burner development, heat transfer analysis, solar systems monitoring, National Solar Test Facility, solar technology, wind power, coal and lignite processing, alternate fuel utilization, battery technology, energy and chemicals from biomass, ...

ENVIRONMENT

ambient air quality assessment, source sampling, odour emission and control, asbestos measurement and control, pesticide residues, trace metal analysis, trace organic analysis, mutagenic testing, occupational health surveys and assessments, water surveys, water purification, municipal and industrial waste water treatment processes, membrane separation techniques, wet oxidation, diesel emission control technology, solid waste treatment and recovery, noise and vibration analysis, environmental impact assessments, long-range transport of atmospheric pollutants, radiation measurements, particulate identification and measurement, ergonomics and industrial design, air pollution control technology, hazardous and toxic materials and waste control,...

MATERIALS

building materials, plastics, coatings and composites, metals, glass and ceramics, wood and wood composites, biomaterials, adhesives and printing inks, yarns, fabrics and geotextiles, leather, organic and inorganic chemicals, specialty formulations, specification development, quality control, mechanical chemical and thermal properties, test method development, failure analysis, fire and flammability, glass-metal seals, metal and alloy powders, metallography, materials characterization by electron microscopy and X-ray microanalysis, photovoltaics and ionic conductors, corrosion properties and control, rubber technology, energy radiography, non-destructive testing, X-ray analysis, cement and concrete, gypsum, ...

products B processes

pulp and paper products, clothing, footwear and industrial textile products, knitting technology, thin and thick film systems, electronic devices, microcomputer systems and applications, fibre optics, electronic design, bioengineering, ultrasonic and fluid shear devices, microwave drying, transportation and equipment testing, mathematical stress and vibration analysis, product, equipment and machinery design and development, fuel emulsification, chemistry of foodstuffs, pulping and papermaking processes, ceramics processing, metallurgical process development, powder metal technology, packaging applications, technical and economic evaluations, industrial engineering applications, electroplating, radioactive decontamination, process control, biotechnology, industrial microbiology, enzyme analysis, cryogenics, electrical testing, ...

RESOURCES

mineral processing, hydro and pyrometallurgical processing of ferrous and non-ferrous ores, coal evaluation and processing, asbestos processing and applications, uranium processing, forest utilization, utilization of forest and agricultural wastes, utilization of industrial mining and domestic wastes, energy and chemicals from biomass, non-metallic minerals,...