
sent now $9 / 81$

$53 p \uparrow$

```
ENERGY RESEARCH PROGRAM
ENERGY RESEARCH LABORATORIES
ERP/ERL 79-21 (TR)
```


SECOND DRAFT PROPOSAL

FOR THE
dETERMINATION OF MAJOR ELFMENTS OF ASH
OF SOLID MINERAL FUELS
(CLASSICAL \& INSTRUMENTAL METHOD)
MARCH 1.979

INTRODUCTION

1. Scope and Field of Application
1.1. This proposal specifies the methods to be adopted for analysis of ash derived from solid mineral fuels. It can also be applied to ash derived from semi-coke and coke obtained from brown coals and lignites.
1.2 Methods of determination of the following ash components are described:
a) silicon calculated as silica $\left(\mathrm{SiO}_{2}\right)$;
b) iron calculated as ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$;
c) titanlum calculated as titanic oxide $\left(\mathrm{THO}_{2}\right)$;
d) aluminum calculated as aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$;
e) calcium calculated as calcium oxide (CaO) ;
f) magnesium calculated as magnesium oxide (Mg0) ;
g) manganese calculated as manganous-manganic oxide $\left(\mathrm{Mn}_{3} \mathrm{O}_{4}\right)$;
h) sodiun calculated as sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$;
i) potassium calculated as potassium oxide $\left(\mathrm{K}_{2} 0\right)$;
j) sulphur calculated as sulphur trioxide $\left(\mathrm{SO}_{3}\right)$;
k) phosphorous calculated as phosphorous pentoxjde ($\mathrm{P}_{2} \mathrm{O}_{5}$).
1.3 This proposill is applicable in the coal, encrgy, metaljurgleal and building materials industries as well as in others where it is necessary to know the chemical composition of ash, this composition reflecting the constitution of the original mineral matter of the fuel tested. The knowledge of this composition permits the selection of the proper method of coal and ash utilization for given purposes. The chemical constitution of ash of the fuel has an influence on its fusion temperature, which in turn influences the run of ovens.
2. Reference

ISO 117.l, Determination of Ash of Solid Mineral Fuels
3. Sumnary of Methods

In these methods, ash is prepared in accordance with JSO 1171 and ground to pass 0.063 mm square mesh sieve.

3.1	SiO_{2}	Fusion with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - Dehydration by treatment with HClO_{4} - Gravimetric
3.2	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Decomposition with $\mathrm{HNO}_{3}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ - Fusion with $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ - Separation of hydroxides - Dissolution in HCl - Reduction with SnCl_{2} - Titration with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ Volumetric
3.3	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Decomposition with $\mathrm{HF}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ - Fusion with $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ - Separation of hydroxides - Dissolution in HC1 - Separation of heavy metals with DDTC - Titration with EDTA - Zn - Folumetric
3.4	TiO_{2}	Fusion with Sodium peroxide - Digestion of melt with $\mathrm{H}_{2} \mathrm{O}$ and HCl - Reduction of Fe , etc. - Development of colour with Diantipyrylmethane - Spectrophotometric

$3.7 \mathrm{P}_{2} \mathrm{O}_{5}$ 3.7.1 Decomposition with $\mathrm{HNO}_{3}, \mathrm{HF}, \mathrm{HClO}_{4}$ - Fusion of residue with $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ - Separation of hydroxide and ferric phosphate - Dissolution in HCl Reduction of Fe - Formation of Molybdenum Blue

- Spectrophotometric
3.i.2 Formation of Yhospho-vanadomolybdate Yellow -
Spectrophotometric
3.7.3 Precipitation of Phosphomolybdate - Dissolution with NaOH in excess - Titration with HNO -
3.8 MnO Decomposition with $\mathrm{HNO}_{3}, \mathrm{HF}$, and HClO_{4} - Dissolution in
water - Addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ - Oxidation with
Sodium periodate $-\mathrm{MnO}_{4}$ - Spectrophotometric
Decomposition with $\mathrm{HCl}, \mathrm{HF}$ and HClO_{4} - Separation of Fe by
extraction with MIBK - Separation of Fe, Al, Ti etc, as
hydroxides - Separation of Ca as oxalate - Dilution -
$\mathrm{K}_{2} \mathrm{O}$
Atomization with Oxygen and Hydrogen - Flamephotometric
Method 2
Decomposition with $\mathrm{HCl}, \mathrm{HF}$ and HClO_{4} - Dilution - Atomization
with air $-\mathrm{C}_{2} \mathrm{H}_{2}$ - Atomic absorption Spectrophotometric

4. Preparation of Ash for Analysis

4.1 Preparation of Ash

The Ash for analysis is prepared from the analysis sample of fuel by the methods described in ISO 1171, or is taken from the industrial hearths. Grind the Ash in an agate mortar to pass a 0.063 mm square mesh test sieve and store in an airtight jar.
When some coals are incinerated at the conditions outlined in ISO 1171, it is possible that a significant proportion of the more volatile constituents, for example, sodium, is lost. To avoid risk of this occurring, coals rich in such elements may be incinerated at $500^{\circ} \mathrm{C}$. The temperature variation and the ash content at that temperature must be recorded when reporting results.

4.2 Determination of Loss in Mass on Heating

4.2.1 Procedure

Weigh in a platinum crucible of about 40 ml capacity, with an accuracy of 0.2 mg about 1 g of ash prepared according to 4.1 . Insert the crucible with ash in a muffle furnace and heat at $815 \pm 10^{\circ} \mathrm{C}$ until the difference between the results of two weighings is less than 0.4 mg .

4.2.2 Calculation of Results

The loss in mass on heating, X, as a percentage by mass, is given by the formula:

$$
\times \frac{\left(m_{0}-m_{1}\right) \times 100}{m_{0}}
$$

where
m_{0} is the mass, in grams, of ash taken;
m_{l} is the mass, in grams, of ash after heating.

1. PRINCIPLE

Decomposition of the test portion by fusion with sodium carbonate. Dissolution of the melt in hydrochloric acid, treatment with perchloric acid to dehydrate hydrous silicon dioxide and filtration. Treatment of the filtrate in the same way. Collection of the precipitates, ignition and weighing as impure silicon dioxide. Treatment of the impure silicon dioxide with sulphuric and hydrofluoric acids. Determination of the silicon dioxide by weight loss.

2. REAGENTS

Distilled water or deionized water shall be used in the preparation of reagents throughout the analysts. A11 reagents shall be of recognized analytical reagent quality.
2.1 Hydrochloric acid ($\mathrm{d}=1.19$)
2.2 Hydrochloric acid, dilute $1+4$
2.3 Hydrochloric acid, dilute $1+10$
2.4 Perchloric acid ($60 \%, \mathrm{~d}=1.54$: or $70 \%, \mathrm{~d}=1.67$)
2.5 Hydrofluoric acid ($40 \%, \mathrm{~d}=1.15$)
2.6 Sulphuric acid ($\mathrm{d}=1.84$)
2.7 Sulphuric acid, dilute $1+1$
2.8 Sodium carbonate, anhydrous
3. APPARATUS Ordinary laboratory equipment
4. SAMPLING AND SATPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion - Weigh, to the nearest $0.0001 \mathrm{~g}, 0.250 \mathrm{~g}$ of the test sample
5.2.1 Decomposition of the test portion

Place the test portion (5.1) in a 30 ml platinum crucible. Add 5 g of sodium carbonate (2.8), mix thoroughly, and fuse at 900 to $1000^{\circ} \mathrm{C}$ while occasionally swirling the crucible gently. After no particles of sample float on the surface of melt, continue fusion for 30 to 40 min . Remove the crucible from the source of heat and cool. Transfer the crucible to 500 ml beaker, add 70 ml of hydrochloric acid ($1+4$) (2.2), and dissolve the melt. Rinse the crucible with water and remove from the solution.

5.2.2 Dehydration and separation

Add 50 ml of perchloric acid (2.4). Slowly heat the beaker to fume slightly, and evaporate to dense white fumes of perchloric acid, using a watch glass cover. Heat for about 15 min. so that the acid refluxes down the walls of the beaker and cool. Add 50 ml of hydrochloric acid ($1+4$) (2.2), filter through a medium-texture filter paper without delay. With a rubber-capped policeman, remove any residue inside the beaker and transfer it on the filter paper. Wash with warm hydrochloric acid ($1+10$) (2.3) 2 to 3 times, and then with warm water until the washings show no acid reaction. Finally, wash with warm water 2 to 3 times. Transfer the precipitate with the filter paper in a 30 ml platinum crucible and preserve.
5.2.3 Recovery of residual sllicon dioxide

Collect the filtrate and washings in a 500 ml beaker. Evaporate the solution, cover the beaker and heat to the dense white fumes of perchloric acid. Maintaln a steady refluxing of the acid on the walls of the beaker for about 15 minutes. Allow the beaker to cool. Add 50 ml of hydrochloric acid (1+4) (2.2), filter with a close-texture filter paper without delay. With a rubber-capped policeman, remove any residue inside the beaker and transfer it to the filter paper. Wash with warm hydrochloric acid ($1+10$) (2.3) 2 to 3 times, and then with warm water until the washings shown no acid reaction. Finally, wash with warm water 2 to 3 times. Combine the precipitate with that

In the platinum crucible (5.2.2) above.
5.2.4 Determination i

Gently heat the precipitate in the platinum crucible until the filter paper is thoroughly charred, and then ignite to constant mass at 1000 to $1100^{\circ} \mathrm{C}$. After cooling in a desiccator, weigh the platinum crucible with impure silicon dioxide. Moisten the impure silicon dioxide in the crucible with sulphuric acid (1+1) (2.7), add 5 ml of hydrofluoric acid (2.5), heat gently to remove silicon dioxide and sulphuric acid, and ignite to constant mass at 1000 to $1100^{\circ} \mathrm{C}$. After cooling in a desiccator, welgh the platinum crucible.
6. EXPRESSION OF RESULTS
6.1 Calculation of silicon dioxide content.

The silicon dioxide content, as percentage by mass, is calculated from the following formula

where
m_{1} is the mass, in grams, of the platinum crucible plus impure silicon dioxide;
m_{2} is the mass, in grams, of the platinum crucible plus the residue;
m is the mass, in grams, of the test portion.

1. PRINCTPLE

Decomposition of the test portion by treatment with hydrofluoric, ndtric and sulphuxic acids and by fusion with sodium pyrosulphate. Dissolution of the melt in hydrochloric acid, precipitation of iron with ammonia solution and redissolution of the precipitate in hydrochloric acid. Reduction of trivalent iron in the solution, using stannous chloride. Oxidation of excess reductant with mercuric chloride. Titra.. tion of the reduced iron with potassium bichromate solution, using sodium diphenylaminesulphonate as indicator.

2. REAGENTS

Distilled water or deionized water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be of recognized analytical reagent quality.
2.1 Hydrochloric acid $(d=1.19)$
2.2 Hydrochloric actd, dilute $1+3$
2.3 Hydrochloric acid, dilute $1+9$
2.4 NJtric acid ($d=1.42$
2.5 Hydrofluorlc acid ($40 \%, \mathrm{~d}=1.13$)
2.6 Sulphuric actd ($d=1.84$)
2.7 Sulphuric actde, dilute $1+1$.
2.8 Phosphoric acid ($d=1.70$)
2.9 Acfd mixture

Pour 1.50 ml of: sulphuric acid (2.6) into about 500 ml of water with stirring thoroughly, add 150 ml . of phosphoric acid (2.8), cool to room temperature and dilute a whole volume to 1000 ml whth water.
2.10 Ammonia solution ($\mathrm{d}=0.9$)
2.11 Ammonia solution, dilute $1+1$
2.12 Annoniun chloride, solution

Dissolve 10 g of amonium chloride in 500 ml of water and make slightly alkaline with several drops of ammonia solution (1+1) (2.11)
2.13 Sodium pyrosulphate or potassium pyrosulphate
2.14 Stannous chloride, solution

Take 200 ml of hydrochloric acid (2.1) Into a 1 l beaker, and add 100 g of stannous chloride $\left(\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} 0\right)$ into $1 t$ bit by bit while heating on bolling water bath to dissolve the salt. After cooling, dilute to 1000 ml with water. Preserve the solution in a brown bottle, adding granular tin.
2.15 Mercuric chloride, saturated solution, about 5% (w/v)
2.16 Potasstum blchromate, standard solution, N/30

Welgh exactly 1.635 g of crystalline potassium bichromate (Standard i. reagent for quantitative analysis), place it in a 300 ml beaker and dissolve it in about 100 ml of water. Transfer it to a 1000 ml volumetric flask and dilute to mark with water. In this case, calculate the equivalent value of $N / 30$ solution with the purity indicated for standard reagent without standardization.
2.17 Ammonium ferrous sulphate, standard solution, N/30 Welgh 13 g of ammontum ferrous sulphate $\left.\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}\right)$, add 30 ml of sulphuric acld $(1+1)(2.7)$ and about 700 ml of water, and then dissolve 1 t with stirring, and dilute to 1000 ml with water.
2.18 Methyl red, solution Dissolve 0.20 g of methyl red $i n 90 \mathrm{ml}$ of ethyl alcohol, $95 \%(\mathrm{~V} / \mathrm{V})$, and dilute to 100 ml with water
2.19 Sodium diphenylaminesulphonate, solution, 0.2% (w/v) Preserve it in brown bottle. Barium salt is allowed instead of this reagent.
3. APPARATUS Ordinary laboratory equipment
4. SAMPLING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion. Weigh, to the nearest $0.0001 \mathrm{~g}, 0.250 \mathrm{~g}$ of the test sample
5.2 Determination
5.2.1 Decomposition of the test portion

Place the test portion (5.1) In a 30 ml platinum crucible. Add 15 ml of hydrofluorlc acid (2.5) and 5 ml of nitric acid (2.4), and dissolve gradually by heating cautlously, without splashing, stir occasionally
by means of a platinum wire. After evaporating to a volume below 5 $\dot{m l}$, add 2 ml of sulphuric acid ($1+1$) (2.7), and heat gradually until. all of sulphurtc actd is fumed off. Add 5 g of sodium pyrosulphate (2.13), at flrst heat gradually, and then raise the temperature, fuse to melt in red heat. After cooling, transfer the crucible into a 200 ml beaker, add about 70 ml of hydrochloric acid ($1+9$) (2.3) and heat gradually to dissolve the melt. Rinse the cructble with water and remove. Add a few drops of nitric.acid . (2.4) and heat to boll for 1 to 2 min , and then removing the beaker from the source of heat, allow to cool for a few minutes.

5.2.2 Separation

Add a few drops of methyl red solution (2.18) as indicator to the solution, and then add ammonia solution ($1+1$) (2.11) drop by drop while stirring. When light pink colour disappears, add 1 to 2 drops of ammonia solution ($1+1$) (2.11) in excess. After heating to boil the solution for a few minutes, remove from the source of heat. After allowing the precipltate to settle, filter off through a rapid filter paper and wash with warm amonium chloride solution (2.12) 4 to 5 times.
Keeping the filter paper on the filter, wash down most of the precipa- . tate from the filter to the original beaker. Setting the beaker under the funnel, pour 30 ml of hot hydrochloric acid (1+3) (2.2) onto the filter paper to dissolve the hydroxides, and further, wash out the filter paper with hot hydrochloric acid $(1+9)(2.3) 4$ to 5 times, and finally with warm amonium chloride solution (2.12) until acid disappears.
Discard the filter paper. Heat the beaker to dissolve hydroxides completely, and then cool to room temperature. Transfer to a 250 ml volumetric flask, dilute to volume and mix.
5.2.3 Reduction

Take a 100 ml aliquot of the solution from the volumetric flask into a 500 ml beaker. After adding 10 ml of hydrochloric acld (2.l), heat the solution over $80^{\circ} \mathrm{C}$. Inunedlately add stannous chloride solution (2.14) drop by drop, while swirling the solution, When the yellow colour of the ferric chloride has disappeared, add one additional
drop of the stannous chloride solution. Next wash the inside wall of the beaker with water and cool below room temperature in a water cooler. Add all at once 10 ml of mercuric chloride solution (2,15) mix thoroughly, and allow the solution to stand for 3 to 5 minutes.
5.2.4 Titration

Add 30 ml of acid mixture (2.9) dilute to about 300 ml with water. Add a few drops of sodium diphenylaminesulphonate solution (2.19) as indicator, and titrate the solution with the standard potassium bichromate solution (2.16). The end point is reached when the green colour of the solution changes to bluish green and a final drop of the titrant imparts a vtolet colour.

5.2.5 Blank determination

Carry out all operations as for the test portion unt11 5.2.2. Transfer a 100 inl allquot of the solution from the volumetric flask to another 500 ml beaker. Add 10 ml of hydrochloric acid (2.1) and heat the solution over $80^{\circ} \mathrm{C}$. Immediately add stannous chloride solutton (2.14), drop by drop, while swirling the liquid in the beaker. When the yellow colour of the ferric chloride has disappeared, add one additional drop of the stannous chloride solution. Next wash the Inside wall of the beaker with water and cool below room temperature In a water cooler. Add all at once 10 ml of mercuric chloride solution (2.15) mix thoroughly, and allow the solution to stand 3 to 5 minutes. Add 30 ml of acid mixture (2.9) and 10 ml of the standard ammonium ferrous sulphate solution (2.1.7) exactly, and dilute to about 300 ml with water. Add a few drops of sodium diphenylaminesulphonate solution (2.19) as indicator and titrate the solution with the atandard potasplum bichromate solution (2.16) as 5.2.4. (A ml). Add 30 ml of acid mixture (2.9) and 10 ml of the standard amonium ferrous sulphate solution (2.17) precisely to another 500 ml beaker, dilute to 300 ml with water and titrate as 5.2.4. ($B \mathrm{ml}$).

Substracting the ($B \mathrm{ml}$) from ($A \mathrm{ml}$), the value of the blank determination $\left(V_{2}\right)$ (shown below) is obtalned.

6.1 Calculation of ferric oxide content

The ferric oxide content, as percentage by mass, is calculated from the following formula:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3 \%}(\mathrm{~m} / \mathrm{m}) \frac{\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \times 0.1862}{\mathrm{~m} \times \mathrm{L}} \times 1.4297
$$

where
v_{1} is the volume, in millilitres, of the standard potassium bichromate solution (2.16) consumed for the test portion; v_{2} is the volume, in millilitres, of the standard potassium bichromate solution (2.16) consumed for the blank test;
m is the mass, in grams, of the test portion;
L is the volume fraction of the aliquot.

DETERMINATION OF ALUMINLUM OXIDE - VOLUMETRIC METHODS

1. PRINCIPLE

Decomposition of the test portion by treatment with nitric, hydrofluoric and sulphuric acids and by fusion with potassium pyrosulphate. Dissolution of the melt in hydrochloric acid. Adjustment of the pH with acettc acid and ammonia solution, and separation of heavy metals by extraction with sodium diethyldithiocarbamate and chloroform. Formation of EDTA-A1 complex by reaction with EDTA, and titration of the excess of EDTA with standard zinc solution.
2. REAGENTS

Distilled water or delonized water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be of recogntzed analytical reagent quality.
2.1 Hydrochloric acid ($\mathrm{d}=1.19$)
2.2 Hydrochloric actd, dilute $1+1$
2.3 Hydrochloric acid, dilute $1+9$
2.4 Nitric acid ($\mathrm{d}=1.42$)
2.5 Hydrofluortc acid ($40 \%, \mathrm{~d}=1.13$)
2.6 Sulphuric acid ($\mathrm{d}=1.84$)
2.7 Sulphuric acid, dilute $1+1$
2.8 Acetic acid ($\mathrm{d}=1.06$
2.9 Acetic actd, dilute $1+1$
2.10 Ammonia solution, ($d=0.9$)
2.11 Ammonia solution, dilute $1+1$
2.12 Potassium pyrosulphate or sodium pyrosulphate
2.13 Sodium diethyldithiocarbamate (DDTC) solution, $50 \mathrm{~g} / \mathrm{I}$, a fresh solution shall be prepared dally.
2.14 Chloroform
2.15 Zinc, standard solution, 0.01 M

Dissolve 0.6537 g of pure zinc metal with $10^{\circ} \mathrm{ml}$ of hydrochloric acid $(1+1)(2.2)$, add 5 ml of acetic acid (2.8) and adjust the pH to $6.0^{+}-0.2$ with ammonia solution (1+1) (2.11). Allow the solution to cool and dilute with water to exactly 1000 ml in a volumetric flask. If
the surface of pure zinc metal used is oxidized, wash the metal surface with hydrochloric acld (1+1) (2.2), water and acetone, in this order, and wefgh it after drying for approximately 5 min. under $110^{\circ} \mathrm{C}$. Disodium ethylenediaminetetraacete (EDTA), standard solution, 0.01 M .

Dissolve 3.7225 g of EDTA dihydrate with water and dilute to 1000 ml . Standardize this solution against the zinc standard solution (0.01M). Take a 25 ml aliquot of this solution (2.16) into a 300 ml beaker, add 10 ml of acetic acid $(1+1)(2.9)$ and about 50 ml of water and adjust the pH to 6.0 ± 0.2 with amonia solution (1+1) (2.11). Add a few drops of xylenol orange solution (2.17) and titrate with standard zinc solution (0.01 M) (2.15) . The end point is reached when the slight red colour of the solution appears with a final drop of standard zinc solution. Record the volume of standard alnc solution (0.01 M) (2.15) used and calculate the factor of this solution (2.16) from the following formula:

$$
E * \frac{V_{1}}{V_{2}}
$$

where
f is the factor of 0.01 M EDTA standard solution;
v_{1} is the volume, in millilitres; of standard zinc solution consumed;
v_{2} is the volume, in millilitres, of standard EDTA solution taken.
2.17 Xylenol orange solution, $1 \mathrm{~g} / 1$
3. Apparatus Ordinary laboratory equipment
4. SAMPLING AND SAMPLE PREPARTION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion - Weigh, to the nearest $0.0001 \mathrm{~g}, 0.250 \mathrm{~g}$ of the test sample.

5.2 Determination

5.2.1 Decomposition of the test portion

Place the test portion (5.1) in a 30 ml platinum cructble. Add 15 ml of hydrofluoric acid (2.5) and 5 ml of nitric acid (2.4). Heating carefully and with occasional stirring with a platinum wire to avoid bumping, decompose the test portion gradually. After evaporating to about 5 ml , add 2 ml of sulphuric acid (1+1) (2.7), heat gradually to white fumes of sulphuric acid and continue heating until all of sulphuric acid is fumed off.

Add 5 g of potassium pyrosulphate (2.12), heat solowly at first, then raise the temperature gradually and fuse at red heat. After cooling, transfer the crucible to a 200 ml beaker, add about 70 ml of hydrochloric acid (1+9)(2.3), heat slowly to dissolve the melt. After washing with water, the crucible is removed. Then add a few drops of nitric acdd (2.4), heat to boil for 1 to 2 minutes. Remove the beaker from the source of heat and cool to room temperature. Transfer the solution to a 250 ml volumetric flask, dilute to volume with water and mix.

5.2.2 Extraction

Take a 25 ml aliquot of the solution, transfer to a 100 ml beaker, add 10 ml of acetic acid (1+1) (2.9) and adjust the pH of the solution to 2.8-3.0 with ammonia solution (1+1) (2.11). Transfer the solution to a $200-300 \mathrm{ml}$ separating funnel, add 20 ml of chloroform (2.14) and 20 ml of DDTC solution (2.13) and begin shaking the funnel within 5 seconds. After shaking vigorously for about 1 minute, allow the liquid to separate into two layers and discard the lower organic layer. In order to collect the dirty organic drops floating on the Ifquid surface, add about 5 ml of chloroform (2.14) to the separating funnel, shake for 1 minute, allow to separate into two layers and discard the lower layer. Repeat the extraction above mentioned, but using 10 ml of DDTC solution (2.13). Finally, wash the stem and cock of the funnel with about 2 ml of chloroform (2.14). Transfer the aqueous layer in the separating funnel to a 300 ml beaker, rinse the inside of the funnel with small portion of water and combine with the contents of the beaker.

5.2.3 Titration

Add the volume of standard EDTA solution (2.16) according to the classification of Table 1.

Table 1

$\% \mathrm{Al}_{2} \mathrm{O}_{3}$ presumed	ml 0.01M standard EDTA solution added
up to 30	25
30 to 40	35
over 40	1.5 fold over against equivalent

After boiling the solution for about $10 \mathrm{~min} .$, remove from the source of heat, add 10 ml of ammonia solution ($1+1$) (2.11) and cool below room temperature in a water cooler. Then, adjust the pH to $6.0 \pm$ 0.2 with hydrochloric acid (1+9) (2.3). Add a few drops of xylenol orange solution (2.17) as indicator and titrate with standard zinc solution (2.15) until the colour of the solution changes to a slight pink colour with the last drop.
6. EXPRESSION OF RESULTS
6.1 Calculation of aluminum oxide content The aluminum oxide content, as percentage by mass, is calculated from the following formula:

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \%(\mathrm{~m} / \mathrm{m})=\frac{\left(\mathrm{V}_{1} \times \mathrm{f}-\mathrm{V}_{2}\right) \times 0.000510}{\mathrm{~m} \times \mathrm{L}} \times 100=\frac{\left(\mathrm{V}_{1} \times £-\mathrm{V}_{2}\right) \times 0.0510}{\mathrm{~m} \times \mathrm{L}}
$$

where
v_{1} is the volume, in millilitres, of standard EDTA solution (2.16) added;
v_{2} is the volume, in millilitres, of atandard zinc solution (2.15) consumed;
f is the factor of standard EDTA solution (2.16) against 0.01M;
m Is the masa, in grams, of the test portion;
L is the volume fraction of the aliquot.

PRINCIPLE
Decomposition of the test portion by fusion with sodium cerbonate. DLasolution of the melt in hydrochloric acld, treatment with perchlorfc acid and filtration of insoluble realdue, the filtrate belng reserved as the maln solution (Solution A). Elimination of silica In insoluble residue by treetment with sulphuric acid and hydrofluoric acld and decomposition of fmpurities by fusion with sodium pyrosulphate. Dissolution of the melt in hydrochloric acid (Solution B) and combination with the main solution. Precipitation of hydroxides of iron, aluminum, etc. with anmonia solution and filtration. (Solution C).
(Determination of Calclum Oxide)
Alfqotation of Solution C, precipitation of magnestum hydroxdde by adjustment of the pH with sodium hydroxide, masking of the interfering elementa with potasalum cyanide and titration with EDTA using NN

Indicator $\left(V_{1}\right)$.
Calculation of the percentage of calcium oxide from V_{1}.
(Determination of Magnesium Oxide)
Aliquotation of Solution C, adjuatment of the pH whth amonta solution masking of the interfering elements with potasalum cyande and titration with EDTA uslng EBT Indicator $\left(V_{2}\right)$.
Calculation of the pexcentage of magnesium oxtde from ($V_{2}-V_{1}$)
2. REAGENTS

Distilled water ox defondzed water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be recogndzed analytical reagent quality.
2.1 Hydrochloric actd (dme1.19)
2.2 Hydrochloric acid, dilute $1+4$
2.3 Hydrochlortc actd, dilute $1+10$
2.4 Perchlorfc actd ($60 \%, \mathrm{~d}=1.54$: or $70 \%, \mathrm{~d}=1.67$)
2.5 Hydrofluoric actd ($40 \%, d=1,13$)
2.6 Sulphuric acid ($\mathrm{d}=1.84$)
2.7 Sulphurle aetd, dilute $1+1$
2.8 Sodium hydroxide solution, $280 \mathrm{~g} / 1$
2.9 Ammonia solution ($\mathrm{d}=0.9$)
2.10 Ammonfa solution, dilute $1+1$
2.11 Sodium carbonate, anhydrous
2.12 Sodium pyrosulphate
2.13 Ammonium chloride solution

Dissolve about 10 g of ammonium chloride with about 500 ml of water and render slightly alkaline with a few drops of ammonia solution.
Potassium cyanide solution, $200 \mathrm{~g} / 1$
2.15 Disodium ethylenediaminetetraacetate (EDTA), standard solution, 0.01 M Dissolve 3.7225 g of EDTA dihydrate with water and dilute to 1000 ml . Standardize this solution against standard zinc solution (0.01M). Take a 25 ml aliquot of this solution (2.15) into a 300 ml beaker, add 10 ml of acetic acid ($1+1$) and about 50 ml of water and adjust the pH to 6.0 ± 0.2 with ammonla solution ($1+1$) (2.10).
Add a few drops of xylenol orange solution (2.20) and titrate with standard zinc solution (2.16). The end point is reached when the slight red colour of the solution appears with a final drop of 0.01 m standard zinc solution. Record the volume of standard zinc solution used and calculate the factor of this solution (2.15) from the following formula:

$$
\mathrm{f}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}
$$

where
f is the factor of standard EDTA solution;
v_{1} is the volume, in millilitres, of standard zinc solution consumed;
v_{2} is the volume, in millilitres, of standard EDTA solution aliquot.
Zinc, standard solution, 0.01 M Dissolve 0.6537 g of pure zinc metal with 10 ml of hydrochloric acid $(1+1)$, add 5 ml of acetic acid and adjust the pH to 6.0 ± 0.2 with ammonla solution ($1+1$) (2.10). Allow the solution to cool and dilute with water to exactly 1000 ml in a volumetric flask.
2.17 Methyl red solution

Dissolve 0.20 g of methyl red powder in 90 ml of ethyl alcohol, 95% (v/v) and dilute with water to 100 ml .
2.18 NN indicator

Dilute 0.10 g of 1 -(2-hydroxy-4-sulfo-1-naphthylazo)-2-hydroxy-3-naphthoic acid with 10 g of potassium nitrate and grind.
2.19 EB'r solution

Dissolve 0.20 \& of sodium 1-(1-hydroxy-2-naphthylazo)-6-nitro-2-naphthol-4-sulphonate with 15 ml of triethanolamine and 5 mj . of ethyd alcohol, 95% (v/v).
2.20 Xyienol orange solution, lg/1
3. APPARATUS Ordinary laboratory equipment
4. SAMPLING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion - Weigh, to the nearest $0.0001 \mathrm{~g}, 0.250 \mathrm{~g}$ of the test sample sample
5.2 Determination
5.2.1 Decomposition of the test portion

Place the test portion in a 30 ml platinum crucible, add 5 g of sodium carbonate (2.11) and mix. Heat the crucible at $900-1000^{\circ} \mathrm{C}$ to fuse the ash and continue the fusion for $30-40$ min. After cooling, place the crucible In a 500 ml beaker, add 70 ml of hydrochloric acid ($1+4$) (2.2) to dissolve the molt. Rinse and remove the crucible. Add 50 ml of perchloric acid (2.4), heat gently, cover the beaker with a watch glass when the solution begins to fume slightly and evaporate to dense white fumes of perchloric acid. Maintain a steady refluxing of the ated on the wills of the beaker for about 15 min. NLlow the beaker to cool, add 50 ml of hydrochloric acid (1+4) (2.2) to dissolve soluble salts.

Fllter the solution through a medium-texture paper (ser note) and wash the filter, firat with small portions of warm hydrochloric acid $(1+10)(2.3) 2$ to 3 times, second with warm water until the washings are no longer acid and then more 2 to 3 times. Preserve the residue
on the filter.
Combine the filtrate and washings in a 500 ml beaker, cover with a watch glass, and heat the solution to dense white fumes of perchloric acld and mafntain a steady refluxing of perchloric acld on the walls of the beaker for about 15 min . Proceed agatn as described in the preceding paragraph, to recover residual silicon dioxide. Store the the filtrate and washings for the determination of calcium oxide and magnestum oxide (Solutton A).
(NOTE) Insoluble hydrous silicon.dioxide will adhere to the bottom of the beaker and will not be removed by spraying with a Jet of water. This must be scraped off with a rubber-capped glass rod (pollceman).

5.2.2. Treatment of residue

Place the two precfpltates with filters in a platinum cruclble, heat gently to dry, ash the filter paper, and lgnite at a high temperature, e.g. $800^{\circ} \mathrm{C}$. Moisten the restdue in the cructble with sulphuric actd $(1+1)(2.7)$, add 5 ml of hydrofluoric acld (2.5), heat gently to remove silicon dioxide and sulphuric actd and fgnite at a high temperature, e.g. $800^{\circ} \mathrm{C}$.

After cooling, add about 1 g of sodium pyrusulphate (2.12) in the platinum crucible and fuse gently untll a clear melt is obtatned. Cool the crucfble, add about 15 ml of water and a few drops of hydrochloric actd (2.1) and heat gently to dissolve the melt (Solutton B). Evaporate the Solution A, cover the beaker and heat to dense white fumes of perchlorlc acld. After cooling, add about 100 ml of water and the Solution B to dissolve the salts.

5.2.3 Separation

Add a few drops of methyl red solution (2.17), make this solution to slight alkalinlty by the addition of ammonia solution (1+1) (2.1.1). Heat the solution until the boiling begins and remove from the source of heat. Allow the prectpitate to settle, then collect it on a rapld filter paper. Wash the inside wall of the beaker 1 time and the precipltate 1 time, respectively, with warm annonium chloride solution (2.13) .

Collect the filtrate and washings in a 500 ml beaker. Wash the prectpitate back Into the original beaker with a small quantity of water.

Add 5 ml of hydrochloric acid (1+4) (2.2) and heat to dissolve the hydroxides. Dilute to about 50 ml with water. Add a few drops of methyl red solution (2.17), adjust this solution to slight alkalinity by the addition of annomia solution (1+1) (2.10).

Heat the solution until the boiling begins and remove from the source of heat. Allow the precipitate to settle, then collect it on the original filter paper. Wash the precipitate 3 to 4 times with warm anmonium chloride solution (2.13). Collect the filtrate into the 500 ml beaker containing the filtrate and washings from the previous precipitation. Discard the precipitate. Evaporate the solution to less than 200 ml . cool, transfer to 250 ml . volumetric flask and dilute to 250 ml with water, and mix thoroughly (Solution C).

5.2.4. Determination of Calcium Oxide

Take a 100 ml aliquot of Solution C into a 300 ml beaker and adjust the pH to $12.5-13.5$ with sodiun hydroxide solution (2.8). Add 5 ml of potassiun cyanide solution (2.14), mix and allow the solution to stand for 5 mdn . Add $0.05-0.1 \mathrm{~g}$ of the NN indicator (2.18) and titrate with standard EDTA solution (2.15). The end point is reached when the red colour of the solution disappears and the blue colour appear \ddot{s} with a final drop of standard EDTA solution (2,15). Record the volume of standard EDTA solution (2.15) used (V_{1}) and calculafe the percentage of calcium oxide from formula (1) in 6.1.
5.2.5. Determination of magnesium oxide

Take a 100 ml aliquot of Solution C into a 300 ml beaker and adjust the pH to $9.5-10.5$ with ammonia solution (2.9). Add 5 ml of potassium cyanide solution (2.14), mix and allow the solution to stand for 2 or 3 minutes.

Add a few drops of EBT solution (2.19) and titrate with standard EDTA solution (2.15). The end point is reached when the slight red colour of the solution disappears and the blue colour appears with a final drop of standard EDTA solution (2.15). Record the volume of standard EDTA solution (2.15) used $\left(V_{2}\right)$ and calculate the percentage of magnesium oxide from formula (2) in 6.2 .
6. EXPRESSION OF RESULTS
6.1 Calculation of calcium oxide content The calctum oxide content, as a percentage by mass, is calculated from the following formula:

$$
\begin{equation*}
\mathrm{Ca} 0 \%(\mathrm{~m} / \mathrm{m})=\frac{V_{1} \times \mathrm{f} \times 0.05608}{\mathrm{~m} \times \frac{100}{250}}=\frac{\mathrm{V}_{1} \times \mathrm{f} \times 0.1402}{\mathrm{~m}} \tag{1}
\end{equation*}
$$

where
v_{1} is the volume, in millilitres, of standard EDTA solution $(2,15)$ consumed;
f Is the factor of 0.01 M standard EDTA solution (2.15)
m is the mass, in grams, of the test portion.
6.2 Calculation of magnesium oxide content

The magnesium oxide content, as a percentage by mass, is calculated from the following formula:

where
V_{1} is the volume, in millilitres, of standard EDTA solution
(2.15) consumed for calcium oxide determination;
V_{2} is the volume, in millilitres, of standard EDTA solution
(2.15) consumed for calcium oxide plus magnestum oxide determination;
f is the factor of $0.01 M$ standard EDTA solution (2.15),
m is the mass, in grams, of the test portion.

DEIERMINATION OF SULPHUR TRIOXIDE - GRAVIMETRIC METHOD

1. PRINCIPLE

Dissolution of sulphate in the test portion by digestion with hydrochloric acid. Precipitation of barium sulphate by treatment. with barium chloride, filtration and weighing.
(NOTE) It hás been noted that low sulphur values may occur in coals high in lead and barium.
2. REAGENTS

Distilled water or detonized water shall be used in the preparation of reagents and throughout analysis. All reagents shall be of recognized analytical reagent quallty.
2.1 Hydrochlortc actd ($\mathrm{d}=1.19$)
2.2 Hydrochlortc acid, dilute $1+3$
2.3 Ammonia solution ($\mathrm{d}=0.9$)
2.4 Ammonia solution, dilute $1+1$
2.5 Barium chlorid solution, $85 \mathrm{~g} / \mathrm{l}$
2.6 Methyl orange solution, lg / I
2.7 Silver̈ nitrate solution, $20 \mathrm{~g} / 1$
3. APPARATUS Ordinary Laboratory equipment
4. SAMPLING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion - Weigh, to the nearest 0.0001 g , approximately 0.2 to 0.5 g of the test sample.
5.2 Determination
5.2.1 Dissolution of sulphate in the test portion Place the test portion (5.1) in a 500 ml beaker. Add 20 ml of hydrochloric acid ($1+3$) (2.2) and cover the beaker with a watch glass. Heat and boil gently for 15-20 minutes. Filter the hot solution through a medium-texture filter paper, collect the filtrate and washings in a 500 ml beaker and dilute to about 150 ml with water.
5.2.2 Prectpitation and filtration of barium sulphate

Add 2-3 drops of methyl orange solution (2.6) as indicator.
Neutralize with ammonia solution (1+1) (2.4) using a pipet or buret untll the colour of solution changes from red to orange. Then add 1 ml of hydrochloric acid (2.1).
(Note 1) In this case, if any precipitate is formed, add 1 or 2 drops of hydrochloric acid (2.1) to re-dissolve the precipitate.

Dilute to 250 ml with water. Heat the covered beaker until the solution boils and then reduce the heating slightly until ebullition ceases. Add 10 ml of the warm barlum chloride solution (2.5) usting a plpet, so that barium chloride solution falls into the center of the hot solution, which is belng stirred.

Maintain the solution just below bolling point for one hour, or allow to stand at room temperature for 12 hours or longer. Filter supernatant liquid through a close-texture filter paper. Add a small portion of warm water to the beaker containing the precipitate after stirring, allow the beaker to stand to settle the precipitate. Pour the upper clear portion of the solution on the filter and repeat the procedure several times. Add a small portion of warm water to the beaker containing the precipitate, stir and pour the precipitate and washings on the filter. Wash down the inside of the beaker with a fine stream of wash water, and pour the washings on the filter.
(NOTE 2) It is preferable to use a policeman (rubber-capped glass rod) to pollsh down the instde of the beaker and stirrer before pouring the solution into the beaker.
Wash the filter paper with water until the last 20 ml of the washings give not more than a falnt opalescence with silver nttrate solution (2.7).
(NOTE 3) Total volume of washing water used should be kept to less than 250 ml .

5.2.3 Gravimetric determbnation

Place the wet filter paper and precipitate in a previously ignited and weighed platinum crucible. Open the door of an electrically heated muffle furnace, which has with a sufficient ventilation,
maintalned at 700 to $800^{\circ} \mathrm{C}$. Place the crucible almost closed with a platinum lid in a lower temperature zone of the furnace, and take off the lid after carbonization of the filter paper. Insert the crucible fnto the hottest zone of the furnace, and maintain it for 20 minutes. Allow the crucible to cool in a desiccator and weigh accurately.

5.2.4 Blank test

Carry out blank tests twice or more under the same conditions as for the test portion, but omitting the test portion. The mean value (m_{2}) (shown below) of the welghts of barium sulphate found in the blank determinations is used to correct the weights of barium sulphate found in the determinations.
6. EXPRESSION OF RESULTS

6.1 Calculation of sulphur trioxide content

The sulphur trioxide content, as percentage by mass, is calculated from the following formula:

$$
\mathrm{SO}_{3} \%(\mathrm{~m} / \mathrm{m})=\frac{\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \times 0.3430}{\mathrm{~m}} \times 100=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}} \times 34.30
$$

where
m_{1} is the mass, in grams, of barium sulphate found in the test portion.
m_{2} is the mass, in grams, of barium sulphate found in the
blank test;
m is the mass, in grams, of the test portion

DETERMINATION OF PHOSPHOUS PENTOXIDE
Spectrophotometric or Volumetric Method

1. PRINCIPLE
1.1. Method 1: Spectrophotometric method by molybdenum blue Decomposition of the test portion by treatment with nitric, hydrofluoric and perchloric actds, and the residue being filtered off, fgnited, fused with potassium pyrosulphate. Dissolution of the melt in hydrochloric acid, addition of ferric chloride and collection of the phosphorus by precipitation with amonla solution, dissolution In hydrochloric acid and combination with the maln solution. Reduction of fron, etc. In the solution with sodium sulphtte, and formation of molybdenum blue with amonium molybdate and hydrazine sulphate. The colour intensity of the molybdenum blue is measured spectrophotometrically at a wave length of about 660 nm or 825 nm .
1.2 Method 2: Spectrophotometric method by phospho-vanado-molybdate yellow

Decomposition of the test portion by treatment with nitric, hydrofluoric and perchloric aclds, and the residue belng filtered off, lgnited fused with potassium pyrosul.phate. Dissolution of the melt in hydrochloric acld, addition of ferric chloride and collection of the phosphorus by precipitation with ammonia solution, dissolution in hydrochloric acid and combination with the main solution. Formation of phospho-vanado-molybdate yellow with ammonfum molybdate and ammonium metavanadate. The colour intensity of the phospho-vanado-molybdate yellow is measured spectrophotometrically at a wavelength of about 430 nm .
1.3 Method 3: Volumetric Method Decomposition of test portion by treatment with nitric, hydrofluoric and perchloric acids, and the residue being filtered off, ignited, fused with potassfum pyrosulphate. Dissolution of the melt in hydrochloric actd, addition of ferric chloride and collection of the phosphorus by precipitation with ammonia solution, dissolution in hydrochloric acid and combination with the matn solution. Evaporation to fumes of perchloric acid, dissolution of the salts in water, neutralization with ammonia solution and adjustment of the acidity with nitric acid. Addition of ammonium molybdate to the solution and collection by faltrition of the yellow prextptiaces of amonium phosphomolybdate.

Washing free of acid and dissolution in a slight excess of sodium hydroxide, the excess being titrated with nitric acid.

2.18 Mixed reagent for Method 2

Solution A: Dissolve 40 g of amondum molybdate
[$\left(\mathrm{NH}_{4}\right){ }_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$] in water and dilute to 1000 ml .
Solution B: Dissolve 2 g of ammonium metavanadate $\left(\mathrm{NH}_{4} \mathrm{VO}_{3}\right.$) in perchloric acid $(1+3)$ and dilute with perchloric acid ($1+3$) to 1000 ml . Prepare the mixed reagent, each time just before use, mixing the equal volumes of each of the above two solutions.
Ammontum molybdate solution
Dissolve 40 g of anmonium molybdate $\left[\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]_{\text {In }} 300 \mathrm{ml}$ of warm water and 80 ml of ammonia solution, cool and pour little by little into 600 ml of nitric acid (1+1), while stiring nitric actd $(1+1)$ all the time.
2. 20 Dephosphorized ferric chlortde solution $\quad 1$ and 2

Weigh 0.300 g of pure 1 ron into a 300 ml beaker, add 10 ml of hydrochloric acid, cover the beaker with a watch glass and heat gently to decompose.

After having added 3 ml of nitric acid to oxidize Eerrous ions, add 5 ml of perchloric acid, heat to evaporate sufficiently to white fumes and cool. Transfer the solution to a 100 ml separating funnel with 20 ml of hydrochloric acid $(10+6)$. Add 20 ml of methyl isobutyl ketone and shake vigorously for about 1 minute. Allow to stand for separation Into two layers and discard the lower layer. Add 20 ml of water to the separating funnel, shake the funnel vigorously for about 1 minute, allow to stand separating the contents into two layers, and then draw off the under layer into a 300 ml beaker. Add 5 ml of water to the separating Eunnel and after a similar operation, separate the lower layer into the 300 ml beaker collected prevtously. Boil the combined under layers, to expel the dissolved methyl isobutyl ketone, add 5 ml of nitric acid and 10 mI of perchlortc actd and heat to evaporate. When dense white fumes of perchloric acid have started, cool, add 10 ml of hydrochloric actd and heat to dissolve. Add a few drops of nitric acid to oxtdize, boil and cool. Dilute with water to exactly 100 ml .

Exactly 10 ml of this solution shall be added to make the blank value constant.

Ferric chloride solution
Dissolve 0.300 g of pure iron whose phosphorus content is extremely low in 10 ml of hydrochloric acid by heating, oxidize by adding a few drops of nitric acid, boil, cool and dilute to exactly 100 ml with water. Exactly 10 ml of this solution shall be added to make the blank value constant.

Phosphorus pentoxide, standard solution $20 \mu \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ml}$. Dry sodium byhydrogen phosphate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ at 110° to constant mass and cool to room temperature in a desiccator. Weigh exactly 0.338 g of the dried and cooled sodium bihydrogen phosphate, dissolve in water and dilute to exactly 1000 ml to obtain the stock solution ($200 \mathrm{fg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ml}$). Take a 50 ml aliquot of the stock solution into a 500 ml volumetric flask, dilute to volume to obtain the phosphorus pentoxide standard solution ($20 \mu \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ml}$). Standardize the standard solution by the following procedures:

Using two 300 ml erlenmeyer flasks, transfer a 10 ml aliquot of phosphorus pentoxide stock solution into the first flask and add 2.000 g of pure 1 ron. Add 2.000 g of pure iron only into the second flask. Add 20ml of nitric acid and 10 ml of water to the first flask, and 2Oml. of nitric acid and 20 ml of water to the second flask. Heat both flasks to dissolve the pure iron. After boiling the solutions to remove nitrogen oxides add potassium permanganate solution ($20 \mathrm{~g} / 1$) immediately ifttle by little several times and boil to produce the precipitate of manganese dioxide. Add small crystals of ferrous ammonitum sulphate $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}\right]$ little by little, while shaking the flask. After having decomposed the preclpitate of manganese dioxide, boil to oxidize the excess of fron (II) tons. Then, follow the procedures as described in 5.3 .4 and subsequent clauses, and obtain the quantity of phosphorus pentoxde contained in 1 ml of the phosphorus pentoxide standard solution.
$f=\left(V_{1}-V_{2}\right) \times 0.00309$
where
f is the mass, in milligrames, of phosphorus pentoxide contained in 1ml of the standard phosphorus pentoxide solution;
V_{1} is the volume, in militlitres, of the standard sodium hydroxide solution (0.1 N) consumed to determine phosphorus pentoxide in the first flask;
V_{2} is the volume, in millilitres, of the standard sodium hydroxide solution (0.1 N) consumed to determine phosphorus pentoxide in the second flask.
2.23 Sodium hydroxide, standard solution, 0.1 N 3 Dissolve 4 g of sodium hydroxide in 11 of freshly boiled and cooled water. Standardize this solution against either sulphamic actd or potasslum hydrogen phthalate.
2.24 Nitrlc acld, standard solution, 0.1N

Dilute 6.5 ml of nitric acid (2.4) with water to $11 . \quad \therefore$ Standardization of the solution: Accurately measure 25 ml of the standard sodium hydroxide solution (2.23) and titrate with the nitric acid solution, using phenolphthalein solution (2.25) as indicator, correct the normality to exactly 0.1 N by adding water or $1 N$ nitric acid.
2.25 Phenolphthalein solution

Dissolve 0.10 g of powdered phenolphthalein in 90 ml of ethyl alcohol, 95% (v / v), and dilute with water to 100 ml .
2.26 Ammonium thiocyanate solution, $100 \mathrm{~g} / \mathrm{I}$
2.27 Sulphurous acid water, $6 \% \mathrm{v} / \mathrm{v}$
3. APPARATUS Ordinary laboratory equipment and spectrophotometer
4. SAMPLING AND SAMPLE PREPARATION See Section 4 of Introduction.
5. PROCEDURE
5.1 Method 1: Spectrophotometric method by Molybdenum blue

5.1.1 Test Portion

Welgh, to the nearest $0.0001 \mathrm{~g}, 0.200 \mathrm{~g}$ of the test sample.
5.1.2 Decomposition of the test postion

Place the test portion (5.1.1) in a 80 ml platinum dish, add 10 ml
of nitric actd (2.4), 5 ml of hydrofluortc acid (2.9) and lomil of perchloric actd (2.7), and heat to decompose. Conttnue heating for evaporation, and evolve dense white fumes of perchloric acid sufficiently. Renove from the source of heat and cool. Add about 50 ml of warm water, heat to dissolve the soluble salts, filter through a medtum-texture filter paper contalning filter paper pulp to separate the insoluble residue and wash with warm water throughly. Collect the filtrate and washings lnto a 300 m 1 beaker and preserve as a main solution.

Treatment of restdue
Transfer the insoluble residue with the filter paper into a 30 ml platinum cructble, dry and igntte to ash. After cooling, add about 1 g of potassium pyrosulfate (2.16), heat slowly at first, raise the temperature gradually to dull red and fuse. After cooling, transfer the cructble to a 300 ml beaker, add about 30 ml of warm water containing about 5 ml of hydrochloric acid (2.1), and heat until the melt dissolves. Remove the crucible from the solution, aftex washing with warm water.

Add exactly 10 ml of the dephosphorized ferric chloride solution (2.20), "add ammonia solution (2.10) in small portions while stirring, until the solution is slightly alkaline, to precipitate ferric hydroxide and ferric phosphate. Boll the solution for about 2 min., then remove from the source of heat. Allow the precipitate to settle, filter through a rapid filter paper and wash with warm water. Discard the filtrate and washings. Place the beaker contafnlag the main solution from 5.1.2 under the funnel. Dissolve the prectpltate by pourlng onto the paper about 10 ml of warm hydrochloric actd (1+1) (2.2). Wash with warm hydrochloric acid $(2+100)(2.3)$. Evaporate the solution in the covered beaker to dense white fumes of perchloric actd. Remove the beaker from the source of heat, cool, add about 50 ml of water and warm to dissolve the salts. If any insoluble residue fs noticed, filter the solution with a close-texture fflter paper and wash with warm water. Transfer the filtrate and washings to a 100 ml volumetric flask, cool, dilute with water to volume and mix.

5.1 .4

Determination
From this solution, pipette an aliquot in accordance with Table 2 according to the content of phosphorus pentoxide, into a 100 ml volumetric flask'; add $2-\mathrm{ml}$ of perchloric acid (1+1) (2.8) and 5 ml of sodium sulphite solution (2.13), mix and wait until the colour of the solution shows no further change due to the reduction of ferric to ferrous salts. If the iron (III) Ions are not reduced completely after mixing for a few minutes it is recommended that the solution be heated to complete the reduction.

Table 2

$\% \mathrm{P}_{2} \mathrm{O}_{5}$ presumed	ml aliquot
up to 0.25	20
0.2 up to 1.0	10
1.0 over	5

(Note) When a new l00ml volumetric flask is to be used, fill with water and place in boiling water bath for 10 min . Cool in a water cooler. Repeat the procedure several times. Use It after the change of the volume has becone slight.
Add 25 ml of the mixed reagent for Method 1 (2.17) and heat for 10 min . in the bolling water bath. Cool to room temperature, dilute to volume with water and mix. Transfer a part of this solution to a lom photometric cell and measure the absorbance with reference to water using a wavelength of 660 or 825 nm . Determine the amount of phosphorus pentoxide from the absorbance by using the calibration curve preliminarily prepared as instructed in 5.1.5. Calculate the percentage of phosphorus pentoxide from formula in 6.1.(1).

Preparation of calibration curve
Take 0 to 15 ml aliquots in steps from the standard phosphorus pentoxide solution (2.22), each into a series of 100 ml volumetric flasks and add water to make each about 20 ml .
Add 2 ml of perchloric acid (1+1) (2.8) and 5 ml of sodium sulphite solution (2.13), mix, add 25 ml of the mixed reagent for Method 1 and heat for 10 min . in a boiling water bath. Cool to room temperature and dilute each to the makk of the flask. Trangfer a portion
from each of the solutions into the 10 mm photometric cell and measure as described above. Plot the relationship between the amount of phosphorus pentoxtde added and absorbance to prepare the calibration curve.
Remarks 1 . When the test portion contains 30 mg or more of titandum oxide, the following procedure should be followed:
Place the test portion into a 30 ml platinum cructble, add 10 ml of nitric acid (2.4) and then 5 ml of hydrofluoric actd (2.9) slowly in drops. Heat to decompose. After decomposittion, evaporate to dryness on the hot plate and cool. Add about 3 g of sodyum carbonate (2.14), heat slowly at ffrst and then raise the temperature gradually to fuse completely.
After coollng, transfer the cruclble with the melt into a 300 ml beaker, add about 100 ml of warm water, stir gently, detach the melt from the crucible and remove after washing with water.
Boxl the solution for a while to dissolve the soluble salts, filter through a medium-texture filter paper and wash thoroughly with warm sodiun carbonate solution (2.15). Discard the residue. Transfer the filtrate and washings into a 500 ml beaker, add hydrochloric actd (2.1) to acidify the solution definitely and decompose carbonates. Add exactly 10 ml of the dephosphorized ferric chlorlde solution (2.20), and while mixing the solution, add ammonia golution (2.10) drop by drop until ferric phosphate, ferric hydxoxide, etc. are precipitated and the solution is slightly alkaline. Boil gently for about 2 mln ., remove from the source of heat and allow to settle the precipitates of ferric phosphate, ferrlc hydroxide, etc. Filter with a rapid filter paper, wash with warm water and discard the filtrate and washings. Pour about loml of warm hydrochloric actd (1+1) (2.2) onto the filter paper to dissolve the prectpltates, wash with warm water and collect the solution and washings into a 300 ml beaker. Cover with a watch glass, add 10 ml of perchloric acld (2.7), heat sufficiently to evaporate and evolve dense white fumes.
Remove from the source of heat, allow to cool for a while, add about 50 ml of warm water and heat to dissolve soluble salts. Tranofer the solution finto a 100 ml volumetric flask with water, cool to room temperature, dilute to volume with water and mix. Then, obtain the
phosphorus pentoxide content according to the procedure specified In 5.1.4 and subsequent clauses.
5.2 Method 2: Spectrophotometric method by phosphovanado-molybdate yellow

Welgh, to the nearest $0.0001 \mathrm{~g}, 0.500 \mathrm{~g}$ of the test sample.
Decomposition of the test portion
Decompose the test portion (5.2.1) according to the procedure specifled in 5.1 .2 , but the volume of nitric acid (2.4) used should be 15 ml .
5.2 .3

Treatment of residue
Treat the residue according to the procedure specifled in 5.1.3. But the volume of solution diluted should be made 250 ml .

Determination
From thls solution, take a 50 ml allquot into a 100 ml volumetric flask, add 3 ml of perchloric acid $(1+1)(2.8)$, adjust the temperature of the solution to 20 to $30^{\circ} \mathrm{C}$, add 10 ml of the mixed reagent for Method 2 (2.18), dilute to volume and mix. Allow to stand for about 10 min . Transfer a part of this solution into a 10 mm photometric cell and measure the absorbance with reference to water using a wave length of 430 nm . Determine the amount of phosphorus pentoxide from the absorbance by using the callbration curve preliminarily prepared as Instructed $\operatorname{In} 5.2 .5$. Calculate the percentage of phosphorus pentoxide from formula in 6.1 (2).
5.2.5 Preparation of calibration curve

Take 0 to 25 ml allquots in steps from the standard phosphorus pentoxide solution (2.22), each into a serfes of 100 ml beakers, add 10 ml of perchlorlc acid (2.7), heat to dense white fumes of perchloric acid and evaporate to about 3 ml . Remove from the source of heat, cool, transfer each of them to a serles of 250 ml volumetric flasks with water, dilute to volume and mix. Treat according to the procedure of 5.2.4 and measure the absorbance. Plot the relatlonship between the amount of phosphorus pentoxide added and absorbance to prepare the callbration curve, but allow to stand for about 20 mln . before measuring absorbance.
(Note) Colour development of a sample solution will reach its maximum In about 10 mln. , however on the standard phosphorus pentoxide
solution which does not include fron, the color development after 10 min . Is insufficient and $1 t$ is necessary to leave for 20 mln .

Remaxks 2 When the content of titanium oxide in the test portion is high, the following procedures should be followed:
Treat the test portion according to the procedure of Remark 1 . But the volume of solution diluted should be made 250 ml , and then obtain the phosphorus pentoxide content according to the procedure specified In 5.2.4 and subsequent clauses.
5.3 Method 3: Volumetric method
5.3.1

Test portion
Welgh, to the nearest $0.0001 g$, the test portion in accordance with Table 3.

Table 3

$\% \mathrm{P}_{2} \mathrm{O}_{5}$ presumed	g Mass of test portion
up to 0.2	1.0
0.2 up to 1.0	0.5
1.0 over	0.2

5.3.2 Decomposition of the test portion

Place the test portion (5.3.1) 1n a 80 ml platinum dish, add nitric actd (2.4) according to Table 4, then 5 ml of hydrofluoric acld (2.9) and loml of perchloric acid (2.7), and heat to decompose. Continue heating until dense white fumes of perchloric acid evolve sufficiently. Remove from the source of heat and cool. Add about 50 n 1 of warm water, heat to dissolve the soluble salts, filter through a mediumtexture filter paper containing filter paper pulp to separate the Insoluble resldue and wash with warm nitric acid (2+100) (2.5) until the washings show no fron reaction (note l) and collect the filtrate and washings into a 300 m 1 beaker to preserve as a main solution.
Table 4

g Wexght of the test portion	ml Volume of nitric actd to be added
1.0	15
0.5	15
0.2	10

(Note 1) Take 1 to 2 drops of the washings on a spot plate and a drop of amonium thiocyanate solution (2.26) to detect the presence of tron fons.
5.3.3 Treatment of residue

Transfer the insoluble residue with the filter paper into a 30 ml platinum crucible, dry and dgnite to ash. After cooling, add about lg of potassium pyrosulphate (2.16), heat slowly at first, raise the temperature gradually to dull red and fuse. After cooling, transfer the cructble to a 300 ml beaker, add about 30 ml of warm water containing about 5 ml of hydrochloric acid (2.1), and heat until the melt dissolves. Withdraw the crucible, remove it after washing with warm water.

Add exactly 10 ml of ferric chloride solution (2.21), add ammonia solution (2.10) in small portions until the solution is slightly alkaline, to precipitate ferric hydroxide and ferric phosphate, while etirring. Boll the solution for about 2 min ., then remove from the source of heat. Allow the precipitate to settle, filter through a rapid filter paper and wash with warm water. Discard the filtrate and washings. Place the beaker containing the main solution from 5.3.2 under the funnel. Dissolve the prectpitate by pouring onto the paper about 10 ml of warm hydrochloric acid $(1+1)(2.2)$. Wash with warm hydrochloric acid (2+100) (2.3). Heat to evaporate and continue heating until fumed and condensed perchloric acid refluxes on the wall of the beaker for about 3 min . Remove from the source of heat and after cooling, add about 50 ml of warm water and swirl gently to dissolve soluble salts. Transfer to a 500 ml erlenmeyer flask with small portions of water, adjust the volume to about 60 ml by evaporating and cool to room temperature.
5.3.4 Precipitation and treatment of precipitate Add ammonia solution (2.10) until a small prectpitate of ferric hydroxide persists after shaking or stirring. Add nitric acid (2.4) until the precipitate fust dissolves and then 5 ml in excess. Add about 3 g amonium nitrate (2.11), shake to dissolve and dilute to about 100 ml with water. Add 100 ml of ammonium molybdate solution (2.19), heat to about $50^{\circ} \mathrm{C}$ by dipping in the warm water bath of $50^{\circ} \mathrm{C}$,
remove the flask from the bath, stopper and shake the flask vigourously for 3 min ., allow to stand for 30 to 60 min . In room temperature to settle the precfpltate of ammonfum phospho-molybdate. Filter the precipitate through a small close-texture filter paper (note 2), wash the flask and the prectpitate with nittic acid (2+100) (2.5) until the washinge show no fron reaction (note 1), then wash with nitric acfd $(2+10000)(2.6)$ the fnsides of the flask 3 times and the prectp1tate 5 tines, and further wash with potasstum nitrate solution (2.12) the insides of the flask 2 times and the precipitate 1 time, respectfvely. Discard the filtrate and washings.
(Note 2) For filtertng off the precipitate of amonium phospho* molybdate, filter paper pulp may be used instead of filter paper. Cut rapid filter paper into small pleces, place into a flask, add an appropriate quantity of water, shake vigorously to pulp completely.

Return the preclpitate with the filter paper to the original flask, add 50 ml of freshly boiled cold water and shake to disintegrate the paper. Add a measured volume of standard sodlum hydroxide solution (2.23) In excess and shake the mixture to dissolve the yellow prectpi-tate. Add a few drops of phenolphthalefn solution (2.25) as indicator and titrate the excess sodium hydroxide with the standard nitric acid solution (2.24), until the red color of the solution just disappears with a final drop of the titrant.

Remarks 3. When the test portion contains 30 mg or more of titanfum oxide, the following procedures should be followed:
Welgh, to the rearest $0.0001 \mathrm{~g}, 0.5 \mathrm{~g}$ of the test portion, place in a 30 ml platinum cructble, add 10 ml of nitric acid (2.4) and then 5 ml of hydrofluorlc actd (2.9) slowly in drops. Heat to decompose. After decomposttion, evaporate to dryness on the hot plate and cool. Add about 3 g of sodium carbonate (2.14), heat slowly at first and then raise the temperature gradually to fuse completely. After cooling, transfer the crucfble with the melt 1 nto a 300 ml beaker add about 100 ml of warm water, stir gently, detach the melt from the cructble and remove after washing with water. Boll the solution for a while to dissolve the soluble salts, filter with a medium-texture filter paper and wash thoroughly with warm sodium carbonate solution (2.15).

Discard the residue. Transfer the filtrate and washings Into a 500 ml beaker, add hydrochloric acid (2.1) to acldify the solution definftely and decompose carbonates. Add exactly 10 ml of ferric chlorlde solution (2.21), and whle shaking, add amonta solution (2.10) drop by drop untll ferric phosphate, ferxic hydroxide, etc. are prectpltated and the solution is slightly alkaline. Boll gently for about 2 mln ., remove from the source of heat and allow to settle the precipitates of ferric phosphate, ferric hydroxide, etc. Filter with a rapld filter paper, wash with warm water and discard the filtrate and washings. Pour about 10 ml of warm hydrochlorlc acid (1+1)(2.2) onto the filter paper to dissolve the prectpitates, wash with warm water and collect the solution and washings finto a 300 ml beaker. Cover with a watch glass, add 10 ml of perchlorlc actd (2.7), heat to evaporate and continue heating until fumed and condensed perchlorlc acld reflux down along the wall of the beaker for about 10 mln . or more. Remove from the source of heat and after cooling, add about 50 ml of warm water and swirl gently to dissolve soluble salts. Transfer to a 500 ml erlenmeyer flask with small portions of water, adjust the volume to about 60 ml by evaporating and cool to room temperature. Treat the solution according to the procedures 5.3.4 and 5.3.5.

Remarks 4. When the test portion contains 4 mg or more of vanadium pentoxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$, the following procedures should be followed:
Treat the test portion according to 5.3 .2 and 5.3.3. Add anmonia solution (2.10) until a small prectpltate of ferric hydroxide persists after shaking or stirring. Add nitric actd (2.4) until the prectptate Just dissolves and then 5 ml in excess. Add about 3 g ammonfum nitrate (2.11), shake to dissolve and dilute to about 100 ml with water. Heat the solution to about $40^{\circ} \mathrm{C}$, add 10 ml of sulphurous acid water (2.27) shake to mtx for reduction of vanadtum, cool to $30^{\circ} \mathrm{C}$ or under, add 80 ml of amonium molybdate solution (2.19) at $30^{\circ} \mathrm{C}$, shake to mix thoroughly for about 5 mtn ., and allow to stand overnight at 20 to $30^{\circ} \mathrm{C}$ in order to allow the prectpitate of ammonlum phospho-molybdate to settle. Filter the preclpitate through a small, close-texture filter paper (Note 2), wash the flask and the precipltate with nitric acid ($2+100$) (2.5) until the washings show no fron reaction (Note 1), then wash with nitric acld $(2+10000)(2.6)$ the insldes of the flask 3 times and the
precipltate 5 times, and further wash with potassium nitrate solution (2.12) the insides of the flask 2 times and the precipitate 1 time. Treat the prectpitate according to the procedure 5.3.5.

6. EXPRESSION OF RESULTS

6.1 Calculation of phosphorus pentoxide content-t The phosphorus pentoxide content, as percentage by mass, la calculated from the following formula:
(Method 1)

$$
\begin{equation*}
\mathrm{P}_{2} \mathrm{O}_{5} 7(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{1} \times 10^{-1}}{\mathrm{~m} \times \mathrm{L}} \tag{1}
\end{equation*}
$$

where
m_{1} is the mass, in milligrams, of phosphorus pentoxide found in the aliquot of sample solution in Table 2 (5.1.4);
L is the volume fraction of the aliquot;
m is the mass, in grams, of the test portion.
(Method 2)

$$
\begin{equation*}
\mathrm{R}_{2} \mathrm{O}_{5} \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{1} \times 10^{-1}}{\mathrm{~m}} \tag{2}
\end{equation*}
$$

where
m_{1} is the mass, in milligrams, of phosphorus pentoxide obtalned
from the callbration curve (5.2.5);
m is the mass, in gramis, of the test portion.
(Method 3)

$$
\begin{equation*}
\mathrm{P}_{2} \mathrm{O}_{5} \%(\mathrm{~m} / \mathrm{m})=\left(\mathrm{V}_{1} \times \mathrm{f}_{1}-\mathrm{V}_{2} \times \mathrm{f}_{2}\right) \times 0.0309 \tag{3}
\end{equation*}
$$

m
where
V_{1} is the volume, in mfllilftres, of the standard sodium hydrox1de solution;
V_{2} is the volume, in millilitres, of the standard nitric acid solution;
f_{1} is the factor of the standard sodium hydroxide solution against 0.1N;
E_{2} is the factor of the standard nitric acid solution against 0.1 N ;
m is the mass, in grams, of the test portion.

determination of manganese oxide - spectrophotometric method
 1. PRINCIPLE

Decomposition of the test portion by treatment with hydrofluoric, nitric and perchloric acids and evaporation to fumes of perchloric acid. Dissolution of the salts in water and filtration of the solution. Adjustment of acidity by addition of sulphuric and phosphoric acids. Oxidation of manganese to permanganic acid with sodium periodate and measurement of absorbance based on permanganic acid.
2. REAGENTS

Distilled water or defonized water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be of recognized analytical reagent quality.
2. 1 Nitric acid ($\mathrm{d}=1.42$)
2. 2 Perchlorlc acid ($60 \%, \mathrm{~d}=1.67$)
2. 3 Hydrofluoric acid ($40 \%, \mathrm{~d}=1.13$)
2. 4 Sulphuric acic ($d=1.84$)
2. 5 Sulphuric acid, dilute $1+1$
2. 6 Phosphoric actd ($\mathrm{d}=1.70$)
2. 7 Acid Mixture Add 150 ml of phosphoric acid (2.6) into 750 ml of water, pour 100 ml of sulphuric acid (2.4) slowly, while stirring thoroughly and cool to room temperature.
2. 8 Sodium meta-periodate solution, $50 \mathrm{~g} / 1$
2. 9 Sodium nitrite solution, $100 \mathrm{~g} / 1$
2.10 Urea solution, $100 \mathrm{~g} / 1$
2.11 Hydrogen peroxide solution, dilute $1+9$
2.12 Manganese standard solution
2.12.1 Stock solution, $1.0 \mathrm{mg} \mathrm{MnO} / \mathrm{ml}$

Transfer cxactly 0.775 g of pure manganese metal (purity: 99.95% or over) to a 300 ml beaker, add 10 ml of nitric acid (2.1) and 20 ml of sulphuric acid (1+1) (2.5) and heat it to cilssolve the metal, and evaporate it until dense white fumes of sulphuric acid are evolved for 10 minutes. After cooling it to room temperature, add about 100nl of water and warm to dissolve the salt and cool to room temperature again. Transfer the solution into a 1 COOnl volumetric flask with small portions of water, dilute to volume with water and mix.
2.12.2 Standard solution, $0.10 \mathrm{mg} \mathrm{MnO} / \mathrm{ml}$.

Take a portion of the stock solution (2.12.1), which contains l.Omg of manganese oxide (MnO) in lm , dilute it exactly with water to 10 times in volume to prepare manganese standard solution.
3. APPARATUS Ordinary laboratory equipment and spectrophotometer
4. SAMPIING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test portion Weigh, to the nearest $0.0002 \mathrm{~g}, 1.000 \mathrm{~g}$ of the test sample
5.2 Determination

Decomposition of the test portion
Place the test portion (5.1) into a 100 ml platinum dish, add 20 ml of nitric acid (2.1) and loml of hydrofluoric actd (2.3), and heat gently without boiling to decompose, sometimes swirling the dish slowly. Add 15 ml of perchloric acid (2.2), continue heating until the white fumes of perchlortc acid appear, and increase heating to continue evolution of dense white fumes of perchloric acid for 10 minutes. After cooling, add 50 ml of water and a few drops of hydrogen peroxide solution (2.11), and cover with a watch glass. Heat the dish and bofl the solution to decompose an excess of hydrogen peroxide. Filter the solution through a medium-texture filter paper into a 200 ml beaker. Wash the dish and the filter paper with warm water until the washings used show no acid reaction. Evaporate the fil.trate and washings in the beaker to concentrate to about 80 ml . Allow to cool, transfer the solution to a looml volumetric flask, dilute to volume with water and mix.
5.2 .2

Oxidation of manganese to permanganic actd
Transfer a 20 ml or 50 ml of aliquot of the solution from the volumetric flask, according to whether the presumed content of manganese oxide in the sample $1 s 0,2 \%$ and over or below, into a 300 ml beaker, add 30 ml of acid mixture (2.7), and adjust the volume of the solution to about 60 ml by addition of water ox evaporation. Add 10 ml of sodium meta-periodate solution (2.8), and cover with a watch glass. Heat and oxidize manganese lons to permanganic acid, and continue heating to keep fust boiling of the solution for at least 5 minutes. Cool below room temperature in a water cooler, and
add 10 ml of urea solution (2.10), then transfer into a l00ml volumetric flask. Dilute to volume with water and mix.
5.2.3 Measurement of absorbance

Transfer a portion of the solution to a cell (light path : lomm) and measure the absorbance of the solution against water as reference using a wavelength of about 530 nm .
Next, add sodtum nitrite solution (2.9) drop by drop to the solution In the volumetric flask, while shaking vigorously, until reddish purple based on permanganic acid just disappear. Without delay, transfer a portion of the faded solution to a cell (light path : lomm) ; and measure the absorbance of the solution in the same manner as above mentloned.
Read out amount of manganese oxlde, expressed in mass, corresponding to the difference between the absorbance obtained according to the paragraph 1st and 2 nd of this clause from the callbration curve prepared previously in accordance with clause 5.2 .4 shown below.

5.2.4 Preparation of calibration curve

Transfer 0 to 20 ml of standard solution (2.12.2) in steps to a serles of 300 ml beakers, add 30 ml of acld mixture (2.7) to each of them, Cdilute each of the solutions with water to about 60 ml .

Then, treat them according to the paragraph 2 nd of clause 5.2.2 and thereafter. Plot the relationship between the amount of manganese oxide and the absorbance to prepare the callbration curve.
6. EXPRESSION OF RESULTS
6.1 Calculation of manganese oxtde content

The manganese oxide content, as percentage by mass, is calculated from the following formula:

$$
\operatorname{Mn0} \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{4} \times 10^{-1}}{\mathrm{~m} \times \mathrm{L}}
$$

where
m_{1} is the mass, in mllligrams, of manganese oxide found in the aliquot of sample solution,
L is the volume fraction of the allquot;
m is the mass, in grams, of the test portion.
($\mathrm{Mr}_{3} \mathrm{O}_{4}$) Manganese Oxide content may be obtained by multiplying 1. 075 times Manganese Oxide content.
determination of titanidm oxide - spectrophotometric method

1. PRINCIPLE

Fusion of the test portion with sodium peroxide and dissolution of the melt \ln hydrochlorfc acid and water. Reduction of ferric ions and so on with ascorbic acid and adjustment of acidity. Formation of titaniumdiantipyrylmethane complex and measurement of its' absorbance using a wavelength of about 386 nm .

2. REAGENTS

Distilled water or defonized water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be of recognized analytical reagent quality.
2. 1 Hydrochloric acld ($d=1.19$)
2. 2 Hydrochloric acid, dilute $1+1$
2. 3 Sulphuric acid, dilute $1+1$
2. 4 Sulphuric acid, dilute $1+9$
2. 5 Hydrogen peroxide (30\%)
2. 6 Sodium peroxide
2. 7 Potassium pyrosulphate
2. 8 Diantipyrylmethane solution, $15 \mathrm{~g} / 1$

Place 15 g of diantipyrylmethane in a 1000 ml beaker containing 30 ml of sulphuric acid ($1+1$) (2.3) and 300 ml of water, stir gentily until diantipyrylmethane has been dissolved, and then dilute to 1000 ml with water. Filter, if necessary, and store in a dark-coloured bottle.
2. 9 Ascorbic actd solution, $10 \mathrm{~g} / 1$

Freshly prepare as needed.
2.10 Titaniun dioxide standard solution
2.10.1 Stock solution, $200 \mu \mathrm{~g} \mathrm{TiO} 2 / \mathrm{ml}$

Place exactly 0.2000 g of titandum dioxide (purity : 99.5% or over)
In a 30 ml platinum crucible, add 5 g of potassium pyrosulphate, heat gently at first to expel molsture. Then, increase gradually heating to melt down quietly the pocassium pyrosulphate, keep the bottom of the crucible in dark red until clear melt is obtained and allow to cool. Transfer the crucible with the cold melt into a 300 ml beaker, add 50 ml of sulphuric actd $(1+9)(2.4)$, followed by heating the
beaker to dissolve the cold melt and remove the cruclble after washing with sulphuric acid (1+9)(2.4).

Allow to cool the solution, transfer it to a 1000 ml volumetric flask, dilute to volume with sulphuric acid $(1+9)(2,4)$ and mix.
2.10.2 Standard solution, 40 $\mu \mathrm{g} \mathrm{T10} 2 / \mathrm{ml}$

Take a given aliquot of the stock solution (2.10.1), dilute exactly to 5 times of $i t s$ volume with sulphuric acid (1+9)(2.4) and mix.
3. APPARATUS Ordinary laboratory equipment and spectrophotometer
4. SAMPLING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE
5.1 Test Portion Weigh, to the nearest $0.0002 \mathrm{~g}, 0.500 \mathrm{~g}$ of the test
sample

5.2 Determination

5.2.1 Decomposition of the test portion

Place the test portion (5.1) in a 30 ml sintered - alumina crucible, $m x$ it with 5 g of sodium peroxide (2.6), and cover the surface of the mixture with small amount of sodium peroxide (2.6). Heat it gradually at first to expel moisture, increase heating to dark red to melt it down quietly and allow to cool. Transfer the crucible with cold melt to a 200 ml beaker, add gradually 40 ml of warm water and 20 ml of hydrochloric actd (2.1) to dissolve the melt and take out the crucible after washing with warm water.

Heat the solution to boiling to decompose hydrogen peroxide. If the solution is turbid, add a few drops of hydrogen peroxide (2.5) and boil for a few minutes. Allow to cool, transfer the solution to a 200 ml volumetric flask, dilute to volume with water and mix.
5.2.2 Formation of titanfum-diantipyrylmethane complex

Place an aliquot of the solution, which corresponds to loug to $300 \mu \mathrm{~g}$ of titanium dioxide, into a 50 ml volumetric flask, add 8 ml of ascorblc acid solution (2.9) and swirl the flask thoroughly to reduce ferric completely to ferrous salt. Add 8 ml of hydrochloric acid ($1+1$)
(2.2) and 20 ml of diantlpyrylmethane solution (2.8), dilute to volume with water, mix and allow to stand for 20 minutes.

5.2.3 Measurement of absorbance

Transfer a portion of the solution to a cell (11ght path : 10mm), and measure the absorbance of the solution against water as reference using
a wavelength of about 385 nm .
Read out amount of titanium dloxide, in mass, corresponding to the obtained absorbance from calibration curve prepared previously.
5.2.4 Preparation of calibration curve

Place 1 ml to 8 ml of standard solution (2.10.2) In steps in a series of 50 ml volumetric flasks, add 8 ml of hydrochloric acid (1+1)(2.2) and 20 ml of diantipyrylmethane solution (2.8), dilute to volume with water and mix. After allowing to stand for 20 min , measure the absorbances of the solutions agafnet water as mentioned in clause 5.2.3. Then, plot the relationship between the amount of titanium dioxide and the absorbance to prepare the callbration curve.
6. ESPRESSION OF RESULTS
6.1. Calculation of titanium dioxide content The titanium dioxide content, as percentage by mass, is calculated from the following formula:

$$
\mathrm{TiO}_{2} \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{1} \times 10^{-1}}{\mathrm{~m} \times \mathrm{L}}
$$

where

- m_{1} is the mass in milligrams, of titanium dioxide found in the aliquot of sample solution,
L is the volume fraction of the aliquot;
in is the mass, in grams, of the test portion.

DETERMINATLON OF SODTUM OXIDE AND POTASSIUM OXIDE - FIAME PHOTOMETRIC OR ATOMIC ABSORPTIOMETRIC METHOD

1. PRINCIPLE

1.1 Method 1 (Flame Photometric Method)

Decomposition of the test portion by treatment with hydrochloric, hydrofluoric and perchloric acids. Dissolution of the saits. Separation of most of iron by extraction with methylisobutylketone. (1) Precipitation of iron, aluminium, titanium and others with ammonia solution and filtration off.

Precipitation of calcium with ammonium oxalate and filtration off. Dilution of the solution to a definite volume. Aspiration of the solution to an oxygen-hydrogen flame and measurement of the intensity with a flame photometer.
1.2 Method 2 (Atomic Absorptiometric Method)

Decomposition of the test portion by treatment with hydrochloric, hydrofluoric and perchloric acids. Dissolution of the salt and dilution of the solution to a definite volume. Aspiration of the solution to an alr-acetylene flame and measurement of the absorbance with an atomic absorption spectrophotometer.
2. REAGENTS

Distilled water or delonized water shall be used in the preparation of reagents and throughout the analysis. All reagents shall be of recognized analytical reagent. quality.
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
(1)

Hydrochloric acid (d=1.19)
Hydrochloric acid, dilute $1+1$
Hydrochloric actd, dilute $10+6$
Nitric acid ($d=1.42$)
Perchloric acid (60\%, $d=1.54$; or $70 \%, d=1.67$)
Hydrofluorlc acid ($40 \%, \mathrm{~d}=1.13$)
Ammonia solution $(d=0.9)$
Ammonia solution, dilute $1+1$
Ammonium oxalate solution, saturated
Methylisobutylketone
Sodium oxide, standard solution, $200 \mu \mathrm{~g} \mathrm{Na} 20 / \mathrm{ml}$
IF IT IS FOUND NECESSARY THE IRON MAY BE REMOVED BY THE SPECIFIED PROCEDURE)

Method 1 and 2 1 1 1 1 and 2 1 and 2

1
1
1

1
1 and 2
2.11 (continued)

Dry sodfum chloride (standard material for volumetric analysis) at $110^{\circ} \mathrm{C}$ to a constant mass and cool to room temperature in a desiccator. Wef.gh exactly 0.3772 g of the dried and cooled aodium chloride, dissolve in water and dilute exactly to 1000 ml and then preserve the solution in a polyethylene bottle.

METHOD
2.12 Potassiun oxide, standard solution, $400 \mu \mathrm{~g} \mathrm{~K} 2 / \mathrm{ml} \quad 1$ and 2 Dry potasslum chloride at $110^{\circ} \mathrm{C}$ to a constant mass and cool to room temperature in a desiccator. Weigh exactly 0.6336 g of the dried and cooled potassium chloride, dissolve in water, dilute exactly to 1000 ml and then preserve the solution in a polyechylene bottle.
2.13 oxygen gas 1
2.14 Hydrogen gas I
2.15 Compressed air 2
2.16 Acetylene gas 2

- 3. apparatus

Ordinary laboratory equipment and flame photometer or atomic absorption spectrophotometer.
4. SAMPLING AND SAMPLE PREPARATION (See Section 4 of Introduction)
5. PROCEDURE:

5.1 Method 1 (Flame Photometric Method)

5.1.1 Test portion

Weigh, to the nearest $0.0001 \mathrm{~g}, 0.200 \mathrm{~g}$ of the test sample.
5.1.2 Decomposition of the test portion

Place the test portion (5.1.1) in a 80 ml platinum dish, add 15 ml of hydrochloric acid (2.1.), heat and add 10 m . of hydrofluoric acid (2.6) to decompose the test portion thoroughly. Add loml of perchloric acid (2.5), heat to evolve the dense white fumes of perchloric acid sufficiently, to evaporate hydrofluoric acid completely and to oxidize iron and others. Remove from the source of heat and cool.

- 5.1.3 Separation of fron and others

Dissolve the salts with hydrochloric acid $(10+6)(2.3)$, rinse with

5.1.3 (continued)

hydrochloric acid $(10+6)(2.3)$ to transfer into a 300 ml separating funnel. Add the nearly same amount of methylisobutylketone (2.10) as the solution, shake vigorously for about 1 minute. Nlow to stand for separation into two layers and separate the lower level into a 200 ml quartz beaker. Furthermore add about 10 ml of hydrochloric acid $(10+6)(2.3)$ to the funnel and after a similar operation, separate the lower layer into the quartz beaker. Discard after the organic solvent is vaporized from the aqueous solution, add $5 m 1$ of nitric acid ($d=1.42$) (2.4) to decompose residual organic matter in the solution, and continue heating until perchloric actd is fumed off and completely removed. After cooling add 5 ml of hydrochloric acid ($1+1$) (2.2), heat gently to decompose the contents, add ammonia solution $(1+1)(2.8)$ in small portions to neutralize and add 5 ml of ammonia solution (1+1)(2.8) in excess. Add 10 ml of ammonium oxalate solution (2.9) and boil to form the precipitates for about 3 minutes. After cooling, rinse with water to transfer into a l00ml volumetric flask, dilute with water to volume and mix. Fllter the solution through a dry meditum texture filter paper in a dry 100 ml quartz beaker.

5.1.4 Determination

Transfer a part of the filtrate into a cell for flame photometry, aspirate the solution to an oxygen-hydrogen flame and measure the intensity with a flame photometer using a wavelength of about 589 nm for sodium and using a wavelength of about 766 nm for potassium. Determine the amount of sodium oxide and potassium oxide from the Intensity by using the calibration curve prepared as instructed in 5.1 .5 in parallel with the test portion. Calculate the percentage of sodium oxide from formula in 6.1 (1) and potassium oxide from formula in 6.2 (1).

5.1.5 Preparation of calibration curve

Take 0 to 10 ml aliquots in steps from the standard sodium oxide (2.11) and potassium oxide (2.12) solution, each into a series of 80 ml platinum dishes in which 0.05 g of inon without sodium and potassium ts weighed respectively. Operate according to 5.1.2 to 5.1.4. Plot the relationship between the amount of sodium oxide or potassium oxide and the intensity to prepare the callbration curve.
5.2 Method 2 (Atomic Absorptiometric Method
5.2.1 Test portion

Welgh, to the nearest $0.0001 \mathrm{~g}, 0.200 \mathrm{~g}$ of the test sample.
5.2.2 Decomposition of the test portion

Place the test portion (5.2.1) In a 80 ml platinum dish, add 15 ml of hydrochlortc actd (2.l), heat and add 10 ml of hydrofluorlc actd (2.6) to decompose the test portion thoroughly. Add 10 ml of perchloric acid (2.5) and heat to evaporate nearly to dry up. After cooling add 10 ml of perchloric acid. (2.5) and 10 ml of water and heat to dissolve the salts. After cooling transfer the solution into a 100 ml volumetric flask, dilute with water to the mark and mix.
5.2.3 Determination

Asplrate the solution Into an alr-acetylene flame and measure the absorbance with an atomic absorption spectrophotometer.
To measure the absorbance, define the analytical line according to Table 1 and then set up the lamp current value, the silt width of." spectrophotometer, the pressure and the flow of acerylene gas and alr. Adjust the position of the beam which transmites through the flame and measure the absorbance of the flame following the operation which is prescribed to each atomic absorption spectrophotometer. It shall be read on a recorder or a meter. When the sensitivity is insufficient, a scale magnifler would be provided to photometer shall be adfusted to the required sensitivity.
If the gensitivity is higher than required, it shall be decreased by adjusting the beam angle and others.

Table 1. Analytical line

Component	Analytical line (nm)
Sodium oxide	589.0
Potassium oxide	766.5

Determine the amount of sodium oxide and potassium oxide from the absorbance by using the calibration curve prepared as instructed in 5.2 .4 in parallel with the test portion. Calculate the percentage of sodium oxide from formula $\operatorname{In} 6.1$ (1) and potassium oxide from formula in 6.2 (1).
5.2.4 Preparation of calibration curve

Take 0 to 10 ml aliquots in steps from the standard sodium oxide (2.11) and potassium oxide (2.12) solutions, each into a series of 80 ml platinum dishes in which 0.05 g of iron without sodium and potassium is placed respectively. Add 10 ml of perchloric acid (2.5), heat to decompose, after cooling transfer into a 100 ml volumetric flask, dilute with water to volume and mix.
Asplrate the solution to an air-acetylene flame and measure the absorbance of each component with an atomic absorption spectrophotometer.

Plot the relationship between the amount of sodium oxide or potassium oxide and absorbance to prepare the callbration curve.
6. EXPRESSION OF RESULTS
6.1 Calculation of sodium oxide content, as percentage by mass, is calculated from the following formula:

$$
\begin{equation*}
\mathrm{Na}_{2} 0 \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{1} \times 10^{-1}}{\mathrm{~m}} \tag{1}
\end{equation*}
$$

where
m_{1} is the mass, in milligrams, of sodium oxide found in the test portion solution;
m is the mass, in grams, of the test portion.
6.2 Calculation of potassium oxide content, as percentage by mass, is calculated from the following formula:

$$
\begin{equation*}
\mathrm{K}_{2} 0 \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{m}_{1} \times 10^{-1}}{\mathrm{~m}} \tag{2}
\end{equation*}
$$

where
m_{1} is the mass, in milligrams, of potassium oxide found in the test portion solution;
m is the mass, in grams, of the test portion.

PRECYSTON OP DETERMINATION

In the same laboratory
The results of duplicate determinations carifed out at different times in the same slaboratory, by the same operator, with the same apparatus, on representative portions -taken from the same analysis sample, should not differ by more than the above value.
In"different laboratories
The means of the results of dupllcate determinations carried out separately in two different laboratories, on representative portions taken from the same analysis sample, should not differ by more than the above value.

