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FOREWORD

Most of the research investigations undertaken by scientists
and engineers in the Mines Branch require the use of statistical analy-
sis to reach wvalid conclusions from necessarily limited observed or ex-
perimental data. This practical handbook, written especially for the
technical research user of statistics, gathers in a simplified form
many of the most useful and powerful statistical techuniques, usually
found in a number of different textbooks, generally written from the
statistician's viewpoint. Although the senior author, Dr. Jan Visman,
is an internationally recognized authority on sampling statistics,
this Guide was prepared from the non-specialist viewpoint and should
be very useful not only for the Mines Branch research scientists but

also for other engineers and research workers in Canada and elsewhere.

hn Convey,

Director

Ottawa, June 1970
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AVANT-PROPOS

Pour la plupart des recherches entreprlses par les ingénieurs
et sc1ent1f1ques 2 la Direction des mines, 1' emplol d'analyses statist-
iques est requis pour atteindre des conclusions valables P partlr de
données expérimentales ou observées nécessairement ]_imitées° Ce manuel
pratique, écrit spécialement pour 1e chercheur technlque utlllsant 1a
statistique, rassemble sous une forme 51mp11f1ée de nombreuses tech—
nlques statistiques parmi les plus utlles et pulssantes, qu'on trouve
ordinairement dans plusieurs 11vres dlfferents, généralement ecrlts du
point de vue du statisticien. Bien que le pr1nc1pa1 auteur, le Dr. Jan
Vlsman, ait une réputation lnternatlonale en statlsthue a' échantlllonnage,
ce Gulde a été prépare du p01nt de vue du non- spéclallste, et devralt
dtre trés utile, non seulement aux chercheurs sc1ent1f1ques de 1a Dlrect-
ion des mines, mais aussi a d'autres ingénieurs et chercheurs au Canada

‘et ailleurs.

n Convey,

Directeur

Ottawa, juin 1970
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GUIDE TO ENGINEERING STATISTICS

by

J. Visman* and Jacqueline L. Picard®*

ABSTRACT

This text provides guidelines for the selection and the
application of statistical techniques that are commonly used in
science and industry.

The emphasis is on how to solve statistical problems and,
by conveying the basic concepts of variability, to prepare the reader
for further self-study of textbooks in his or her particular field.

Instructions in the form of a Summary of Operations, pre-
sented in Section 1, are recommended to those readers for whom the
application of statistical analysis is not a daily routine. A tabular
listing of statistical problems and procedures provides a short-cut to
the practical application of techniques. A general sampling theory
for segregated populations is introduced, with condensed instructions
that cover most of the variates.

Definitions of terms and symbols are presented in an appendix .
preceding the alphabetic register of subjects. '

Many techniques in this guide can only be applied legitimate-
ly for calculating first-order estimates of a variance, a probability,
a ratio, etc. For more critical situations where specific conditions -
too complicated to be mentioned here - have to be satisfied, the read-
er is well advised to obtain the assistance of a professional statistic-
ian. Between this high level of perfection and that of the "educated
guess" there is scope for a guide to statistics which it is hoped this
voilume will provide for its readers.

* Head and ** Technical Officer, Western Regional Laboratory, Metals
Reduction and Energy Centre, Mines Branch, Department of Energy,
Mines and Resources, Edmonton, Alberta.
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Direction des mines

Circulaire d'infgrmatién IC 233
GUIDE A LA STATISTIQUE TECHNOLOGIQUE
par

J. Visman* et Jacqueline L. Picard*¥*

RESUME

Ce texte a 1'objet de servir de guide a la sélection et a
la mise en ceuvre de techniques statistiques qui s'utilisent souvent
dans les divers domaines des sciences et de 1'1ndustr1e.

‘Il s'agit ici surtout de souligner la manidre par 1aque11e
se résolvent les problémes StatiStiques; Par ailleurs, ce guide servira
de préparatif a 1'étude de la statistique dans le domaine particulier
du lecteur en 1ui donnant des notions élémentaires de la variabilité.

Aux lecteurs pour 1esquels 1'utlllsatlon de 1'ana1yse
statlsthue n'est pas une pratique journalidre, la méthode est ,
présentée sous forme de mode opératoire. Un résumé de divers problémes
et de procédés statlsthues en. forme de tableau sert de raccourci pour
1'emploi de ces techniques. Une théorie générale de l'échantlllonnage'
pour les populations ségrégées est présentée avec un précis de la
technique qui traite. de la plupart deé variates. La définition des
termes et caractéres se trouve dans un appendlce qui ‘précade la table
alphabétique des matiéres.

Les techniques dont on parléAne peuvent‘légitimemeﬁt étre
utilisées que pour le ¢alcul d' estimations de premier ordre, par
exemple d'une variance, d'une probablllte, d'une proportion, etc.'
Lorsqu il s'agit de 31tuat10ns plus difficiles oli nous devons satis~
faire 3 certalnes condltlons préc1ses, trop compliquées pour etre
- discutées ici, le lecteur devrait bien obtenlr l'aide d'un StatlSth-

. iep. Entre ce niveau élevé de perfectlon et celui du Jugement pratique,
il y a de la place pour un guide & la statistique et c'est ce que nous
espérons avoir ici fourni au lecteur.

% Chef et ** Agsent Lcchniquc, Laborato[rv erlonul de 1'ou¢uL, Lcquv
de 1° cncrgle ‘et de réduction deg mCLaux, DirecLion des mines,’ ministcro
de 1! Energie, des Mines et des Ressources, hdmonton, Alberta.
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INTRODUCTTION

For the professional worker engaged in research, develop-
ment or investigational work, it is generally easy to recognize
certain natural phenomena or processes as statistical problems.
Experience shows, however, that the application of the large vari-
ety of statistical techniques and tests found in textbooks is com-
monly left to specialists.. In view of the present scarcity of
this high-priced skill, a large amount of statistical work is left
undone where the need for it is recognized, because the investi-
gator feels that he is inadequately trained to "think in proba-
bilities" and lacks the time for sufficient study. The primary
object of this Guide is to help bridge the gap. In the broad
sease, it aims to assist in interpreting certain phenomena en-
copntered in engineering research and industrial production as
statistical problems, by first formulating the problem, then in-
vestigating it by experiment and, finally, analyzing the data and
interpreting the results in a meaningful way.

As the need for interpretation of statistical data is
becoming more general with the proliferation of computers in in-
dustry, so is the need of those involved with industrial problems

for a guide in the application of engineering statistics.

The sequence of operations may be subdivided into five
steps, starting with the definition of the problem. This requires,

first of all, a detailed knowledge of the natural laws underlying

the process or phenomenon, including its actual and theoretical

behaviour, and secondly, a knowledge of the quantitative aspect,




i. e. the magnitude of the‘factors involved and their ranges. The
first part is basically of a non-stétistical nature. It estab-
lishes the fundamental relationship and its scientific correctness
or conformity to truth, and is primarily a qualitative appraisal.
The second part, on the other hand, is.concerned with experiment
and induc tion. It provides estimates of the observed
factors or phenomena and of their significance in relation to the.
sum total of all the unobseryed factors and chance variations
that might occur. .

The important point to remember here is that statistics
+is a formal logic only, incapable of proving or dispfoviﬁg the

truth. Its value-depends entirely on the correctness or reality

of the premises which lie at the root of the relationship that is

being tested by statistical means.

The most commonly made mistake is that statistical re-
lationships are taken at face value as représenting the "facts",
whereas in reality there might be no true relationship (spurious.
correlation). For instgnbe, a statistical relationship was fdund
to exist between the number of storks flying over East Prussia
during a certain period and the number of babies born there during
the same period. This.is obviouéiy a spurious correlation, but it
might appear to a child,as(féctual confirmation_bf what it has
accepted as the truth, namely, that storks éringgbabies. Similér-
ly, various controversies (e. 8+ regarding fluoridation and the
causes of lung cancer, etc.) could originate from a fallaéious bf
incomplete set of assumptions which are mistakenly identified with

the truth.

Statistics can be defined as the science of the collect-

ion and organization of. quantitative .data acpording,tq relative

frequency of occurrence as-a basis for drawing valid conclusions. .




As such, it is a highly efficient tool for the analysis of those
natural phenomena and industrial processes whose true natures are
obscured or masked by large variations.

The scholars of the Middle Ages provided the necessary
foundation for the laws of nature in certain assumed theories and
expressions of the Scriptures. However, they rarely if ever tested
the results by experiment, as it was their maxim that "Reason is
the Sovereign of Nature" and that, therefore, truth of the natural
world as well as of the spiritual world must be derived from reason
and authority. Their thinking was "Aristotelian", that is, essent-
ially philosophical and of a qualitative nature. Since the Renais-
sance, however, the need for the collection of facts by observation
and experiment has been recognized, and this principle, which has
been called the "Galilean" approach, forms the basis for modern ad-
vancement in science.

Problems of a statistical nature involving a number of
variables are often dealt with by non-statisticians in the con-
ventional way of studying the effectAof one variable at a time
while trying to keep the other variables constant. This method is
not efficient, since it requires unnecessary repetition of tests
and is 1iﬁited in the sense that only operating variables can be
studied. As a rule, also, behaviour observed under these conditions
will differ from that when all variables are operating simultaneous-
ly, an effect due to interaction between the variables.

The old method therefore has limited application, and
any conclusions drawn are subject to the ''ceteris paribus'" pro-
viso (Mall other things being equal™). With modern statistical
methods, these restrictions are eliminated and a maximum amount
of information can be obtained with a minimum amount of work.

This Guide sets forth a procedure for the collection



and interpretation of data. Detailed instructions are provided
for solving the principal types of statistical problems encount-
ered in the field of engineering practice and research. The re-
quired sequence of operations is given in condensed form in Table
1.1, where the statistical procedure has been subdivided into five
steps. For most problems, each step will have to be considered

to some degree. Even for simplé problems where only one or two

of the steps may be required, it is considered worthwhile to go
through the entire procedure in order to see it in its proper per~ .

spective.




1. GENERAL PROCEDURE

Table 1.1 - Summary of Operations

1. Defining a statistical problem

Analyze the actual and theoretical aspects of the problem and
list the nature of variables involved. Formulate the physical
or chemical relationship between the dependent and independent
variables.

2. Premises

Assign the main independent variables. Choose the estimators
for same. Estimate their relative magnitude and reputed range.
Evaluate the residual variations (secondary factors and chance
deviations, or errors, combined).

3. Experimental procedure

Design the testing technique. Determine the number of ob-
servations. Determine the size of the sample and number of
increments. Collect the data.

4. Analysis of data

Make preliminary estimate of standard deviation from range.
Round off the observations. Eliminate "tramp" values. Est-
imate missing data. Normalize the relationship by trans-
formation of wvariables. Apply analysis of variance and tests
of significance. Choose significant factors for correlation
and regression analysis.

5. Correlation

Choose the appropriate formula for the relationship between
dependent and independent variables. Determine the re-
gression coefficients and constant. Find the correlation
coefficient.

1.1 Defining a Statistical Problem

A statistical problem may be said to arise when data

variations caused by factors other than those accounted for are



too large to be ignored. For instance, the problem of providing
quick estimates of the heat value of a certain type of coal can be

solved by using the experimental'relationship'between the heat

value and the ash content. - This relationship is not exact, however,
because the heat value depends not only upon the percentage of

ash but also upon the percentage of moisture and combustible matter,
and the composition of the latter. The efficacy of the experiment-
al formula will depend upon the precision that is required:

When the B.t.u. figures estimated in thie way are suffic;
iently precise, there remains but one étatistical oroblem: a "“curve-
of-best-fit" must be drawn through the points relating ash content
(dry basis) and B.t.u. valoe, as found through analysis of a number
of samples.

In certain cases where it is necessary to know the pre-
cision of the estimated B.t.u. value as well ‘for instance when
coal is sold on a B.t.u. basis with terms lDVOlVlng a penalty clause,’
the problem falls into three parts. First of all, the curve-of-best-
fit, or "regression curve'", must be found._ Since it cannot be drawn
by eye accurately enough, lts "most likely" location requires a cal-
culation known as regression.analysis. . Secondly, the’precislon
of a single B.t.u. figure obtained from the curve must be calculated,
and thirdly, a certain minimum number of samples must be collected
from the consignment for ashing, in_order to ensure a B.t.u. figure |
of predetermined precision. The foregoing'coneerns ohly the quanti-
tative aspect of the problem. The statistical treatment in ltself
does not necessarlly prove whether the relationshlp between the two
varlables is real or spurlous.

In the above example there need be no doubt about the
reality of the relationship. This is not always 80, however. In
actual fact; the majority of statlstical problems requlre the ex-
perience and judgment of a profe331onal worker in the field, in

order to analyze the intrinsic relatlonshlp between the variables.




For instance, it is often found that within a certain range the
compressive strength of coal briquets is inversely proportional to
the surface moisture content of the coal entering the briquetting
press. Yet, the actual cause of deterioration of the compressive
strength of the finished briquet is neither the initial nor the in-
sténtaneous moisture content of the briquet, but rather the porosity
which results from the presence of moisture during formation of the
briquet in the press.

The above example illustrates the solution of a very im-
portant aspect of the problem, not by statistics, but simply by a
detailed knowledge of the physical or chemical mechanisms and the
environmental influences. The main factors governing the outcome
of a process under investigation and the main sources of error in
sampling and analysis should be known. Care in conducting the ex-
periment, and awareness of the concomitant factors that might inter-
fere with the test, are of the essence.

"Defining the problem" thus signifies the essentially
qualitative evaluation of all the facts involved, based on a de-
tailed knowledge of the process or phenomenon. It is a major step,
one that is indispensable to the operation that follows: establish-
ing the premises which lead up to the statistical treatment.

Summary -

"Defining the problem'" stands for the qualitative analysis
of the physical and/or chemical relationships between the dependent
and independent variables. This is the step which establishes the
reality of the relationship. A functional expression of the relat-
ionship is often helpful:

z = F(X,¥, oee)
where x, y, ... are the independent variables and z the dependent
variable, i.e. the effect that is being studied. All the variables

that could possibly affect z should be listed and their relation-




ship formulated in accordance withAthe physical or chemical laws that
apply.

1.2 Premises

In this section, two steps of a.quantitative nature are
taken. Certain assumptions which will be made here regarding the
problem will require subsequent verification.

First, the independent variables are classified according
to their expected importance and. the most important assigned as the
Ymain factors". The "residual factorsﬁ which remain should all be
of approximétely the same order of influence and should not include
any that are of aépreciably greater importaﬁce, Their estimated
composite effect should be smaller than the effect of the smallest
"main factorM. 4

Secondly, the "main factors“_aré ﬁeasared in one way or
another. 1If a factor cannot be measuiedldiregtly, some quantity
must be found which is closely related to it imsome manner and which
can bexmeasured with ease and sufficient precision. For instance,
it is well known that.the efficiency of a continuous blender depends
not only upon the numbér of circulations of the material'paséing
through it, but also upon the rate of feed and the wvolume of the
blender.. When determining the’efficiency of the blender, the rate
of feed and the volume can be measured dirgct}y, but the number Qf:
“ circulations made by the material is not so easily found. 1In this
case, a related, measurable quantity (" e s.t i,ﬁ ator"™ or
"para m.e t e r ") must be used. This introduces another ASm
sumption, namely that the factor (number.of circulations) and its
éarameter are related. In the exampie, the:speed of the impellef
used for circulating the material in the blender could be used as the

parameter, even though the exact relationship may not be known.




Summary -

Assign the main factors and rank them in descending order
of importance.

Evaluate the combined effect of the residual factors and
variations as accurately as possible from previous experience. If
this remainder is seen to be larger than the smallest main factor,
one or more of the residual factors will have to be classified as
main factors for the experiments and analyses that will follow.
Assign parameters for the main factors that cannot be measured

directly.

1.3 Experimental Procedure

Verification of the above "Premises" is generally attained
through preliminary testing. This means an additional series of op-
erations before the actual data are collected for the procedure
called "Analysis of Variance". The preliminary test and the actual
experiment are both considered to be part of the experimental pro-
cedure.

Experimental procedure covers the range of tests from
simple ones, such as determining the precision of a burette read-
ing, to complicated factorial tests for determining the optimum
conditions of a metallurgical process, or for ascertaining the
cause(s) of certain diseases. Where information is not available,
either a test is performed or the data are obtained by direct ob-
servation of the process. For instance, in a comparison of the
success rate of a new surgical method with that of the convention-
al one, results can only be gathered as they become available. The
same applies to studies in the field of economics and other areas
where experimentation may be impractical or physically impossible.
In most cases, however, the experimenter is free, within certain

limits, to conduct a true experiment. This raises the question of
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how the test should be designed.;; . _ .

. To help answer this, a c1ass1fication of statistical pro~
cedures is given in Table 1.2. Experimental procedure Will gener-
ally consist of the following parts: i) e preliﬁinary test to veri-
fy the premises and to obtain estimates’of the “variances"'involved;
2) an estimate of sample size and of the number of increments needed
to obtain a pre-assigned accuracy for the indiv1dua1 observations,'A
and 3) an estimate of the minimum number of observations required to
attain a certain accuracy of the end result. ‘

For instance, if an experimenter wants~to assess tne qnal-
vitative-relationship between the average length of.Douglas-fir shoots
and the average summer temperatufe, the experiment will be designed
to'provide-déta for'e "regression analysis". It is assumed that
measurements are made at various latitudes and altitudes across the
country in order to introduce variation into the everage'summer
temperature.' '

The question of how many fit shoots should be measured re-
quires a preliminary survey of the variabiiity of fir-shoot length
for a given latitude and altitude. This introduces a sampling prob-
lem. “

The above example illustrates that experimental proced-

'ure for statistical problems generally consistS'of several elemen-~
tal operations which are carried out one after the other in order -
to ensure maximum efficiency in the‘ultimate test.

Summary - | -

A Design the experimental‘procedure by placing in chrono-
logical order tne elemental operations needed to determine the.
number of observations and”to calculate thefsize of the sample and
number of increments required to ensure a pre-assigned accuracy for

cach obscrvation. Collect the data'for:tﬁc'"AnnlyHiHhOY Variance'.




Toble 1.2 - CLASSIFICATION OF STATISTICAL PROCEDURES
QUTLINE OF STEPS REGUIRED IN THE TREATMENT QF STATISTICAL PROBLEMS

I. Determine the type of problem or procedure under investigotion.

II. Determine the ESTIMATOR, i.e. the “yardstick",

1o be used in medsuring the item, property,

. Collect the ohservotions. Colculote the
»
STATISTIC, i.e. the quontily used far

Iype of Probiem Iypical Appli ions/P event or phenomendn, expressing the result of the colculatian. Ret.
ypicgl A
) | ar 2 \ . .
1tem judges Spearmon‘'s Runk Correlatian Coefficient Q)]
i. RANKING: Comparison of the toste, odour, coigur, mento! 'The RANKING NUMBER given{ - @Qr
Judging the order of preference or merit |Obility, or other subjective qualities, of one or Jby the judge ta qualify property >1 judge Coefficient of Concordonce )
of on item or property. mare objects or indwviduols, by one judge or §the order of preference >1 item lojnulgﬂe Coefficient of Cansistency (3
by severol judges. or merit, ar
property >1 judge Coefficient of Agreement (a)
Essentiolly for randomiy dispersed varigtes The retative frequency of occurrence of
2. CALCULATION OF PROBABILITIES: ABSO eRE AP
The expected refative frequency of occurrence (see olsa under Type S: Tests of Significance). The ABSOLUTE QUENCY OF OCCURRENCE of the the e\;em, f‘ro:' the‘ TO':,UIF“O“) dxls':nbuhon (S)
e Xp T u 3 n . R H : H i H curve (nagrma tngmi o gisson); e A
Expectea number aof defectives; cain, dice, and event, and for binomial distributians, the aBSOLUTE ! A . GES
or nan-gccurrence of an event, praperty, efc. ! ! number of permutctions gnd combinaticns
card games; rondomness of asCiilatary series, NON-OCCURRENCE af the event or phenomenan. “(binamial anly).
3 CALCULATION QF LIKELIHQQOD: Comparison of an observed frequency distribution 3
- - ] with the expected frequency distribution, eg. The DIFFERENCE between the abserved absolute Chi-square test; degrees of freedom (d.f); -
The likelihood of occurrence or contingency |the ngrmat distribution, the binamial or frequency (0) of the accurrence of on event or probobility level (P), GES
of events or phenomena. Poisson  distribution. phenomenon. and the expected voiue (E) )
iat imit . : : )
Voriate of limited The probability of occurrence of zc or <c For (simple) rondom sampling: i
4. SAMPLING: ronge. Coefficient Specification and prediction of quality. items () 1n population of size (N) when The'mnmmurn size of sample required ta:
Procedures for estimating fof variatian is Sompling for defectives; sampling heterogeneous ¥ comoiing for ottributes attain on occurocy o) at fevel P. :
o variote (X) of a moterial : - , : :
. ) small. Littie or no products far determinotion of physice! or For strotified (random) saompling:
lat, with accurocy (o), . ) ] : The MEAN and VARIANCE of (X) when sampling - -
preassigned or known in segregotion (random chemica! properties; testing randomness of ¢ . . The varionces within and between strato;
. . . or o continuous variate . .
odvance. Somples either |dispersion of X). the distribution of (X) in space or in fime; the tota! accurocy {(a) ot level P. )
collected ond measured 3
PRI . iote has 16 P cantrol charts. N . : . .
individuolly (slngle Variote 05. ‘")2 Uﬂglj ' When the mean (%) and standord deviotion (s) are For_increment sampling {using_gross samples): GES
somples), or cotledted by |Lorge coefficient of Random setection of sampies should be odhered- K X |
" “ fati : i related, s=f(X), use tronsformed variate x=ﬁt/f(x) The varionce component due ta rondom
increments” from oll over|voriation. Noticeable _ . . . g ) ¢
L . to if possible - sysltematic sampling requires os esfimotor to reduce or elimingte covarionce iati .
the 1ot ond combined intojor high degree of . g i ) . | e . variation; the varionce component coused
“ » pefare |segregotion (X is speciol precoutions in the evolugtian o Examples: . .
one ﬁgruss'sarflplz befare egreg ? s proportianal to %2 - take reciprocals of x, by segregation and the varionces of saompie
on analysis is made. [dispersed non-randamlyicampte dota. ] z ) )
over the consignment- s praportional ta X - take logarithms of x, preparation and analysis; the tatol
-, " i X - toke ar 1 f x. .
‘spotty pottern”). s proportianal fo f square roots of x varionce; the aovergll accurocy ot level P.
¥
Outlying observation {tramp), . . N
| set Fidu’:iu? ”m;:'z' 'a' ma:p t-test (normoi distribution oniy) (5)
L . . t idueiol limi N
5. TESTS_OF SIGNIFICANCE: This inctudes testing the stotistica! Direct or ! of doto |Fiduciol fimit of 3 or s?, GES
L . Ditfere bet 2 ] ! -test (rermol  distributi !
Testing the ossumption thol the cbserved significance of one or mare variagble factars indirect variable Tld’ef ibakad el st (re distribution only) ES
. of data |pin. i - -
variotions of o property or phenomenon ore |INGt ore expected ta contribute to o phenamenorf observation Diff. beiween 2 vorionces.] F-test, Z-lest (5)
caused by chance (testing the Null Hypothesis). [ar event; ta determine a physical or chemical of the Type: |voriotes ore classifre Analysis of veriance methods (factorial
. . . | o ar s re 3%30e . - 3
{See aiso under Type 2:Calgylation of praperty of o material ar article. variable. u:able n rows, columns, biocks, | !ests, randomized biocks, F-test, etc.) i .
Prabaobitities.) M Z=f(X,Y,)| ond repiicates. GES
. 1ON: .
6 M cene: . By direct or indirect abservotion, measure the
Finding the quantitotive, experimento! f main factars in descending order of significun'ce
reiotionship between the independent voriobles |Correlatian 15 applied where the relatianship o poss%lﬂes 9 / Regressian coefficient(s) and constant;
(couses) ond the dependent varigble (effect); [between couse ond effect is mosked by o large . carrelation coefficient (r); cavoriance; GES

expressing the goodness

relotionship 1n gn experimentai

indekx formuio.

-of-fit of this
and/or

number of refotively small, randam influences.

The factors chasen should be substantially
independent aof agne Gnather. Transfarm the
estimatar if necessory (see under Type 4: Sompling),

error varionce; level of significance.

] " ” . LA "
References:-{i) Moroney, M J., "Focts fram Figures”, Penguin Books, 2nd e¢ 1953, p. 334 ff; (2] thwd., p.336 tf; (3) ibid., p. 340 11; (4}Ibid,, p. 348 {f; (5) Cowden, D.J, "Statistical Methads in Quality Controf”, Prentice Hall, 1957,

(6] Mentzer, E.G, "Tests by the Anaiysis of Vorionce”, Wright Air Development Centre Tech. Rep. 53-23, Jon. I953.
GES = "Guide to Engineering Stotistics”
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1.4 Analys1s of Data _

.o

* Every set of stat1st1cal data has a pattern of 1ts own.
This pattern can be presented in the form of a "frequency d1str1—'
butlon" show1ng the relatlve or absolute frequencies of the items
or values obtained.

Experience has shown that ‘Successive sets of data of the |
same variable, collected under eomparable conditions, show fre-
quency dlstrlbutlons hav1ng approx1mate1y the same average, same
 range, - and same shape.u The s1ng1e observatlons of any set will
generaily "crowd" around a mean value and will dev1ate from this
mean by an amount which canndt be predicted individually. However,
from a large number. of obseriations it appears that small vari-
ations with respect.tovthe mean are generally more frequent than

large wvariations, and that all wvariations cluster around a mean

value within a limited range. It is then possible to predict limits

within which the variable will lie when the experiment is repeated
under comparable conditions. Fundamentally, everylstatistical tech-
nique is a means of‘evaluating, either directly or indirectly, the
frequency distribution represented by the data, from the average,
‘the degree of dispersion, and the shape of the'diStribution.

v

Example - '

If replicate determinationsnare made of the specific
gravity ofha material; the observations will be distribnted around
the true (unknown)‘specifie gravity, aecordiné to a frequency‘curve
which is not unlike the familiar‘bell-shaped curve of Gauss-Lapiace,
more generally known as the Normal Curve.

As a rule, the number of data obtained. W111 not be suf-
ficient to show this curve in great detail. . If only three or four
determlnatlons are done, however, these w111 generally fall within

the range of such a curve,.ashwould be‘vermELed bylrcpeuthg the
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determination several hundreds of times. The frequency distribution
is found by subdividing the range of observed specific gravities in-
to a number of classes of equal interval and counting the number of
observations found within each of the classes. The diagram repres-
enting the number of observations per class interval is called a
histogram. The outline of this histogram approximates the distri-
bution that would result if the number of observations and the num-
ber of class intervals were to be increased to infinity.

In the above example, all the specific gravity observ-
ations, taken together, constitute the "parent distribution"
("population"). This distribution typifies both the material it-
self and the method by which the specific gravity was determined.

An estimate of the average value and of the range of
such a population can be found from a limited number, say three
or four observations. It is clear that the estimate will be af-
fected by the errors or deviations in each observation with re-
spect to the mean.

Under normal conditions, a specific gravity determin-
ation will produce a set of observations distributed according to
the "Normal Curve", the parameters of which are easily found. It
is clear also that, under these circumstances, the greater the
number of observations the more stable the mean value becomes.

It often happens that one or two observations in a
set appear to be different from the remainder. They may or may
not be part of the parent distribution. This means in effect that,
owing to some unforeseen cause, a ''systematic error" larger than a
"chance error" has crept into the data. The parent distribution
of this set of observations may therefore be no longer of the

Normal type, and it becomes necessary to check the figures for
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outlying data (Mtramps"). .

The chances of non-normality increase as the experiment .
becomes more coﬁplicated. - When designingvtests;-systematic shifts
in the values of the variables may be introduced deliberately in’
order to simplify the experimental procedure. ‘The resulting fre-
quency distributions are then quite often non-normal and more
complicated methods for the analysis of these distributions are
required. See.Section 2, "Analysis of Variance.

‘Summary -

The analysis of experimental data is essentially the~
analysis of the frequency‘distributioﬁ(s)-obtained from the data.
Basically, it involves the determination and domparisoh~qf means,

ranges and shapes of the distributions.

1.5 Frequency Distributions

This section deals with thé'fféqdeﬁcy distributions
that commonly occur in statistical experiments, the pafaﬁetersf
used for describing these distributions, and'the tests thét are
used for comparing the pérameters.'

Mathematical statistics deal‘WiEh variables, i.e.
physical or chemical properties, attributes or events Wﬁichvshow
a certain range of va;iability."Iﬁ can bé shd%n by eiperimenﬁ
that most variables do not'behave'éhaotically'but; rather, con-
form to a certain pattern qf béhévioﬁf; 'This cén'beiillustratedx
by the.éxperiment of Géitonﬁ a board covered %ith stéggered
rows of naiis is used to scatter the'cogréé of a 1afge nﬁmber of
beads which are iﬁtrodﬁced at the top of'the board and are ev-
entually tfapped'in'a‘series of‘parfitioﬁsbat thé’base of the
board. The end result is indiéatédyﬁy the distribution of the

beads arrested between partitions.
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The frequency distribution of the beads shows a marked
orderliness, which is caused by the nails interfering with the
gravitation of the beads. It shows that small deviations from
the mean are more frequent than large deviations. The beads tend
to crowd around the mean value. This phenomenon is known as the

"central tendency?".

Experimental Distribution

(Histogram) Theoretical Distribution

o

Fig. 1.1 - Frequency Distribution

A collection of individuals (be it observations, items,
or events), when related in this manner, is said to forma " un -
iverse"™ or "population™. This is réferred to
as the Law of Large Numbers. Numerous experiments have shown that
this law has a wide application in nature and in nearly every field
of human endeavour.

Tn practice, all kinds of frequency distributions are
found. These include symmetrical bell-shaped distributions with

single tops (unimodal - see Fig. 1.1) like the one found in the
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Calton experiment‘ pbeitively— or‘negatively—skeWed asymmetrical
dlSLrlbutlon, double topped (blmodal) dlstrlbutlons (see Flg 1. 2),

and others of seemingly irregular shape.

Positively-
skewed Negatively-

skewed

Bimodal
Distribution

Fig. 1.2 - Asymmetrical Frequency Distributions

When dealing wiﬁh the Normal curve, statistical interpret~
ation boils down to find;ng the average value, measuring tﬁe"scatter
of the obsérvations, and checking on the normality of diétributien
of the data. Although procedure'is basically the same for non:normal
dlstrlbutlons, emphasis here is shlfted to the testlng of differen-
~ces between means and dlfferences in scatter. A compound frequency

distribution is 1ooked upon as the sum of two or more single- top
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distributions, each of them caused by one main factor.

Summary -

The aim of the statistical procedure is to describe fre-
quency distributions of observed data in terms of average and
scatter as they relate to the normal distribution, for the purpose
of estimating the true value and range of the variable or vari-

ables involved.

1.6 The Normal Curve

The formula for the normal curve expresses the re-
lationship between the values of a variable (p) and their re-

lative frequencies (y) for a total number of observations (n).

n__ e ~(p-p)° /202

—= veeees (Eq. 1)

y =
The formula has two parameters: the true mean value (#), and the
standard deviation of the population (o). The latter is a meas-
ure of scatter and will be discussed in the next section. The
shape of the frequency curve of any normal population can thus be
evaluated once the true mean (#) and the "population standard
deviation " (o) are known. Geometrically, this "true" standard
deviation (o) represents the distance between the mean and the
points of inflexion on the normal curve. It is the root-mean-

square of the deviations with respect to the mean value p.

2
2= Z(P-p)
. n
L L <qu 2)
One of the properties of the normal curve is that the
area under the curve between pu+o and k-o (shaded area Fig. 1.3)
is 68% of the total area. This means that 68% of the deviations

(p-p) are smaller than (o). Similarly, the area between limits
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Fig. 1.3 - The Normal (Gauss) Curve

+20 and -2« (theoretically 1.96s) is‘95% of the total erea, or
nineteen out of every twenty observations; the area between +3 o
and -3¢ is 99.7% (The 2¢- limit is commonly used as the measure
of precision in engineering forecascs. See Section 5, examples
4, 8, 10 and 12.)

Thus, the standard deviation @s ﬁot merely a kind_of
average, but is also a means of calculating the chance or the
probability of occurmmce of a certaln error ‘or dev~
ijation from the mean value. - The essence of statlstlcal procedure
is in fact the calculation of probablllty ofoccurrence of any
phenomenon which is subject to the Law of Large Numbers. In 51mp1e

words, the standard deV1at10n is used to descrlbe the existing site

uation and, in addition, to predlct_futuretbehaV1our. :

'1.6.1 Estimate of standard deviation from the observations

The basic calculation consists of»findihg'an estimate
of the true mean, and of the true standard deviation (or true staﬁd-'
ard error), %rcm a limited number of observations as a first step
in calculating the observec quantity and its range of scatter. It.
is ciear that dﬁly an infinite'humﬁer of Qbseratidns will produce

"a complete pictﬁfe of the phenbhencn. Iﬁ_practice, however:, only
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an estimate of (o) is obtained and with a limited precision which
depends upon the number of observations.

This estimated standard deviation is designated by the
symbol (s) and is based on deviations from the arithmetic mean (E)
instead of the true mean. If the true mean were known, a better
estimate of the true standard deviation could be found. The fol-
lowing equation may be used for computing the most probable esti-
mate of the true standard deviation from a finite number of observ-

ations:

s? o Zx%
(n-1) ceees (Eq. 3)

where x = (p-P). The standard deviation(s)
and its square the variance (s?) are the two "statistics"
most commonly used for estimating the scatter of an infinite pop-
ulation based on a limited number of observations.

A second, derived equation may be used which facilitates
the calculation of (s), particularly when dealing with a large num-
ber of observations:

2= 2p° - (5p)/n
(n-1) veees (Eq. &)

In this form, the standard deviation or variance can be determined
by using the observed values (p) directly without having to calcul-
ate their deviations from the mean, i.e. (p - P).

Example -

Observation of the automobile accident rate in a certain
town during five equal periods showed the following results: 6, 8,
3, 9, and 5. The variance, according to Equatioﬁ 4, works out as

follows:

spP= 6" + 8% + 3% 4+ 9 + 5% =215

il

Ep=6 +8 +3 +9 +5 31

it
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(£p)7n = 317/5 = 192.2
5 - .
_variance, s = 215 - i92 2 _ 5.70

Standafd deviation, s = 2,39

Average, P = Zp/n = 6.2

1.6.2 Quick method for estimating the standard deviation

The standard error (s) can be quick- Table 1.3
ly detefmined from the range (w) of a series . n sfw
of (n) observations, using values given in 2 0.89
Table 1.3. This method applies to a series of 2 : 8:23
not more than 10 observations, and is to be 5 0.43
used only when the observations are normally s_ g:gg‘
distributed after elimination of any tramp ob- 8 0.35
servations. 13 g:gg

Note: The terms standard deviation and stand-
ard error have been uéed interchangeably because thére‘is no4fund—
amental difference between the two. The term "sfandard error" is
used when the observations differ mginly as a result of human or
instrumgnt‘errors.' In all other cases the term "standard deviat-

lon" is employed and is generally to be preferred.

1.6.3 Other parameters for measuring scatter

Various quantities have been used in the literature to
describe the range of scatter of a series of observations. Two of
these are mentioned here.

" The first one is the avera g'e dev i a ﬁ‘i o n (g)
which is found from the data by simply'averagiﬁg the deviations:

sl (p-P)l

&= n C eeee. (Eq. 5)

The second statistic used is. the probable

error (r) which indicates the limits (+ and =) on.either side
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of the mean between which theoretically 50% of the observations

are found.

;| 25 %

25 % [
}

y L o BT I T "
Fig. 1.4 - The Probable Error

In theory, there is a constant ratio between the stand-
ard deviation and both (g) and (r), but only in the Normal case.
If this condition of Normality is met, factors given in Table 1.4

below can be used for converting from one to the other.

Table 1.4
s = 1.252'g g = 0.798-s
s = 1.484 1 r = 0.674"s
g=1.18'r 1 = 0.845-g
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5. ANALYSIS OF VARIANGCE

'(_ Where there are two or ; mofe pOSSlble sources of variation
in a set of data, a technlque known as AnalySLb of Variance can be
used to determine how much of_th¢ total variation for all the observ-
ations taken together can beAéttributed t6 thé di fferent causes.
For example, a test,prqduéés tﬁree sets Sf tﬁree observations each.
The mean values as well as the variances of the sets are found to
dlffer. An answer as to whether or not the differences are signifi-
cant is glven by the Analysis of Variance, which provides the means
of calculatlng the odds that the observed dlfferences were caused:
by ‘chance. Only a partial answer can be obtalned ‘however: if the’
difference is 1arger than can be explained by chande variation, it
is a significant difference. If the difference is small, on the
other hand, it méz be significant but the péssibility cannot be
proven. In other words, the hypothésis.that no difference exists
(the Null Hypothesis) can nevgf be prdven, bﬁt can'ohly be dis-
proved. V

Each of the three wvariances in the above example con-
tributes to the overall variance of the nine observations. This
overall variance, which is a compound variance, generally results
from tests which deal with a multiplicity of factors. The main
value of the Analysis of Variance technique lies in its use as a
means of finding estimates of the individuai variaﬁce components
that contribute to the overall variation of the data. 1In so doing,
it reveals the relative influence of the individual factors.

The four examples which will follow in this section con-
stitute a mental experiment to show in a simplified mannéf what
type of factors generally enter intd observations that are obtained
from a test program. Essential points are summarized in Table 1.2,

under problem Type 5.
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2.1 General Procedure

For purposes of calculation, the data are arranged in
tables of rows, columns, blocks and replicates as required. The
data of each column should have a natural tie, i.e. a distinctive
feature which characterizes this column as being distinct from
other columns. The same applies to each row, cell, etc. The
magnitude and significance of each of the separate variances can
be found by following the procedure outlined below:

1) Arrange the data to be analyzed in Columns and
Rows as shown in Examplesl and 2 (single observ-
ations) and 3 and 4 (duplicate observations).

2) Using the formulas given in Tables 2.2 and 2.6,
calculate the following:

a) Sum of Squares: (S.S.)

i) Between Columns (8)
ii) Between Rows ()
iii) Total S.S. (a)

b) Interaction (¢) and/or Error ()

c) Degrees of Freedom (d.f.)

d) Mean Squares (M.S.)

3) Find "true variance" estimates.
4) Check statistical significance of the variance

components by means of the F-test.

Example 1

The data used in this example may be taken to be the
exact values reéresenting a certain process or phenomenon being
tested and are free from error. There are no replicates. The
data are arranged in three rows (R = 3) and three columns (C = 3).
Row sums A, B, D and column sums P, Q, T are found and entered in

the data table, together with the overall sum, M:
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Table 2.1 - Test Data (Exampié~1) '5

c

2 | 6 | 10 || %18
.0 o . . ' B
el 1 8 1 12 | Pa
6 10 14 D30
P1a | Q4 | T36 || Y72

Using a VériancélTable set uﬁiiike the folldWing, fhé'vafi—

ance componehts relating to the data may now be calculatéd:

" Table 2.2 ~ Analysis of Variance‘(Example 1)

Degrees

o Mean Expected
Source of Variation| Sum of Squares of Freedom Square Mean
(S.S.) (d.f.) (M.S.) Square
"2 2l o2 4
- -+T —. :
Between Columns| C B_‘ E R _MC?{'—‘96 (C-1) = 2 V'B=%=48 V,8=V‘7+RVC
= A24B% D% MR ool
Between Rows . R | 7= ¢ & 24 -(R-.l.) = 2 V7~%=12 V7=VT+CVR
Residual (error) r=a-(f47)=0 (C-1)(R-T)s B=F=0 | V=V,
' Y- I : Compound
Total aszpi_e)(f,.—g =120 .| (CR-1)=8 | - Variance

Variance" estimates .

Vo = V& _ 48 ~ 0 1¢
V-V . 12-0- 4
Yoz Ve = 12 2 A

Notes

1. The true variance Ve (=E% ) in the Tablévrefers td observ-

ations in. different columns but in the

same row, and is called the
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"variance between columns". The true variance Vp (=S§) refers to
observations in different rows but in the same column, and is called
the "variance between rows". The true variance V, is called the
“"residual variance", "error variance", or "interaction variance" (if
no error is involved).

2. Because V, is 0, the true variance estimates are exact.
This may be checked by calculating the variances directly from the
observations, e.g. sZ (2, 6, 10) = 16; etc.

3. The difference between the row and column variances
(Vg and Vg respectively) is tested using the "F-test": the Null
Hypothesis that no difference exists between two variances is
tested at a significance level P. In this test, a ratio (F) is
computed from sf/s? with the larger variance always in the numerator
so that F is always greater than 1. In the example, F=Vg/Vy=48/12=4.0,
Entering a table of F-values for degrees of freedom (d.f.) = 2 and 2
respectively, the following values are found: F, = 99; Fy; = 19;

Fio = 9.0,

Subscripts of F denote the Probability Levels, i.e. the
probability thét a given difference is due to random or chance vari-
ation. TIf a computed F-value exceeds the theoretical one at pP=0.01,
this means that there is only 1 chance out of 100 that the difference
is attributable to random variation. In other words, the difference
is considered to be "highly significant". Similarly,

Fy, < F<F, - difference is "significant"

F,o< F<F, - difference is "possibly significant"

F<F, - difference is "not significant"

In this example, since the computed value of F is only
4, i.e., F<F,, for 2 and 2 d.f. respectively, it can be concluded
that the difference found from the data is probably not a signifi-

cant one.
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The'éighificance levels (P) of variances M.’ S. (Mean
Square) are commonly indicated by asterisks as follows:
W% p < 0,00 - -+ - Yhighly significant"
*% p = 0.0l to 0.05 -"gignificant™
* P = 0.05 to 0.10 -"possibly significant"
Tl P> 0.10 ' - ""not significant"
Though arbitrary, these levels are generally accepted for invest-

igational and research work in many areas of technological inquiry.

Notes on variance formuias
As given in the preceding Variance Table, the Sum of
Squares between Columns may be fodndffrom:

2

g =P° 02+T2.__11_
' R CR
whichnis défived‘frbm |
g=[/mR)" + @®+ (/R - /ry/c] r

Crude S5.S5. of Column Correction

Averages ‘ . Term

(Note the similarity of this formula with the one used for caleul-
ating the variance of a set of single observations.)
From this, it is seen that:

8

H]

R x Sum of'Sqdares of the Column Averages

1l

R x AVeragé estimate of the Sum of Squares of "deviat-
: ions‘bétween coiumﬁs" (i;e. éiﬁgié'observatibns in the
same row, in different columns,_and whichvinclude Vo).
Since this average estimate still gontaiﬁé.vr, Vg = RQVCA+ Vo from
~ which | o o |

) —V-VT ., ..
Ve = R

"Exam p 1l e 2
The data are the same aS'invExémbfé 1 (the row sums and

column sums are unchanged) except for the introduction of a reading
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error which has altered some of the individual observations.

Table 2.3 - Test Data (Example 2)

C
3 5 10 Ag
4 9 11 Boy,
R
5 10 15 D3g
P10 |4 | T36 My

Table 2.4 =- Analysis of Variance (Example 2)

Source of Variation S. S. d. f. M. S. Expected Mean Square
ES
Between Columns | C || 8= 96 2 Vg = 48 | Vg = Vp + RVg
Sk
Between Rows R ||l 7= 24 2 |Vy =12 | Vqy = Vo + CVR
Error 1‘ = 6 4 V‘Y = 1-5 V-r = VT
Total a = 126 8 - Compound Variance
"True Variance' estimates
D Ve =il o5 (16.0)
12 - 1.5
2) Vg = = 3.5 ( 4.0)

For calculation of 8, ¢, 7,

Notes

and gz, see Table 2.2, Example 1.

1. The "true variance" estimates are no longer exact,

owing to reading errors (compare with the exact values in brackets
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which were found in Examplell).
2. The F-test iii this case.disproves the hypothesis that
the variation between columns was eaused by reading (chance) errors.

The value of the ratio, F ?.VB/VT = 48[1.5 = 32, is highly signifi~-

cant for 2 and 4 d.f. respectively. The F-table gives a.value of 18 ‘

for 2 and 4 d.f. at P = 1%, indicating that the difference between
columns was not caused by chance (readiﬁg errore): the probability
is less than 1% (P<0.01) that this conclﬁsion is wrong.

3. The F-test for the difference'between rows gives

F—12/1 5-8 for d. f. 2 and 4, 1nd1cat1ng that the variance between

rows is’ 51gn1f1cant at a 1eve1 (P) between 1 and 5% (F = 18 Fy —6 94).

Example 3 : - Co : i

The data used are the same as before, except that they are:
now represented by duplicate instead'of single readings (row and col-
umn sums are doubled). This will demonstrate the introduction of an

analytical error.

‘Table 2.5 ~ Test Data (Example 3)°

C
s,| S, T 8y A
_1.5-2.5 5.5-6.5 9.5-10.5 A 36
Sa 8| Sell B
3.5-405 7-5-805 11-5"12.5 48
' S, Se| Se D .
5.5"6-5 9.5-1005 13-5_1405 60
o Q48 T M 14
Symbols
S = cell ‘total (e g. S = 4. O S,= 12.0),
H = number of replicates = 2,
P;= individual observation, .
C=3, R=3,
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Table 2.6 - Analysis of Variance (Example 3)

. s Expected
Source of Variation S. S. d.f. M. S.
Mean Square
Fedede
- P24Q247? M2| (C-1) |Vg= 96 | Vg=V, -HHVap+RHV
B - B BT Vr CR C
Between Columns| C RH CRH = 9
= 192
Yedede
A +8° 40" M?| (R-1) |Vy= 24 | Vi =Vp+HVapt+CHV
v = - v = 7EVT CR R
Between Rows R oH CRH = 9
= 48
(C-D ®-1)
Interaction CxR|¢=8~(B8+7)= 0 = 4 Ve= 0 | Ve =Vy-+HVQR
CR-1
Between Cells 8= ZSi Me (~ 8 ‘ - C dVari e
= o - GRE ompond Varianc
240
2 M2
Total e=Zp -~ —— =244,5 | (CRH-L) - Compound Variance
CRH =17 .

"True Variance' estimates

Vg~ Vr - HVCR
1) vg= L-gx

il

16.0 (16.0)

Vo, = Vp - HVGR
2) Vg = T R = 4.0 (4.0

3) Vegr= Ve =Vr 0 (Variances are never negative)

4) V‘r = 0.5




30

B Y The sehsitivity of the_Frtesf has been increaséd
by augmenting the number of degrees of freedom; i.e. by increas-
ing the number of observations. The "between columns" and "between

- rows" variances are found to be highly significant (P<0.01)."

2. TInteraction would have been indicated if the variance
"between columns" had shown an’ increase (or decrease) for each row,
going from row 1 to row 2 to row 3. Since no such change is found

in this example, the interaction wvariance Ve = O.

Example 4

The column and row averages remain unchanged, but the’
reading and analytical errors (Examples 2 and 3) are now both in-

cluded.

Table 2.7 - Test Data (Example 4)°

C

2.5-3.5 | 4.5-5.5 9.5-10.5 - 36

3.5-4.5 | 8.5-9.5 | 10.5-11.5 || B 48

R | 4.5-5.5 | 9.5-10.5 | 14.5-15.5 60

P Q T i M
26 | 48 72 144
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Table 2.8 - Analysis of Variance (Example 4)

i, d
Source of Variation S. S. d. f. M. S. Expecte
Mean Square
Sededk
Between Columns | C B =192 2 Vg=96 | Vg=V,+HVcR+RHV¢
ek
Between Rows R v = 48 2 Vy=24 | Vy=Vp+HVp+CHVp
ik
Interaction CxR e= 12 4 Ve= 3 | Ve =Ve+HVpR
Between Cells 3 = 252 8 - Compound Variance
Error v = 4.5 9 V= 0.5 Ve= Vy
Total ¢ = 256.5| 17 . - Compound Variance

"True Variance" estimates

1) Vg = (Vg - Ve)/RH.
2) Vg = (Vy - V¢)/CH
3) Veg= (Ve - Vo)/H
4) Ve = 0.5

15.5  (16.0)
3.5  ( 4.0)
1.25 ( 1.0)

il

[}

For calculation of 8,.vy, ¢, 8§, =, and ¢, see Table 2.6, Example 3.

Notes
1. The "true" variance estimates are not exact (see theoretical

values in brackets).
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2. It is clear that an interaction variance has been sim-
ulated here from the combined effects of the reading and analytical
errors, which were known in advance to be true sources of variation

in this example.

2 2 Discussion of Analys1s of Variance Results

The four preceding examples were given to illustrate the '
mathematical procedure and physrcal background of the Analysis of
Variance technique. A further example may more clearly show the =
meaning of the "natural tie". It will be assumed that 10 sets of
triplicate observations are available with each set representing data
which refer to a different "level" in a rangelof levels, e.g. 10 vol-
atile matter (VM) determinations done in triplicate at 10 different
temperatures. 'If the 10 sets are arranged in lO rows of 3 columns
each‘in the ‘order obtained from the tests, the Variance between rows
(Vg) will reflect the influence of temperature on the VM readings |
because each row refers to a specific temperature. This is the .
"natural tie" for the figures within each row. The variance between
columns (Vg), on the other hand, does not reflect any special factor,
because the_observations in each column have-nolcommon tie.” This
would occur, however, if the first coluﬁn should happen to contain
- the lowest value of'each set, thé second column tne middle value and’
the third column the highest value of each set; the between-columns
variance (VC) would then reflect the error variance.

‘ ‘ Tne significance of the various mean squares has been test-
ed by comparing them with the error°variance'V¢.' This was the cor-
rect procedure for the examples given. ‘Suppose,'h0wever, that the
interaction variance in Example 4 had proved to pe insignificant, as
in fact it actually is; a neW'estimate'of'V+’ﬁould"then have been ob-
tained by combining the interaction and residual sums of squares-and -

dividing by the sum of their respective degrees of freedom, (d.f),
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and the main variance re-tested on this new basis.

The paradoxical result for the interaction variance of
Example 4 (see note 2) illustrates a problem that faces the experi-
menter in all statistical work. Statistics being a formal logic
.only, detailed knowledge of the process and the history of the ex-
periment are generally required before the Validity of the analysis
of variance and subsequent correlation can be established.

The Analysis of Variance technique can be applied to data
that ﬁight have been obtained previously for a different burpose, €.g.
operational control of a plant. These data are often not complete en-
ough nor suitable for such an analysis, and grave doubts may arise
about the validity of the results. It is necessary in such a case
to design a test beforehand. Where the nature of a physical or chem-
ical process is known and the ranges of the factors involved are also
known, it is possible to select a number of levels to be tested for
each faétor and the minimum number of replicates that will be re-
quired to establish significance. Tests of this kind when combined
with Analysis of Variance are called Factorial Tests. (See para. 2.4
and Section 3.)

The nature of the data that were usedvin the above mental
experiment is neither known nor is it important, since the Analysis
of Variance operates independently of it. In experimental work, pro-
cedure is generally designed with the purpose of determining the true
relationship that exists between two or more physical/chemical attrib-
utes. This purpose is achieved by means of measurable quantities
called parameters. The resultant experimental equation will truly
represent the relationship between the variables, provided that the
parameters have no other elements in common that might mask or dis-
tort them. If the parameters have such an element in common (e.g.

a common denominator, a common factor, or a constant in common), then
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the true relationship between the variable attributes may be either
partly or entirely masked by spurious correlation. A common form of

spurious correlation occurs when the parameters show significant cor-

relation as expressed by the correl ation coeffic'-

i e n t (r), even though the variable properties are not related in
any way. An exaﬁple based on a publication by Karl Pearson (7) is
given below, using three series of random numbers. Seriés 1 and 2

are the variables, series 4 and 5 their respective parameters.

Table 2.9 ~ Spurious Correlatipn

Series . 1 . 2 3.' 4 5
Xy ‘ X2 X3 Xllxar Xp /%3
54,9 76.1 18.3 3.00 | 4.16
62.2 63.5 16.0 3.89 | 3.97
. 57.0 78.2 21.3 2.68 | '3.67
74.7 | 78.0 25.1 2.98 | 3.11
65.4 84.2 | 13.9 4.70 | 6.06
Mean | 62.84 | 76.00 | 18.92 | 3.45 | 4.19
Variance o 61.19 | 58,08 | 19.49 | 0.69 | 1.25
Variation . o )
Coefficient 0.12 0.10 0.23 0.24 0.27
Correlation ' e _ ,
Coeff]'._c{.e{lt r,,z = 0-1637 . r4'5 = 0-8507

This example demonstrates that great care is required in
the choice of parametérs, especially when using dimensionless ratios

that are plotted against one another or against a single variable.
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They may have an element in common that will invalidate subsequent

correlation of variables, as described in Section 4.

2.3 Procedure for Experimental Design

The following general procedure serves as a gulde to the
experimenter who is faced with the problem of having to plan an ex-
periment for testing the nature or behaviour of some phenomenon.

1. Examine the problem. Determine the "operating variables"

and "other factors". Subdivide the latter category into "controlled"

and "more or less uncontrolled" factors. List everything under these

three headings.

Table 2.10 - Example: Briquetting of Coal in a Roll-Press

Operating " Other factors
iab
varti)les Controlled More or less uncontrolled
(2) (3)

% binder; Fluxer temp.,; Moisture 7% of feed;
type of binder; speed of press;| particle size of feed:
method of dispers- | rate of feed; temperature of coal in
ing binder. mixer;

temperature of | cooling of coal between

coal entering mixer and press;

the press.
P cooling of briquets:

steam pressure and quality.

2. Choose the 2 to 4 most important factors for the test,
bearing in mind that the combined effect of the factors that are
omitted should be small enough not to interfere with the test. If
necessary, the experiment can be split into two separate tests, e.g.
for the above,

Test (l): effect of 7 asphalt binder and moisture content.
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Test (2): effect of type of brnder and method of dispersion.

3. Factors may be d1str1buted elther normally (as in Flg.
1. 1) or non-normally (skew unlmodal blmodal etc., see Flg. 1.2).
For example m01sture % is unlmodal method of dispersion is blmodal.
Try in both cases, flrst of all, to set up the test as a bimodal one
by taking the factors at two levels, one "hlgh“ and one "low". Both
.levels should be chosen so that the worklng range is. covered and so
that reproduclble results can be obtained.

For lnstance, tests are run with asphalt "high" (e. g 5%)
and asphalt "low" (e.g. 3.5%). Linear behaviour is anticipated here.
If llnearlty is not expected the range should be reduced, WLthout,
however, sacr1f1c1ng or endangerlng the blmodal nature of the tests.

This type of experiment is known as one with "fixed con-

stants"._’It.is designed as a factorial'test, using 2" tests for (n)
tactors, and H replicates per test. If this factorial test is im-
possible because of'the'nature of the phenomenon, then use the type
of design that employs more than two tests per factor and (H) repli-
cates per test,. with rows, columns, cells; sub-cells, etc, 'This'type
of test 1s necessary for "normally dlstrlbuted" factors; that is, the
dlstrlbutlon of the factor over the columns of the table, for instance, ,
is unimodal and gradual, and the differences from column to column are
small and of the same order of magnitude as the variations within thev
columns. Of course, with one '"normally distributed".factor-andnone
or two "fixed constants" the same type of variance analy51s Wlll have
to be employed. Many posslble types of thls "mlxed" nature are glven
in Mentzer's manual (6) o ’ ’ , '

It is noted that both the factorlal test and the other de-
slgns.uSLng more than 2 TOWS, columns, etc.,for the analysls of flxed
constants, are very powerful. ThlS is because all of the partlal var-

: B

iances can be tested with the error varlance, the degrees of freedom
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of which can be determined in advance from the number of replicates.
On the other hand, where the distribution of factors is unimodal, the
partial variances cannot always be tested. Artifices need to be

found, and generally the test is a less powerful one.

2.4 Design of Factorial Tests

The minimum required number of tests for any n-factorial
design is fixed at (Zn) tests. The minimum required number of rep-
licates (H) per test which can be found from Table 2.11 ensures suf-
ficient accuracy of the (error) variance and therefore a sufficient-
ly powerful test. The number of replicates is based on a predeter-
mined precision of the (error) variance, ay = 52%. See derivation

below.

Table 2.11 - Design of Factorial Tests

Number of Minimum no. of Minimum no. of
Factors Replicates Observations
(n) (1) (2" 1)
1 30 60
2 16 64
3 9 72
4 5 80
5 3 96

Derivation of % Precision of the Error Variance, %ay

The standard deviation of a variance is:

L]

s&2/f,

Sy
where s = standard error of a single observation and i
f = degrees of freedom.
Expressed as a percent,

% sy = 100s,/V = 100s,/s?
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% sy = (L00S%/Z[E) ¥ 3002 ;T
and % precision’ of the variance at P=95% level, =~ = °
% ay = 25y = 400/\7 2F = 52% for 30 observations.’
Note: ay=52% corresponds with the generally accepﬁed'miriimum

' 0f 30 single observations per test. l
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3. FACTORTIAL ANALYSTIS

This section deals with the analysis of data obtained from
a factorial test. The procedures are illustrated with an example of
an actual test involving three factors:

The compressive strength of briquets in relation to 7% as-
phalt (A): moisture % of "Green Briquets" (B); and asphalt type -
natural vs cracked (C).

Two cases will be considered:

1. No replicate observations available

2. Method of calculation when using replicates

3.1 No Replicates

Factorial test for 3 factors is based on 2® or 8 combin-
ations of three factors, each one at two levels: a "high" and a
"low". Levels are chosen to cover the working range, while avoiding
extreme values.

The data in Table.B.l can be used to find all the wvariances,
including Main Effects (A, B, C) and Interactions (A x B; Ax C; B x C;
A x B x C), as follows:

When the sum of the 4 tests containing "A" (314 + 301 + 282 +
223) is compared to the sum of the 4 remaining tests containing "a"
(304 + 134 + 264 + 158), the difference indicates the effect of chang-
ing the asphalt content from A to a only; the other factors, moisture
and asphalt type, cancel out because both their high and low values

are represented in each of the above two groups. The difference in

the groups is an estimate of the effect of the % asphalt between level

A" and level "a".

The same data can be regrouped to produce the difference be-
tween the moisture levels B and b. 1In this case, the effects of % as-

phait and asphalt type cancel out, and so on.
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3.1 - Test Data*

A a
B b B b

C ABC | AbC | aBC | abC

c ABc | Abc | aBc | abc
Test Compressive

No. Strength, Legend

1b
abc 304 Asphalt level: High,5,54% A
aBe 134 Low, 4.37% a
Abc /314 Mbisture,levei: High,ll.9% B
ABc 301  Low, 8.1% b
abG 264 Asphalt type: Straight-run C
aBC 158 ' | Cracked c
AbC 282
ABC 223

* Compressive-strength values are the averages of the replicates

given in Table 3.3, and represent the
 and moisture. ‘

average levels of asphalt

The formulas and diagrams given below may be used to cal~ -

culate the variances of the main effects and their interactions., This

1s a simplified method (8) which reduces the calculations for "Sums of

Squares" to a minimum.
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Main Effects:

Sp = (A - za)? /2™ | (Eq.6) SA,B,C = Sum of Squares A,B,C;

Sg = (B - £b)* /2| (Eq.7) TA,B,C = Sum of obs. A,B,C;

S¢ = (2C - Zc)2 /2n (Eq.8) n = no. of factors = 3
Interactions:

1st order

SAB = ($0-3m)? /2" (Eq.9) $[}= Sum obs. indicated
by blank squares.

S[fJ= Sum obs. indicated
by shaded squares.

Make similar diagrams for the
other lst-order interactions
A x C and B x C, and calculate
Sac and Spc

2nd order

SABC = (So-s@)’ /22| (Eq.10)
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The above formulas and diagrams provide the information re-
quired for the following table in which the variances are tested:

¥

Table 3.2 - Analysis of Variangev(Factoriél Test)

Source of Variation) Sum of Sq. | d.f.| Variance S.S. Test
(S.8.) . , d.f. | Ratio (F)
Main Effects A 8450 1 8450 4, 29%
B 15138 1 15138 4.96%
c 1985 1 | 1985 - ‘Not.Sig.
Interactions . _
l1st.order AB 5202 1 5202 " "
AC 1104 1 1104 | "
BC 40 1 40... . 1w . on
an ordér ABC . 1513 1 1513 " "
Total ' 33,432 7 Compound
Variance-

To test the variances, list them in descending order of mag-

nitude and test the largest wvariance first:

_ 15138 _ 15138 _ 4 o
T8 ZR76 3049 496,

where IR/6 = the sum of the remaining Sums of Squares (8450 + 1985 +
5202 + 1104 + 40 + 1513), divided by the sum of their d.f. (=6).
F-Ratios (df, = 1; df, = 6) are 5.99 (5%) and-3.78 (10%).- The test

ratio Fp shows the variance to be "possibly significant, further evi-

dence requiréd". . o -

The other variances are checked in the same way, leaving out
those sums of squares that prove to be significant or possibly sig-

ni ficant.
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F =
A 984475

F-ratios (df, = 1; df, = 5) are 6.61 (5%) and 4.06 (10%). The

test ratio found indicates the variance to be "possibly significant,

further evidence required".

= 2202 _ 4 48

F
BB Lek2/h

F-ratios (df, = 1; df, = 4) are 7.71 (5%) and 4.51 (10%). This
test ratio does not show significance. The same concluéion applies
to the remaining variances in Table 3.2.

The test shows that only two variances proved possibly
significant; further evidence is required to support this con-

clusion.

3.2 Replicates

More information can be obtained by repéating each test a
number of times; in this case, 2 tests had originally been done for
each combination of factors. The complete data and the Analysis of

Variance are given in Tables 3.3 and 3.4.

Table 3.3 - Test Data (Duplicate Observations)

abc aBc Abe ABc abC aBC AbC ABC
327 121 307 278 264 147 286 199
281 146 321 324 265 169 278 247

304 | 134 | 314 | 301 | 264 | 158 | 282 | 223
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Table 3.4 - Analysis of Varian&é (Replicates)

Sum of Squares Variance | Test
Source of Variation (S.8.) d.f. | S§/d.£. | Ratio (F)
Main Effects A 16,900 1 | 16,900 | 37.72 %k
B 30,450 1 30,450 67.97 Fk%
C 3,906 1 3,906 8.72 %%
Interactions .
Lst Order AB 10,506 1 10,506 23.45 **
AC 2,256 1 2,256 5.04 %
BC ' 81 1 81 --
2nd Ordér ~ ABC 3,025 1 3,025 6.75 %%
Error 3,953 8 494
: ' , Compound
Total 71,077 15 ? -
Variance

‘ Testvratio =

Variance tested

Error wvariance

The equations dsedvfor-calculating the Sums of Squares are

‘the same as above (Eq. 1-5), except that, instead of Zn, the denomin-~

ator now reads ZQ-H (H = number of replicates

The error variance is found from:

ZH.
Vo= (2pf - 5L /2% (1-1)=494,

where

Pj

hj

H =

Note that since the wvariance for the
ler than the error wvariance, a new estimate of the error wvariance must

be obtained: Vi

1

i

sum of H replicates (j),

number of replicates.

individual.observatipn‘(i),

= 2);

Interaction BC is smal-

= (8l + 3,953)/9 = 448. The test ratio F for_thé :
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remaining variances is calculated on the basis of this new estimate:

Variance tested
Error variance

Theoretical F-~ratios (df, = 1, df, = 9) are:
10.56 (1%), 5.12 (5%) and 3.36 (10%).

It appears that all but one of the variances now prove to
be significant owing to the fact that duplicate observations were used.
This latter test is said to be more "powerful" than the former one.
Comparison of these two tests stresses the need for adequate test de-

sign to ensure meaningful results.

Conclusions

1) A drop in asphalt content from 5.54 to 4.37% (=1.17%)
produces a reduction in compressive strength of 65 1b, or 56 1b per 7
asphalt. This is an average value for the two types of asphalt used.
See conclusion 4.

2) A rise in initial moisture content from 8.1 to 11.9%(=3.8%)
causes a reduction in compressive strength of 87 1b, or 23 1b per %
moisture. In other words, for each percent more moisture in the coal,
the asphalt content must be raised by 0.4% in order to maintain the
same compressive  strength for the briquets. This again is an average
figure for the two types of asphalt. See conclusion 5.

3) The interaction variance AB shows that the effect of

moisture is less detrimental at a high

A a percentage of asphalt (9.5 1b per % moist-
B 1048 583 ure) than at a low percentage of asphalt
b 1192 | 1137 (36 1b per % moisture).

4) Interaction AC shows that, possibly, natural asphalt in-
creases compressive strength by 35 1b per % asphalt, whereas the

cracked asphalt (type c) increases compressive strength by 76 1b per %
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asphalt. Further evidence is re-
A a o

quired to confirm this conclusion,

C || 1010 845 however.

e | 1230 | 875

5) The 2nd-order interaction is significant and shows that
the effect of initial moisture content differs somewhat for the two

types of asphalt.

A a
B b B b

For natural asphalt (type C),

the compressive strength of the
C 446 564 316 | 529

c 602 628 267 608

briquets decreases by 16 and 28 1b

per % moisture (for high asphalt
content and low asphalt con%ent respectively). .For cfacked asphalt
(type c), the compressive strength of the briquet decreases by 3 and
45 1b per % moisture. It appears that briquets made with cracked
asphalt are more susceptible to‘mbisture than thoée made with natural
asphalt. .

The system illustrated by the above examples can be appliéd
to factorial tests with different numbers of factors. .Condensed in-
structions given below allow the analysis of variance for up to seven
factors. |

3.3 Condensed Instructions for n - Factorial Analysis to a Maximum
' of 7 Factors

The sum of squares (&) is.calculated as follows:

, _ _ ] .
Smain effects Sp = (BA - Za)” /27H

Sp

(B - Zb)? /20, ete.

L - 2 yon
S Tnteraction = SInt. = (Z0-Z@)°/27H

th

The tables below apply for each i“"~order interaction of any n-factorial

test up to n = 7 factors. -

2, Bl = sum of all the.individual observat~

ions indicated by the diagrams.
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2nd-order Interaction

lst-order Interaction

A

a

3rd-order Interaction

4th-order Interaction
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5th-order Interaction

e

-

6th-order Interaction
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The residual variance is calculated by subtraction or as

follows:

1) With replicates: _
$pi- (Sp)2/20 H -[30? + smf- (So+sm)¥2Rul/H
2% - 1)

Ve=

O Sum of H replicates
= of 1 block. Total number of blocks = 2%,
2) No replicates:

a) Find all variances and arrange them in descending order
of magnitude.

b) Test largest variance with residual variance found from
all the others. Continue with the 2nd largest variance,
etc. A better way of testing the variances can be used
if the wvariance of a single observation is known or can
be found from a separate test. This error variance is

then used in»the denominator of the test-ratio, F.

Note
1) Interaction variances should preferably be smaller than the
variances of the main effects. If any is larger, there is
a possibility of improvement in the test procedure or with
the choice of factors.
2) If any variance estimate turns out to be negative, there is

an error in the calculation. Variances are never negative.
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4 CORRELATION

Correlation is defined as the true relationship between
two or more things, pafts, etc. ‘it is‘distinguiéhed from spurious
correlation, which has been discussed in an earlier section (par. 2.2)
and which can be created unﬁittingly when choosing dependeht para-
meters for these things, parts, etc.

It is assumed, in this section, that the credibility of
the observed relationship has been established scientifically, and
that the parameters used forlméasuring the variable things, parts,
etc., do not have any element in common. It is wise to remember that
many dimensionless ratios that are used as'para@eters and plotted
against one another do have random elements in common (9).

. The correlation of experimental data can be conveniently
carried out in the form of graphs With two or more scales on which
the data are plotted. As a rule, the resulting s catter
diagram is first inspected visually. The experimenter then
determines the basic eqﬁation of fhe “curvé¥of-best—fit". 'Tﬁis is
preferably a straiéht-line equatioﬁ; Non-linear scatter should be
linearized, if possible, by using a log;scalé, a iog-log scale, a
probability~scale, éombinations of such scaleé, or other forms of
transforﬁatioﬁ‘of variables. :Cufﬁilinear cofreiaéion ﬁay;élsd be
used’if ﬁreferred, A pumber Qf model eéuations in the<form.of Work-~

sheets are presented in this section.

4.1 The Curve-of-Best~-Fit

The condition for a '"curve-of~best-fit" is that the sum
of squares of the deviations of the observed points from the curve

is a minimum. In other words,




and therefore

where
. .-
p =
P =
The choice of

regarding the
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s(p - P)E———*-minimum,

standard deviation,

observed value of point (on x- or y-axis), and
corresponding value on the curve.

axis for p depends upon the experimentér's decision

source of errors involved:

I. Y only subject to error
IT. X only subject to error

IIT. X and Y both subject to error

Fig. 4.1
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4.1.1 Y only subject to error (Case I)

The condition to be fulfilled for the curve-of-best-fit
is that the sum of squares of the vertical deviations (dyi) is a min-
imum. Taking a curve of the form |

. Y= A+ BX,

the origin can.be shifted so that it coincides with the overall
mean (X, Y),_and a new system of coordinafes v and k can be dé;
fined: y = Y-Y, x _ X-% (éee Fig.ﬁ.lj.

Equation}of the cufve then becomes:

' T § = Bx..,
Since an observed point

yi =y Tdys = Bx; Tody;

then its vertical deviation from the curve,
'i-dyj_ = BXi - Yi
and the sum of squares of the deviations for all points is

5(dy;)® = £(Bx; - y;)°

The condition that E(dyi)f is a minimum is fulfilled when

1

0 =A2-2(Bx - V{)xq

and £Bx{ - £x;y;=0
Therefore, By = Srx

where xx stands for x?. (B) is called the "regreésiﬁn-coefficient"
of the straight line through (X, Y). Geometrically, (B) is defined
as the tangent of the angle between the regression curve and the

horizontal axis.
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Transforming back to the original system (X,Y), the con-

stant (A) is then found from:

A=Y - BX

Constant (A) is the value of Y for X = 0, or, geometrically, the
point at which the regression curve intercepts the vertical (Y)

axis.

4.1.2 X only subiject to error (Case II)

The condition to be fulfilled is that the sum of squares
of the horizontal deviations (dy;) is a minimum. (See Fig. 4.2.)
Cyclic replacement of x, y in the basic equation and pro-

ceeding as in the case I derivation,

1/B= lxl

M
3

and therefore,

0 X

Fig. 4.2
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4.1.3 Both X and Y subject to error (general,case) N

in this case, deviations from the line~of-best~fit are

taken in some average direction which has been weighted according-

to the respective variabilities of X and Y (sée Fig. 4.3). The

regression coefficient,

or

where k

3

N

Il

Il

Il

(kBy + By)/(k + 3)

(k

Sxy L B . ny
Sar 3 Ty M+ ),

k(Exy)? + j(Ex?sy?)

&+ 3) Exr2xy)

variation coefficient of Y,

sy/Y,

variation coefficient of X, = 8y /X

The coefficients k and j are, in fact, weighting factors and can be

determined from the reputed precisions (Sx,y) and average wvalues of

X and Y.

-

Fig. 4.3

The experimenta1'relationship between the Btu value (Y) of

a bituminous coal and its ash content (X) is found, from a series of

43 samples of this coal, for ash contents ranging from 14.7 to 20.6

percent. There are three possible expressions for this relationship:
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It

13,337 - 132.33 X
13,396 - 136.98 X

I. Error in Y only: Y calc.

II. Error in X only: Y calec.

IIT. Error in both X and Y: Y calc. = 13,362 ~ 134.28 X.

In general terms, the most correct expression for a given
relationship:

Assume Case I applies when j<1/2k, i.e. when Bysx<:1/2 Sy

Assume Case IT " " k<1/2j, i.e. when Bgs,>2 Sy

Assume Case IIT " "L/ 2(k, ) < (3 k) <2(k, ),
i.e. when 1/28y<ByySx<2 Sy-

4.2 Correlation Coefficient

The correlation coefficient (r) is a measure of the '"goodness
of fit"™ of the observations with respect to the regression curve. For
perfect correlation, r = 1 and for complete lack of a relationship,

r = 0.
The general equation for linear and non-linear regression

for case I, error in Y only:

T dy
Sy?

Table 4.1 The deviation of an observation

from the overall mean is generally only part-

% not
r expl?ﬁged 1y explained by the regression curve. The
1.00 0 residue (N) or % Not Explained, is found from:
0.99 13
0.98 19

0.95 31 % N= 10041 - ©°
0.90 44
0.80 60
0.60 80

For linear relationships, the following may be employed:
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2
2 _ (Gx ‘

It is advisable to use linear correlation as much as poss-
ible by linearizing the relationship, i.e. by using a transformation

variate.

4.3 Regression Analysis Worksheets

The worksheets presented in the sections that follow have
been set up to deal with the Case I situation only, i. e., "Y only

subject to error".

4.3.1 Linear correlation - one independent variable

Regression Formula:

‘Y= A+ BX
2 2 2
X Y X v x v Xy Y' dy dy
(X-X) | (¥-Y) -| + |(=Y cale.)| (Y-Y')[(L0)®
(2)-9)
1| 2| 3 4 5 6 | 7|8 9 10 | 11

13=—):--.‘,_:’3xy
_X
‘A=Y - BX
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4.,3.2 TLinear correlation - one independent variable - weighted

observations (grouped data)

'Regression Formula: | Y = A + BX

nlx|lnx! v !lay | &% | @D | =3 v2| nx?| nyd =T+ Y| ¥~¥') | nd}
(X-X) | (¥-Y) y y o | MY
1|23 4 5 6 7 8|9 (10| 11]12|13}14] 15 16
Coefficients:
Znxy
B= =mr
A= Y - BX

4.3.3 Linear correlation - two independent variables

Regression Formula: | Z = AY + BX + C

% y 2 zy | 2x v ' d,
|Y| 2| EO|ED| @D - [+] - [+ - [+ =3z |3)-(16)] a2
12 3] & 5 6 |7]8]9]|10{1112{13| W|15{16] 17 |18

>
]

(9]
it

Coefficients:

Zzy Syx - SzxIy?
(Zyx)2 - ZyZZxa
Zzy - BIyx
R

7 - AY ~ BX




4.3.4 Linear correlation - two independent wvariables - weighted observations . (grouped data)

R.egression Formula : | Z =AY +BX + C
X v z nzy nzx nyx d, nd2z
) - — — — 2 _ 2 1 )
nop X mK Y aY ) Z 0 nZ e LDy | D) |2 [+ - ] ST -2 | 6)-(20) [ne@1)
Ll 213 41 5 6|7 1 8 | 9 10 |11)12113|14(15.|116 171819 | 20 21 22
Coefficients: : 2
B = Snzy.Znvx. =~ INzX.2Oy

(Znyx)2 - Zn’ya- snx?

Znéy - BZnyx
Sny?

8¢




4.3.5 Linear correlation - three independent variables

Regression Formula:

W=AY +BX +CZ+D

W y_ X z | wy v2| vx | vz |wx |%®| xz| wz | 28| w' dy; dfﬂ
wiy x|z | @wwl ey x|z -+ S anaErEEnEE L)-2H] (25Y
4 5 6 7 8 9110 11112/13 | 14{15|16|17|18(12|20 21|22123 | 24 25 26
Coefficients: Q R
r A— ™~ r A I
C = CwySyx - Zwxly?): GyxSyz - 2v®Exz) - (SwysSyz ~ Swziy-)® [(Zyx)2 ~ Eyz'sz]
(SyxZyz - Sy*sxz) - [(Syz) - 3y°s2®]-[(syx)’ - Sy%sx?]
— J ~ -
v —Y
Q S
g - R -Cs
Q
A Swy - B2yx -~ CZyz
Zy*
D= W=~ AY - BX ~ CZ

6§



4.3.6 Linear correlation - three independent variables -~ weighted observations (grouped

data)

Regression Formula:

W=AY +BX + CZ + D

w Yy X Z an nwy nwx nwa
n| WioW [ ¥Y[(n¥ | X|oX | Z2 | nZ| (W-W) | (¥-9) | X-X) | (Z-2) =+ = |-+
1 3 -5 71819 | 10 11 12 13 | 14 |1516] 17|18} 19|20
F3
T nyz ol 0OXZ 2 . dy; ndy,
Wl =L T 1™ ] Y | (2)-(30) | n(31)?
21| 22|23 24/ 25 | 26 | 27|28 | 29 | 30 31 32
Coefficients: Q' R

A

CawySnyx - Znwxgay?) - (SnyxTnyz

A

- Sny?3nxz) - CowySnyz - SnwzSny:) e [Linyx)e -Znye'i.nxa]

. C =
- - (SnyxTnyz - Zny?Znxz)’ -
. i - v
Q
) Rl - ]
B = __(;_C_S_
£ Snwy - BSnyx - CSnyz

Sny?

D=W -~ AY - BX - CZ-

[(Snyz)z - 2ny22n22]-[(2nyx)2 - Snyainxa-«]

-

s

e

09




I
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4.4 Simplified Calculations for Large Numbers of Observations

When a large number of observations are to be treated,
and provided that the variables are equally spaced, calculation can
be greatly simplified by grouping of the observations and rank-
numbering of the groups.

This is illustrated in the table below, where frequencies
are recorded for various class-intervals of both X and Y. The
simple pumbers 1, 2, 3, ... given as the values of X and Y in the
table arg the "rapnk-numbers" and replace, for ease of calculation,

the true value (e.g., mid-point) of each group (class).

4.4.1 Linear correlation - one independent variable

Regression Formula: Y= A+ BX

. TABLE 4.2 Frequency Table of X and Y

Total

1 2 3 4 5 6 7 8 9 No.

7 1 2 1 4

6 1 3 3 1 8

5 1 - 6 4 1 12

Y 4 1 - 5 10 10 5 1 32

3 6 15 20 15 6 1 64

2 1 4 11 9 6 - 31

1 4 6 4 15
Total

No. {1 5 5 21 34 46 35 17 2 166

(Halves move to the right)

Calculations for the Line-of-Best-Fit are:
1. Sum of squares of variable X about the Mean;
2. Sum of squares of variable Y about the Mean;

3. Sum of Products of X and Y about the Means.
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Sum of Squares of Variable X about Mean

Sum X = (Column Totals) « X =2ZX=(1l x 1) + (5 x 2) + ...(2 x 9)= 955
Crude Sum Squares = SX°= (1L x 1) + (5 x 2°) + ...(2 x 9°) = 5873

_

Correction due to Mean = (SX)Zln,= (955)2/166 = 5494
$x° = 5x%- (3X)° /n = (5873 - 5494) = 379
Variance (V) ==x%/(n - 1) = 379/165 = 2.30

Il

Sum of Squares of Variable Y about Mean

"Sum ¥ = (Row Totals) ¥ =3Y¥ = (15 x 1) + (31 x 2) + ...(4 x 7)=533

Crude Sum Squares =2Y°=(15x1°) + (31x2°) + ...(4x7%) = 2011

Correction term = (£Y)°/n = 1711

Sy?=5Y2- (SY)?/n = (2011 - 1711) = 300

Variance (V) =Zy?/(n - 1) = 300/165 = 1.82

Sum of Products of X and Y about Méans

Sum of Products = Zf;j-X;-Y;, where f; = frequency of (X;Yi).

As shown in Table 4.3 below, fill in for each value of X the sums
obtained as follows:

Column 1 (X = 1); 2f;.¥; = (1 x7) = 7

XK=2) 2f:Yy = (Lxd)+ .00 2%x7) =29
X=9; 2f-¥ = (1Lx1)+ (Lx3)=4
TABLE 4.3

x [1|-2] 3] 4| 5] 6 7] 8] 9 [ Total

ZE;Yi | 7129 (28| 8 |119 (131 | 89| 38 4 533

XZ£;Yi| 7 {58 | 84(352 | 595 (786 | 623 | 304 | 36 2845

 Crude Sum of Products = X;Sf;¥; = IXY = 2845

Correction term = SXSY/n = (955)-(533)/166 = 3066
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Sxy =3XY - ZX&Y/n = 2845 = 3066 = -221

For this example, the correlation coefficient r, found from

(£xy)® = [ (-221)° o .

= = 0.656, dicat high d f 1-
T SxTry? (379) - (300) indicates a hig egree of corre
ation for 164 degrees of freedom. (See table, "Significance of Cor-

relation Coefficient", in Appendix B.)

TABLE 4.4 Analysis of Variance of Regression

Source of

Variation Sum Squares d.f. Variance
Regression | r®8v? = (Sxy)?/Zx®= 129 1 129
Remainder | (1-r®)3y®= Sdy = 171% 164 1.04
Total Zy2 = 300 n-1=165 -

2
% zd?y = sy? - @l{_‘zi
: ZX

The F-ratio, F = 129/1.04 = 124,04, is highly significant
for 1 and 164 d.f. respectively. ‘

Coefficients for the regression formula Y = A + BX:

166 166

%4
ZY _B2X _ 333 _(.p.58) + (933) = 6,55
n

Equation for the Line-of-Best-Fit:

Y= 6.55 - 0.58%

4.42 Tinear correlation - two independent variables

Regression Formula: Z =AY + BX + C
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TABLE 4.5 TFrequency Table of X, Y, and Z

Z
X ¥ 1] 2]3]| 4] 56|  Torat
5
A 2 -11 3
7 3 2 1 A 7
2
1
5
A 171 9| 6 | 32
6 3 21 6| 4| - |12 44
2
1
5 1 11 31| - 5
4 4 {12 |14 |21 | 5 | 56
5 3 -1 8] 9| 2 19| 80
2
1
50 -] 1|2 3/} 2 8
4 3 (18 {20 |11 | 6 58
4 3 38| -] - 11| 79
2 - - -
1 1] 1
5 11 1]3]1 6
4 10 {30 |13 | 7 60
3 3 212121 71 73
2
1 :
5 35111 10
4 8121 [ 4 | 2 35
2 3 3 3| 48
2
1
5 - | 2 2
4 4 8
1 3 1|1 2| 12
2
1
Total 27| 91| 86(78 |48 |13 343
Coefficients: B o . ZzyEx® - ZzxTXy

Zy*sx® - (3xy)’
_ ZxzZ%y® - Zyz Sxy

A= 25, 2 2

SxEye - (Exy)
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o =22 - BSY - ASK
n

Correlation coefficient:

r? = Bayz + ASxz
2z?

Calculations for the Line~of-~Best-Fit are:

1. =x2 = =x% - EX)?/n L., ZTxy =ZXY -~ SX5Y/n
2. Zy2 = £Y% - Y)Y /n 5. Zxz = ZXZ - SX$Z2/n
3. 222 =522 - (22 /n 6. Syz = 2YZ - SYSZ/n

1. Calculation of Sx%:

Sum X =ZX = (12 x 1) + (48 x 2) + ...(7 x 7) = 1356
Crude sum squares = £X° = (12 x 1) + (48 x 2%)+... (7x7%)=6052

Correction: (ZX)Z /n = 5361

sx? =5X° - &X) /n = 691

2. Calculation of Zy°:

Sum Y =3Y = (2 x 1) 4+ (58 x 3) + (252 x 4) + (31 x 5)

Il

1339

Crude sum squares = %Y = (2x12) + (58x32) T e (31x52) 5331

|

Correction: (Z‘.Y)Z/n = 5227

Zy% = 104

3. Calculation of 3z%

Sum z =SZ = (27 x 1) + (91 x 2) + ... (13 x 6) = 1097
Crude sum squares = $2%= (27 x 12) + (91x2%) + ...(13x6°)=4081

Correction: (32)°/n = 3508

S22 = 573
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4, Calculation of Zxvy:

TABLE 4.6
X 1 2 3 4 5 6 7 Total
Y 2x3= 6| 3x3= 9| 7x3= 21 2x1= 2|19x3=57|12x3=36 |4x3=12
4% 8=32 | 35%x4=140] 60xs4=20 11x3=33 Sowdi= 22 | 2x4=128 | 3xb=12
2x5=10|10x5= 50 6x5= 30 58x423q sx5=25| Lo 24
48 199 291} 8x5=40 304
307
£ XY 48| 398 873| 1228| 1530  o984| 168] 5229
Crude Sum = XY = 5229
Correction = ZX&Y/n = 5294
xy = ZXY - 2X2Y¥/n = -65
5. Calculation of Zxz:
TABLE 4.7
X 1 2 3 4 5 6 7 Total
F’ _
2z || 5%2=10 - - - - - -
7x3=21 | - - - - - -
3L | 99 169 | 240 326 199 33
=X7Z 31 198 507 960 1630 1194 231 4751
Crude Sum = ZXZ = 4751
Correction = ZXSZ/n = 4337
Zxz = 414
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6. Calculation of Zyz:

TABLE 4.8
z 1 2 | 3| 4| 5] 6 Total
2x3 = 6| - - | - - - -
2y |21x4=84| - | - - - - | -
4tx5 =20 | - | - - - - -

110 | 366 | 325| 297 | 190] 51 -

2Y7, 110} 732 9751188} 950 | 306 4261

Crude Sum = ZYZ = 4261

Correction = SY2Z/n = 4282

2yz = -21
Coefficients:
= (=21 x 691) - (414 x -65) - 0.1833
(104 x 691) - (~65)°
A= 0.6164
C = 0.0458

For this example, equation of the Line-of-Best-Fit:

7 = 0.0458 + 0.1833X + 0.6164Y

The correlation coefficient

0.1833 x (-21) + (0.6164 x 414) - 0.4386
573

il

2
Tz.xy

r - 0.6623
ZXy

indicates a high degree of correlation for 340 degrees of freedom.
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4.5 Example of Regression Analysis with Groﬁped Data

Correlation of Summer Temperature vs. Length of Fir Shoots:

Assuming a linear relationship,

X

Regression Formula

temperature,

oC;

[v = A+ Bx|

Y = length of shoot, mm.;

The data have been weighted, i.e., X and Y have been independ-

ently grouped in classes of equal interval and the frequency (n) of each

class recorded.

In calculating correlation, the mid-point of each class

is taken as the value corresponding to X and Y respectively.

"TABLE 4.9
X : Y

Class-Interval nx Class~Interval nv
6.45 - 6.95 1 35 - 45 1
6.95 -~ 7.45 1 45 -~ 55 3
7.45 - 7.95 | 1 55 - 65 5
7.95 - 8.45 1 65 - 75 11
8.45 - 8.95 6 75 - 85 8
8.95 - 9.45 8 85 - 95 6
9.45 - 9,95 6 95 - 105 2
9.95 - 10.45 | 8| 105 - 115 1
10.45 - 10.95 1 115 - 125 1
10.95 - 11.45 2 125 - 135 1

11.45 - 11.95 1

11.95 - l2-45 1

12.45 - 12.95 2
39 39

In order to use the
regular tables shown earlier
(Tables 4.3.1 to 4.3.6) for
calculating correlation, -
the number of classes of
X and Y must be equal, and
the frequency (n) of each
class=-interval of X must
equai'that of the correspond-
ing class-interval of Y.D

Neither of these conditions

can be met here without dif-
ficulty. It is simpler
in such a case to construct

a table of frequencies from
the original data as shown

on the following page.




Regression Formula

Il
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:ly=A+Bx|

Y = Length of Fir Shoots, mm.

TABLE 4.10 Frequencies of X vs ¥

Average Summer Temperature, °C;

X = Class Mid-point

6.717.217.718.218.7{9.2|9.7(10.2{10.7|11.2[11.7|12.2|12. 7| Total
130 1 |1
120 1 |1
110 1 1
JJ
"
A [100 1 )
[«
L1 90 2 2 1 6
el
=1 &0 1211 3] 1 8
wm
s 170 4 5| 2 11
(]
| 60 1|1 3 5
o | 50 1] 2 3
4o | 1 1
Totall 1] 11|16 86| 8| 1 1] 112 [39

This table shows.the true distribution and frequencies of the

class-intervals of each variable with r espect to one another, and is

simply another form of the scatter diagram.

Calculation of the Line-of-Best-Fit

For Y = A +

Coefficients:

I
A

I. By

IT. B

X
IT. Bxy

=Y - BX =

BX

Zxy/sx®;

Zy?/sxy;

(kBy + 3By)/(k + 3)

Y  BiX

n

n
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1. Calculation of 3x°

2X=(1x6.7) + (1 x7.2) + ... (2 x12.7) = 377.8

Crudé Sum Squares= =X= (1L x 6.7%) + (1x7.2%) + coe(2x12.7%)=3,725.06
Correction = (ZX)2 /n = (377.8)2 /39 = 3,659, 82

gx?= X%~ (ZX)? /n = 3725.06 - 3659.82 - 65.24

Variance = s}a{ =Zx2/(n-1)=65.24/38 = 1.72;stapdard error,sy = 1.31

2. Calculation of Zvy?

SY = (L x 40) + (3 x 50) + ... (L x 130) = 3,000.00 ,
Crude Sum Squares= TY’=(1x40%) + (3x50%) + ... (1x130%)=244,200

Correction = (ZY)?/n = (3,000)2/n = 230,769

Zy? = Y2~ (2Y)% /n = 244,200 - 230,769 = 13,431
Zy*® : , 13,431

1

Variance = s§ = 13,431/38 353.45; standard error, sy = 18.80

3. Calcuiation of Exy

Column 1 (X = 6.7); Z¥ = (L x 40) = 40
X=7.2 ;57 = (1L x 60) = 60
X = 12.7; 2Y = (1 x 120) + (1 x 130) = 250
TABLE 4.11

6.7/7.2|7.7/8.2|8.7[9.2|-9.7|10.2{10.7|11.2|11.7|12.2|12.7| Total

Y

40{ 60| 60| 50{3601620| 430| 660} 80 [ 190| 90 110{ 250§ 3,000{

XZY

268| 43214621410 3132| 570414171} 6732|856 | 2128 1053}1342|3175 29,865

Crude Sum Products = XIY = 29,865

Correction = (SX-£Y)/n = (377.8 x 3,000)/39 = 29,062
Sxy = 29,865 - 29,062 = 803

It will be recalled that, depending upon. which of the

variables is most subject to error, one of three possible equations
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may be used for expressing the relationship (see Fig. 4.4). The three
are given for illustration purposes:

I. Y subject to error only:

If variations in the data are assumed or are known to be
largely due to measurement errors or to the variability of the length

of fir shoots (Y):

B = Zxy/2x® = 803/65.24 = 12.31
A = 3000/39 - B(377.8/39) = -42.33

Y cale. = 12.31X-42.33

II. X subject to error only:

If variations are largely due to measurement errors or to

variability of temperature (X):

2y?/sxy = 16.73
76.9 - (16.73 x 9.7) = -85.14

B
A

]

Y calc. = 16.73%X-85.14

III. Both X and Y subject to error:

If variability or measurement errors are not largely con-
fined to either X or Y:

Variation Coefficients: k = 0.244, j = 0.136.

]
i

(kBy + jBx)/(k + j)
76.9 - (13.89)(9.7)

13.89

b4
IH

-57.63

Y cale. = 13.89X - 57.63
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Referring back to 4.1.3, it is seen that for
k= 0.244 and j = 0.136, Case III applies (Both X and Y subject
to error) since 1/2 k< j<2k. In other words, the most accurate
estimate of Y, length of fir shoot for a temperature X, will be
given by equation IIT in this example, i.e. the weighted average

curve of the two independent regressions.

Correlation coefficient :

Zxy 803
= ===y =
vz x%Zy Y(65.24) (13,431)

This value of (r) denotes a high degree of correlation for

37 degrees of freedom.

4.6 Worksheets - Non-Linear Regression

Worksheets that follow are for calculation of 2nd-, 3rd-

and 4th-degree curves-of-best-fit for two variables.
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4.6.1 Non-linear correlation - 2nd degree

Regression Formula :

v = a + bx + cx®

x v Xy x%y x3
x|y RESnARE Ho-t+ =t g d;
(X-X) | (Y-Y) (2-(14)
1] 2 3 4 is5 |6 |7]8l9ltof11]12] 13]14| 15 16

Regression coefficients:

=xly Tx? - SxySx>
ex*zx® - Ex2) /n - Ex3)

b= XY - csx>

X

cSx?

n

To obtain equation on basis of the original units X, Y,

substitute Y - ¥ =y and X ~ X = x

v and determine new coefficients:

C=c¢ - Regression Formula, original units:

b - 2cX

It

A=a-bX+cEH+Y. .

Correlation coefficient:

in the regression formula for

Y = A + BX + Cx°




4.6.2 Non-linear correlation - 2nd degree - weighted observations (grouped data)

Regression Formula : y = a + bx + cx®
X y 2 2 2 2| DXY nx’y nx? 4 ' 2
n x| x| Y| av|gRlamy| V|| Y-+ -] 4] - + | ™| ¢ (4)‘33(’19) dy
1 2 |3 4 15 6 7 819 10 111 12(13 (14|15 |16 |17 18| 19 20 |21

Regression coefficients : Original Units :
= Snx?ySnx? - an};ans ] Coefficients:
Snx*Znx? -(Enx®7/n - (Snx3) C=c
b—znxy_cznxs B=D>b - 2cX
Znx? A=a-bX+cX +7%
a = -cZnx?
n Regression Formula:

Y = A + BX + Cx°?

GL
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4.6.3 Non-linear correlation - 3rd degree

Regression Formula : y = a + bx + cx? + dx°

For sets of single observations, the following columns

should be added to worksheet 4.6.1:

Simultaneous equations for regression coefficients:

4= Sx3y - aSx® - bIx® - c3x°

Zx6
3 sx?y - aZx? - b2x® - dsx°
€= x4
b = Zxy - c£x® - dsx*
- TSXE
czx? - dsx®
a = —

n

Convert to original units : Y = A + BX + cxX% + Dx°
= d

= ¢ -~ 3d&X

=b - 2% + 3dX°

> ® a o

=~ a-bX+CX -DK +7¥
Similarly, for weighted observations, the following columns

should be added to worksheet 4.6.2:

nx3y | nx® | nx
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4.6.4 4th degree - non-linear regression

Regression Formula : y = a + bx + cx? + dx® + ex?

Add the following columns to worksheet 4.6.1:

By | x° | x* | x'y x| x°

Simultaneous equations for regression coefficients

_2xty - aZx® - b3x® - c¥x® - 4%X’
B sx®
Zx3y - aZx® - bax* - c3x® - T’
nx®
Ix%y - aSx? - bEx® - dsx® - e3x°
>x?
b = ZXY - cZx® - dix® - eSx®
=x?
c2x? - dsx® - eZx?
n

Convert to original units : Y = A -+ BX + CX° + DX’ + EX

E=-¢e

D=d - 4eX

C=c - 3dX + 6eX°

B=b - 2% + 3d%° - 4eX~
A=a-~bX+cX? -dX°+ X' +7

Similarly, for weighted observations, the following columns

should be added to worksheet 4.6.2:

nx®y | nx® | ox® | ox'y | nx’ nx®




78

5. SAMPLING

(10)

In this section a general theory is presented for the
sampling of materials and statistical populations that are encount-
ered in the field of engineering and in other disciplines.

The basic concept of this theory is that the variability
of a material consignment, or of any other population, can be ex-
pressed by two variance components that are constants and reflect
statistical properties of the material in the same way that other
material constants reflect certain physical and chemical properties
of materials. .

These variance components or "sampling constants" are used
for designing sampling ekperiments'and, more specifically, for de~
termining in advance the preci sion of a sampling experi-
ment as a function of sample size and the number of i-n cr e’—
ments . Application of the method is illustrated with twelve
examples that cover a large variety of materials and conditions.

Condensed instructions are presented in a table.

5.1 Notes on the Problems of Sampling

When it is reqﬁired‘td measure some property or a.t t r i b-
ute of alarge volume of material or some other statistical pop-
ulation, a‘small representative portion is collected as a sample for
testing. Sometimes, as in opinion polls, the:information can be ob~-
tained without actually "collecting' the sample, This does not, how-
ever alter the procedure that follows.- |

The sample value will generally differ from the true, un-

known value of the material consignment. This difference, called
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sampling error, has a frequency distribution with a mean value and
a variance.

It is necessary to estimate this sampling error before the
quality evaluation can be reported with any degree of assurance or
precision. The sampling error depends upon the nature of the mater-
ial and on the manner of sampling. These two main factors are ex-
pressed as variance components that contribute to the overall samp-
ling variance, s2.

Let the true unknown valtte of a var i ate (Q) of a
material consignment be X; the sample value of this same variate
will have a value x, and the difference (x - X) will be character-
ized by a frequency distribution with standard error, s. The samp-
ling error can then be expressed as a function of s,

Materials and variates may vary over wide ranges and the
circumstances under which the samples are collected can vary widely,
but the causes of variation in sample value are limited. Two fact-
ors are inherent in the nature of the consignment, namely, "random
variation'" and "segregation'. These are statistical properties in
the nature of material constants, that will be termed "sampling
constants" (A and B, respectively) of the population. A and B are
variance components that can either be determined from a‘specially
designed test or be estimated from prior knowledge if the material
is known by composition and distribution.

The other factors influencing precision of the sample are
the number (N) of increments collected from all parts of the lot,
and the size (W) of the resultant g r o s s sample. W and
N arc in the naturc of operating variables that can, within certain
limits, be regulated at will by the sampler. The cquation 2= A/W !

B/N opcrates independently of the shape of the parcnt di s -
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tribution of the variate. It applies generally for first-
order estimates of the upper limit of the sampling variance (s?).
The degree o f segregation (z) is described by
z2 = B/A.

Every sampling operation consists essentially of either
extracting one single sample from a given quantity of material or
extracting from different parts of the lot a series of small portions
or "increments" that are combined into one “eross sample'. The
latter method, known as "sampling by increments", will be considered
here. The former method can be regarded as a special case of in-

cremental sampling in which the number of increments equals one.

5.1.1 Comparison with other sampling theory

One theory for éampling materials that are non-randomly
distributed is known as "stratified sémpling" or "representative
(random) sampling (of stratified populations)"; In this theory, the
precision of sampling is éxpressed as the sum of the wvariance "within-
strata" and the wvariance "between-étrata", the strata indicating
parts of the material consignment whose mean values di ffer signifi-
cantly from the overall mean wvalue of the’cbnsignment. Sometimes,
as in incremental sampling, these "strata" are imaginary, because
they become identical to the portions fepresented by the individual
increment. The "within" and "between' variance estimates are then
a fupnction of the size and number of increments. It is common to
identify the "between-strata' variance with the htrend variance", .
and the "within-strata" variance with the "random variance"° Clear-
ly, however, with different size and number of increments, the esti-
mates of the between-strata variance and the within-strata variance
will change. These.variance estimates, theréfbre, cannot be regard-

ed as constants and consequently cannolt be uscd withoub certain
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corrections for calculating in advance the number and size of incre-
ments required to attain a projected over-all precision of sampling.
The meaning of "random sampling error" as used here goes
back to a classical experiment where a number of black and white balls
are mixed in a vase and a sample consisting of one or more balls is
withdrawn at random. The random error occurs when the hand collect-
ing the sample selects by chance a white ball instead of a black ball,
or vice versa. The resulting variance is the "random vari-
anc e", of which the "within-strata variance'" used in representa-
tive sampling gives a biased estimate (depending upon the size of
the samples used) when dealing with materials that are non-randomly
distributed. This random variance is determined by the average com-~
position of the material (in this case the relative amount of black
or white balls) and by the size of the sample only. The same defin-~
ition of random variance is adopted for variates with parent dis-

tributions that are not of the binomial type.

5.1.2 Definitions

In this section, the term "random variance" keeps its
original meaning. "Trend variance'" has been omitted because of its
confusing nature; in its place a new term, "s egr egat i on
varianece, is introduced which denotes the variance caused
solely by deviations resulting from the non-random distribution of
a consignment. ILts physical meaning is simple to explain: the
deviation of any sample value from the true mean of the lot or con-
signment is the algebraic sum of its random error and a remaining
error which results from the fact that the variate is non-randomly
distributed over the lot. The latter is called the segregation
crror and its variance the segregation variance. Tt will be shown

that the segregation variance component of single samples is in-
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dependent of sample size; it depends only upon the degree of seg-
regation of thevéonsignment. It will also be shown that the maxi-
mum degree of segregation, as expressed by the variénce of segregat-
ion, is directly related to the random variance. This relationship

is utilized to estimate sampling precision.

5.2 General Sampling Theory

When a sample of given size is drawn from an infinite pop-
ulation, its theoretical variance is always larger than if a sample
of the same size were drawn from a finite population having otherwise
identical characteristics.

The fact that in practice all populatibns are_finite does
not necessarily invalidate the theoretical estimate of thelvariance,
provided stipulation is made that it is an estimate of the maximum
value that this variance will attain for an infinite population.

The same problem is encountered when samples are drawn either system-
atically or at random from a stratified population. Samples that
straddle the boundaries between two strata contribute less to the
sampling variance estimate than those that are drawn whblly from in-~
dividual strata. The latter variance estimate is.consequently al-
ways larger than the former. '

A model population is introduced to demonstrate the fund-
amental relationship and its general applicability. Variance values
found from tests on this model are only maximum estimates, because
the model represents the conditions that cause the largest possible
variations. Sampling variances derivea from the tests are accuraté
by first-order approximation only. GConditions other than those govern-:
ing test results from the model will lead to variance estimates that
are smaller, as for instance when the samples‘are very large or when

the population is relatively small. Other conditions are discussed
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in the text.
The above limitations do not seriously interfere with the
requirements of industry regarding the testing and safeguarding of

quality.

5.2.1 Model population

The model population of '"black'" and 'mon-black" items, as
illustrated by a "sampling board" (Figure 5.1), is used for analyz-
ing variability of samples drawn from segregated consignments.

This sampling board consists of a piece of 10" x 10" wire
screen with 10 openings per linear inch, and a supply of 5,000 lead
pellets. The lead pellets can be used entirely, or in part, for
making model populations that are segregated in different ways. The
pellets can be distributed in any conceivable manner, ranging from
complete segregation to near-perfect random mixtures. The samples
collected from this population are not removed but merely counted.

A sample is taken by placing a square frame with its centre over the
selected station and counting the number of pellets enclosed within
it. The size of the samples can thus be varied and the number chosen
at will. Samples can be collected either systematically at fixed
stations marked off on the screen, or at random. In the latter case,
a random sampling table is used for determining the co-ordinates.

The method of analysis consists essentially of collecting
samples of different size from a given population and determining
the relationship between sample variance and sample size.

It will be shown (Eq. 13) that the total sampling wvariance
(s?) consists of a random variance component (s;/w') that depends
upon the size (w') of the sample, and a scgregation variance compon-
ent (s%) that is indcpomlm;t of sample size.

The results ol experiments carricd out with the sampling
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board are presented in the form of graphs which show the relationship
between the variance of single samples and sample size, the latter
being determined by the number of screen openings in a square frame.
In the tests reported here, three different sample sizes are used:

w, =1,

[}

w) = 9 (located in the square of 3 x 3 openings), .

Il

and wy 81 (9 x 9 openings).

The numbers of pellets (x) found within the square frames
are recorded and the series thus obtained used for calculating vari-
ance estimates. A simple formula for calculating this measure of
dispersion for a series of observations is presented in Table 5.4,

X

where p can be taken as equai to 7 ¢

5.2.2 Relatrionship between the degree of segregation and the

parent frequency distribution

Example 1

An example of complete segregation will be studied first by
placing 2,500 beads in one corner of the sampling board (the lower
left corner as shown by'the inset on Figure 5.2). This corresponds
to a binomial population designated by p = 0.25. Samples collected
from this mixture will be either 100% black or 1007 white, except for
those that straddle the boundary between the black area and the white
area. This latter restriction is of little comsequence as long as
the samples are small compared with the "patch" of 2,500 beads, as
shown in Table 5.1, where three series of systematic samples and three
series of random samples are presented having sizes 1, 9 and 81 re-
spectively. TFigure 5.2 shows that the six variance estimates found
from these series do not deviate significantly from a straight hori-
zontal line corresponding to the binomial variance s® = p(l-p) = 0.1875.
The fiducial limits of the variance estimates correspond to variance

ratios Fgs = 1.52 (24 and ood.f.) for variance estimates larger than
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0.1875, and Fo5 = 1.73 (oo and 24 d.f.) for variance estimates small-
er than 0.1875. The results of this sampling experiment show that
there is no significant'difference between the samples drawn at ran-
dom and the samples collected systematically. The same conclusion is
found when the Chi-square (9(2) test is applied (see Table 1.2 for
references). |

The experiments also show that, while the size-variance
curve of a completely random mixture is defined by a straight line
sloping @own at an angle of 45° on a double~log scale, the sample var-
iance ne&er exceeds the theoretical value of 0.1875 in the case of
complete segregation and reméins substantially constant over the en-
tire interval. | |

Patterns showing partial segregation may take many forms
that are impossible to deal with in every aspect. The gradual tran-
sition from complete segregation into completé randomness can, how-~
ever, be illustrated in an orderly fashion and the conclusions that
can be drawn from this apply generally to any pattern éf distribution.

To study the characteristics of partial segregation it will
be assumed that mixing takes place in five equal steps, reducing the
degree of segregation first from 1.0 to 0.8, then to 0.6, to 0.4, to
0.2, and finally to 0. When segfegation is zero, the number of pel-
lets within the black square should be 25% of the original number.
The total reduction from 100% pellets to 25%, divided into five equal
steps, is a reduction of 15% or 375 pellets for each step.

The folloﬁing mental experiment can now be conducted: 375
‘pellets are selected at random from the black squére,containing 2,500
pellets (Figure 5.2), and are redistributed randOmiy over the remain~'
ing.three quarters of the sampling board (the degree of segregation
is reduced from 1 to 0.8). '

A sample drawn from the black quarter of the sampling board







TABLE 5.1
Complete Segregation (Figure 5.2) p = 0.25

Systematic Samples ' Random Samples
Sample 1 9 | 8 1 9 81
Size .
coordinates coordinates coordinates
Sample - _ 2 s
No. X, X5 X, x5 | Xj x5 X, | %3 Xs | x§ Xg x$
1 17 07 |1 1] 68 55 44 04 81 | 6,561
2 76 74 34 74 ' 22 33 81 | 6,561
-3 37 21 §1 11 30 30 |9 8L |78 46
4 13 19 |1 1113 77 84 09
5 04 30 |1 1|70 AV 26 52 | 27 729
6 70 97 74-- 4. 59 71 13
7 33 77 : 57 29 91 58 ‘
8 24 46 |1 1125 97 ' 38 18 8L | 6,561
9 03 44 11 1165 68 ‘ 67 24
10 54 80 76 60 54 76
11 1 1 6 | 36 451 2,025| 04 94 27 48 19 8Li{96 96
12 1 1 6 36 ] 45| 2,025 43 77 42 55 57 46
13 1 1 4 16 | 25 625 18 24 11 1 {37 90 69 92
14 ' : 66 21 _ 86 65 36 42 81 | 6,561
15 . 79 90 53 72 . 10 . 45 81 6,561
16 1 1 9 8L | 816,561 12 .99 ' 00 66 ' 77 10
17 1 119 | 81 816,561 |72 1 27 39 37 {9 8L | 84 45
18 1 1 16 36 §.45( 2,025 07 72 : 68 32 57 65
19 ' : 34 95 29 20 {9 81 103 04 81 | 6,561
20 45 14 |1 1 161 30 ' 29 26 81 | 6,561
21 1 1 9 81 81| 6,561 || 52 38 |- 29 68 53 . 34 18 | © 324
22 1 1 9 81 81 ] 6,561 85 68 94 49 75 23 ‘
23 1 1 6 36 45 2,025 66 88 98 69 91 20
24 ' 60 11 94 10 93 57
25 : 44 80 24 82 30 27 81 | 6,561
Sum 9 9 64 | 484 | 529 |34,%9 8 8 36 | 324 693 153,541
s? 0.2400 0.1647 -0.1510 0.2267 0.1400 \ 0.2180

88




89

will have an expected value:

EX) = (2500 - 375)/2500 = 0.85

black
Similarly, for samples drawn from the other three-quarters, we find
expected sample values

E(X>white = 375/7500 = 0.05.

The expected variance calculated from these figures for a
degree of segregétion 0.8 is,
E (variance) = E [[X - E(X)]z] = 0.1200.
The total variance for a degree of segregation of 0.8 is
0.64 times the total variance for the entirely segregated mixture.
Continuing the experiment for lower degrees of segregation,
the results presented in Table 5.2 are found when four samples ére

collected (one from each quarter of the sampling board) for each test.

TABLE 5.2

Effect of Segregation on Total Variance

Degree of Deviation from Mean Grade Total Expected
Segregation X -EX)=X-0.25 Variance

(z) for Each Quarter E (s?) |Fractional
1.0 0.75; 0.25; 0.25; 0.25 0.1875 1.00
0.8 0.60; 0.20; 0.20; 0.20 0.1200 0.64
0.6 0.45; 0.15; 0.15; 0.15 0. 0675 0.36
0.4 0.30; 0.10; 0.10; 0.10 0.0300 0.16
0.2 0.15; 0.05; 0.05; 0.05 0.0075 0.04
0.0 0.00; 0.00; 0.00; 0.00 0.0000 0.00

This table shows that the degree of segregation (z) and

the expected variance are related:

E (variance) = 0.1875 z?
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A similar relationship holds for all ratios of "black" and "white"
mixtures other than for 2,500 out of 10,000,

Practically speakiﬁg, the expected variance is the limit
of the total variance as sample size increases. The expected'vari;

ance is therefore identical to the segregation variance:
. -
E (variance) = sg.

Furthermore, the total variance for complete segregation
appears to be identical with the parent variance, i.e. the variance
of single items, which in this case follows from the binomial equat-

ion S% = p(l-p).

From the foregoing equations it is seen that:
Sg = 28 ceees (Eq. 11)

Summarizing the conclusions from the above experiment:

1. The segregation variance has a maximum value equal to that
of the parent variance of the populatioﬁ.

2. The segregation variance is, within the rangé of actual

| sampling practice, substantially independent of sample size.
It neverlexceeds the parent variance.

3. The ratio between the segregation variance and the parent
variaﬁce depends solely on the degree of segregation (z).

4. The total variance of samples consisting of a single unit
equals the parent variance (sg) regardless of the degree of
segregation.

On the basis of experimental evidence, it is prbposed that
the exbected ﬁarianee of sampling satisfies thevfollowing-relation-
ship: | |

E(s®) = sh/w' + E(s%) (1 - 1/w') ... (Eq. 12)
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where s% = parent variance; variance of single units;

E (sg) = expected value of the segregation variance; and

w' = sample size, expressed in number of units.
This equation formulates the general relationship s = £ (sp, Sg> W')
for any degree of segregation (z = 0 to 1) and sample size w'21
(compare Figures 5.2, 5.3, 5.4 and 5.5 as illustrations).

For samples consisting of two units the total variance

becomes, by first approximation,

2 _ 2 2
s = 1/2 sy + 1/2 sg.

For samples consisting of ten or more units, Equation 12

can be written by first approximation as:
s® = sp/w' + s cevese. (Eq. 13)

It is noted that the parent variance (sé) is a constant
which, according to the binomial equation, depends only ﬁpon the
composition of the material. It is designated as "“sampling con-
stant A'".

The segregation variance (sg) for one and the same mat-
erial depends upon the degree of segregation (z) only, in accordance
with Equation 11. It is known from experience that, while (z) may
range from zero to 1, the stability of the segregation variance under
otherwise normal conditions of handling, storage, and transportation
is comparable to that of the parent variance. To illustrate with
figures, it is known that noticeable blending occurs when a mixing
device reduces the segregation variance of a product by a factor
of 3 or more. Conversely, an increase of the segregation variance
by a factor of 3 to 4 or more is equivalent to a distinct separat-
ing action. Therefore, while sg may change, its value for a given

material consignment will be constant within limits normal for
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variance estimates (F-ratio), unless the consignment is noticeably
mixed or segregated. Segregation variance_sg is designated as
"sampling constant B'. |

The practical value of the'"samplinglconstants" is
demonstrated by examples 2 and 3.

Example 2

General Equation 12 was tested by distributing 2,500 lead
pellets non-randomly over the sampling board. The samples of dif-
ferent sizes were collected systematically and at random as in the
first example. The results are presented in Figqre 5.3 and Table
5.3. |

Two variance estimates, s? and ég , obtained from the
systematic samples were used to evaluate the sampling constants from

Equation 12, which can now be written as:

s2 = A'/w' + B(L - 1/w") eeeness (Eq. 14)
The two constants were found by substituting the observed

values for sf, sg, w!, and w; in the following equations:

A'/w! 4 B(L = 1/w!)  eeennn. (Bq- 14a)
A/l 4+ B(L - 1/w))  ....... (Eq. 14b)

st

[l

s3
It follows that A' = 0.1824 and B = 0.00761.

From these values the size-variance curve for Equation 14
was found; it is shown in Figure 5.3. This size-variance curve is
approximately the algebraic sum of a straight 1ine A'/w', sloping
down at 45 degrees from a point w' = 1; s?= 0.1824, and a straight
horizontal line,vB = 0.00761. The former repreéents the random
variance COmponent and the latter, ﬁhe segregation variance compon-~

ent. The degree of segregation is found from the equivalent of

Equation 11.

z = /B/A' = 0.20
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Here, the Chi-square test provides spot-checks for the "goodness-of-

fit" of Equation 14, using the experimental variance estimates sg,

s?, s? and SE. |
The size-variance curve calculated from sf and s§ falls

within the confidence interval defined by (n-1)-s?/x? of each of

the above four variance estimates for probability levels P = 0.025

and 0.975. TFor example, the confidence interval of the variance esti~-

mate sg, which was found from 25 (systematic) samples, is 0.026 — 0.088

at the 95% level. The calculated variance (Equation 14) for A = 0.1875;

B = 0.00761; w' = 9, falls within this range at 0.028. Since s} shows

the largest difference of all, the Chi-square test confirms the

statistical identity of the calculated variance (Equation 14) and

all four experimental variance estimates at ‘the 957 level. 1In Fig-

ure 5.3 the confidence interval is shown only for the experimental

variance sg. Tt is noted that similar results were found when ap-

plying the F-test. The Chi-square test was preferred, however, it

being the more rigorous of the two tests. Frequency distributions

for samples larger than 1 unit (w' = 1) will generally show deviat-

ions from the binomial distribution when the material is segregated.

When the samples contain only a small number of units, as they nec-

essarily do in the experiments performed with the sampling board,

these departures from the theoretical binomial frequency distribut-

ion cannot always be proven significant. When, however, the number

of units contained in the sample becomes very large, such as in

molecular binomial mixtures (fluids, pulps, etc.), the difference

between the frequency curve of sample values as found from a test

and the frequency curve of the sample values observed in the same

material consignment when it is randomly mixed, will generally be

significant, the more so when the degree of segregation is high.
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TABLE 5.3
Segregation (Figure 5.3): p = 0.25

Systematic Samples

Random Samples

"Sample 1 9 81 1 9 81
Size
coordinates coordinates coordinates
Sample | %, | x%| x, %21 %, P X, | X x| %51 X x2
No.
1 2 4 21 441 || 03 36 46 33 60 16 17 289
2 2 4 20 400 i 47 96 1 1 98 26 11 22 18 324
3 2 4 14 196 | 43 47 1 1 63 16 2 4 14 77 20 400
4 2 4 16 256 || 73 36 1 1 71 80 1 1 10 94 7 49
5 2 4 15 225 || 86 61 62 45 | 4 | 16 | 95 39 28 784
6 1 1 15 225 {97 42 42 27 6 | 36 | 24 84 26 676
7 1 1 30 900 || 74 81 53 07 1 1] 51 42 23 529
8 3 9 351 1,225 || 24 14 32 36 1 1 79 17 35 11,225
9 25 625 || 67 57 1 1 37 07 5 25 89 53 20 400
10 4 | 16 19 361 || 62 20 32 51 2 4 1 73 31 20 400
11 1 1 19 361 16 56 32 13 88 63 20 400
12 2 4 21 441 176 50 1 1 90 55 97 01 6 36
13 1 1 1 1 20 400 | 62 26 79 38 1 1 54 63 27 729
14 1 1 22 484 | 27 71 1 1 78 58 | 2 4 | 14 78 20 400
15 1 1 5 25 28 784 166 07 53 59 4 16 10 59 8 64
16 1 1 4 | 16 26 676 |12 96 05 57 88 33 16 256
17 1 1 6 | 36 27 729 || 56 96 03 12 26 21 22 484
18 1 1 21 441 |1 85 68 72 10} 5 25 | 49 12 23 529
19 1 1 3 9 22 484 199 27 93 14 | 4 | 16 81 34 11 121
20 15 225 |26 31 15 21 3 9 176 29 29 841
21 1 1 11 121 {55 38 31 06 1 1 23 57 21 441
22 1 1 20 400 |59 54 62 18 2 4 83 60 21 441
23 2 4 19 361 |56 82 43 44 | 1 1 01 86 6 36
24 1 1 2 4 38| 1,444 35 46 1 1 09 32 4 16 30 32 22 484
25 8 64 46 12,116 |64 22 90 53 3 9 30 44 17 289
Sum 6 6 57 1215 565 [14,321 7 7 52 {190 483 110627
s? 0.1980 | 0.0438 0.00986 0.2100 0.04210 0.00823

G6
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In fact, although the frequency distribution of large samples from
segregated mixtures can take on any shape, independently of the shape
of the parent distribution, the variance of such large samples is
directly related to the variance of the frequency distribution of

the single units. This relationship is demonstrated for variates
that can be expressed by parameters having a binomial parent dist-
ribution. It will be shown further on that the same concept applies
to parent distributions of different type, including normal, poisson- -
ian, and irregular parent distributions (see under "Non—Binomial

Variates", 5.4.2).

Example 3

A test similar to the preceding ones was done, using 1,000
lead pellets distributed as evenly as possible over the sampling
board. The curve for Equation 14 was based on variance estimates

s? and 2

2 (see Figure 5.4). All the other values which were de-

termined independently éppear to check within the limits of chance
variation with the curve
" s? = 0.1086/w' + 0.00L37 (L - 1/w').
The degree of segregation found from =z =N/§7K7 = 0.11.
These three examples confirm the correctness of the general

Equation 14 for a range of conditions varying between complete seg-
regation and néar—randqm dispersion of the variate.

| lIn prgctice, the‘use of samples which consist of oply a few
units is common in such fields as the microscopic analysis of particle
mixtures and in sampling for defectives. In many instances, however,
the samples collected consist of a very large numbér of units that
Canno: be counted. In these cases,sample size is expressed in some
unit of measurement (1l gram, 1l pound, etc.); each unit of measure-

ment may contain thousands or millions of elementary units of the
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binomial. As a result, the size-variance curve of such samples will
be génerally determined by the segregation variance component only.
In other words, the actual range of sample sizes lies somewhere with-
in the less steep section of the size-variance curve.

For this type of material it would be impractical to use
the parent variance for sampling constant A', because the number (w')
of binomial units is too large to be counted. 1Instead, sampling
constant A' can be determined for a single unit of measurement. It
is then necessary to indicate the unit of measurement to which this

sampling constant refers.

5.2.3 Practical units and proximate equation

To illustrate the use of practical units and their relation-
ship to the general equation, the results of another test are present-
ed in Figure 5.5. One thousand lead pellets were distributed with a
high degree of segregation (see inset Figure 5.5) and the sampling

constants calculated from variance estimates s2 and s2 as before:
; . 1 3

s? = 0.09923/w' + 0.01078 (1 - 1/w')
degrge of segregation, z = 0.33. |
The other wvariance estimaﬁes (obtained from random samples
as well as from systematic samples) correspond with this curve as.be-
fore within the 95% fiducial limits. It will be assumed for the sake
of convenience that the size of samples is expreésed‘in a’practicél'
unit of measurement equal ﬁo ten elementary units. The general

equation now becomes:

82 = A/w + B (1L - 1/10w) ...;... (Eq. 155

1l

where A = variance of samples of 1 unit of measuremént,

1l

W sample size expressed in same unit of measurement, and

A/w = random variance component.
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It is noted that the numerical value of the random variance
component is not changed by this transformation, as shown in Figure
5.5, the only difference being that A = 1/10 A'.

It is also noted that the segregétion variance B is in-
dependent‘of,the unit of measurement.

In those cases Where samples must be expressed in some
uﬁit of measurement that is many times the size of an elemental bi;
nomial unit, the upper part of the size variance cufve_as shown in
Figure 5.5 is not used, and the general Equation 14 can be replaced
by:

s? = A'/w' + B,
or, when using practical units of measurement,

s® = Aflw + B coseses (Eq. 16)

- The curve corresponding to this equation is also shown in

Figure 5.5. The discrepancy between the general curve and the pract-
ical curve turns out to be negligible for a first approximation of
the total variance estimate. The same conclusion holds for higher
degrees of segregation. FEquation 16 will be used hencéforth unless
otherwise indicated.

The equation for the degree of segregation (z) likewise
changes when practical units of measurement are used:

z =\/§7Kﬁ eeseees (Eq. 17)
where m = number of elemental units per unit of measurement.

Equation 17‘appéars/to Be useful because (z) can often be -
estimated from available data on the average composition and distri-
bution of a material consignment. Examples 4 and 5 (Section 5.3)
illustrate the application of Equation 17.

It is noted that'the product Am is dimensionless and,can

be estimated from any other unit for which the value of A is known.
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In view of the above tests, it can be concluded that the
variance of single samples drawn systematically or at random from
segregated materials consignments can be expressed as a function of
two constants which are determined by the composition of the mater-
ial, by!the degree of segregation of the consignment, and by the size
of the sample.

When single samples are combined, as is done in incremental
sampling, the total variance of a gross sample consisting of N in-
crements has a maximum value equal to 1/N times the total variance of
the single samples. Theoretically, this maximum value will be at-
tained only when the "patches" caused by segregation of the consign-
ment are themselves distributed at random. This condition may not
prevail in actual practice, and the total variance as formulated for
gross samples consisting of N increments,

s? = A/Nw + B/N,
is in fact an estimate of the upper limit of the gross sample vari-
ance. The estimate of the total variance obtained from this equat-
ion is therefore a safe estimate; the same equation can be written
as follows:

s? = A/W + B/N ceeeses (Eq. 18)
where W = Nw = the gross sample size.
This equation is the general expression of variability for gross
samples drawn from material consignments that are not perfect mix-
tures.

5.3 Materials of Unknown Composition

Sampling constants (A and B) and the degree of segregation
(z) for materials of unknown composition can be determined by means

of the duplicate sampling method, using small and large samples.

This test requires the collection of two series of single samples,
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from which an estimate of the total variance (s?) is found. For

the first series, relatively small samples (w,) are chosen to ensure
that the first term (A/w) in Equation 16 contribu%es more to the
total variance than the second term. The estimate (s?) therefore
largely reflects the random sampling component (A/w). The second
series of samples are of relatively large size (w,) and, as a
result, the variance found from this series is caused mainly by

the segregation component B. The following equations derived from
Equation 16 provide maximum estimates, by first-order approximation,

of sampling constants A and B.

]

A= w.w,+(s2 -~ s5)/(w,~ ﬁ,) ceeenes(BEq. 19)

B

It

st - Alw, sesens. (Eq. 20)

The error of reduction and analysis of individual samples has been .
ignored in these equations; the inflation caused in the estimateé
of A and B is generally of no consequence. The sample sizes (w,,
w,) should generally be the smallest and largest sizes practically
possible.v

The degree of segregation (z) is expressed by Equation 17.
In many materials that are mass-produced, the degree of segregation
(z) does not change too much although the pattern of distribution
may vary, and it is possible to estimate B without a test when A
and (z) are known.

| A cdndeﬁsed schedule of the calculations required for

determining sampling constants A and B and the degree of éegregat-

ion (z) is presented in Table 5.4.
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TABLE 5.4

of Unknown Composition

Sample .

No. Small Samples| Large Samples Calculations

1 P, pf P, p: Determine the variance

. . . . . for each series, (s?)

. . . . . and (s3), with the

. . . . equation:

y : * ' ’ s? = sum p? - (sum p)?/n

n -1

. . . . . Determine (A,B) from

. . . . . BEquations 19 and 20.

n . . . . Find (z) from Equation 17.
(see note)

sum sum p2 | sum sum pe NOTE: It is recommended
P P P2 P2 to collect a mini-
mum of 25 to 30
Average.
. . samples for each
size of :
series.

samples W, Wp :

Example 4

An untreated stove coal (1-1/2" x 2-3/8") was sampled by

collecting 35 increments with an average weight of 185 grams each,

and a second series of 35 increments with an average weight of 6,539

grams each. These samples were analyzed for ash content. The vari-

ance for the small samples (calculated from fractional ash content)

was sf = 0.0234; the variance for the large samples was s2 = 0.00219.

Sampling constants found from Equations 19 and 20 are:

A

4,04 for samples of 1 gram

0.00157
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" The weight of the groés sample and the number of increments can be
found for any_prejassigned accuracy from Equation 18:

s® = 4.04/W + 0.00157/N
For instance, a samplihg precision of 1% ash (corresponding with

- % = 0.005) would be obtained 19 times out of 20 (see

.96

Sect:on 1.6) when collecting 128 increments with a total weight of
320 kilograms. The average particle weight of the.coal was found
ffoﬁ a sieve analysis to be 29.6 grams. Consequently, the number of
particles per gram of sample was m = 1/29.6, and the degfee of seg-
regation, as calculated from Equation 17, was found to be z = 0.11.

Example 5

The results of a general election were used in the folléw—
ing duplicate sampling test:. the wvariance sf of the individual polit-
ical support for a certain party (X) was cbmpared with the variaﬁce
of the aVerage politigal vote for the same party in the ridings. The
average number of votes per riding was w, = 15,430, while w, = 1.
The variance sf was found to be 0.27; variance ss appeared to be
0.0045. The resulting variance formula is:

s? = 0.27/w + 0.0045/N

The number of investigators required for probing the politi-
cal opinion of the same population at some fufure date and the number
~of interviews to be made by each investigator can be estimated in ad- |
vance by using this equation. For instance, public opinion'regarding
the same éarty (X) could be determined to the nearest 1.5% by about
320 pollsters who would each interview 20 persons. The degree of seg-
regation (z) for this population, with regard to its political sup-
port for party (X), follows from Equation 17: form=1, z = 0.13.

The following example demonstrates the application of

Equations 16, 17 and 18 for materials that are characterized by a
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variate (X) but that do not consist of mixtures of identical units.

Example 6

Mixtures of particles of unequal size that are sampled
for size analysis can be ‘regarded as binomial mixtures by defining
variate (X) as a particle size interval within two given size limits.
The material consignment can then be regarded as consisting of two
fractions, (X) and (non-X), as before. The precision of the weight
percentage of particles (X) found from a sample is determined by
Equations 16 and 17. Estimates of the sampling constants A and B
can be found from a duplicate sampling test, as demonstrated pre-
viously, by collecting two series of samples, one series consist-
ing of relatively small samples and the second series of relatively
large samples.

The substance to be sampled might occur in the form of
broken aggregate, solids in suspension, or droplets in an emulsion.
When a material occurring in one of these forms is sampled, the
chance error as expresseq by the binomial variance is now caused
by the accidental interchange of units of differing size and depends
therefore on the size and relative abundance of the units.

When the particles are small and the number of particles
per unit of weight is large, the value of the sampling constant A
for samples of unit weight will generally be small compared to
that of sampling constant B. Since the effect of segregation pre-~
vails over random variation, the frequency distribution of (X)
will generally show an irregular form, depending upon the pattern
of segregation and the number of particles contained in each sample

used for the determination of (X).

Solid Aggregates

When the material consignment consists of a solid aggregate,
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random errors caused by the acéidental interchange of units (X) and
(non-X) are automatically precluded because no movement of théée
units relative to one another is possible. While this does not ex-
clude all random variations, most of the variations are caused by
segregation when the elemental units that are the carriers of the
variate are very small in comparison with the sample.

In materials of this type, the variability of (X) is often
of the binomial kind, as, for instance, when sampling ore in pléqe
for its metal content. The ore consists of a mixture of molecular
units (X) and other constituents (non-X). All variability originates
from this binomial mixture, but substantially in the form of seg-
regation. The sampling constant B for molecular units can be cal-
culated with the binomial equation or measured directly.

The practical value of the binomial theory lies in its
appiication to materials of known composition and distribution, as

will be demonstrated in the next section.

5.4 Materials of Known Composition and Distribution

When the main characteristics and distribution of a mater-
ial consignment are known, its sampling constants can often be de-
termined without a test. Sampling precision as expressed by the
total variance of sampling éan be determined from Equations 16, 17
and 18 for binomial variates when the average value of the variate

and the degree of segregation (z) of the consignment are known.

5.4.1 Binomial variates

Sampling constant A is calculated from the binomial equét-
ion, which takes on différent forms, depending upon the type of mat~-
erial and the wvariate. Sampling constant B is calculated from A,
the degreé of éegration (z)> and the ratio (m) wﬁich denotes the

number of units of the material contained in the unit of measurement
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used for expressing variate (X).

The "materials" are subdivided into three main classes (see
Table 5.5). The first class deals with materials consisting of dis-
crete units, each one of which bears a characteristic quality (X) or
(non-X). Variability in the values of samples drawn from a consign-
ment of such a material results from the fact that these elementary
units can move relative to one another; they can be either randomly
mixed or can cause a certain degree of segregation in the consign-
ment. Tt is generally easy to separate units (X) from units (non-X)
in these substances by physical or chemical methods. Most gases,
fluids, and mixtures of these with solids (amalgams, suspensions,
pastes) belong to this class. Applications of the method can be
found in the fields of microchemistry and assaying. Likewise, the
sampling of mass-produced items and similar "discrete populations”

also belongs in this first class.

The second class of substances includes materials in which
variability is caused, as before, by the free movement of elemental
units. In this case, however, the variate (X) is not restricted to
certain units, but is spread in varying degrees over all the element-
al units. Granular solids such as broken coal and ore, wheat and
many other materials fall into this class. The units can be separ-
ated into two fractions characterized by "high-X" and low-X"; the
variability caused by relative movement of the units of these two
fractions is reflected in the variatipns of the sample drawn from
such material.

A third class of materials is recognized where variability
is caused by uneven dispersion of the variate (X) throughout the con-
signment. Essentially, these materials differ from the ones above
only in that the elemental units (X) and (non-X), which may be real

or imaginary, cannot move relative to one another; this reduces ran-

dom variation. Many physical properties, such as the tensile strength



YTable 5.5-CALCULATION OF SAMPLING CONSTANTS FOR MATERIALS

BINOMIAL VARIATES ONLY

OF KNOWN _COMPOSITIQN AND DISTRISUTICN

Class of
Material

I

o

I

Materiol consisting aof separate items chorocterized by (X} ond (non-X} in gaseous,

liquid, or solid form, or in mixtures of some (suspensians, emulsions, pulps, or pastes).

Items (X) can be seporated fram items (non-X) by physico! or chemical methods.

items are countable

The number of items in the sample is too
large to be counted

Moterial consisting aof separate

aggregates of (X} and (non-X),

The aggregotes are charoclerized by
"high-X" and "low-X" ond are seporable.

Other maoterials:

1. Varigte (X) is dispersed without
being accumuifoted in separote
physicol units, :

2. (X) octurs in units that connot
be identified or seporoted.

Moterial-Group No.

()

: @

(3}

(@)

5)

Method of
evaluating
averoge grade

of consignment

The average grode is
determined by counting
the ‘number af items (X)
and (non-X) in the somple,
either directly or pftér

separating items (X)

from (non-X)

The averoge- grode is determined by separating the

somple by suitable physical and/or chemicaol methads into

two fractions, {X) ond (nan-X). Froctians ore measured by

¢ parameter, expressed in 0 suitoble unit of measurement.

The aoveroge grade is dete

rmined directly, by

suitoble chemical ond/or physicol analytical methaods.

Items (X} have same
specific grovity aos
items {non-X}.

Items (X) differ
significantly in
specific gravity fram
items {non-X).

. Units maoy hove different size

ond/or specific graovity.

Stondard specimen of ihe
materic! maoy be required

for specific tests.

Parameter used

variate (X)

A dimension of the items:
length {width, height,

Weight of fractions

Weight af fractions

A length [diameter, depth,

constonts

B=segregation voriance.

z=degree of segregation
(known).

B=os in (i)

z=o0s in (1.

B=gs in (i)
z=a0s in (1)

(e ]

B=as in (1.
z=as in {1,

for measuring . . fon” - time-
depth, diameter, thickness, | - (X) ond {non-X} “high-X" ond “low=X" exponsion, etc); time; toad {force), ar
average grode etc.); surfoce orea; volume - ather porameters used in the test.
. : . i
Unit of Unit of weight, volume, A unit' of weight, force, time,
. Number length, corec; surfoce area ‘A unit of weight A unit af weight length, surface oreo, suitoble’
measurement . . .
. per unit of weight, etc. far meosuring . the parometer.
X X .. Size analyses. . . !. Sompting of ores in place.
L Samollﬂ{ far pubtic 2. The fineness of .. Lightweight pieces in 1. Ash content {X) of o cansignment of .
opintan. hydroulic cement, oggregoate. L. broken coal. ’ 2. The obrosian of crushed gravel
.Exomples 2. Proportion of defectives by surfoce areo by weight loss.
. . (turbidimeter). _ X N .
(X} in the manufacturing R 2. Floct-sink analysis of o N . . o ‘b b
. Sompling of textiles 3 ting- i 3. Ductility of bitumen by
of moss-produced goods. 3, pling caal. . 2. Sompling- of sonds for heavy minerals. !
. far woal cantent. . elangotion.
1. {X) is separoble chemicolly.
A=random unit variance. A=ags in (1), A=os in (). A=as in (D o
. . . p =as in (2), fractionol weight. p=as5 in (2), fractional weight. B=as in {1).
p=overage frnf:honal p = gveroge pruporhonyl d = specific grovity of items on2= X-values of fractions (r.z). p =average _propor‘lionpl amaunt
number of items (X) omount of (X) fraction. (X) ar (non-X) . . N af chemico! conslituent.
known by Gpproximbtion - :f' . d,2= specific gravity of fractions (1.2}, d in 13
. w ximotion. - N = =os in {3).
Sampling ¥ ope m=overage number of ifems o :\fte’:\nogteerisae?cx fe gravity D=specific gravity of material. )
per unit of meosurement. D ~ in @ z =as in (1.
. mz=as in (2L m—OS‘l" 5 D=gos in (3.

2. (X) is net seporoble chemically.

B=as in (1)

s =standord devictian of (X} from
avoitobie dota.

80T
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of a wax or the abradability of a gravel, are in this category.
Distribution of such a variate over the consignment can be attributed
to segregation of elementary units characterized by either (X) or
(non-X) which cannot be separated and often cannot even be identified.

All three classes are seen as binomial populations; samples
collected from material consignments belonging to the third class
have a variance that is substantially determined by segregation.

Five groups of materials are recognized under the main
classifihations; theqe will now be described in more detail, (see
Table 5.5).

Group No. 1 deals with substances that occur in the form of
separate units, each characterized by either (X) or (non-X). A fea~
ture of this group of materials is that the samples are analyzed by
counting the individual units (X) and (non-X).

Groups No. 2 and No. 3 include materials consisting of
separate units which are too numerous to be counted individually and
which are consequently measured by some dimension of the items (length,
surface area, volume or weight, etc.) expressed in a suitable unit of
measurement (inch, square foot, gallon, pound, etc.).

Group No. 2 includes materials where the items character-
ized by variate (X) have the same specific gravity as items (non-X);
for example, granular materials sampled for size analysis.

Group No. 3 deals with materials consisting of items (X)
that differ significantly in specific gravity from items (non-X).
These are materials that are sampled for specific gravity analysis
(e.g. by float-sink analysis).

Groups No. 4 and No. 5 include materials in which the vari-
ate (X) is dispersed without being necessarily accumulated in separate

physical units of the material.
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Group No. 4 includes all materials consisting of separate
aggregates that are characterized by either a high percentage of vari-
ate (X) or a low percentage of variate (X), the two components being
separable.

Group No. 5 includes other materials where the variate x)
is either dispersed without being accumulated in separate physical
units or occurs in units that cannot be identified or separated.

The examples that follow may serve to illustrate the use of

Table 5.5:

Group 1
Example 7

A mass-produced item 1s known to contain about 4% defect-
ives. Therefore, p = 0.04 and sampling constant A = 0.0384. It
follows from Equation 14 that the effect of any segregation can be
eliminated by collecting and testing sample items one by onme (w' = 1).
The number (N) of items required for determining the percentage of
defectives to the nearest 1% nineteen times ouf of twenty is found
from

N = A/shy
where ng =(O.01/1.96)2= 26 x 10° represents the variance of the av-
erage expressed as a fraction of N (see Section l.6). Consequently,
N = 1476.

Example 8

The results of a general election are used_to determine the
number of investigators to be employed in a poll to survey changes in
political pépularity, and the number of persons to be interviewed by
each investigator. The party whose election returns were closest to.
50% was party X, its vote aﬁounﬁing_to 61% of the total returns; this
figure is subject.to the greatest wvariations and is used as a yardstick

for evaluating sampling precision of the poll. Consequently p = 0.61
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and the sampling constant A = 0.24. The degree of segregation for X
is known to be z = 0.13. It follows that the sampling constant
B = Az®= 0.0041l. From the many possible combinations of (w) and (N),
a value w = 16 is chosen as a reasonable figure for the number of
persons that can be interviewed by one investigator in one day.

It is found from Equation 18 that by employing 155 investi-

gators, the results of the poll will indicate political popularity
0.02)2=
1.96
(9;2& + 0.0041)/N. The total number of persons interviewed would
16

with a precision of 2%, nineteen out of twenty times, &= (

thus be: wN = 2480.

Group 2
Example 9

It is required, for operational control in an ore benefici-
ation plant, that a daily sample of minus 14 mesh sand be collected
for sieve analysié. The precision of the sieve curve is important,
especially with regard to the silt fraction which needs to be deter-
mined with a precision of 1% nineteen out of twenty times. The sand
is segregated (z = 0.20) and the average amount of silt (minus 200
mesh material) is 3%.

The accidental interchange of silt particles with saﬁd
particles during sampling is determined by the size 6f the particle.
Errors thus caused depend primarily upon tHe size and relative abund-
ance of the coarse particles; i.e., the sand fraétion. The weighted
average particle weight of the sand fraction (14 x 200 mesh) of this
ore is known to be 0.010 gram. Therefore, m = 100 when the sample
weight is expressed in grams. It follows that:
p(l-p)/m = 0.0003
B = Amz® = 0.0012.

A

Samples in this plant are collected automatically by incre-
ments weighing 30 grams each. The minimum required number of increments

found from Equation 18:
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Group 3
Example 10

A non-uniform lightweight aggregate is tested by float-sink
analysis for determining the percentage of lightweight pieces. The
material is known to contain approximately 107% by weight bf lightweight
pieces floating on bromotrichloromethane (sp. gr. = 2.00); the average
specific gravity of the floats is d = 1.6; the average specific grav-
ity of the entire aggregate is D = 2,3, and the degree of segregation
is known to be z = 0.3. The size of the lightweight aggregate is minus
1-1/2 inch; the weighted average particle weight is 15 grams; and hence,
m = 1/15 = 0.067. The sampling constants A = 0.934 and B = 0.0056 are
found from the equations given in Table 5.5 under Group No. 3. Incre-
ments are collected by an automatic sample. cutter, each cut weighing
approximately 400 grams. The minimum number of increments required
to attain a sample precision of 1% is found from Equation 18:

N = 303,
The weighted avérage particle weight can be determined from a sieve

analysis, using the following equation:

i = £k%q/Zq,

weighted average particle volume, cu. cm.,

where V

q = weight of individual size fraction, and

k

central value of individual size fraction, cm.

Group 4
| Example 11
A minus 1-1/2 inch minerun slack coal having an average ash
conteﬁt of about 30% is sampled for ash by an automatic sampler col-
lecting increments of 5 lb. This coal is known‘to coﬁtaip approximate-~
ly 64% (p = 0.64) floats at 1.60 sp. gr. with 5% ash (a, = 0.05), and
36% sinks with approximately 80% ash (a, = 0.80). The specific gravi-

ties of these two fractions are known to be d,= 1.30; d, = 2.35; the
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overall specific gravity D = 1.60.

The weighted average particle weight of this coal is 5.26
grams. Because the weight of sample is expressed in pounds (1 1b. =
454 grams), the ratio m = 454/5.26 = 86. The degree of segregation
of the mine-run slack is known to be z = 0.13. From this the sampling

constants (see Table 5.5, Group 4) are:

L

0.00180
0.002616

A
B

!

The minimum number of increments required to determine the ash con-
tent with a precision of 1% ash, nineteen out of twenty times, is

N = 115. Gross sample weight is therefore 575 pounds.

Group 5

Materials in this group occur as a solid or fluid mass in
which the variate (X) is either dispersed without being accumulated
in separate physical units, or occurs in units that cannot be identi-
fied or separated and must be measured in some indirect manner.

In these circumstances there can be no accidental inter-
change of units (X) and (non-X) during sample collection except at
the molecular level as in the sampling of fluids. Therefore, while
sampling constant A may have a distinct value for molecular units or
similar very small aggregates, its value for any practical unit of
measurement becomes negligibly small as the ratio (m) approaches in-
finity. While the binomial distribution is inoperative with regard
to chance variations that occur during sample collection, it is still
the prime cause of all segregation.

For materials in this group where the variate (X) is a
constituent that can be extracted by chemical means, sampling con-
stant A can generally be calculated for molecular units and constant
B can be estimated as before from the average composition of the mat-

erial and its degree of segregation (z).
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For other materials in this group, where (X) does not refer
directly to units that can be determined or separated by chemical ex-
traction (such as the compressive strength of briquets, the ductility
of bitumen, etc.), sampling constant B can only be determined from
available variance data.

Example 12

The sampling of ore in place will be used as an example to
illustrate use of the equations given in Table 5.5 under Group 5.

Channel samples are collected from a zinc vein containing
10% metallic zinc in the form of smithsonite (ZnCO;); the degree of
segregation of the metal is known to be z = 0.20. Since the zinc
occu?s in the form of the carbonate, it follows that the proportional
amount of this constituent is p = 0.20; the specific gravity of smith-
sonite is d = 4.4; the average specific gravity of the ore is D = 2.8.
Sampling constant B,

B = p(l - p)-dz®/p = 0,010,
and the total sample wvariance:

s? = 0.010/N.
This variance is independent of sample weight. The number of increments
required to attain a sampling precision of 1% zinc is found to be:

N = 384.

5.4.2 Non~-binomial variates

In actual sampling practice, many instances are found where
the variate has a non~binomial parent diétribution. For example, in
sampling for the number of defectives, the variate has a parent dis-
tribution of the Poisson type. In many other cases the parent dis-
tribution is a normal curve although frequency curves of irregular
shape are encountered as well.

While the parent frequency curves of variates may differ,
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they have one property in common: the difference between the true
value of any sample and the true mean of the material lot from which
a sample originates can be -expressed as the algebraic sum of two devi-
ations, one caused by random variation, the other by segregation. The
usefulness of this distinction lies in the fact that it applies to any
variate and to any material.

The law of propagation of errors applies (see derivation
in Appendix A) provided that these two individual deviations are in-
dependent of each other for any sample or increment. It is imposs-
ible to prove, by mathematical analysis, the correctness of this
assumption for all materials and all variates. From tests on the
sampling board and results of field trials, however, it can be under-
stood intuitively that the law of propagation of-errors has a general
application here, meaning that Equationsl9 and 20 apply, independent-
1y of the type of frequency distribution of the variate (X). It
may be noted, also, that in cases where the mean value and the stand-
ard deviation of a variate.are related, it is often possible to
transform the variate by substitution of a variate whose mean (M)
and standard deviation (s) are substantially independent of one an-

other.
Generally, if (s) is even approximately a function of the

mean (M) of (X), the transformations given below are appropriate for

stabilizing (s).

When relationship Use (s) calculated
s = £ (M): from:
(s) proportional to M° Reciprocals of ob-
servations
(s) proportional to M | Logarithms of ob-
servations

(s) proportional toJﬁ' Square roots of ob-
servations
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Such transformation variates can be used in extreme cases

where the above conclusions would not apply.
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6. SELECTED TECHNTIQUES

The simple techniques presented in this section will find
application in a wide variety of problems. Some will be especially

useful for the preliminary organization and evaluation of data.

6.1 Rules for Rounding

To minimize errors which might result from rounding off

of data in calculations:

1. The rounding interval for a series of observations should be

no more than 0.6 time the standard deviation of a single observ-

ation.

2. When rounding figures that end with a 5, round to the nearest

even number.

Examples:
1.385 veve. Tound off to eeees 1.38

1.475 ove. round Off £0 weooo 1.48

When two or more decimals are to be eliminated, always round off in

a single step.

3. When dealing with several series each containing (n) observ-

ations, data are rounded off according to the average range (W) of
each series as shown in Table 6.1 below. The average range (W) is
the average difference between the highest and lowest value of the

data.
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TABLE 6.1
No. of observations Minimum no. of Round off to a
per series series | maximum interval
2 5 . - 0.6 w
3 3 0.4 w
4 2 0.3 w
5 =-10 1 0.2 w

6.2 FEstimating Missing Data

If it has been found necessary in the course of an experi-
ment to discard observations that were judged to be unreliable, or if
some observationsvare simply missing, the set of data can be completed
by estimating the miséing values. For this purpose, the set can be
regarded as consisting of rows and columns of data. As will be illus-
trated, blocks or replicates are re-arranged to form sub~rows (or sub-
columns) and the sums are then determined in order to estimate the miss-

ing value or values.

6;2.1 One observation missing

Estimation of a missing value Xpp Proceeds from the following:

CR

The residual sum of.squares for XAp _ Al
a complete set with no missing B
data is, , C D
T= a- (B+7)
p' Q T M'
or,
e [Xz_Mz]'_[P2+<f+T2 - M2 + A% + B® + D2- M2

R CR c CR

42 - P2 +QP+ T2 . A% + B + D%+
R C CR
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The condition 7 = minimum is fulfilled when
or  _
= 0.
O XAP
0 = Xpp - P/R - A/C + M/CR c « o . . (Eq. 21)

Substituting: A' = A - Xpp, P' = P-Xpp and M' = M - X,p in

Equation 21:

- AR+ P'C - M e« « « o (Eq. 22)
(C-1) = (R-1)

XAP

Note: There is no preference regarding rows or columns, for arrang-
ing the data, i.e. replicates may be either placed in the col-

umns and tests in the rows, or vice versa.

Example:
Briquet strength for two types of asphalt (K,k) and for two
methods of application (emulsifier m and atomizer M).

Arranging the data as shown in the table below, the missing

value is found from Equation 22:

_ (406 x 2) + (153 x 4) - 964 - 153

Xap = 153
AP (G-1) - (2-1)
C
M Km kM km - Sum
3]
/119159 | 108 | 153 | 138 558
Lk
§' 2 151 | 106 ? 149 406
Sum | 310 | 214 | 153 | 287 964

After filling in the missing value, the data are analyzed in
the normal way, but with one exception, namely, the number of degrees

of freedom for the residual variance Vy is one less than for the
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normal case, owing to the fact that one value has been estimated,

thereby reducing the number of independent observations by one.

6.2.2 Two observations missing

a) Missing observations in different rows  and different columns:

XAP = A'R + P'C - M' - XpT. XAP Al
(C-1) R -1)
B
XpT = D'R+ T'C - M - Xap_ Xpr || D'
(c - 1) R -1)
Pl Q Tl Ml
giving 2 equations with 2 unknowns.

In the analysis of variance, subtract 2 extra degrees of freedom

for calculating V.

b) Missing values in same row:

XAP = A'R-+ P'C -‘ M' -+ XAT (R"l) XAP XAT A'
(C-1) - R-1)
AR + T'C - M' + X R-1 D
X = AP (R-1)
(C - ]‘) * (R - ]-) Pl Q T' Ml

In the analysis of variance, subtract 2 extra degrees of freedom as

in a) for calculating V.

c) Missing values in same column:

-XAP _ AR +P'C - M' + Xpp (C-1) XAP 1 A

" (C-1) « (R - n , B

, | XDp D'

Xpp = D'R + P'C - M' + Xpp (c-1) ‘;j Q T '
' (C-1)* R-1)

In the analysis of variance, subtract 2 extra degrees of freedom for

calculating V..
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Formulas for more than 2 missing values can be found in the
same way by partial differentiation of the formula for (1) and sub-
stitution of A' = A - Xpp, etc. For calculating V, in the analysis
of variance, subtract 1 extra degree of freedom for each missing val-

ue that has been estimated.

6.2.3 Correction of sum of squares between variates

Reduction of the degrees of freedom due to missing data in-
flates the sum of squares between variates. Supposing the variates

are classified in columns, it follows generally, that,

Aﬁ:.g..:__.]:..o (XAP -_A_:_—l)z +(XDT ___:D_'_-].)z""' oooe] Py
C

C C

and the corrected sum of squares between variates,
..
B= B-ABQ

When variates are classified in rows instead of columns,

Ay=R- 1 -[(XAP - p' - 1)2 + Kpp -_T' - 1)2 + } .
R R R

6.3 Checking for "Tramp'" Values

In frequency distributions, a "tramp" value is one whose
deviation (x4) from the mean (E) is greater than can be attributed to
chance variation. It is also therefore, a biased value.

The suspected value (observation) can be tested to determine
the probability of bias in terms of the standard deviation (s) and the

Normal Distribution as shown in the example given below.

Example:
In the set of data shown in Table 6.2 and Fig. 6.1, observ-

ation ps; appears to be a "tramp". This value will be checked for bias:

2 2
&2 o Zp; - Gpi) /n _ 8.5

n -1

2.92
= 4.0

77}
Il

ol
!
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where
n = total number of observations,
s = standard deviation, in class units,
pi = individual observation, and
P =

arithmetic mean of observations.

Deviation of the observation p, from the mean (P),

x4 = (ps - P) =5 =1.72s.

TABLE 6.2
Observation 2
No. Pi Pi
1 2 4
2 3 9
3 4 16
4 9 81
5 2 4
Zp; = 20 |Zpf = 114

Fig. 6.1
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From a Normal Distribution table it is seen that the
chances of finding a random deviation of x,= 1.72s are 4.27%, or
less than 1 chance in 20 when the number of observations is very
large.

The estimate of (s) in this case is based on only five ob-
servations, however, and the fiducial limit (a) with respect to the
true (unknown) mean value P should therefore be corrected in accord-
ance with the t-test for normal distributions (a = t*s). The t-table
for degrees of freedom (d.f) =o©© shows that at the 5% level, a = 1.96s,
which is identical to the Normal Distribution. TFor d.f. = 4, we find
a = 2.78s at the 5% level; a = 2.13s at the 10% level; and a = l.42s
at the 25% level. Consequently, the level here is not 4.277% but ap-
proximately 19% or about 1 in 5. While p, cannot be rejected on this
basis, it must be remembered that it strongly influences the estimate
of (s) itself.

The above calculation is therefore repeated for 4 observ-
ations excluding p,, and we find:

x4 = 6.53s'
This difference indicates‘a systematic bias at a level of less than 1%,
and on this basis, p, should be eliminated. The corrected parameters

(see also Fig. 6.2) are:

n' =4

P' = 2.75

s' = 0.957

x4 = 6.53s'
= 625

F===n

,__.._______-__




6.4 Randomness of an Oscillatory Series
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The following table can be used to test whether the distri-

bution of (m) items A and (n) items B in a series of (m + n) items is

random or non-random at the 5% level.

TABLE 6.3 - Value of 2

Minimum number of groups ~ 5% level

16

200 3141516171819 1010 11|12 12113} 13|14} 1415|1516
19 11 11 1! 1" 1" 1 17 9 11 1"t 11 1" 11 17 17 . 1Y 14 1t
18 " 11 " 1" " 1" 12} 17 1" 1! 1" 1" 12 11 13 11 1"t '
17 1" 11 11" 13 " 1" 8 11 1" 10 11 11 1" 12 11) 13
16 1 n 1" " " 7 fn 1" 9 " " 1" 1 1] 1 n
15 1 n 1 oo 1] " " n 1 10 " I]_ "
14 " 11 ". 1 6 1 11 8 11 9 11t 10 1t
13 11 " 1" 5 n 1" 7 1 " " 1" 1"
[43]
&
:§ 12 1" n 1" 11) 1" n 11 134 8 1" 9
Yoy 11 11 i3} 4 11 n 6 13 7 11 8
? This table is sym-
g 10 1" 1" 1" " 1" 11 1! 11 7 metrical; (n) and (m)
H " w | " " can be read on either
80 9 3 > 6 s¢a1e. Use the verti-
S| gl nl ol wla|nls]w cal scale for the larg-
er number.
7 2 1" " 1" n 11}
6 " n 11] " 4
5 1" " 3 ”
4 11 2 n
3 " 1"
2 1"
213|451 6(718]9 (10 (11 |12 |13 |14 |15 17 |18 |19 |20

Smaller no. of items
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The test applies to a series of numbers in which homo-
geneous groups having a property (A) alternate with homogeneous
groups identifiable by characteristic (B). TFor instance, the series
AA BBB A BB AAAA contains g = 5 homogeneous groups in a total of
m =7 items (A), and n = 5 times (B). The distribution of A and B
over the series is random at the 5% level because the number of homo-
geneous groups found (g = 5) exceeds the required minimum of 4 shown
in the g-table.
Example 1

A feeding test on calves is carried out using two different
types of feed (A,B). Eight calves are tested for each type. When the
average daily weight-increases for all calves are arranged in ascend-
ing order, it is found that there are 4 homogeneous groups of feed
types A and B. Since the minimum number of groups for m = n = 8 is
g = 6, this indicates a non-random distribution. It is thus concluded
that eilther the two types of feed do not have the same effect, or the
calf groups are not identical.

Note: This test gives a quick indication only; further study, e.g.

by analysis of variance,is required to evaluate the data more fully.

Example 2

A regression curve is drawn through 29 points. There are
14 points (A) above the line and 15 points (B) beneath the line,
distributed in 9 homogeneous groups. According to the g-table at
(15,14), there should be a= least 1l homogeneous groups; distribut-
ion of the points is therefore not random. The regression curve

does not fit the data sufficiently well for wvalues of g<11l.

+6+4.1 The randomness of an oscillatory time series may be tested by

ascertaining the number of turning points. In a random series of n

terms, this number has a mean wvalue of
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e = 2/3 (n - 2)

and a variance

si = (l6n ~29)/90 .

A member Uy is said to be a "peak" if
(Ueoy) <Ue>(Ug i),
and a "trough" if

(Ue_ )2 U <Up ) ..

In either case it is a "turning point". The results of the above 2
formulas are independent of the parent distribution. The interval be-
tween turning points is called a '"phase" (1/2 wave length). For large

(n), the average number of points per unit interval or phase is 2/3

and the average phase is thereforé 1.5 turning points. Hence, the av-

erage distance between peaks (i.e. the wave length) is 3 turning

points, which is what we expect to find in a random series.

E§29E12 For n = 48 terms;
Eépected g = 2/3 (48-2) = 30.673 Observed ng = 14.
st = 8.21;  sp = 2.866.

Since the difference between expected and observed mean values
ng = 16.67 >5 s¢, distribution of the terms is non~-random, i.e., the

time series shows a trend.

Note: Borderline cases cannot be judged without repeating the ex-
periment‘énd applying the %? test. TIn this case the x° test is used

as follows:
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e non-n Total
Observed 14 34 48
Expected 30.67 17.33 48
Differencefl~16.67 16.67 0

2 (16.67) , (16.67)° _ y5.;
30.67 17.33

For d.f. = 1, conclusion is that the oscillations are not random, in-

dicating segregation.

6.5 Estimating Sampling Bias or Apalytical Bias

A simple test can be used for detecting bias in a series of
duplicate observations obtained by some method of sampling or analysis.
When a sampling device is to be tested, analysis is carried out on
duplicate samples collected from different materials, using the device.
For instance, the significance of bias of a sample splitter can be
found by collecting one duplicate from the "save" side of the splitter,
and the second duplicate from the "reject" side, repeating the oper-
ation (n) times. To test an analytical method, one duplicate obtained
by the method may be compared to a second duplicate obtained by some
standard method, or to the known true value or, if the bias of an in-
dividual analyst is in question, to the average of a large number of
observations from different analysts.

Using the results calculated as indicated in Table 6.4,

the F-test is applied to check for bias, as follows:

Mean Square between columns - (n - 12A2 .
Residual Mean Square ng - A°
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TABLE 6.4 -

Obs. | Duplicates (x; - %5) (x, - x2)2
No. %, X

1 || 20.13 | 20.03 0.10 0.0100

2 || 20.39 | 20.07 0.32 0.1024

n 20.10 | 20.05 0.05 0.0025
Sum A B

| Mean X, X, |

The F-table is entered at d.f. = 1 and d.f. = n-1 respect-
ively.

The actual bias value for sampling devices is found from:
Bias = (X,- X,)+(1 - ¢),

where ¢ = cutter ratio. The term "cutter" refers to a sampling de~

vice (usually an automatic sampler), where a receptacle or cutter

selects a small portion from the main flow of the material. 'The ratio

between the sizé df the sample secured by the cutter and the size of

the entire material lot that was sampled is called the "cufter ratio'.
| .When two analytical methods are compared, the actual bias

value is found from:
Bias = (%, ~ X,)/2.

6.5.1 Precision of a biased sample or biased method of analysis

Précision, expressed as the standard deviation of the dif-

ference between duplicates, can be formulated as the maximum permissible
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difference (P = 5%) between duplicates.

(X, = X2) pax = 2V(B - A2/n)/(n - 1)

Note: For a very large number of duplicate observations, the coeffic-
ient ahead of the root sign is 1.96 instead of 2; for a smaller number
of duplicate observations, the coefficient increases slightly (see

t-table).

6.6 Construction of the Normal Distribution Curve

This procedure is used for determining the most probable
parent distribution curve (Normal Distribution) for a set of (n)
observations, whose mean (P) and standard deviation (s) are known.
The method is particularly useful for a large number of observations.
1. Classify the (n) observations into 8 - 12 classes of equal
interval and draw a frequency histogram.
2. Calculate the standard deviation (s) from the observations and
express it in class-units (the class.interval of the histogram
is used as the unit); e. g. when the standard deviation is 2%

0.4,

1l

and the class intervals are 5%, then s, = 2/5

3. Calculate the mode (top of curve) y, from

Yo = n/(scy/27) = 0.3989 n/sc

4. Using factors in Table 6.5, calculate ordinates y for five
positive and five negative values of x, where x is the dis-
tance along the abscissa taken from the mean (P). The most
probable form of the normal curve for the observations can

now be drawn through the points derived from the table.
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TABLE 6.5

Abicissa Ordinate

= -X =7,
0 Yo

" 0.58¢ 0;8825370

Se 0.6065y,

1.58, 0.3248y,

2s¢ 0.1353y0

3s¢ 0.011ly,

Comparison of the curve with the histogram may show up dis-
crepancies between the observed frequencies and the theoretical fre-
quencies for the various classes. Large discrepancies indicate sig-
nificant departufes from the normal curve. This can be checked using

the t-test and/or the x? test.

Example

Given, n = 85 observations of the moisture content of a
raw material, grouped in ciasses having an interval of 2% moisture,
the mean moisture content_(?) is 18.6%, and the standard deviatibn
(s) equals 1.3%. The shape of the nofmal frequency distribution cﬁrve
which best fits these data is determined in the following manner:

The standard deviation expressed in class-units (s,) is

S = s = L3 =p,65,
class interval 2
and the mode, yg, is found from: ,
0.3989 n _ 0.3989 x 85 = 57.9.

Vg = . 244
© Sc 0.65
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Using the values given in Table 6.5, the coordinates for the normal

curve are the following:

Abfpissa, Ordinate
(=P *tx)
X y
0 52.2
0.325 46.1
0,650 31.7
0.975 17.0
1.300 7.1
1.950 0.6

6.7 Calculation of Index Formula

A useful modification of the regression formula is that ob-
tained in an index formula: one which expresses relationship in com-
parative or relative terms. It becomes possible by this means to
gauge the percentage change that will take place in the value of a
variable by reason of change in values of the other variables.

It will be assumed that the regression formula is of the

form:

P=AX+BY +CZ +D

Procedure:

1. Substitute the average values, P, X, ¥, Z, for P, X,

Y, Z, in the regression formula; thus, P = AX + BY + CZ + D.

2. Multiply both sides of this equation by 190 :
P

100 = 100AX  100BY . 100CZ 4 100D
P P P P

3. Replace "100" in the first four terms by the index

percentage numbers Ip, Iy, Iy, Iy. The index formula thus reads:
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BY 1y+ £Z 1, + 100D
P P P

[ns]
bl
i
el
Ji=
=
>
+
[ws]

Note that the constant term has no index number but retains the value

100 .
P
The index formula is used as follows: if the average value
of variable X increases by 10%, then the index Iy increases by 10
points as well, and consequently the index value of the dependent
variable, Ip, will increase by %Z X 10%. The effect of a change in

the value of each of the independent variables (X,Y,Z) on the depend-

ent variable (P) can thus be read off directly from the index formula.

6.8 Law of the Propagation of Errors

When a relationship between two or more variables (X,Y,Z)
can be expressed mathematically 7Z = f(x,y), and estimates of the
variances of the independent variables (X,Y) are available, the vari-

ance of the dependent variable (Z) is found from:

(8505 = (35) o+ (35S
Example 1: A rectangular piece of 1and having sides X and Y has been
measured with a noticeable error. The error in the surface area of the
. land z = xy will be:

2

= 22 2.2
Sy = ¥y sg + X5

y

This is depicted in the sketch, where'ysx and XSy represent the areas
of two strips alongside the piece of land. The small square, sy Sy,
in the upper right hand corner is ignored, it being of a lower order

of magnltude.

Fig. 6.3
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Example 2: The formula for the variance of a mean is found by apply-

ing the Law of Propagation of Errors as follows:

P =2Pi/n = P+t Pz *+ eeeee Pn

n
2 2 2
szp =(-1]r_T) S? + (;11-) ss + e (-}1—) s%_
where 8, = S, = 85 = sos 8, = S.
Therefore s; = f?.

Example 3: The variance of the difference between two variates equals

the sum of the variancesof the individual variates:
Z=X-Y

It follows directly from the formula for the propagation of errors

that
s% = si + s;.

The Law of Propagation of Errors applies generally to any
relationship, provided that the variables X, Y, ..... are substantially
independent of one another.

A further application of the Law of Propagation of Errors

is illustrated in Appendix A.
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GLOSSARY OF TERMS

Synonymous or related terms used in the text of the definitions
are underscored. Terms that are defined elsewhere in this Gloss-
ary are spatiated.

accuracy, a term generally used to indicate the closeness of agree-
ment between an experimental result and the t r u e
value; it is affected by chance errors
as well as by b i a s . The term accuracy is not used
specifically as a measure of variability; see pr e c i s~
ion. :

attribute, a quality of an item or component part that is either
affirmed or denied (e.g. a machine part is either accepted,

or rejected as defective).

average value, s. mean value.

bias, s. systematic error ; significant
b ia s.

biased sample, a s amp l e whose composition is biased by con-
tamination with foreign matter or by disproportionate in-
clusion or exclusion of certain true components of the
shipment.

central value, the value half-way between the upper and lower limits
of a class interval; see frequency distrzri-
bution.

chance deviation, s. ¢ h anec'e error .

chance error, error associated with a probability dis-
tribution and whose algebraic sum tends to zero;
random error; random deviation; chance deviation.

component, s« random sampling wvariance,
segregation variance. o

composite sample, s. gross sample.

consignment, s. s hipment.
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constant, s. un i t random variance segreg-
ation variance.

degree of segregation, a numerical value on a scale ranging from zero,
indicating a perfect mixture, to one indicating a state of
complete segregation. See segregated, homo -
| geneous .

deviation, s. err or ; chanece error ; standard
ErTYror .

distribution, s. frequency distribution;
parent distribution; probabil -
ity distribution. '

duplicate samples, two samples collected from the same population.

error, 1) a mistake; 2) the difference between the observed or esti-
mated value and the me an value, or the true
value, or some other standard value; deviation. The
term deviation is commonly used when an involuntary erroxr
or discrepancy is indicated, while the term error infers
that the difference can be controlled to some degree by a
voluntary act.

error, s« c hanecee error ; standard error;
systematdic error .

error variance, the mean square of er ror s .

frequency distribution, graphical or tabular presentation of the
quantitative relationship between the relative abundance
of material units of a given size within a given range or
class interval of a v ar i at e (ordinate), and the
values of the variate representing the centr al
values of these classes, in numerical order (abscissa).

gross sample, a s amp 1l e consisting of a number of increm -
ent s ; composite sample.

homogeneous, 1) of the same nature or kind throughout; 2) the state
of being perfectly blended; zero d e g r e e o f seg -
regation.

increment, a sample taken by one operation of a sampling de-
vice, for the purpose of combining it with other increments
to forma gr os s sample . An increment is usually
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not analyzed separately; and if so, is preferably termed a
one-increment sample.
lot, s. shipment.

mean value, arithmetic average; average value.

parameter, 1) a quantity conveniently used for indirectly measuring a
variate or variable property of a material or any
other statistical population.
para (Gr.) = beside, near. '

parent distribution, frequency distributionof a variate
characteristic of a s tatistical populat -
i on of units having a specified size.

population, s. statistical population.

precision, 1) a term used to indicate the capability of a person, an
instrument or a method to obtain reproducible results;
2) a measure of the chance erTror as expressed
by the variance, the standard devi-
ation, or amultiple of the standard deviation (see
ASTM Recommended Practice E177, Parts 27 and 30 (1968).

probability distribution, fr e quency distribution
of any random variable, e.g.. a - chance ‘error.

random deviation, s. chance error.

random error, S. ¢ hance error .

random sampling, collecting samples at random.

random sampling variance, variance of the parent distribution of a
‘given sample; random wvariance component.

random, s. unit rTandom wvariance; random
variance component; random Samp-
ling wvariance.

random variance component, s. random sampling wvari-
anc e.

replicate samples, a series of more than two samples taken from the
"gsame population. '
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representative sample, a s amp 1l e without b i as ; true sample;
unbiased sample.

resample, 1) to sample again, for the purpose of replacing another
sample collected previously; 2) a s amp 1l e collected
for the purpose of replacing another sample.

sample, 1) a quantity of material taken from a larger quantity for
the purpose of estimating properties of the larger quantity;

2) to collect sample.

sampling constant A, s. un it random variance.

sampling constant B, s. segregation variamnce.

sampling, s. random sampling; random samp -
ling variance ; systematiec s amp -
1ing; total variance of sampling.

segregated, 1) not homo geneous; 2) the state of being im-
perfectly mixed.

segregation, degree of s egregation.

segregation variance, 1) variance due to segregation; 2) difference
between the total variance of sampling and the random samp-
ling variance; segregation variance component; sampling

constant B.

segregation variance component, s. segregation vari-=

andce.

shipment, 1) a commercial or negotiable quantity of material that is
transferred from seller to buyer; 2) a discrete quantity of
material that is presented for inspection and acceptance;
consignment; 3) a specified quantity of material from a com-
mon source; lot.

significant bias, b i a s that is of appreciable economic import-
ance to the concerned parties.

standard deviation, s. s tandarvrd error .

standard error, the root mean square of e r r o r s ; standard devi-

ation.

statistical collection, s. s tatistical populat-
ion.
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statistical population, 1) a collection of discrete items or units of
a given size characterized by a common variate; universe;
statistical collection; 2) all of the pieces, particles,
items, persons or other component parts that constitute the
whole content of that which is the subject of specific
interest separately and individually and about which know-
ledge is to be inferred from one or more samples drawn from
it.

subsample, 1) a s ample taken from another sample; 2) to col-
lect sample from another sample.

systematic error, e r r o r that is consistently positive, or con-
sistently negative; 2) error associated with a probability
distribution whose mean value does not tend to the true val-
ue; bias.

systematic sampling, collecting samples at regular intervals.

total variance of sampling, 1) the mean square of er r or s due

to sampling; 2) the sumof the random sampling

varjiance and the segregation vardi-=
ance. : ' ‘

true sample, s. representattive sample.
true value, 1) mean value .ofa var iate; 2) any
standard value concurrently accepted by joint parties as

a basis for negotiation.

unbiased sample, s. representatiwve sample.

unit random variance, variance of the parent distribution of a sample
of unit size (e.g., 1 item, 1 1b., 1 kg.) unit variance;
sampling constant A.

unit variance, s. uni t random variance.

.

universe, s. s tatistical population.

value, s. central value; me an value; true
value.

variance, the root mean square of e r r or s .

variance, s. er ror variamnce ; random sam?p -
ling variance; segregation vardi-
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anece; total variance o f s amp -
ling; unit random wvariance.

a quantity used to express and measure a variable property
of a material or any other s tatistical pop
ulation.
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LTIST OF IMPORTANT SYMBOLS
Total sum of squares of all items in Analysis of Variance

(ANOVA).

Sampling Constant, denoting the parent variance of a sample
of unit size; random unit variance.

Precision at a given probability level (e.g. P = 95%).

{

Precision of the error variance.
Sum of squares between columns of an array (ANOVA).

Sampling Constant, denoting the segregation variance of a
consignment.

Sum of squares between cells of an array (ANOVA).

Horizontal deviation of an observed value and corresponding
value on the regression curve.

Vertical deviation of an observed value and corresponding
value on the regression curve.

Degrees of freedom.

‘Interaction sum:of sduares (ANOVA).

Expected value of a quantity.

Ratlio of two variance estimates; test-ratio; F-ratio.

Test ratio of variance (subscripted) (ANQVA).
Degrees of freedom.
Sum of squares between rows of an array (ANOVA).

Average deviation in a series of observations; theoretical
minimum number of homogeneous groups required to ascertain

" randomness of the groups in an oscillatory series.

Number of- replicate observations.

Sum of M replicates.
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Ip>Ix... Index numbers relating to terms in a regression formula.

| Variation coefficient of the independent variable, X.

k Variation coefficient of the dependent variable, Y.

w True mean value of a population.

M.S. Mean square: = Sum of squares/d.f. = Variance.

m Average number of elemental units (items) per unit of
measurement.

N Residue or proportion of variation not explained by regression;

number of increments (items) in a gross sample.
n Frequency of observations in an interval of grouped observ-
ations; total number of observations; as exponent, refers to

the number of factors in Factorial testing.

ng Average number of "turning points" in an oscillatory time
series containing n terms.

P Arithmetic mean of a number of observations pj.

P Probability (significance) level.

Pi, Pz... Individual observations.

P Binomial probability.

x? Chi-square, a quantity representing the relative size of dif-

ferences between observed and theoretical frequencies (Chi-
square test).

T Probable error; correlation coefficient.
o True standard deviation of a population: = E(s).
S.S. Sum of squares.

Sp>Sge+s Sum of squarés of factor (subscripted) in Factorial Analysis.

S Sum of observations within a cell (ANOVA).

s Standard error (deviation) of a population based on a limited
number of observations.
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Standard deviation expressed in class-units.
Standard deviation of a standard error. -
Standard deviation of a variance.

Variance; mean square of errors (deviations); total sampling
variance.

Random unit variance; parent variance of a sample of unit
size.

Segregation variance component of total sampling variance.

_Variance of turning points in an oscillatory time series.

Error/residual sum of squares (ANOVA).

Absolute value of the ratio of a variate to its standard
error (t-test).

Random deviation (1) and deviation caused by segregation (2)
of a sample (i) from the true average value of the populat-

-ion (lot, consignment).

Member of an osciilatory time series.

Variance estimate; variate; attribute of a variate.
Mean square between columns of an array (ANOVA).
Interaction mean square of an array (ANOVA).

Mean squére between rows of an array (ANOVA).

Error/residual mean square of an array (ANOVA).

True variance estimate between columns of an array (ANOVA).

ATrue variance estimate of interaction in an array (ANOVA).

True variance estimate between rows of an array (ANOVA).

Size of grbss sample.

Range of values in a series of n observations; size of
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increments in sampling; fractional number of units in
binomial sampling.

Variate of a lot, consignment or any other population.

A missing value in an array, to be estimated. Subscripts
denote row and column coordinates.

Observed value of a variate.

Deviation of a value from the arithmetic mean (x = p - P).
Arithmetic mean of a series of observations.

Relative frequency of a wvariable.

Mode of frequency curve.

Quantity representing the degree of segregation of a
population attribute.
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APPENDIX A
LAW OF PROPAGATION OF ERRORS

Application to Random and Segregation Variations

The true value (x) of a sample (i) collected from a segregat~

ed population having a true average value (y) can be written as follows:

Xy = vyt * Eis

il

where ti, random deviation, and

deviation caused by segregation.

rt
1=
n N
]

The total deviation for any sample (i) is, therefore:
Xi~y=ti=i‘ti| 'i"tia.

For a large number of>samples, it follows that

i
—-™
Il

2 2
th + th T 2t,,.t,

2 2 2
t, = ty + th T 2ty t,,

The average:

2
Zty = Zt U+ Ztla

n R o

+ 22(1‘ti| tiZ ).
.

It follows, by first-order approximation, that:

s? = s? + sg,
where s? = random variance, and
~ sf = segregation variance.

The mean value of the double products is of a 1ower order of magnitude
owing to opposite signs, provided that there is no correlation between
ty, and tj,. .
' This derlvation applies to any type of parent distrlbution
and supports the general validity of Equation 16. '
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APPENDIX B
Significance of Correlation Coefficient (r) for
5% and 1% Points
(d.£. = N =~ nyg)

Number of Variables®, (nr) Number of Variables, (nr)

% d. f. d. f.
Po{nts () 2 3 4 5 (&) 2 3 4 5
5 997 | .999 | .999 | .999] 24 | .388| .470] .523] .562
1 1.000 | 1.000 | 1.000 | 1.000 696 | .565| .609| .642
5 950 [ .975 | <983 | -987| ,. | -3BL| <462 -514] .553
1 2 1 .990| .995| .997 | .998 487 .555| .600| .633
5 7878 [ 930 | 950 | 961 ,. | -374| .454| -506] -545
1 3 1 .959| .976| .983| .987 478 | .546| .590]| .624
5 , | “BIL| .88L| .912| 930 5; | -367 | -446| 498 .536
1 917 | .949 | .962| .970 .470| .538| .582| .615
5 o | 756 [ <836 | 874 <898 35 | 361 | .439] .490] .529
1 874 | 917 | .937| .949 .463| .530| .573| .606
5 707 | <795 | -839| .867| 5o | 355 -432| -482| .521
1 6 | .834| .s86| .911| .927 456 | .522| .565| .598
5 [ 666 [ 758 | 807 | -838| 39 | -349| -426| .476] .5I&
1 .798 | .855 | .885| .904 .649 | 514 | .558| .591
5 o | 632 [ 726 [ 777[ -BLL[ 55 [ .325[ .397[ .445| -482
1 .765 | .827 | .860| .882 418 | .481| .523| .556
5 o | -602 | 607 | 750 786 o[ -304| .373| .419] .455
1 .735 | .800 | .836| .861 .393 | 454 | .494] .526
5 o | 675 | -e7L| 726 .763[ .| .288| .353| .397| .432
1 .708 | .776 | .814| .840 .372 | .430| .470| .501
5 553 | L6488 | L7053 | 741 273 | .336| .379] .412
1 L 84| .753| .793) .s21| °° | .354| .410| .449| .479
5 532 | .627 | .683| .722 250 | .308| .348] .380
1 121 661 | .732 | ,773| .802{ 09 | .325| .377| .414| .442
5 514 | .608 | .664 | .703 232 .286| .324] .354
1 3 614 | .712| .755| .785| 79| .302| .351| .386| .413
5 T4 | 497 | <590 | 64G| .686] . | .217| .269| .304] .332
1 623 | .694 | .737| .768 .283 | .330| .362| .389
5 s | 482 | 574 | .630| .670| I .205[ .254| .288| .3L5
1 606 | .677 | .721| .752 .267 | .312| .343| .368
5 (468 | 550 | .615| .655[ I .195[ .241| .274] .300
1 16 | 500 | .662| .706| .738 L2546 | .2971 .327| .351
5 7 | 456 | 545 | .601 | .641| 1p5| +174| .216| .246] .269
1 575 | .647 | .691 | .724 228 | .266| .294] .316
5 L4k | .532 | .587 | .628 159 | .198| .225| .247
18 150
1 561 | .633 | .678| .710 .208 | .244| .270| .290
5 10 | 433 | -520 | .575| -615| 500 | -138| -172] .196| .215
1 549 | .620 | .665| .698 181 | 212 234 .253
5 50 | 423 | 509 | .563 | .604| 300 | -113| .141| .160] .176
1 .537 | .608 | .652| .685 1481 174 192 .208
5 o1 | 413 | 498 | .552| .592| 400 | -098| .122] .139] .153
1 526 | .596 | .641 | .674 .128| .151| .167] .180
5 ~55 | B0G | 488 | 542 | 582 500 | -088| 109 .124| -137
1 .515 | .585 | .630| .663 115 .135| .150] .162
5 53 | -396 | -479 | .532 | .572|1000| -062| .077| .088| .097
1 .505 | .574 | .619| .652 .08L| .096| .106] .115

* Tncludes both dependent and independent variables
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APPENDIX C

.Charts of Statistical Functions

Chart 1
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Chart 2
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Chart §

Significance Levels of t - Equal Tails
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Chart 4

Significance Levels of X2
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INDEX

A

Accuracy, 136
of error wvariance, 37, 38
of sampling, 104

Analysis, factorial, 39-49
Analysis of data, 5, 12-14, 23-32

Analysis of Variance, 9, 10, 22-38
for regression, 63
in factorial testing, 39-49

Attribute, 136

Average deviation, 20
and standard deviation, 21
and probable error, 21

B
Benson, M. A., 50
Bias, see Systematic error

Bias, detection of, 121-123
sampling, 127-129
analytical, 127-129

Binomial wvariance, 85

Binomial wvariates,
sampling of, 106-114

Boyard, G., 40

C
Central Eendency, 15
Central value, 136 |
Chance error, 13, 105, 136

Chi-square, 151 (chart)
test, 86, 93, 126, 127, 130

Coefficient,
of correlation, 34, 55, 56
regression, 52-54
variation, 54, 55, 71, 73

Consignment, 136

Constants,
regression, 53
sampling, 78, 91-116, 139

Correlation, 5, 11, 50-77
coefficient, 34, 55, 56
significance of, 148 (chart)

147 (table)
sources of error, 51-55
spurious, 2, 6, 34, 35, 50

Cowden, D. J., 11

Curve of best fit, 6, 50-55
b
Data,
analysis of, 5, 12-14, 23-32
grouping of, 13, 57, 58, 60-69
linearization of, 11, 50, 56 .

missing, 118-121
_rounding, 117, 118

Degree of segregation, 80, 82, 90,
91, 100-102, 108, 137

Degrees of freedom, 23-32
Design of experiments, 33, 35-37

Deviation, 137
average, 20
from curve of best fit, 51-55
standard, see Standard deviat-
ion.

Error, 137
average, 20
probable, 20 ,
random, 13, 105, 138
-standard, 20, 37, 38, 139
systematic, 13, 140
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Erroxr variance, 25, 32, 37, 38, I

137 Increment, 79, 137
Estimate of missing data, sampling by, 80, 81, 101-106
1 observation, 118-120
2 observations, 120, 121 Index formula, 131, 132
] Interaction, 3, 25, 40-49
Estimator, 5, 8 sum of squares, 29, 41, 44,
Experimental design, 33, 35-37 47, 48
defining the problem, 5-8 variance, 25, 30, 32, 33, 40, 49
premises, 2, 5, 8, 9

Experimental procedure, 5, 9, 10 L

Law of large numbers, 15, 18

F Iaw of propagation of errors, 115,

¥, 150 (chart) 132, 133, 146
F-test, 25, 26 Least squares, 51~55
Factorial analysis, 39-49 TLikelihood, calculation of, 11
Factorial design, 35-37 Line of best fit, 6, 50-55
Factors, levels in testing, 32, Linear regression, 56-73

33, 36, 39-46 Linearity,
Frequency distribution, 12-18, 137 in factorial testing, 36

bimodal, 16 transformations for, 11, 50, 56

compound, 16
histogram, 13, 15 M
non-normal, 14, 16
normal, 17-18
skew, 16 Mean,
arithmetic, 19, 20
G deviation, 20
true, 17-19

Main effects, 39-46

g, 124 (table)

Mean square, see Variance
Galton experiment, 14, 15 4 i

Mentzer, E. G., 11, 36
Gauss curve, see Normal curve

Minimum no. of observations
80 ?
Gross sample, , 137 37 (table), 38

i d ’ > 8: 0-
Grouping of data, 13, 57, > 60-69 Missing data, estimating, 118-121
1 observation, 118-120

H 2 observations, 120, 121

liistogram, 13, 15, 129, 130 Mode, 129



Model population, 83-85

Moroney, M. J., 11

N
Non-linear regreséion, 73-77

Normal curve, 12, l§-18
area under, 17,18
construction onf, 129-131
ordinates, 130 (table)
parameters, 17, 18, 20, 21

Null hypothesis, 22, 25

0

Obsexrvations, minimum no. of,
37 (table), 38

Qutliers, see Tramp values

P
Parameter, 8, 33, 35, 138

Parent distribution, 13, 79, 138

Pearson, K., 34
- Poisson distribution, 114

Population, 13, 15, 138
mean, 17-19
model, 83-85
parent, 13
standard deviation, 17
statistical, 140

- Precision, 138
~of error variance, 37, 38
of sampling, 78-82, 106

vProbability; calculation of, 11,
18 ‘

Probability distribution, 138
Probability levels, 25, 26

Probable error, 20, 21
and average deviation, 21

154..

and standard deviation, 21
Procedure, experimental, 9, 10

Procedure, statistical,
aim of, 17, 18 .
classification of, 11 (table)

Propagation of errors, law of,
115, 132, 133, 146

- R
r, 148 (chart)
r, 147 (table)
Random erroxr, 13, 105, 138

Random variance, 80, 81, 83,
138, 146
unit, 140

Randomness, test for, 124-127

Range, 117
and standard deviatiqn, 20

Ranking, 11, 61
Regression analysis, 6, 11, 50-77

Regression analysis worksheets,
linear correlation, 56-60
2 variables, 56, 57
3 variables, 57, 58
. .4 variables, 59, 60
non-linear correlation, 73~77
2nd degree, 74, 75
3rd degree, 76
4th degree, 77
simplified calculations, linear,
2 variables, 61-63, 68-73
3 variables, 63-67

Regression coefficient, 52-54

Replicates, 43-49, 138
minimum number, 37 (table)

Residual variation, 5, 9, 49

Rounding of data, 117, 118
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S

s, see Standard deviation

s?, see Variance

Sample, 139
biased, 136
duplicate, 137
gross, 80, 137
incremental, 10, 78
minimum size, 10, 78
replicate, 101, 138
representative, 139

Sampling, 11, 78-116
binomial, 81, 83-85
by increments, 80, 81, 101-106
constants, 78, 91-116, 139
duplicate, 101-105
error, 79-81
model population, 83, 85-92
of binomial wvariates, 106-114
of defectives, 114

of non-binomial variates, 114~116

precision, 78-82, 106

random, 80, 83, 138

segregation in, 85-96
stratified, 80

systematic, 82, 85, 92, 101,140
theory of, 80-83

variance, 79, 82, 83-85, 90, 140

Sampling constants, 78, 91-116, 139

calculation of, 108 (table)
practical units, 98-101

Scatter, measures of, 17-21
Scatter diagram, 50, 69, 72

Segregation, 79, 139
degree of, 80, 82, 90, 91, 100-
102, 108
error, 81
in sampling, 85-96
variance, 81, 83, 90, 91, 139,
146

Significance,
levels, 25, 26
tests of, 11, 25, 26

Spurious correlation, 2, 6, 34,
35, 50

Standard deviation, 17-20, 139
and average deviation, 21
and probable error, 21
calculation of, 18-20
from range, 20
of standard error, 37, 38
of variance, 37
true, 17, 18

Standard error, 20, 139, see also
Standard deviation

Statistical procedure,
aim of, 17, 18
classification of, 11 (table)

Subsample, 140

Sum of squares, calculation of,
between cells, 29
between columns, 24, 29
between rows, 24, 29
in regression, 61, 62, 65, 70
interaction, 29, 41, 44, 47,48
main effects, 41, 44, 46
residual, 24, 29, 49
total, 24, 29

Systematic error, 13, 140

T
t, 149 (chart)
t-test, 123
Tramp values, 13, 14, 121-123

transformations, linearizing, 11,
50, 56

Trend variance, 80, 81
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U
Unit random variancé, 140

Universe, 15, 140
parent, 13

\

Variance, 19, 49, 140

analysis of, 9, 10, 22-38

binomial, 85

error, 25, 32, 37, 38, 137

estimate of, 17-20 ‘

explanation of equations, 26

interaction, 25, 30, 32, 33,
40, 49

of difference, 133

of mean, 133

of product, 132

parent, 90, 91, 98

random, 80, 81, 83, 138, 146

residual, 25, 49

sampling, 79, 82, 83-85, 90,
140

segregation, 81, 83, 90, 91,
139, 146

Variate, 141

Variation coefficient, 54, 55,
71, 73 ' '

Visman, J., 78

Z

z, degree of segregation, 80




