

Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada

,1+ 8 ,

CANMET

Canada Centre for Mineral and Energy Technology Centre canadien de la technologie des minéraux et de l'énergie

RAPID METHOD FOR THE DETERMINATION OF MALTHENE AND ASPHALTENE CONTENT IN BITUMEN, HEAVY OILS AND SYNTHETIC FUELS BY PYROLYSIS TLC

M.A. Poirier and A.E. George

April 1982

For presentation at the ERDA Symposium on Fossil Chemistry in Laramie, Wyoming, July 1982

,

ENERGY RESEARCH PROGRAM ENERGY RESEARCH LABORATORIES REPORT ERP/ERL 82-15(OP-J)

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

RAPID METHOD FOR THE DETERMINATION OF MALTHENE AND ASPHALTENE CONTENT IN BITUMEN, HEAVY OILS AND SYNTHETIC FUELS BY PYROLYSIS TLC

by

M.A. Poirier and A.E. George

ABSTRACT

A rapid pyrolysis thin layer chromatographic (TLC) method for the determination of malthene and asphaltene contents in bitumens, heavy oils and their synthetic fuel products is presented. The malthenes are separated from the asphaltenes (defined as the portion that is insoluble in n-pentane and soluble in benzene) by spotting $1 \mu L$ of a 25 mg/mL sample solution on a silica gel chromarod using n-pentane-isopropanol mixture (95:5) as developing solvent. Benzene insolubles were removed prior to the determination. The separation is quantified by an Iatroscan TH-10 Analyzer that uses FID detector.

Complete analysis of 9 samples requires 30 minutes excluding time necessary for weighing the samples and dissolving in benzene prior to spotting. The method was applied to sixteen samples of bitumen, heavy oils and synthetic fuels. Repeatability of the results was compared with that obtained by the standard procedure.

INTRODUCTION

Asphaltenes have been always considered as undesirable components in bitumens and heavy oils because they create serious difficulties in upgrading of petroleum heavy ends. One of the interest areas today is the handling of petroleum residues and asphaltenes and converting them into lighter oils. In order to follow up upgrading processes, rapid methods for the determination of asphaltene content are needed.

A few methods have been reported in literature for the determination of asphaltene content in bitumens, heavy oils and synthetic fuels (1-4). These methods were discussed in one of our previous publications (5). The conventional I.P. procedure (2) was compared with a thin layer chromatographic method (TLC-I) developed in our laboratory (5). Our TLC-I method is based on Beer's law. The oil and resins (malthenes) are separated from the asphaltenes on a TLC plate and the asphaltenes removed from the plate, extracted with toluene and the concentration of asphaltenes determined colorimetrically. When we first used 415 nm on the spectrophotometer, the determined asphaltenes. Taking readings at 425 nm could alleviate this problem.

In this work we describe a rapid pyrolysis thin layer chromatographic method (TLC-II) for determining the malthene as asphaltene contents in bitumens, heavy oils and synthetic fuels. The malthenes are separated from the asphaltenes on a silica gel chromarod using n-pentaneisopropanol mixture (95:5) as developing solvent. The malthene and asphaltene contents were determined quantitatively using a Iatroscan TH-10 Analyzer equipped with a flame ionization detector (FID).

The overall time required for the analysis of 9 samples is about 30 minutes excluding the time necessary for weighing the samples and dissolving in benzene. Sixteen samples of bitumens, heavy oils and synthetic fuels were analyzed by this method. Repeatability of the results was compared with those obtained by the I.P. procedure.

EXPERIMENTAL

Instrument and Operating Conditions

The Iatroscan TH-10 TLC Analyzer, Mark III used, was equipped with a flame-ionization detector and an electronic stepping integrator. The flame-ionization detector was operated with a hydrogen flow-rate of 160 mL/min and

1

10

ł.

an air flow-rate of 2 L/min. The scanning speed was 5 in/min. A two-pen recorder was used at 50 mV full-scale deflection and chart speed of 2 in/min.

Solvents

s *

1,19

The n-pentane, benzene and isopropanol used as developing solvents were reagent grade. The n-pentane and benzene meeting I.P. specifications were used in the I.P. procedure.

Samples

- 1 Seven bitumens and heavy oils (Table 1).
- 2 Nine processed samples (Table 2) distillation residues boiling above 350°C were used in the determination of malthene and asphaltene content by both methods.

Standards

Athabasca malthenes and asphaltenes isolated by n-pentane precipitation according to the I.P. procedure were used as standards in the TLC method.

Procedure

A. Preparation of the Standard Asphaltene Solutions

- 1 Weigh accurately about 15 mg of Athabasca asphaltenes in a 2 mL volumetric flask. Dissolve and complete to volume with benzene.
- 2 Apply 1.0 μL of the standard solution on a Silica gel II chromarod.

B. Preparation of the Sample Solutions

- Dissolve about 200 mg of bitumen, heavy oil or distillation residue sample in 25 mL benzene. Filtrate through a Whatman filter paper No.
 40 to remove any insolubles. Evaporate the filtrate to dryness.
- 2 Weigh accurately about 50 mg of the sample (insolubles-free) in a 2 mL volumetric flask. Dissolve and complete with benzene.
- 3 Apply 1.0 _{µL} of the solution on a Silica gel chromarod.
- 4 Repeat steps 1 to 3 for each additional sample.

2

C. Sample Analysis

- 1 Develop the chromarods in a TLC tank using filter paper as a wick, and n-pentane-isopropanol mixture (95:5) as developing solvent.
- 2 Remove the chromarods from the tank when the solvent front has travelled 8 cm. Allow the rods to dry for a few minutes in an oven at 120°C.
- 3 Place the rack in the Iatroscan TLC pyrolyser and pyrolyse the rods in the FID.

CALCULATION

The malthene and asphaltene contents were calculated by using the following equations:

(1) Asphaltenes (wt
$$\%$$
) = $\frac{W_A \times A_{AS}}{W_S \times A_A} \times 100$

(2) Malthenes (wt \$) = 100-(wt \$ Asphaltenes) where W_A = weight of asphaltenes used as standard W_S = weight of the sample to be analyzed A_{AS} = area of the asphaltenes peak in the sample A_A = area of the asphaltenes peak in the standard

RESULTS AND DISCUSSION

Separation of the Malthenes from Asphaltenes

Separation of the malthenes from asphaltenes in bitumens, heavy oils and synthetic fuel residues (b.p. higher than 350° C) was accomplished on a silica gel chromarod. The developing solvent mixture n-pentane-isopropanol (95:5) that was used in the previous work (5) was also used in the procedure. The separation was tested on malthene (Fig. 1b) and asphaltene samples (Fig. 1c) isolated by n-pentane precipitation from the bitumens and heavy oils listed in Table 1. Quantitative results were obtained by integrating the peak areas corresponding to the asphaltenes. The malthene content was calculted by difference. When the solvent front has travelled 8 cm, the R_F of the malthenes and asphaltenes were 0.67 and 0 respectively. The asphaltenes were strongly retained on silica and remained at the origin.

3

A typical separation is shown in Fig. 1a. In this TLC-II procedure quantification is independent of the abundance of porphyrins or colour of the asphaltenes solutions as in the TLC-I method (5). This means that one asphaltene sample from any source could be used as standard in this procedure.

Comparison with I.P. and TLC-II Methods,

30

Comparison of the TLC-II results with those obtained by the standard I.P. procedure (Table 2 and 3) shows a very good agreement for both methods. Slightly higher asphaltene contents 1 to 2% (absolute values) were obtained by the TLC-II procedure. This could be explained by the minimum losses in the TLC-II procedure because it involves only weighing the samples. In the I.P. standard procedure precipitation and filtration steps are also involved. Very fine asphaltene particles could pass through the pores of the filter paper which could account for the lower values.

Comparison of the asphaltene content results (Table 4) with the previous TLC-I procedure (5) shows also good agreement.

Repeatability of the TLC-II Procedure

The repeatability of the procedure was determined using Athabasca bitumen (sample 1), Boscan heavy oil (sample 6) and two synthetic fuel samples residue > 350°C, hydrocracked Cold Lake bitumen and Boscan heavy oil (samples 9, 14). As shown by the standard deviation (Table 5) good repeatability of the results is obtained by this method. Repeatability of the I.P. standard procedure on samples 1 and 6 was also determined (Table 6). Comparable standard deviations were obtained which indicates that both procedures have similar precision. The TLC-II procedure is never the less much time consuming.

× 4

REFERENCES

1.	Hubbard, R.L. and Stanfield, K.E. Anal. Chem. 20,460 (1948)
2.	Standard Methods for Testing Petroleum and its Products, Institute of Petroleum, London 36th Ed. 143 (1977)
3.	Ramljak, Z., Deur-Siftar, D. and Sole, A. J. Chromatogr. 119,445 (1976)
4.	Burke, F.P., Winschel, R.A. and Wooton, D.L. Fuel, 58,539 (1979)
5.	Poirier, M.A. and George, A.E. "Thin layer chromatographic methods for determination of asphaltene content in crude oils and bitumens" (sent

for publication in FUEL).

••

					Carbonated		
		Athabasca	Cold Lake	Lloydminster	Triangle	Boscan	Laguna
Specific gravity	60/60°F	1.009	1.026	1.033	1.032	1.016	1.024
Sulphur	wt %	4.63	5.16	5.02	5.21	5.73	3.43
Ash	wt %	0.68	0.06	0.04	0.56	0.24	0.12
Viscosity, 210°F	cST	152	1489	3691	514	575	-
Conradson carbon residue	wt %	12.8	18.2	19.6	15.1	16.7	18.4
Asphaltenes							
(pentane insolubles)	wt %	15.3	21.0	22.1	19.7	22.3	19.6
Benzene insolubles	wt %	0.9	0.03	0.07	0.24	0.09	trace
Nickel	PPM	70	-	-	74	114	70
Vanadium	PPM	190	255	124	203	1174	558

Table 1 - Properties of Canadian bitumens and heavy oil

		Malthene	s (wt %)	Asphaltene	es (wt %)
	Samples	I.P	TLC	I.P.	TLC
1.	Athabasca	83.1	80.8	16.4	19.2
2.	Lloydminster 4LL79	75.0	74.3	25.0	25.7
3.	Cold Lake 6CL79	78.5	76.3	21.5	23.7
4.	Carbonate triangle 950-80	80.0	79.3	19.7	20.7
5.	Medicine River (residue >350°C)	99.5	99.4	0.5	0.6
6.	Boscan heavy oil	77.6	75.1	22.3	24.9
7.	Laguna heavy oil	80.4	76.6	19.6	23.4

1. Series

Table 2 - Determination of the malthene and asphaltene contents by two different methods on feed samples

	Samples		Pitch	Malthenes	(wt %)	Asphaltenes	(wt %)
Resi	due >350°C		Conversion %	I.P.	TLC	I.P.	TLC
8.	Cold Lake	80-CG-38	100.0	89.?	88.0	10.1	12.0
9.	Cold Lake	77-T-77	47.7	68.7	66.0	31.3	34.0
10.	Cold Lake	74-CG-83	86.0	85.5	85.0	14.5	15.0
11.	Athabasca	93-3-1	36.8	83.5	84.9	16.5	15.1
12.	Athabasca	92-1-1	26.1	82.8	81.0	17.2	19.0
13.	Boscan	79-CG-222	69.2	82.9	84.0	17.1	16.0
14.	Boscan	79-CG-224	79.2	84.7	84.3	15.3	15.7
15.	Lloydminst	ter 77-TG-27	38.7	69.0	7.2.8	31.0	27.2
16.	Lloydminst	ter 77-TG-29	58.3	61.2	61.1	38.8	38.9

Table 3 - Determination of the malthene and asphaltene contents by two

different methods on hydrocracking products (synthetic fuels)

		n-Pentane	Asphaltene	Content	(wt %)
Sar	nples		I.P.	TLC-I	TLC-II
1.	Athabasca		16.4	17.4	19.2
2.	Lloydminster	n	25.0	25.6	25.7
3.	Cold Lake		21.5	23.8	23.7
4.	Carbonate Tr	riangle	19.7	14.6	20.7

Table 4 - Comparison of the asphaltene content determined by the standard I.P. and two different TLC methods

1,540

4

e 4

.

,

		wt % /	sphaltenes	
			Hydrocrackd	Hydrocracked
	Athabasca	Boscan	Cold Lake	Boscan
	bitumen	heavy oil	bitumen	heavy oil
Inalysis	(Sample 1)	(Sample 6)	(Sample 9)	(Sample 14)
1	18.8	24.4	23.1	17.4
2	19.4	24.4	24.6	18.0
3	20.7	23.6	23.1	17.4
4	19.4	23.6	23.8	18.0
5	20.1	24.4	23.8	18.0
6	20.1	25.9	23.1	18.6
7	19.4	24.4	23.1	18.6
8	20.7	25.2	23.8	18.0
9	20.1	24.4	24.6	17.4
10	19.4	23.6	23.8	19.2
Mean	19.8	24.4	23.7	18.0
Standard Deviation	0.62	0.73	0.58	0.59

Table 5 - Determination of analytical precision of the TLC method

• •

•

	wt	& Asphaltenes
	Athabasca	Boscan
	bitumen	heavy oil
Analysis	(Şample 1)	(Sample 6)
1	16.4	22.3
2	16.8	21.3
3	16.0	21.5
24	15.3	21.3
5	15.4	22.2
6	15.6	22.5
7	17.0	22.0
8	16.2	23.2
Mean	16.1	22.0
Standard		
deviation, σ	0.63	0.66

Table 6 - Determination of analytical precision of the standard I.P. procedure

. ··· 12 .

• *

` er