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FOREWORD 

Most of the research investigations undertaken by scientists 

and engineers in the Mines Branch require the use of statistical analy-

sis to reach valid conclusions from necessarily limited observed or ex-

perimental data. This practical handbook, written especially for the 

technical research user of statistics, gathers in a simplified form 

many of the most useful and powerful statistical techniques, usually 

found in a number of different textbooks, generally written from the 

statistician's viewpoint. Although the senior author, Dr. Jan Visman, 

is an internationally recognized authority on sampling statistics, 

this Guide was prepared from the non-specialist viewpoint and should 

be very useful not only for the Mines Branch research scientists but 

also for other engineers and research workers in Canada and elsewhere. 

hn Convey, 

Director 

Ottawa, June 1970 
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AVANT-PROPOS 

Pour la plupart des recherches entreprises par les ingénieurs 

et scientifiques à la Direction des mines, l'emploi d'analyses statist-

iques est requis pour atteindre des conclusions valables à partir de 

données expérimentales ou observées nécessairement limitées. Ce manuel 

pratique, écrit spécialement pour le chercheur technique utilisant la 

statistique, rassemble sous une forme simplifiée de nombreuses tech-

niques statistiques parmi les plus utiles et puissantes, qu'on trouve 

ordinairement dans plusieurs livres différents, généralement écrits du 

point de vue du statisticien. Bien que le principal auteur, le Dr. Jan 

Visman, ait une réputation internationale en statistique d'échantillonnage, 

ce Guide a été préparé du point de vue du non-spécialiste, et devrait 

être tràs utile, non seulement aux chercheurs scientifiques de la Direct-

ion des mines, mais aussi à d'autres ingénieurs et chercheurs au Canada 

• et ailleurs. 

Directeur 

Ottawa, juin 1970 
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GUIDE TO ENGINEERING STATISTICS 

by 

J. Visman* and Jacqueline L. Picard** 

ABSTRACT 

This text provides guidelines for the selection and the 
application of statistical techniques that are commonly used in 
science and industry. 

The emphasis is on how to solve statistical problems and, 
by conveying the basic concepts of variability, to prepare the reader 
for further self-study of textbooks in his or her particular field. 

Instructions in the form of a Summary of Operations, pre-
sented in Section 1, are recommended to those readers for whom the 
application of statistical analysis is not a daily routine. A tabular 
listing of statistical problems and procedures provides a short-cut to 
the practical application of techniques. A general sampling theory 
for segregated populations is introduced, with condensed instructions 
that cover most of the variates. 

Definitions of terms and symbols are presented in an appendix 
preceding the alphabetic register of subjects. 

Mhny techniques in this guide can only be applied legitimate-
ly for calculating first-order estimates of a variance, a probability, 
a ratio, etc. For more critical situations where specific conditions - 
too complicated to be mentioned here - have to be satisfied, the read- 
er is well advised to obtain the assistance of a professional statistic-
ian. Between this high level of perfection and that of the "educated 
guess" there is scope for a guide to statistics which it is hoped this 
volume will provide for its readers. 

* Head and ** Technical Officer, Western Regional Laboratory, Metals 
Reduction and Energy Centre, Mines Branch, Department of Energy, 
Mines and Resources, Edmonton, Alberta. 
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Direction des mines 
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GUIDE Â LA STATISTIQUE TECHNOLOGIQUE 

par 

J. Visman* et Jacqueline L. Picard** 

RÉSUMÉ 

Ce texte a l'objet de servir de guide à la sélection et à 
la mise en oeuvre de techniques statistiques qui s'utilisent souvent 
dans les divers domaines des sciences et de l'industrie. 

Il s'agit ici surtout de souligner la manière par laquelle 
se résolvent les •problèmes statistiques. Par ailleurs, ce guide servira 
de préparatif h l'étude de la statistique dans le domaine particulier 
du lecteur en lui donnant des notions élémentaires de la variabilité. 

Aux lecteurs pour lesquels l'utilisation de l'analyse 
statistique n'est pas une pratique journalière, la méthode est 
présentée sous forme de mode opératoire. Un résumé de divers problèmes 
et de procédés statistiques en forme de tableau sert de raccourci pour 
l'emploi de ces techniques. Une théorie générale de l'échantillonnage 
pour les populations ségrégées est presentée avec un précis de la 
technique qui traite de la plupart des variates. La définition des 
termes et caract.hres se trouve dans un:appendice qui précède la table 
alphabétique des matières. 

Les techniques dont on parle ne. peuvent légitimement être 
utilisées que pour le Calcul d'estimations de premier ordre,. par 
exemple d'une variance, d'une probabilité, d'une proportion, etc. 
Lorsqu'il s'agit dé .situations plus difficiles oh nous devons satis-
faire h certaines conditions précises, trop compliquées pour être 
discutées ici, le lecteur devrait bien obtenirl'aide d'un statistic- 
ien. Entre ce niveau élevé de perfection et celui du jugement pratique, 
il y a de la place pour un guide h la statistique etc'est ce'que nous 
espérons avoir ici fourni au lecteur. 

* Chef et ** Agent technique, Lnboràtbire 'r6gional de"Youest,. Centxe - 
de l'éhergie et dé réduction des' métaux, DiréCtion des minesinistre 
de l'Energie, des Mines et des ResSburceS; Edmonton, Anérta. 
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I N T R 0 D U C T I 0 N

For the professional worker engaged in research, develop-

ment or investigational work, it is generally easy to recognize

certain natural phenomena or processes as statistical problems.

Experience shows, however, that the application of the large vari-

ety of statistical techniques and tests found in textbooks is com-

monly left to specialists.. In view of the present scarcity of

this high-priced skill, a large amount of statistical work is left

undone where the need for it is recognized, because the investi-

gator feels that he is inadequately trained to "think in proba-

bilities" and lacks the time for sufficient study. The primary

object of this Guide is to help bridge the gap. In the broad

sense, it aims to assist in interpreting certain phenomena en-

countered in engineering research and industrial production as

statistical problems, by first formulating the problem, then in-

vestigating it by experiment and, fin4lly, analyzing the data and

interpreting the results in a meaningful way.

As the need for interpretation of statistical data is

becoming more general with the proliferation of computers in in-

dustry, so is the need of those involved with industrial problems

for a guide in the application of engineering statistics.

The sequence of operations may be subdivided into five

steps, starting with the definition of the problem. This requires,

first of all, a detailed knowledge of the natural laws underlying

the process or phenomenon, including its actual and theoretical

behaviour, and secondly, a knowledge of the quantitative aspect,
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e. the magnitude of the factors involved and their ranges. The 

first 'part is basically of a non-statistical nature. It estab-

lishes the fundamental relationship and its scientific correctness 

or conformity to truth, and.is  primarily a qualitative  appraisal. 

The second part, on the other hand, is.concerned with experiment 

and i n d u C t , i o n • It provides estimates of the observed 

factors or phenomena and of their significance in relation to the. 

sum total of all the unobserved factors and chance variations 

that might occur.-. 

The important, point,  to remedber, here is that statistics 

. is a formal logic only, incapable of proving or disproving the 

truth. Its  value' 	entirely on the correctness or reality 

of the premises which lie at the root of the relationship that is 

being tested by statistical means. . 	. 

The most commonly made mistake is that statistical re-

lationships are taken at face value as representing the "facts", , 

whereas in reality there-might be no true relationship (spurious. 

correlation). For instance, a statistical relationship was found 

to exist between the number of storks flying over East Prussia 	. 

during a certain period and the number of babies born there during 

the same period. This.is obviously a spurious correlation, but"it 

might appear to a child .as fàctual confirmation of what it has 

accepted as the truth, namely, that storks bring,labies. Similar-

ly, various controversies (c. g., regarding fluoridation and the  

causes of lung cancer, etc.) could originate from a fallacious or 

incomplete set of assumptions which are mistakenly identified with 

the truth. , 	 . 

Statistics can be defined as the science of the collect-

ion and organization  of.  according to relative . 

frequency of occurrence as -a basis for drawing valid conclusions. 
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As such, it is a highly efficient tool for the analysis of those 

natural phenomena and industrial processes whose true natures are 

obscured or masked by large variations. 

The scholars of the Middle Ages provided the necessary 

foundation for the laws of nature in certain assumed theories and 

expressions of the Scriptures. However, they rarely if ever tested 

the results by experiment, as it was their maxim that "Reason is 

the Sovereign of Nature" and that, therefore, truth of the natural 

world as well as of the spiritual world must be derived from reason 

and authority. Their thinking was "Aristotelian", that is, essent-

ially philosophical and of a qualitative nature. Since the Renais-

sance, however, the need for the collection of facts by observation 

and experiment has been recognized, and this principle, which has 

been called the "Galilean" approach, forms the basis for modern ad-

vancement in science. 

Problems of a statistical nature involving a number of 

variables are often dealt with by non-statisticians in the con-

ventional way of studying the effect of one variable at a time 

while trying to keep the other variables constant. This method is 

not efficient, since it requires unnecessary repetition of tests 

and is limited in the sense that only operating variables can be 

studied. As a rule, also, behaviour observed under these conditions 

will differ from that when all variables are operating simultaneous-

ly, an effect due to interaction between the variables. 

The old method therefore has limited application, and 

any conclusions drawn are subject to the "ceteris paribus" pro-

viso ("all other things being equal"). With modern statistical 

methods, these restrictions are eliminated and a maximum amount 

of information can be obtained with a minimum amount of work. 

This Guide sets forth a procedure for the collection 



and interpretation of data. Detailed instructions are provided 

for solving the principal types of statistical problems encount-

ered in the field of engineering practice and research. The re-

quired sequence of operations is given in condensed form in Table 

1.1, where the statistical procedure has been subdivided into five 

steps. For most problems, each step will have to be considered 

to some degree. Even for simple problems where only one or two 

of the steps may be required, it is considered worthwhile to go 

through the entire procedure in order to see it in its proper per-

spective. 
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1. GENERAL PROCEDURE 

Table 1.1  - Summary of Operations  

1. Defining a statistical problem 

Analyze the actual and theoretical aspects of the problem and 

list the nature of variables involved. Formulate the physical 

or chemical relationship between the dependent and independent 

variables. 

2. Premises 

Assign the main independent variables. Choose the estimators 

for same. Estimate their relative magnitude and reputed range. 

Evaluate the residual variations (secondary factors and chance 

deviations, or errors, combined). 

3. Experimental procedure 

Design the testing technique. Determine the number of ob-

servations. Determine the size of the sample and number of 

increments. Collect the data. 

4. Analysis of data 

Make preliminary estimate of standard deviation from range. 

Round off the observations. Eliminate "tramp" values. Est-

imate missing data. Normalize the relationship by trans-

formation of variables. Apply analysis of variance and tests 

of significance. Choose significant factors for correlation 

and regression analysis. 

5. Correlation 

Choose the appropriate formula for the relationship between 

dependent and independent variables. Determine the re-

gression coefficients and constant. Find the correlation 

coefficient. 

1.1 Defining a Statistical Problem  

A statistical problem may be said to arise when data 

variations caused by factors other than those accounted for are 



too large to be ignored. For instance, the problem of providing 

quick eStimates of the heat value of a certain type of coal can be 

solved by using the experimental relationship between the heat 

value and the ash content.  •  This relationship is not exact, however, 

because the heat value depends not only upon the percentage of 

ash but also upon the percentage of moisture and combustible matter, 

and the composition of the latter. The efficacy of the experiment-

al formula will depend upon the precision that is required; 

When the B.t.u. figures estimated in this way are suffic-

iently precise, there remains but one statistical problem: a "curve-

of-best-fit" must be drawn through the points relating ash content 

(dry basis) and B.t.u. value, as found through analysis of a number 

of samples. 

In certain cases where it is necessary to know the pre-

cision of the estimated B.t.u. value as well,  •for instance when 

coal is sold on a B.t.u. basis with terms involving a penalty clause, 

the problem falls into three parts. First of all, the curve-of-best-

fit, or "regression curve", must be found. Since it cannot be drawn 

by eye accurately enough, its "most likely" location requires a cal-

culation known as regression analysts. Secondly, the precision 

of a single B.t.u. figure obtained from the curve must be calculated, 

and thirdly, a certain minimum number of samples must be collected 

from the consignment for ashing, in order to ensure a B.t.u. figure 

of predetermined precision. The foregoing concerns only the quanti-

tative aspect of the problem. The statistical treatment in itself 

does not necessarily prove whether the relationship between the two 

variables is real or spurious. 

In the above example there need be no doubt about the 

reality of the relationship. This is àot always so, however. In 

actual fact, the majority of statistical problems -require the ex-

perience and judgment of a professional worker in the field, in 

order to analyze the intrinsic relationship between the variables. 
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For instance, it is often found that within a certain range the 

compressive strength of coal briquets is inversely proportional to 

the surface moisture content of the coal entering the briquetting 

press. Yet, the actual cause of deterioration of the compressive 

strength of the finished briquet is neither the initial nor the in-

stantaneous moisture content of the briquet, but rather the porosity 

which results from the presence of moisture during formation of the 

briquet in the press. 

The above example illustrates the solution of a very im-

portant aspect of the problem, not by statistics, but simply by a 

detailed knowledge of the physical or chemical mechanisms and the 

environmental influences. The main factors governing the outcome 

of a process under investigation and the main sources of error in 

sampling and analysis should be known. Care in conducting the ex- 

periment, and awareness of the concomitant factors that might inter-

fere with the test, are of the essence. 

"Defining the problem" thus signifies the essentially 

qualitative evaluation of all the facts involved, based on a de-

tailed knowledge of the process or phenomenon. It is a major step, 

one that is indispensable to the operation that follows: establish-

ing the premises which lead up to the statistical treatment. 

Summary  - 

"Defining the problem" stands for the qualitative analysis 

of the physical and/or chemical relationships between the dependent 

and independent variables. This is the step which establishes the 

reality of the relationship. A functional expression of the relat-

ionship is often helpful: 

z = f(x,y, ...) 

where x, y, ... are the independent variables and z the dependent 

variable, i.e. the effect that is being studied. All the variables 

that could possibly affect z should be listed and their relation- 
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ship formulated in accordance with the physical or chemical laws that 

apply. 

1.2 Premises  

In this section, two steps of a quantitative nature are 

taken. Certain assumptions which will be made here regarding the 

problem will require subsequent verification. 

First, the independent variables are classified according 

to their expected importance and the most important assigned as the 

"main factors". The "residual factors" which remain should all be 

of approximately the same order of influence and should not include 

any that are of appreciably greater importance. Their estimated 

composite effect should be smaller than the effect of the smallest 

"main factor". 

Secondly, the "main factors" are measured in one way or 

another. If a factor cannot be measured directly, some quantity 

must be found which is closely related to it insome manner and which 

can be measured with ease and sufficient precision. For , instance, 

it is well known that the efficiency of a continuous blender depends 

not only upon the number of circulations of the material passing 

through it, but also upon the rate of feed and the volume of the 

blender. When determining the efficiency of the blender, the rate 

of feed and the volume can be measured directly, but the number of 

•  circulations made by the material is not so easily found. In this 

case,arelated, measurable quantity ("estimator" or 	 • 

"parameter") must be used. This introduces another as-

sumption, namely that the factor (number of circulations) and its 

parameter are related. In the example, the speed of the impeller  • 

used for circulating the material in the blender could be used as the 

parameter, even though the exact relationship may not be known. 
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Summary  - 

Assign the main factors and rank them in descending order 

of importance. 

Evaluate the combined effect of the residual factors and 

variations as accurately as possible from previous experience. If 

this remainder is seen to be larger than the smallest main factor, 

one or more of the residual factors will have to be classified as 

main factors for the experiments and analyses that will follow. 

Assign parameters for the main factors that cannot be measured 

directly. 

1.3 Experimental Procedure 

Verification of the above "Premises" is generally attained 

through preliminary testing. This means an additional series of op-

erations before the actual data are collected for the procedure 

called "Analysis of Variance". The preliminary test and the actual 

experiment are both considered to be part of the experimental pro-

cedure. 

Experimental procedure covers the range of tests from 

simple ones, such as determining the precision of a burette read-

ing, to complicated factorial tests for determining the optimum 

conditions of a metallurgical process, or for ascertaining the 

cause(s) of certain diseases. Where information is not available, 

either a test is performed or the data are obtained by direct ob-

servation of the process. For instance, in a comparison of the 

success rate of a new surgical method with that of the convention-

al one, results can only be gathered as they become available. The 

same applies to studies in the field of economics and other areas 

where experimentation may be impractical or physically impossible. 

In most cases, however, the experimenter is free, within certain 

limits, to conduct a true experiment. This raises the question of 
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how the test should be designed. 

To help answer this, a classification of statistical pro-

cedures is given in Table 1.2. Experimental procedure will gener-

ally consist of the following parts: 1) a preliminary test to veri-

fy the premises and to obtain estimates of the "variances" involved; 

2) an estimate of sample size and of the number of increments needed 

to obtain a pre-assigned accuracy for the individual observations; 

and 3) an estimate of the minimum number of observations required to 

attain a certain accuracy of the end result. 

For instance, if an experimenter wants to assess the qual-

itative relationship between the average length of Douglas-fir shoots 

and the average summer temperature, the experiment will be designed 

to provide data for a "regression analysis". It is assumed that 

measurements are made at various latitudes and altitudes across the 

country in order to introduce variation into the average summer 

temperature. 	' 

The question of how many fir shoots should be measured re-

quires a preliminary survey of the variability of fir-shoot length 

for a given latitude and altitude. This introduces a sampling prob-

lem. 

The above example illustrates that experimental proced-

ure for statistical problems'generally consists - of several elemen-

tal operations which are carried out one after the other in order' ' 

to ensure maximum efficiency in the  ultimate test. 

Summary - 

Design the experimental procedure by placing in chrono-

logical order the elemental operations needed to determine the 

number of observations and . to  calculate the,sizé of the sample and 

number of increMenta required to 'énsure'a pro -assigned acCuraCy'for 

each observation. Collect the data for the "Analysis or Varianée". 



reie_ 1.2 - Çt.,A,5sIFICATI_ON _OF _STATISTICAly  PRQÇEDUR 

SI PUTL IN E OF Et8__REOUIRED IN THE TREATMENT OF STATISTICAL PROBLEMS 

. 	 . 

I. Determine 	the 	type 	of 	problem 	or procedure 	under 	investigation. 	 Ir. Determine 	the 	ESTiMATOR, i.e. the 	"yardstick", 	Ill. Collect 	the 	observations. 	Calculote 	the 

	  to be 	used 	in 	measuring 	the 	item, 	property, 	STATiSTIC, i.e. the 	quantity 	used 	for 

Iype 	Of 	Problem 	 Typirspplications/Procedure 	 event 	or 	phenomenon. 	 expressing 	the 	result of the 	colculotion. 	Ref. 

— 

	

I 	or 2 
I 	item 	 Spearmon's 	Runk 	Correlation 	Coefficient 	(I) 

judges 

I.  RANI<  ING 	 Comporison of 	the 	taste, odour, colour, mental 	The  RANKING 	NUMBER given 	- 	or 
e 

Judging 	the 	order 	of 	pref erence 	or 	merit 	obiiity, 	or caber 	subjective 	qualities, of 	one or 	by 	the 	judge to 	qualify 	araaarrY 	
>I judge 	Coefficient 	of 	Concordanc 	 (2) 

 

ividuals, 	by 	one 	judge 	or 	the 	order of 	preference 	1 	 I 	judge more 	objects 	or 	ind 	 > 	i je, 
of 	on 	item 	or 	property. 	 Coefficient 	of 	Consistency 	 (3) only 

by 	several 	judges. 	 or 	merit. 	 or 
property 	>I 	judge 	Coefficient 	of 	Agreement 	 (4) 

Essentially 	for 	randomly 	dispersed 	variotes 	 The 	relative 	frequency of occurrence 	of 
2. CALCULATION 	OF 	PROBABILITIES 	 The 	ABSOLUTE 	FREQUENCY 	OF OCCURRENCE 	of the 	the event, from 	the 	population 	distribution 

(see olso under Type 	Tests 	of 	Significance). 	 (5), 
The 	expected 	rehative 	frequency 	of 	occurrence 	 event, and 	for 	binomial 	distributions, the 	ABSOLUTE 	

curve (normal, binomial, Poisson); 	the 
Expected 	number 	of defectives; coin, dice, and 	 GES 

number 	of 	permutations 	and 	combinations 
or 	non-occurrence 	of an 	event, property, etc. 	 NON -OCCURRENCE 	of the 	event 	or 	phenomenon. 	 " (binomial 	only). card 	gomes; randomness 	of oscillatory 	sertes. 

3. CALCULATION 	OF 	LIKELIHOOD: 	 Comparison 	of on observed 	frequency 	distribution 	The 	DIFFERENCE 	between 	the 	observed 	absoute 
with 	the 	expected 	frequency 	distribution, e.g. 	 Chi - square 	test; 	degree 	of 	freedom (d.f.); 

(5), 
The 	likelihood 	of occurrence 	or contingency 	the 	normal 	distribution, the 	binomial 	or 	frequency (0) of the 	occurrence 	of 	on 	event 	or 	probability 	level (P), 	 GES 

of 	events 	or 	phenomena. 	 Poisson 	distribution. 	 phenomenon. and 	the 	expected 	value 	(E). 

	

Voriate 	of 	limited 	 The 	probability 	of 	occurrence 	of 	c 	or 	<c 	 For 	(simple) rondom 	sampling: 

4. SAMPLING: 	 ronge. 	Coefficient 	Specification 	and 	prediction 	of 	quality. 	 items (X) 	in 	population 	of 	size 	(N) 	when 	
The 	minimum 	size 	of 	sample 	required 	to 

attain 	an 	accuracy (a) 	ot 	level 	P. 
Procedures 	for estimating of 	variation 	is 	Sampling 	for defectives; sampling 	heterogeneous 	sampling 	for 	attributes. 
a vanale (X)  of ° rrefe. ri°1  small. 	Little 	or 	no 	products 	for 	determination 	of 	physical 	or 	 For 	stratified 	(random) 	sampling: 
lot, with accuracy tot, 	 The 	mEAN 	and 	vaRIANCE 	of 	(X) 	when 	sampling 
preassigned or known in 	segregation 	(random 	chemical 	properties; testing 	randomness 	of 	 The 	variances 	within 	and between 	strata; 

for 	a 	continuous 	variate (X). 	 the 	total 	accuracy 	(a) ot level 	P. 
advance. 	Samples 	either 	dispersion 	of 	X). 	the 	distribution 	of (X) in space 	or 	in 	time; 	 (5), 
collected 	and 	measured 	  

individually 	(single 	Variote 	has large range. control 	
charts. 	

When 	the 	mean 	ri") and 	standard 	deviation (s) are 	For 	increment 	sampling  (using_gross 	sample 	GES 

sompleS), or c011eated by Large  coefficient of 	Random selection 	of samples should 	be 	adhered 
related 	s= f Di), use 	transformed 	voriate x'=fdx/f(x) 	The variance 	component 	due 	ta 	random 

"increments" from 	all over variation. 	Noticeable 	
to 	if possible - systematic 	sampling 	requires 	as 	estimotor 	to 	reduce or eliminate 	covarionce.  

the lot 	and combined into or 	high 	degree 	of 	 variation; the 	variance 	component 	caused 

	

( 	speciol 	precoutions 	in 	the 	evaluation 	of 	 Examples:  
one "gross sample" before segregation 	X 	is 

s 	proportional 	to 	2  - take 	reciprocals 	of 	x, 	by 	segregation 	and the 	variances of sample 
on 	analysis 	is mode. 	dispersed non-rondomly 	sompje 	data.  

s 	proportional 	to 	- 	- take 	logarithms 	of 	x, 	preparation 	and 	onal ysis; 	the 	total 
over the consignment- 

s 	proportional 	to e 	- take 	square 	roots 	of x. 

	

"spotty 	pattern"). 	 variance; the 	overoll 	accuracy 	ot 	level 	P. 

Outlying obServution (tramp), 
 1 	set 	Fiducial 	limit of m mean 	
1 - test 	(normal 	distribution 	only) 	 (5) 

1 	of data 	Ftclumal Irma of 	s 	or 51 	 GES 
5. TESTS 	OF 	SIGNIFICANCE: 	 This 	includes 	testing 	the 	statistical 	 Direct 	or 

set 	Difference 	bet een 2 mew» 	f -test 	(normal 	distribution 	only) 	 GES 
Testing 	the ossumption that 	the 	observed 	significance 	of one 	or 	more 	variable 	factors 	indirect 	'3"  able 	>1  — 	  

of data 	DIM 	belereen 	2 variances 	F -test, 	Z - test 	 (5) 
variations of a 	property 	or 	OhenOmenon 	ore 	that 	are 	expected to 	contribute 	to o phenomenorl Observation 	  

Analysis 	of 	variance 	methods 	(factoriol caused by  chance  (testing the 	Null 	Hypothesis), 	or 	event; to determine 	a 	physical , or chemical 	of 	th e Type : 	variates 	are 	classifi ed 
>1 	 16), 	' 

(See 	olso 	under 	Type 	2:Calculation 	of 	 property 	of 	o 	material 	or 	article. 	 variable. 	 ,,, 	ro ,,,, ,  ppi p „,p, block, 	tests, 	rondomized 	blocks, 	F- test, etc.) 
sari  able 	 GES 

Probabili ties  .) 	 2v f(X,Y,.) 	and 	rep:loofas. 

6 CORRELATION: 	 By direct 	or 	indirect 	observation, 	measure 	the 
Finding 	the 	quantitative, 	experimental 	

moin 	factors 	in descending 	order 	of significance 
relationship 	between the 	independent 	variables 	Correlotion 	is 	applied 	where 	the 	relotionship 	 Regression 	coefficient(s1 	and 	constant; 

if 	possible. 
(causes) 	and 	the 	dependent 	variable (effect); 	betw ee n 	cause 	and 	effect 	is 	rnosked 	by 0 largeThe 	factors 	chosen 	should 	be 	substantially 	 correlation 	coefficient 	(r); 	covariance; 	GES 

expressing 	the 	goodness. of-fil 	of 	this 
number of relotively 	small, random 	influences, 	independent 	of one 	onother. 	Transform 	the 	 error 	variance; level 	of 	significance. 

relationship 	in 	an 	experimental 	and/or 
estimator 	if necessory (see under Type ti 	Sampling) 

indeX 	formula. 

References:4i) 	Moroney, M J., 	"Facts 	train 	Figures", 	Penguin 	Books, 2nd 	cd  1953, 	p.334 	ff ; 	(21 laid., 	p.336 ff; 	(3) Ibid., 	p. 340 tf; 	141Ibid., p.348 	ff; 	(51Costde.n, D.J., "Stotisticol 	Methods 	in 	Quotity 	Control", Prentice 	Hail, iss -z;  

1 61 Mentzer, 	E.G., 	"Tees 	by 	the 	Analysis 	of 	Variance", 	'Comet 	Air 	Development 	Centre 	Tech. Rep. 53-23, 	Jan. 1953. 

GES u"Gusde 	tu 	EngtneerIng 	StatisfiCs" 
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1.4 Analysis of Data  

Every set of statistical data has a pattern of its own. 

This pattern can be presented in the form of a "frequency distri- 

bution" showing the relative or absolute frequencies of the items 

or values obtained. 

Experience has shown that successive sets of data of the 

same variable, collected under comparable conditions, show fre- 
• 

quency distributions having approximately the same average, same 

range, and  same shape. The single observations of any set will 

generally "crowd" around a mean Value and will deviate from this 

mean by an amount which cannot be predicted individually. However, 

from a large number of observations it appears that small vari-

ations with respect .t.o the mean are generally'more frequent than 

large variations, and that all variations cluster around a mean 

value within a limited range. It is then possible to predict limits 

within which the variable will lie when the experiment is repeated 

under Comparable conditions. .Fundamentally, every.statistical tech-

nique is a means of evaluating, either directly or indirectly,,  the 

frequency distribution represented by the data, from the average, 

the degree of dispersion, and the shape of the distribution. 

Example - . 

If replicate determinationsaré made of the specific 

gravity of a material, the observations will be distributed around 

the true (unknown) specific gravity, according to a frequency curve 

which is not unlike the familiar bell-shaped curve of Gauss-Laplace, 

more generally known as the Normal  Curve. 

As a rule, the number of data obtained will,not be suf- 
, 

ficient to show this curve in great'detail. If only three or four 

determinations are done, however, thebe will generally fall within 

the range  of  such a curve, as would beyerified by, repeating the 
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determination several hundreds of times. The frequency distribution 

is found by subdividing the range of observed specific gravities in-

to a number of classes of equal interval and counting the number of 

observations found within each of the classes. The diagram repres-

enting the number of observations per class interval is called a 

histogram. The outline of this histogram approximates the distri-

bution that would result if the number of observations and the num-

ber of class intervals were to be increased to infinity. 

In the above example, all the specific gravity observ-

ations, taken together, constitute the "parent distribution" 

("population"). This distribution typifies both the material it-

self and the method by which the specific gravity was determined. 

An estimate of the average value and of the range of 

such a population can be found from a limited number, say three 

or four observations. It is clear that the estimate will be af-

fected by the errors or deviations in each observation with re-

spect to the mean. 

Under normal conditions, a specific gravity determin-

ation will produCe a set of observations distributed according to 

the "Normal Curve", the parameters of which are easily found. It 

is clear also that, under these circumstances, the greater the 

number of observations the more stable the mean value becomes. 

It often happens that one or two observations in a 

set appear to be different from the remainder. They may or may 

not be part of the parent distribution. This means in effect that, 

owing to some unforeseen cause, a "systematic error" larger than a 

"chance error" has crept into the data. The parent distribution 

of this set of observations may therefore be no longer of the 

Normal type, and it becomes necessary to check the figures for 
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outlying data ("tramps"). 

The chances of non-normality increase as the experiment 

becomes more complicated. When designing tests, systematic shifts 

in the values of the variables may be introduced deliberately in 

order to simplify the experimental procedure. The resulting fre-

quency distributions are then quite often non-normal and more 

complicated methods for the analysis of these distributions are 

required. See Section 2, "Analysis of Variance". 

Summary  .- 

The  analysis of experimental data is essentially the 

analysis of the frequency distribution(s) obtained from the data. 

Basically, it involves the determination and comparison of means, 

ranges and shapes of the distributions. 

1.5 Frequency Distributions  

This section deals with the frequency distributions 

that commonly occur in statistical experiments, the parameters 

used for describing these distributions, and the tests that are 

used for comparing the parameters. 

Mathematical statistics deal with variables, i.e. 

physical or chemical properties, attributes or events which show 

a certain range of variability. It can be shown by experiment 

that most variables do not behave chaotically but, rather, con-

form to a certain pattern of behaviour. This can be illustrated 

by the experiment of Galton: a board covered with staggered 

rows of nails is used to scatter the course of a large number of 

beads which are introduced at the top of the board and are ev-

entually trapped in a series of partitions at the base of the 

board. The end result is indicated by the distribution of the 

beads arrested between partitions. 
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The frequency distribution of the beads shows a marked 

orderliness, which is caused by the nails interfering with the 

gravitation of the beads. It shows that small deviations from 

the mean are more frequent than large deviations. The beads tend 

to crowd around the mean value. This phenomenon is known as the 

"central 	tendency". 

Experimental Distribution 

(Histogram) Theoretical Distribution 

Fig. 1.1 - Frequency Distribution 

A collection of individuals (be it observations, items, 

or events), when related in this manner, is said to form a " u n 

iverse" or "population" . This is referred to 

as the Law of Large Numbers. Numerous experiments have shown that 

this law has a wide application in nature and in nearly every field 

of human endeavour. 

In practice, all kinds of frequency distributions are 

found. These include symmetrical bell-shaped distributions with 

single tops (unimodal - see Fig. 1.1) like the one found in the 



Positively- 
skewed 	 Negatively- 

skewed 

Bimodal 
Distribution 
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Galton experiment; positively- or negatively-skewed asymmetrical 

distribution; double-topped (bimodal) distributions (see Fig. 1.2); 

and others of seemingly irregular shape. 

Fig. 1.2 - Asymmetrical Frequency Distributions 

When dealing with the Normal curve, statistical interpret-

ation boils down to finding the average value, measuring the - scatter 

of the observations, and checking on the normality of distribution 

of the data. Although procedure is basically the same for non-normal 

distributions, emphasis here is shifted to the testing of differen- 

ces between means and differences in scatter. A compound frequency 

distribution is looked upon as the sum of two or more single-top 



cv  
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distributions, each of them caused by one main factor. 

Summary  - 

The aim of the statistical procedure is to describe fre-

quency distributions of observed data in terms of average and 

scatter as they relate to the normal distribution, for the purpose 

of estimating the true value and range of the variable or vari-

ables involved. 

1.6 The Normal Curve  

The formula for the normal curve expresses the re-

lationship between the values of a variable (p) and their re-

lative frequencies (y) for a total number of observations (n). 

The formula has two parameters: the true mean value (1,4), and the 

standard deviation of the population (a). The latter is a meas-

ure of scatter and will be discussed in the next section. The 

shape of the frequency curve of any normal population can thus be 

evaluated once the true mean (4u) and the "population standard 

deviation " (a-) are known. Geometrically, this "true" standard 

deviation (a) represents the distance between the mean and the 

points of inflexion on the normal curve. It is the root-mean-

square of the deviations with respect to the mean value 

0_2_ E(p-/À.1 
xi 
	 (Eq. 2) 

One of the properties of the normal curve is that the 

area under the curve between/A.-1-o-  and P--cr (shaded area Fig. 1.3) 

Ls 68% oF the total area. This means that 68Z or the deviations 

(p-p,) are smaller than (e). Similarly, the area between limits 
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Fig. 1.3 - The Normal (Gauss) .  Curve 

+2cr and -2e (theoretically 1.96s) is 95 7e of the total area, or 

nineteen out of every twenty observations; the area between  +3o- 

 and -3e is 99.7 7e. (The 2e- limit is commonly used as the measure 

of precision in engineering forecasts. See Section 5, examples 

4, 8, 10 and 12.) 

Thus, the standard deviation is not merely a kind of 

average, but is also a means of calculating the chance or the 

probability of occurrence ofacertain error  or  dev-

iation from the mean value. The essence of statistical procedure 

is in fact the calculation of probability  of occurrence of any 

phenomenon which is subject to the Law of Large Numbers. In simple 

words, the standard deviation is used to describe the existing  sit-

uation and, in addition, to predict future behaviour. 

1.6.1 Estimate of standard deviation from the observations  

The basic calculation consists of finding an estimate 

of the true mean, and of the true standard deviation (or true stand-

ard error), from a limited number of observations as a first step 

in calculating the observed quantity and its range of scatter. It 

is clear that only an infinite number of observations will produce 

a complete picture of the phenoinenon. In practice, however, only 



(n-1)   (Eq. 3) 
EX 2  S

2 

- 2  W 	(Elp/n s   
(n-1) (Eq. 4) 
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an estimate of (a-) is obtained and with a limited precision which 

depends upon the number of observations. 

This estimated standard deviation is designated by the 

symbol (s) and is based on deviations from the arithmetic mean (P) 

instead of the true mean. If the true mean were known, a better 

estimate of the true standard deviation could be found. 	The fol- 

lowing equation may be used for computing the most probable esti-

mate of the true standard deviation from a finite number of observ-

ations: 

wherex= (p-F). The standard 	deviation(s) 

and its square the variance (s 2 ) are the two "statistics" 

most commonly used for estimating the scatter of an infinite pop-

ulation based on a limited number of observations. 

A second,  derived equation may be used which facilitates 

the calculation of (s), particularly when dealing with a large num-

ber of observations: 

In this form, the standard deviation or variance can be determined 

by using the observed values (p) directly without having to calcul-

ate their deviations from the mean, i.e. (p - 15). 

Example - 

Observation of the automobile accident rate in a certain 

town during five equal periods showed the following results: 6, 8, 

3, 9, and 5. The variance, according to Equation 4, works out as 

follows: 

2 p2 = 6 2  + 8 2  + 3 2  + 92  + 5 2  = 215 

Zp = 6  +8 +3 +9 +5  = 31 
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(2.02/n =  312/5 = 192.2 

variance, s
2 

= 2
15 - 192.2 

 5 - 	
= 5.70 

1 

standard deviation, s = 2.39 

Average, "5  = Ip/n = 6.2 

1.6.2 Quick method for estimating the standard deviation 

The standard error (s) can be quick-

ly determined from the range (w) of a sertes  

of (n) observations, usEng values given in 

Table 1.3. This method applies to a series of 

not more than 10 observations, and is to be 

used only when the observations are normally 

distributed after elimination of any tramp ob-

servations. 

Table 1.3  

n 	s/w 

2 	0.89 
3 	0.59 
4 	0.49 
5 	0.43 
6 	0.40 
7 	0.37 
8 	0.35 
9 	0.34 

10 	0.32 

Note: The terms standard deviatton and stand- 

ard error have been used interchangeably because there is no fund-

amental difference between the two. The term "standard error" is 

used when the observations differ mainly as a result of human or 

instrument errors. In all other cases the term "standard deviat-

ion" is employed and is generally to be preferred. 

1.6.3 Other parameters for measuring scatter  

Various quantities have been used in the literature to 

describe the range of scatter of a series of observations. Two of 

these are mentioned here. 

The first one is the average deviation 

which is found from the data by simply averaging the deviations: 

SI(P -i)1  g  
	 (Eq. 5.) 

The second 'statistic used is the probabl e 

error(r) which indicates the limit.s (A- and -) on:either side 

(g) 



-r1-1-r 

Fig. 1.4 - The Probable Error 
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of the mean between which theoretically 50 7 of the observations 

are found. 

In theory, there is a constant ratio between the stand-

ard deviation and both (g) and (r), but only in the Normal case. 

If this condition of Normality is met, factors given in Table 1.4 

below can be used for converting from one to the other. 

Table 1.4  

s = 1.252.g 	g = 0.798.s 

s = 1.484.r 	r = 0.674.s 

g = 1.184.r 	r = 0.845.g 
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. 	ANALYSIS OF VARIANCE  

Where there are two or,more possible sources of variation 

in a set of data, a technique known as Analysis of Variance can be 

used to determine how much of the total variation for all the observ-

ations taken together can be attributed to thé different causes. 

For example, a test produces three sets of three observations each. 

The mean values as well as the variances of the sets are found to 

differ. An answer as to whether or not the differences are signifi-

cant is given by the Analysis of Variance, which provides the means 

of calculating the odds that the observed differences were caused 

by chance. Only a partial answer can be obtained, however: if the 

difference is larger than can be explained by chance variation, it 

is a significant difference. If the difference is small, on the 

other hand, it may be significant but the possibility cannot be 

proven. In other words, the hypothesis that no difference exists 

(the Null Hypothesis) can never be proven, but can only be dis-

proved. 

Each of the three variances in the above example con-

tributes to the overall variance of the nine observations. This 

overall variance, which is a compound variance, generally results 

from tests which deal with a multiplicity of factors. The main 

value of the Analysis of Variance technique lies in its use as a 

means of finding estimates of the individual variance components 

that contribute to the overall variation of the data. In so doing, 

it reveals the relative influence of the individual factors. 

The four examples which will follow in this section con-

stitute a mental experiment to show in a simplified manner what 

type of factors generally enter into observations that are obtained 

from a test program. Essential points are summarizéd in Table 1.2, 

under problem Type 5. 
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2.1 General Procedure

For purposesof calculation, the data are arranged in

tables of rows, columns, blocks and replicates as required. The

data of each colurnashould have a natural tie, i.e. a distinctive

feature which characterizes this column as being distinct from

other columns. The same applies to each row, cell, etc. The

magnitude and significance of each of the separate variances can

be found by following the procedure outlined below:

1) Arrange the data to be analyzed in Columns and

Rows as shown in Examplesl and 2 (single observ-

ations) and 3 and 4 (duplicate observations).

2) Using the formulas given in Tables 2.2 and 2.6,

calculate the following:

a) Sum of Squares: (S.S.)

i) Between Columns (AB)

ii) Between Rows (ry)

iii) Total S.S. (a)

b) Interaction (E) and/or Error (,r)

c) Degrees of Freedom (d.f.)

d) Mean Squares (M.S.)

3) Find "true variance" estimates.

4) Check statistical significance of the variance

components by means of the F-test.

E x a m p 1 e 1

The data used in this example may be taken to be the

exact values representing a certain process or phenomenon being

tested and are free from error. There are no replicates. The

data are arranged in three rows (R = 3) and three columns (C = 3).

Row sums A, B, D and column sums P, Q, T are found and entered in

the data table, together with the overall sum, M:
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Table 2.1 - Test Data (Example 1)  

	

2 	6 	10 	A18 

	

12 	• 	B24  

	

6 	10 	14 	D30 

	

P12 	Q24 	T36 	M72 

Using a Variance Table set up like the following, the vari-

ance components relating to the data may now be calculated: 

Table 2.2 - Analysis of Variance (Example 1)  

	

Degrees 	Mean 	Expected 
Source of Variation 	Sum of Squares 	of Freedom 	Square 	Mean 
	(S. S. ) 	 (d. f•.). 	(M. S. ) 	square  

Q22  M 2 ._ 
Between Columns 	C 	e= 	

++T 	.96 	
(C"1) = 2 	Vs  =1=48 	Vie=V•r +RVc R 	CR 

• 	• 	- 
Between Rows 	R 	7 	

A2  +B2 -ILD2 	M2
' 	c 	' 24  - (R-1) = 2 	V1+12•V.7=Vr+CVR 

	

CR 	• 

Residual (error) 	y= a-
(
134.7)= 0 	(c.-1)•(R-1),,,.4 v..= 	=o 	vr=v7, 

Compound 
' 	Total 	 a ri: 	pfl,r; 	=120 	' (CR-1)=8 	— 	. Variance  

	

"True Variance" estimates 	. 

1) Vc = 
 Y - V.F _ 	48 - O.  = 16 

3 	: 

	

12 	- 0 = ' 2) Vil = ,--7 
 C 	

7 	
3 ' 

' 	3)' 	Vr  = 	0 

Notes  

1. The true variance Vc 	) in the Table refers to observ- 

ations in different columns but in the same row, and is called the 



25 

2 
"variance between columns". The true variance VR (=sR ) refers to 

observations in different rows but in the same column, and is called 

the "variance between rows". The true variance VT is called the 

"residual variance", "error variance", or "interaction variance" (if 

no error is involved). 

2. Because Vt. is 0, the true variance estimates are exact. 

This may be checked by calculating the variances directly from the 

observations, e.g. s 2  (2, 6, 10) = 16; etc. 

3. The difference between the row and column variances 

(V7 and Ve  respectively) is tested using the "F-test": the Null 

Hypothesis that no difference exists between two variances is 

tested at a significance level P. In this test, a ratio (F) is 

computed from sr's: with the larger variance always in the numerator 

so that F is always greater than 1. In the example, F=VA/V7 =48/12=4.0. 

Entering a table of F-values for degrees of freedom (d.f.) = 2 and 2 

respectively, the following values are found: F, = 99; F5 = 19; 

Fu;,= 9.0. 

Subscripts of F denote the Probability Levels, i.e. the 

probability that a given difference is due to random or chance vari-

ation. If a computed F-value exceeds the theoretical one at P=0.01, 

this means that there is only 1 chance out of 100 that the difference 

is attributable to random variation. In other words, the difference 

is considered to be "highly significant". Similarly, 

Fb < F-<F, - difference is "significant" 

F lo < F<F5  - difference is "possibly significant" 

- difference is "not significant" 

In this example, since the computed value of F is only 

4, i.e., F-eFlo  for 2 and 2 d.f. respectively, it can be concluded 

that the difference found from the data is probably not a signifi-

cant one. 
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The 'significance Levels (P) of variances M. S.  (Mean 

Square) are commonly• indicated by aaterisks  as  follows: 

**1,' p < 0.01- 	 - 	 "highly significant" 

** P = 0.01 to 0.05 '-"éignifiCant" • 

* 	P = 0.05 to 0.10 -"possibly signifiCant" 

_ 	"P> 0.10 	-"not significant" . 

T.hough arbitrary, these levels  are  generally accepted for invest-

igational and research work in many areas of technological inquiry. 

Notes on variance formulas  

As given in the preceding Variance Table, the Sum of 

Squares between Columns may be found from: 

_ p 2  + Q2  + T 2  
CR 

which is derived from 

+ (Q111)2  + (T/R) 2  - (M/R)2/C I .R 

Crude S.S. of Column 	Correction 
Averages 	 Term 

(Note the similarity of this formula with the one used for calcul-

ating the variance of a set of single observations.) 

From this, it is seen that. 

R x Sum of Squares of the Column Averages, 

= R x Average estimate of the Sum of Squares of. "deviat- 

ions b,etween columns" (i.e. single observations in the 

same row, in different columns, and which include V,). 

Since this average estimate still contains Vr , Vt3 = R•Vc  Vr from 

which 

Example 2  
. 	. 

The data are the same  as  in Example 1 (the roW Sums and 

column sums are unchanged) except for the introduction of a reading 

m 2 

V - V = /3--1-- • 
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error which has altered some of the individual observations. 

Table 2.3 - Test Data (Example 2)  

3 	5 	10 	A18  

4 	9 	11 	B24  

5 	10 	15 	D30 

P12 	q24 	T36 	M72 

Table 2.4 - Analysis of Variance (Example 2)  

Source of Variation 	S. S. 	d.f. 	M.S. 	Expected Mean Square 

*** 
Between Columns 	C 	/3= 96 	2 	Ve = 48 	Vo = VT + RVc 

** 

Between Rows 	R 	7 = 24 	2 	VI  = 12 	V.  = VT + CVR 

Error 	 .1. = 	6 	4 	Vy  = 1.5 	VT =  V,- 

Total 	 a = 126 	8 	- 	Compound Variance 

"True Variance" estimates  

	

48 - 1.5 _ 15.5 	(16.0) I) 	Vc = 	3  

12 - 1.5  
2) VR = 	3 	— 	3.5 	( 4.0) 

3) VT  = 1.5 

For calculation of p, /, T, and a, see Table 2.2, Example 1. 

Notes  

1. The "true variance" estimates are no longer exact, 

owing to reading errors (compare with the exact values in brackets 
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which were found in Example"). 

2. The F-test in this case disproves the hypothesis that 

the variation between columns was caused by reading (chance) errors. 

The value of the ratio, F = Vn/Vy  = 48/1.5 = 32, is highly signifi-p 
cant for 2 and 4 d.f. respectively. The F-table gives a value of 18 

for 2 and 4 d.f. at P = 1%, indicating that the difference between 

columns was not caused by chance (reading errors): the probability 

is less than 1 7.  (P<0.01) that this conclusion is wrong. 

3. The F-test for the difference between rows gives 

F=12/1.5=8 for d.f. 2 and 4, indicating that the variance between 

rows is significant at a level (P) between 1 and 5 7.  (F1 = 18, F5 =6.94). 

Example3  

The data used are the same as before, except that they are 

now represented by duplicate instead of single readings (row and col-

umn sums are doubled). This will demonstrate the introduction of an 

analytical error. 

Table 2.5'- Test Data (Example '3)* 

Si 	 52 	 S3 	A 
1.5-2.5 	5.5-6.5 	9.5-10.5 	 36  

54 	S5 	 S5  
3.5-4.5 	7.5-8.5 	11.5-12.5 	 48  

S7 	S5 	 5 9 	D 
5.5-6.5 	9.5-10.5 	13.5-14.5 	 60  

P 	 Q 	T 	 M 
24 	 48 	72 	 144 

Symbols 	, 

S = cell 'total (e.g. S i = 4.0; S2= 12,0), 

H = number of replicates = 2, 

P.L=,individual observation,.., 

C = 	R 	. 	, 
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Table 2.6 - Analysis of Variance (Example 3)  

Expected 
Source of Variation 	S. 	S. 	 d.f. 	M. 	S. 

Mean Square  
*** 

Between Columns 	C 	er  P 2+02 4T 2  _ 	M2 	(C-1) 	Vo= 96 	Ve =V, +HVcR+RHVc 

	

RH 	CRH 	=2 
= 192 

*** 

Between Rows 	R 	7 
.. A2 +B2 +D2 	M 2 	(R-1) 	Vy = 24 	V7  =Vr +HVcR+CHVR  

	

CH 	CRH 	=2  
= 48 

(C-I) (B.-1) 
Interaction 	CxR e = 8 -( )8+7) = 0 	= 4 	Ve = 0 	Ve =Vr +HVcR 

2 

	

 
ZS 	M2 	

(CR-1) 
i  

Between Cells 8= 	 = g 	_ 	CompxndVariance 

	

H 	CRH 
240 

CR(H-1) 
Error 	 r = (a-.3)= 4.5 	 V1-=0.5 	Vr = Vr  = 9 

N2  Total 	 a=Spie. _ _e_i -244.5 	(CRH-10 	_ 	Compound Variance 
=17  

"True Variance" estimates  

Ve-Vy- HVCR  
1) VC = 	RH 	- 16.0 	(16.0) 

V7  -,V,r - HVcR 	_ 
4.0 	( 4.0) 2)
 

VR = 	CH 

Ve 	''' VT  
3) VcR= 	H 	c:-... 	0 	(Variances are never negative) 

4) Vr 	= 	0.5 



Notes  

The sensitivity of the Fr"teSt has been increased . 

by - augmenting the. number of degrees of freedom; i.e. by increas-

ing the number of observations. The "between columns" and "between 

rows" variances are found to be highly significant (P<0.01). ' 

2. Interaction would have been indicated if the variance 

"between columns" had shown an increase (or decrease) for each row, 

going from row 1 to row 2 to row 3. Since no such change is found 

in this example, the interaction variance VE = 0. 

Example 4  

The column and row averages remain unchanged, but the 

reading and analytical errors (Examples 2 and 3) are.now both in-

cluded. 

Table 2.7 - Test Data (Example 4)  

	

2.5-3.5 	4.5-5.5 	9.5-10.5 	36 

	

3.5-4.5 	8.5-9.5 	10.5-11.5 	B 	48 

	

4.5-5.5 	9.5-10.5 	14.5-15.5 	D 	60 

P 	 Q 	T 
24 	48 	72 	144 

30 
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Table 2.8 - Analysis of Variance (Example 4)  

Source of Variation 	S. 	S. 	d. 	f. 	M. 	S. 	
Expected 

Mean Square 

*** 

Between Columns 	C 	s = 192 	2 	Vé=96 	Và=VT-1-11VcR+RHVc 

** 

Between Rows 	R 	y = 	48 	2 	V7=24 	V7=V7.+HVcR+CHVR  

** 

Interaction 	CxR 	6 = 	12 	4 	VE= 3 	VE =Vri-liVcR 

Between Cells 	 8= 252 	8 	- 	Compound Variance 

Error 	 Y = 4.5 	9 	V = 0.5 	Vr= Vr  

Total 	 a. = 256.5 	17 	- 	Compound Variance 

"True Variance" estimates  

1) Vc = (Vo  - Ve )/RH = 15.5 	(16.0) 

2) VR = (V1 - V)/CH = 	3.5 	( 4.0) 

3) VCR= (VE 	- Vr)/H 	= 	1.25 	( 1 . 0 ) 

4) Vr  = 	0.5 

For calculation of 1S, ,y,  e, 8, r, and a, see Table 2.6, Example 3. 

Notes  

1. The . "true" variance estimates are not exact (see theoretical 

values in brackets). 
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2. It is clear that an interaction variance has been sim-

ulated here from the combined effects of the reading and analytical 

errors, which were known in advance to be true sources of variation 

in this example. 

2.2 Discussion of Analysis of Variance Results 

The four preceding examples were given to illustrate the 

mathematical procedure and physical background of the Analysis of 

Variance technique. A further example may more clearly show the 

meaning of the "natural tie". It will be assumed that 10 sets of 

triplicate observations are available with each  I  set representing data 

which refer to a different "level" in a range of levels, e.g. 10 vol-

atile matter (VM) determinations done in triplicate at 10 different 

temperatures. If the 10 sets are arranged in 10 rows of 3 columns 

each in the order obtained from the tests, the variance between rows 

(VR) will reflect the influence of temperature on the VM readings 

because each row refers to a specific temperature. This is the 

II natural tie" for the figures within each row. The variance between 

columns (Vc), on the other hand, does not reflect any special factor, 

because the observations in each column have no common tie. This 

would occur, however, if the first column should happen to contain 

the lowest value of each set, thé second column the middle value and 

the third column the highest value of each set; the between-columns 

variance (Vc) would then reflect the error variance. 

The significance of the various mean squares has been test-

ed by comparing them with the error variance V,. This was the cor-

rect procedure for the examples given. Suppose, however, that the 

interaction variance in Example 4 had proved to be insignificant, as 

in  •fact it actually is; a new estimate of V, would then have been ob-

tained by combining the interaction and residual sums of squares and 

dividing by the sum of their respective degrees of freedom (d.f.), 
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and the main variance re-tested on this new basis. 

The paradoxical result for the interaction variance of 

Example 4 (see note 2) illustrates a problem that faces the experi-

menter in all statistical work. Statistics being a formal logic 

only, detailed knowledge of the process and the history of the ex-

periment are generally required before the validity of the analysis 

of variance and subsequent correlation can be established. 

The Analysis of Variance technique can be applied to data 

that might have been obtained previously for a different purpose, e.g. 

operational control of a plant. These data are often not complete en-

ough nor suitable for such an analysis, and grave doubts may arise 

about the validity of the results. It is necessary in such a case 

to design a test beforehand. Where the nature of a physical or chem-

ical process is known and the ranges of the factors involved are also 

known, it is possible to select a number of levels to be tested for 

each factor and the minimum number of replicates that will be re-

quired to establish significance. Tests of this kind when combined 

with Analysis of Variance are called Factorial Tests. (See para. 2.4 

and Section 3.) 

The nature of the data that were used in the above mental 

experiment is neither known nor is it important, since the Analysis 

of Variance operates independently of it. In experimental work, pro-

cedure is generally designed with the purpose of determining the true 

relationship that exists between two or more physical/chemical attrib-

utes. This purpose is achieved by means of measurable quantities 

called parameters. The resultant experimental equation will truly 

represent the relationship between the variables, provided that the 

parameters have no other elements in common that might mask or dis-

tort them. If the parameters have such an element in common (e.g. 

a common denominator, a common factor, or a constant in coimuon), then 
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the true relationship between  the variable  attributes may be eithe r . 

 partly or entirelymasked-by spurious correlation. A common form of 

spurious correlation occiirs when the patameéers• show significant cor-

relation as expressed  •by the c - orrelation, coeffic-

i e n t (r), even though the variable properties are not related in 

any way. An example based on à publication by Karl Pearson (7) is 

given below, using three series of random numbers. Series 1 and 2 

are the variables, series 4 and 5 their respective parameters .  

Table 2.9 - Spurious Correlation 

Series 	 1 	2 	3 	 4 	5 

	

X2 	 X3 	 X3 	x2 /x 3  

	

54.9 	76.1 	18.3 	3.00 	4.16 

	

62.2 	63.5 	16.0 	3.89 	3.97 

	

57.0 	78.2 	21.3 	2.68 	3.67 

	

74.7 	78.0 	25.1 	2.98 	3.11 

	

65.4 	84.2 	13.9 	4.70 	6.06 

Mean 	 62.84 	76.00 	18.92 	3.45 	4.19 

Variance 	 61.19 	58.08 	19.49 	0.69 	1.25 

Variation 
Coefficient 	 0.12 	0.10 	0.23 	0.24 	0.27 

Correlation 
Coefficient 	 r 1 , 2  = 0.1637 	 r4 1 15  = 0.8507 

This example demonstrates thatgreat care is required Ln 

• the choice of Parameters, especially when using .dimensionless ratios 

that are plotted against one another or against a . single variable. 
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They may have an element in common that will invalidate subsequent 

correlation of variables, as described in Section 4. 

2.3 Procedure for Experimental Design  

The following general procedure serves as a guide to the 

experimenter who is faced with the problem of having to plan an ex-

periment for testing the nature or behaviour of some phenomenon. 

1. Examine the problem. Determine the "operating variables" 

and "other factors".  Subdivide the latter category into "controlled" 

and "more or less uncontrolled"  factors. List everything under these 

three headings. 

Table 2.10 - Exàmple: Briquetting of Coal in a Roll-Press  

Operating 	 Other factors 
variables 

Controlled 	More or less uncontrolled 
(1) 

(2) 	 (3)  

% binder; 	 Fluxer temp.; 	Moisture % of feed; 

type of binder; 	speed of press; 	particle size of feed: 

method of dispers- 	rate of feed; 	temperature of coal in 
ing binder, 	 mixer; 

temperature of 	cooling of coal between 
coal entering 	mixer and press; 
the press. 

cooling of briquets; 

steam pressure and quality. 

2. Choose the 2 to 4 most important factors for the test, 

bearing in mind that the combined effect of the factors that are 

omitted should be small enough not to interfere with the test. If 

necessary, the experiment can be split into two separate tests, e.g. 

for the above, 

Test (1): effect of % asphalt binder and moisture content. 
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Test (2): effect of type of binder and method of dispersion. 

3. Factors may be distributed either normally (as in Fig. 

1.1) or non-normally (skew unimodal, bimodal, etc.; see Fig. 1.2). 

For example, moisture % is unimodal; method of dispersion is bimodal. 

Try in both cases, first of all, to set up the test as a bimodal one 

by taking the factors at two levels, one "high" and one "low". Both 

levels should be chosen so that the working range is covered, and so 

that reproducible results can be obtained. 

For instance, tests are run with asphalt "high" (e.g. 5%) 

and asphalt "low" (e.g. 3.5 7e). Linear behaviour is anticipated here. 

If linearity is not expected, the range should be reduced, without, 

however, sacrificing or endangering the bimodal nature of the tests. 

This type of experiment is known as one with "fixed con-

stants". It is designed as a factorial test,  using 2n  tests for (n) 

factors, and H replicates per test. If this factorial test is im-

possible because of the nature of the phenomenon, then use the type 

of design that employs more than two tests per factor and (H) repli-

cates per test, with rows, columns, cells, sub-cells, etc. This type 

of test is necessary for "normally distributed" factors; that is, the 

distribution of the factor over the columns of the table, for instance, 

is unimodal and gradual, and the differences from column to column are 

small and of the same order of magnitude as the variations within the 

columns. Of course, with one "normally distributed"-factor and-one 

or two "fixed constants", the same type of variance analysis will have 

to be employed. Many possible types of this "mixed" nature are given 

in Mentzer's manual (6). 

It is noted that both the factorial test and the other de-

signs using more than 2 rows, columns,  etc., for the analysis of fixed 

constants, are very powerful. This is because all of the partial var-

iances can be tested with the error variance, the degrees of freedom 
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of which can be determined in advance from the number of replicates. 

On the other hand, where the distribution of factors is unimodal, the 

partial variances cannot always be tested. Artifices need to be 

found, and generally the test is a less powerful one. 

2.4 Design of Factorial Tests  

The minimum required number of tests for any n-factorial 

design is fixed at (2n) tests. The minimum required number of rep-

licates (H) per test which can be found from Table 2.11 ensures suf-

ficient accuracy of the (error) variance and therefore a sufficient-

ly powerful test. The number of replicates is based on a predeter-

mined precision of the (error) variance, av  527.. See derivation 

below. 

Table 2.11 - Design of Factorial Tests  

Number of 	Minimum no. of 	Minimum no. of 
Factors 	Replicates 	Observations 

(n) 	 (H) 	 (2n  H)  

1 	 30 	 60 

2 	 16 	 64 

3 	 9 	 72 

4 	 5 	 80 

5 	 3 	 96 

Derivation of % Precision  of the Error Variance, %av 

 The standard deviation of a variance is: 

sv  = 

where s = standard error of a single observation and 

f = degrees of freedom. 

Expressed as a percent, 

% sv  = 100sv/V = 100s/s2 
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% 	= -.(1002./277) ./s2 L; 200/127» 

and % precisi'on of thé va'rianCe at P=95% levél, 

% av  = 2.sv  = 4OOW =' 52 7e for 30 observations. 

Note: av 5- 52% corresponds with the generally accepted minimum 

•  of 	Single observations per test. 
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3. FACTORIAL ANALYSIS 

This section deals with the analysis of data obtained from 

a factorial test. The procedures are illustrated with an example of 

an actual test involving three factors: 

The compressive strength of briquets in relation to % as-

phalt (A)1 moisture % of "Green Briquets" (B); and asphalt type - 

natural vs cracked (C). 

Two cases will be considered: 

1. No replicate observations available 

2. Method of calculation when using replicates 

3.1 No Replicates  

Factorial test for 3 factors is based on 2 3  or 8 combin-

ations of three factors, each one at two levels: a "high" and a 

"low". Levels are chosen to cover the working range, while avoiding 

extreme values. 

The data in Table 3.1 can be used to find all the variances, 

including Main Effects (A, B, C) and Interactions (A x B; A x C; B x C; 

AxBxC), as follows: 

When the sum of the 4 tests containing "A" (314 + 301 + 282 + 

223) is compared to the sum of the 4 remaining tests containing "a" 

(304 + 134 + 264 + 158), the difference indicates the effect of chang-

ing the asphalt content from A to a only; the other factors, moisture 

and asphalt type, cancel out because both their high and low values 

are represented in each of the above two groups. The difference in  

the groups is an estimate of the effect of the % asphalt between level  

"A" and level "a". 

The same data can be regrouped to produce the difference be-

tween the moisture levels B and b. In this case, the effects of % as-

phalt and asphalt type cancel out, and so on. 
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Table 3.1 - Test Data* 

A 	 a 

	

B 	 b 

C 	ABC 	AbC 	. aBC. abC 

c 	ABc 	Abc 	aBc 	abc 

Test 	Compressive 
No. 	Strength, 	 Legend 

lb  

abc 	304 	Asphalt level: 	High,5.54% A 

aBc 	134 	 Low, 4.37% a 

Abc 	314 	Moisture level: 	High,11.9% B 

ABc 	301 	 Low, 	8.1% b 

abC 	264 	Asphalt type: 	Straight-run C 

aBC 	158 	 Cracked 	c 

Abe 	282 

ABC 	223 

* Compressive-strength values are the averages  •of the replicates 
given in Table 3.3, and represent the average levels of asphalt 

•and moisture. 	 •  

The formulas and diagrams given below may be used to cal-

culate the variances of the main effects and their interactions. This 

• is a simplified method (8) which reduces the calculations for "Sums of 

Squares" to a minimum. 	 • 



SA = (EA - Ea) 2  /2n  

SB = (ZB Eb) 2  /2n  

Sc = (SC -  c) 2  /2n  

A Q  

SAB = (20 - Sra) 2 /2n  

Main Effects: 
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(Eq.6) SA,B,c = Sum of Squares A,B,C; 

(Eq.7)SA,B,C = Sum of obs. A,B,C; 

(Eq.8) 	n = no. of factors = 3 

Interactions: 

1st order 

2nd order  

sAsc = ( so- so) 2 /2n 

(Eq.9) 	SO= Sum obs. indicated 
by blank squares. 

SD= Sum obs. indicated 
by shaded squares. 

Make similar diagrams for the 
other lst-order interactions 
A x C and B x C, and calculate 
SAC and SBc. 

(Eq.10) 

A 	a 

B 	b 	Bb 

C 
—  

C  
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, The above formulas and diagrams provide the information re -- 

quired for the following table in which the variances are tested: 

Table 3.2 - Analysis of Variance (Factorial Test) 

Source of Variation 	Sum of Sq. 	d.f. 	Variance S.S. 	Test 
(S.S.) 	 d.f. 	Ratio 	(F)  

Main Effects 	A 	8450 	1 	8450 	4.29* 

	

B 	15138 	1 	15138 	4.96* 

	

C 	1985 	1 	1985 	Not.Sig. 

Interactions 
1st order 	AB 	5202 	1 	5202 	It 	ti 

	

AC 	1104 	1 	1104 	II 	It 

	

BC 	 40 	1 	40. 	11 	II 

	

2nd order ABC 	1513 	1 	1513 	it 	I •  

Total 	 33,432 	7 	Compound 
Variance 

To test the variances, list them in descending order of mag-

nitude and test the largest variance first: 

Fn - 15138  - 15138  —4.- 96, 

where £R/6 = the sum of the remaining SuMs of Squares (8450 + 1985 + 

5202 + 1104,+ 40 + 1513), divided by the'sume . their d:f. (.6). 

F-Ratios (df l  = 1; df 2  = 6) are 5.99 (5%) and-3:78 (10%).- The . test 

ratio FB shows the variance to be "possiblV significant, further evi-

dence required". 

The other variances are checked in the same way,-  leaving out 

those sums of squares that prove to be significant or possibly sig-

nificant. 
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FA - 	84"  - 4.29 
9844/5 

F-ratios (df, = 1; df 2  = 5) are 6.61 (5 7e ) and 4.06 (10%). The 

test ratio found indicates the variance to be "possibly significant, 

further evidence required". 

5202  
FAB - 

4642/4 

F-ratios (df, = 1; df 2  = 4) are 7.71 (5%) and 4.51 (107e ). This 

test ratio does not show significance. The same conclusion applies 

to the remaining variances in Table 3.2. 

The test shows that only two variances proved possibly 

significant; further evidence is required to support this con-

clusion. 

3.2 Replicates  

More information can be obtained by repeating each test a 

number of times; in this case, 2 tests had originally been done for 

each combination of factors. The complete data and the Analysis of 

Variance are given in Tables 3.3 and 3.4. 

Table 3.3 - Test Data (Duplicate Observations) 

abc 	aBc 	Abc 	ABc 	abC 	aBC 	AbC 	ABC  

327 	121 	307 	278 	264 	147 	286 	199 

281 	146 	321 	324 	265 	169 	278 	247 

304 	134 	314 	301 	264 	158 	282 	223 
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Table 3.4 - Analysis of Variance (Replicates) 

Sum of Squares 	Variance 	Test 
Source of Variation 	(S.S.) 	d.f. 	SS/d.f. 	Ratio (F) 

Main Effects 	A 	16,900 	1 	16,900 	37.72 *** 

B 	30,450 	1 	30,450 	67.97 *** 

	

3,906 	1 	3,906 	8.72 ** 

Interactions 
1st Order 	AB 	10,506 	1 	10,506 	23.45 ** 

AC 	2,256 	1 	2,256 	5.04*  

BC 	 81 	1 	81 	-- 

2nd Order 	ABC 	3,025 	1 	3,025 	6.75 ** 

Error 	 3,953 	8 	494 

Compound 
Total 	 71,077 	15 - 

Variance 

Variance tested 
Test ratio - 

Error variance 

The equations used  for  calculating the Sums of Squares are 

the same as above (Eq. 1-5), except that, instead of 2, the denomin-

ator now reads 2n.H (H = number of replicates = 2). 

The error variance is found from: 

V.p.=(Ep- Zhj  )/2n (H-1)=494, 
2 

where 

pi  = individual observation (i), 

--sum of H replicates (j), h j  -  

H = number of replicates. 

Note that since the variance for the Interaction BC is smal-

ler than the error variance, a new estimate of the error variance must 

be obtained:  V  = (81 + 3,953)/9 = 448. The test ratio F for the 
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remaining variances is calculated on the basis of this new estimate: 

F = 
Error variance 

Theoretical F-ratios (df, = 1, df 2  = 9) are: 

10.56 (1%), 5.12 (5 7.) and 3.36 (10 7.). 

It appears that all but one of the variances now prove to 

be significant owing to the fact that duplicate observations were used. 

This latter test is said to be more "powerful" than the former one. 

Comparison of these two tests stresses the need for adequate test de-

sign to ensure meaningful results. 

Conclusions  

1) A drop in asphalt content from 5.54 to 4.37 7.  (=1.17 7. ) 

produces a reduction in compressive strength of 65 lb, or 56 lb per % 

asphalt. This is an average value for the two types of asphalt used. 

See conclusion 4. 

2) A rise in initial moisture content from 8.1 to 11.97.(=3.87.) 

causes a reduction in compressive strength of 87 lb, or 23 lb per % 

moisture. In other words, for each percent more moisture in the coal, 

the asphalt content must be raised by 0.47. in order to maintain the 

same compressive strength for the briquets. This again is an average 

figure for the two types of asphalt. See conclusion 5. 

3) The interaction variance AB shows that the effect of 

moisture is less detrimental at a high 

percentage of asphalt (9.5 lb per % moist-

ure) than at a low percentage of asphalt 

(36 lb per % moisture). 

4) Interaction AC shows that, possibly,  natural asphalt in-

creases compressive strength by 35 lb per % asphalt, whereas the 

cracked asphalt (type c) increases compressive strength by 76 lb per % 

Variance tested  

A 	a  

B 	1048 	583  

b 	1192 	1137 
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asphalt. Further evidence is re-

quired to confirm this conclusion, 

however. 

, 	A 	a  

C 	1010 	845  

c 	1230 	875 

C 	446 	564 	316 	529  

5) The 2nd-order interaction is significant and shows that 

the effect of initial moisture content differs somewhat for the two 

types of asphalt. 

B 	
A b 
	B 

a 
 b  

For natural asphalt (type C), 

the compressive strength of the 

briquets decreases by 16 and 28 lb 

per % moisture (for high asphalt 

content and low asphalt content respectively). For cracked asphalt 

(type c), the compressive strength of the briquet decreases by 3 and•

45 lb per % moisture. It appears that briquets made with cracked 

asphalt are more susceptible to moisture than those made with natural 

asphalt. 

The system illustrated by the above examples can be applied 

to factorial tests with different numbers of factors. Condensed in-

structions given below allow the analysis of variance for up to seven 

factors. 

3.3 Condensed Instructions for n - Factorial Analysis to a Maximum 
of 7 Factors  

The sum of squares ( c) is calculated as follows: 

ff 	
= SA  = (SA - Ia)2 /2/21'H

main eects 
SB = (LB - Lb) 2 /2nH, etc. 

S. Interaction ' Sint. 

The tables below apply for each i th-ordér interaction of atiy n-factorial 

test up to n = 7 factors. • 	• - 	 ' • 

zp,= sum of all the individual observat- 
ions indiçated by the diagrams. 

c 	602 	628 	267 	608 
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3rd-order Interaction 

A 	 a 

B 	b 	8 	b 
, 

	 - 	 . 	  .•:•- 
D 	.,. 

C
.,....„. 	... 	,._._ 	 :•:-:•;•:•:,..... 

d  
• >:.:.....,  --...-:-. ..,.... 

D 

C 	
•  

d 

4th-order Interaction 

. 	

Q  

cCcCcCc 

e 	_._  

• e 
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5th-order Interaction 

a  

B 	b 	 B 	 b  

	

cC 	cCcC 	c  

F 
E 

	

f ........... 	. 	 . 

D 	 ....... 	 . 	.• 
... 	

. 	 . 	 • 

F. 	......... 	 ... 
e 	./..›'.......«. 	 . 	  

f 
-......•....:....-..  

F 
E 	  

f 
d 	 t  

F 
e 	 . 	 ....  

f 

6th-order Interaction 

a 
C 	c 	C 	c 	C 	c 	C 	 c  

MR M 	.111 	in MO 
a 	Muni 	MI II 	MI • 3 IMO 	BM a 	III 

MR a 	an 	• BM • • MN 	na • 	n 
an • 	NM 	Ei MN 
all Mil 	BIZ 	MI MI 

I 	III 	11111 	BM 	III 	II 
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The residual variance is calculated by subtraction or as 

follows: 

1) With replicates: 

Sp2  (2p) 2 /2n  H [ o 2 + 2  (So+Sc3)2/2n H]/H  
Ve= 

2n (H - 1) 

} 

E] 	Sum of H replicates 

B 	of I block. Total number of blocks - 2n . 

, 2) No replicates: 

a) Find all variances and arrange them in descending order 

of magnitude. 

b) Test largest variance with residual variance found from 

all the others. Continue with the 2nd largest variance, 

etc. A better way of testing the variances can be used 

if the variance of a single observation is known or can 

be found from a separate test. This error variance is 

then used in the denominator of the test-ratio, F. 

Note 

1) Interaction variances should preferably be smaller than the 

variances of the main effects. If any is larger, there is 

a possibility of improvement in the test procedure or with 

the choice of factors. 

2) If any variance estimate turns out to be negative, there is 

an error in the calculation. Variances are never negative. 
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4. CORRELATION 

Correlation is defined as the true relationship between 

two or more things, parts, etc. It is distinguished from spurious 

correlation, which has been discussed in an earlier section (par. 2.2) 

and which can be created unwittingly when choosing dependent para-

meters for these things, parts, etc. 

It is assumed, in this section, that the credibility of 

the observed relationship has been established scientifically, and 

that the parameters used for measuring the variable things, parts, 

etc., do not have any element in common. It is wise to remember that 

many dimensionless ratios that are used as parameters and plotted 

against one another do have random elements in coalition (9). 

The correlation of experimental data can be conveniently 

carried out in the form of graphs with two or more scales on which 

the data are plotted. Asarule, the resulting scatter 

diagram is first inspected visually. The experimenter then 

determines the basic equation of the "curve-of-best-fit". This is 

preferably a straight-line equation. Non-linear scatter should be 

linearized, if possible, by using a log-scale, a log-log scale, a 

probability-scale, combinations of such scales, or other forms of 

transformation of variables. Curvilinear correlation may also be 

used if preferred. A number of model equations in the form of Work-

sheets are presented in this section. 

4.1 The Curve-of-Best-Fit  

The condition for a "curve-of-best-fit" is that the sum 

of squares of the deviations of the observed points from the curve 

is a minimum. In other words, 



Y 
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S(P - P)
2 

min n - 1 

and therefore 

I(p P)2 —•--minimum, 

where 

s = standard deviation, 

p = observed value of point (on x- or y-axis), and 

P = corresponding value on the curve. 

The choice of axis for p depends upon the experimenter's decision 

regarding the source of errors involved: 

I. Y only subject to error 

II. X only subject to error 

III. X and Y both subject to error 

Fig. 4.1 



and 

0 = 2.Z(Bx 

EBx/2. -Exiyi=0 

Ixy  
BY - Sxx Therefore, 
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4.1.1 Y only subject to error (Case I) 

The condition to be fulfilled for the curve-of-best-fit 

is that the sum of squares of the vertical  deviations (dyi) is a min-

imum. Taking a curve of the form 

Y = A + BX, 

the origin can.be  shifted so that it coincides with the overall 

mean (X, Y), and a new system of coordinates y and x can be de-

fined: y = Y-7, x = (see Fig.4.1). 

Equation of the curve then becomes: 

y = Bx. 
_ 

Since an observed point 

'+. Yi - 	- dyi = 13X1 	dyi 

then its vertical deviation from the curve, 

±dyi = BXi - yi 

and the sum of squares of the deviations for all points is 

2,(dyi) 2  = E(Bxj 	yi) 2 . 

The condition that 2,(d .) 2  is a minimum is fulfilled when Yl 	- 

where xx stands for x 2 . (B) is called the "regressiOn coefficient" 

of the straight line through (X, Y). Geometrically, (B) is defined 

as the tangent of the angle between the regression curve and the 

horizontal axis. 



X  

Fig. 4.2 
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Transforming back to the original system (X,Y), the con-

stant (A) is then found from: 

A = 7 - Bi 

Constant (A) is the value of Y for X = 0, or, geometrically, the 

point at which the regression curve intercepts the vertical (Y) 

axis. 

4.1.2 X only subject to error (Case II) 

The condition to be fulfilled is that the sum of squares 

of the horizontal  deviations (dxi) is a minimum. (See Fig. 4.2.) 

Cyclic replacement of x, y in the basic equation and pro-

ceeding as in the case I derivation, 

5s.xY 1/B = ---- 
ZYY 

and therefore, 

Zvv  Bx  = tana—  -- Exy  



B
xY 	(k + j) (Ex2ExY) 

k(Zxy) 2  + j (Zx 2Zy 2 ) 
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4.1.3 Both X and Y subject to error (general case) 

In this case, deviations from the line-of-best-fit are 

taken in some average direction which has been weighted according 

to the respective variabilities of X and Y (see Fig. 4.3). The 

regression coefficient, 

B = (kB + jB )/(k + j) xy 	y 	x 

7.xy 	Zy2  = (k 	+ j 	)/(k + j), Z x 2 	Exy 

or 

where k = variation coefficient of Y, = s /Y, Y 

j = variation coefficient of X, = s/5. 

The coefficients k and j are, in fact, weighting factors and can be 

determined from the reputed precisions (sx, ) and average values of 

X and Y. 

Fig. 4.3 

Example: 

The experimental relationship between the Btu value (Y) of 

a bituminous coal and its ash content (X) is found, from a series of 

43 samples of this coal, for ash contents ranging from 14.7 to 20.6 

percent. There are three possible ekpressions for this relationship: 



r 2 	 d2 
Zy2 

%, N = 100-11 	r 2  
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I. Error in Y only:  Y cale.  = 13,337 - 132.33 X 

II. Error in X only:  Y cale.  = 13,396 - 136.98 X 

III. Error in both X and Y:  Y cale,  = 13,362 - 134.28 X. 

In general terms, the most correct expression for a given 

relationship: 

Assume Case I applies when j<1/ 2k, i.e. when B ysx .f:1/2 sy . 

Assume Case II 	" 	" k<1/2j, i.e. when Bxsx >.2 sy • 

Assume Case III " " 1/2(k,j).c(j,k)<2(k,j), 
i.e. when 1/2s 3,<Bxy sx<2sy . 

4.2 Correlation Coefficient  

The correlation coefficient (r) is a measure of the "goodness 

of fit" of the observations with respect to the regression curve. For 

perfect correlation, r = 1 and for complete lack of a relationship, 

r = 0. 

The general equation for linear and non-linear regression 

for case I, error in Y only: 

Table 4.1  

7. not 
r 	explained 

(N)  

	

1.00 	0 

	

0.99 	13 

	

0.98 	19 

	

0.95 	31 

	

0.90 	44 

	

0.80 	60 

	

0.60 	80 

The deviation of an observation 

from the overall mean is generally only part-

ly explained by the regression curve. The 

residue (N) or % Not Explained, is found from: 

For linear relationships, the following may be employed: 
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2 	(EXY) 2  , 

= 2x2sy2  

It is advisable to use linear correlation as much as poss-

ible by linearizing the relationship, i.e. by using a transformation 

variate. 

4.3 Regression Analysis Worksheets  

The worksheets presented.in the sections that follow have 

been set up to deal with the Case I situation only, i. e., "Y only 

subject to error". 	 • 

4.3.1 Linear correlation - one independent variable 

Regression Formula: 

Y = A + BX 

X 	Y 	x 	 d2 

	

Y 	 Y 2 	xy 	Y' 	d Y 	Y 
(X-i) 	(Y-7) 	 - 	+ 	(=Y calc.) 	(Y-Y') 	(10) 2  

(2)-(9)  

1 	2 	3 	4 	5 	6 	78 	9 	10 	11 

.qoefficients:  

2xy B - 	 
21c 2  

A = 7 - B5? 



A= Zy 
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4.3.2 Linear correlation - one independent variable - weighted  

observations(grouped data) 

Regression Formula: Y = A + BX 

x 	Y 	 nxy 	d Y 
n 	X 	nK 	Y 	nY 	(X-'f) 	(Y-7) 	x2  y2  nx2  ny' - + 	Y

, 
 CP-V) 	ne, 

	

(4)-(14) 	'  

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 12 13 14 	15 	16 

Coefficients:  

Znxy 
B = 	 

Znx2  

A= V -  B5 

4.3.3 Linear correlation - two independent variables  

Regression Formula: Z = AY + BX + C 

x 	Y 	z 	zy 	zx 	yx 	 (13  

X 	Y 	Z 	(X-7) (Y-7) (Z-i)z2  - 	+ 	- 	+ y2  - 	+ x2  Z' (3)-(16) 4 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 1112 13 14 15 16 	17 	18 

Coefficients: 

Zzy Zyx ZzxZy 2  
(Eyx) 2 	zy2Lx 2 

Szy - B Syx 

C = 	- AV^ BÎ 



4.3.4 Linear correlation - two independent variables - weighted observations (grouped data) 

Regression Formula : Z = AY + BX + C 

x 	Y 	z 	nzy 	nzx 	nyx 	dz 	nez 
n 	X 	nX 	Y 	nY 	Z 	nZ 	— 	— 	nz2 	 nyE----nx2  Z' 

(X-X) 	(Y-Y) (Z-Z) 	- 	+ 	- 	+ 	- + 	(6)-(20) n(21)2  

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 1213 14 15 	16 171119 	20 	21 	22 

Coefficients: 
Znzy•Znyx. - 2nzx-Zny 2  
(Znyx)2  - Zny2-Znx2  

A = Imy z 

C = - -Z - AY - 

Znzy - BZnyx 



4.3.5 Linear correlation - three independent variables

Regression Formula: W = AY + BX + CZ + D

w y x z y2 XLI z wx x2 xz wz z2 W'

1

dW dW

W Y X Z W-W

_

Y-Y X-X Z-Z - + - I+ 1 - + -1 +1 1 - + -1 + 1 (l)-(24) (25 2

1 2 3 4 5 6 7 8 9 10 11 12 13 1 15 16 17 18 19 20 21 22 23 24 25 26

Coefficients:

C=

Q
-1

(SwyEyx - EwxFy2) • (EyxFyz - EyzExz) - (ïwyEyz - EwzEYz ) • ^ (EYx)z - Eyz2xz^

(lyxEyz - EyzExz)z - [(^yz)z - 7y2Ezz] • -yx)z Eyz^xz]

S

B = R - CS

Q

- B7-yx - CY-yz
,,yz2

D= W - AY- BX - CZ

A =



4.3.6 Linear correlation - three independent variables - weighted observations (grouped data) 

Regression Formula: W = AY + BX + CZ + D 

W 	y 	x 	z 	2  nwy 	nwx 	nwz  
n 	W 	nW 	Y 	nY 	X 	nX 	Z 	nZ 	(W-71) 	(Y-Y) 	(X-z) 	(Z-i) 	nw 	- + 	- + 	- +  

I 	23 	45 	67 	89 	10 	11 	12 	13 	141516 17181920  

nyx 	nyz 	 nd 
_ 	 1 	nxz 	 dw 	w2  

ny2 	-- 	 =2 	 nz2 	W t + 	- 	± 	- 	+ 	 (2)-(30) 	n(31)2  

21 	22 23 24 25 	26 	Z 28 	29 	30 	31 	32 

Coefficients:  
Q' 	 R'  

(F.nwyEnyx ZnwxEnY 2) CEnyxSnvz - Sny2Enxz3 - CEnwYEnyz - SnwzSny 23 [anyx)2  -Eny 2Snx2l 
(EnyxEnyz - Zny22,nxz)2 	[(Snyz )2  - Zny2Znz2] • [ (2nyx)2  - ny2Inx1 

Q' 	 s' 

R' - CS' 

Q' 

A 
= Suwy BEnyx - CSnyz 

Eny 2  

D=W - AY-BX- CZ  
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4.4 Simplified Calculations for Large Numbers of Observations  

When a large number of observations are to be treated, 

and provided that the variables are equally spaced, calculation can 

be greatly simplified by grouping of the observations and rank-

numbering of the groups. 

This is illustrated in the table below, where frequencies 

are recorded for various class-intervals of both X and Y. The 

simple numbers 1, 2, 3, ... given as the values of X and Y in the 

table are the "rank-numbers" and replace, for ease of calculation, 

the true value (e.g., mid-point) of each group (class). 

4.4.1 Linear correlation - one independent variable  

Regression Formula: Y = A + BX 

TABLE 4.2 Frequency Table of X and Y 

	

X 	  Total 
1. 	2 	3 	4 	5 	6 	7 	8 	9 	No.  

7 	1 	2 	1 	 4 

	

6 	1 	3 	3 	1 	 8 

	

5 	1 	- 	6 	4 	1 	 12 

	

y4 	1 	- 	5 	10 	10 	5 	1 	32 

	

3 	 1 	6 	15 	20 	15 	6 	1 	64 

	

2 	 1 	411 	9 	6 	- 	31 

	

1 	 4 	6 	4 	1 	15 

Total 

	

• No. 	1 	5 	5 	21 	34 	46 	35 	17 	2 	166 

(Halves move to the right) 

Calculations for the Line-of-Best-Fit are: 

1. Sum of squares of variable X about the Mean; 

2. Sum of squares of variable Y about the Mean; 

3. Sum of Products of X and Y about the Means. 
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1. Sum of Squares of Variable X about Mean 

Sum X  =(Column Totals) • X =2X=(1 x 1),+ (5 x 2) + ...(2 x 9)= 955 

Crude Sum Squares  2X2= (1 x 12 ) + (5 x 2 2 ) + ...(2 x 9 2 ) = 5873 

Correction due to Mean  = (M)2 /n = (955) 2 /166 = 5494  

F,x2  = 2.X2 - (2,X)2  /n = (5873 - 5494) = 379 

Variance (V)  =x2/(n - 1) = 379/165 = 2.30 

2. Sum of Squares of Variable Y about Mean  

Sum Y  = (Row Totals).Y =  Y = (15 x 1) + (31 x 2) + ...(4 x 7)=533 

Crude Sum Squares  =2Y2=(15x12 ) + (31x2 2 ) + ...(4x7 2 ) = 2011 

Correction term  =  (Y)2  /n = 1711 

2,y2 =2.Y 2 - (2Y)2 /n = (2011 - 1711) = 300 

Variance ( V)  =2;y 2/(n - 1) = 300/165 = 1.82 

3. Sum of Products of X and Y about Means  

Sum of Products  =:Efi.Xi-Yi, where fi = frequency of (XiYi). 

As shown in Table 4.3 below, fill in for each value of X the sums 

obtained as follows: 

Column 1 (X = 1); 	= (1 x 7) = 7 

= 2; Efi.Yi = (1 x 4) + ... (2 x 7) = 29 

X = 9; Zfi. Yi = (1 x 1) + (1 x 3) = 4 

TABLE 4.3  

X 	1 	2 	3 	4 	. 6 	7 	8 	. 	Total 

E.fiYi 	7 	29 	28 	88 	119 	131 	89 	38 	4 	533 

YafiYi 	7 	58 	84 	352 	595 	786 	623 	304 	36 	2845 

Crude Sum of Products  = Xi2f1Yi = MY = 2845 

Correction term  = XXIY/n = (955).(533)/166 = 3066 
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Zxy  =2XY -;EX2Y/n = 2845 - 3066 = -221  

For this example, the correlation coefficient r, found from 

./(Zxy)2   . 1/(-221) 2  
— 0.656, indicates a high degree of correl- r 

ZeEy2 	(379)*(300) 
ation for 164 degrees of freedom. (See table, "Significance of Cor-

relation Coefficient", in Appendix B.) 

TABLE 4.4 Analysis of Variance of Regression 

Source of 
Variation 	Sum Squares 	 d.f. 	Variance  

Regression 	r 2:Ey 2  = (2.sxy) 2 /Ex2 = 	129 	1 	129  

Remainder 	(1-r2 ) y?  = Ed; 	= 	171* 	164 	1.04 

Total 	 Zy 2  = 	300 	 n-1=165 	— 

 d2  = 2y 2  _ Œxy)2  
X 2  

The F-ratio, F = 129/1.04 = 124.04, is highly significant 

for 1 and 164 d.f. respectively. 

Coefficients for the regression formula Y = A + BX: 

B 	= -0.58  
Zx- 

A  ZY -2  = 533  - (-0.58) • (955)  = 6.55  
n 	n 	166 	 166 

Equation for the Line-of-Best-Fit: 

Y = 6.55 - 0.58X 

4.42 Linear correlation - two independent variables  

Regression Formula: Z = AY + BX + C 



64 

TABLE 4.5 Frequency Table of X, Y, and Z  

Z 
X 	Y 	 Total 

1 	2 	
345 
	6  

5 
4 	 2 	- 	1 	3 

7 	3 	 2 	1 	1 	4 	7 
2 
1  
5 
4 	 -17 	9 	6 	32 

6 	3 	 2 	6 	4 	- 	12 	44 
2 
1  
5 	1- 	1 	3 	- 	5 
4 	4 	12 	14 	21 	5 	56 

5 	3 	- 	8 	9 	2 	- 	19 	80 
2 
1  
5 	- 	1 	2 	3 	2 	8 
4 	3 	18 	20 	11 	6 	58 

4 	3 	- 	3 	8 	- 	- 	11 	79 
2 	 - 	- 	 - 
1 	 1 	1 	 2  
5 	1 	1 	3 	1 	 6 
4 	10 	30 	13 	7 	 60 

3 	3 	2 	'2 	2 	1 	 7 	73 
2 
1  
5 	3 	5 	1 	1 	 10 
4 	821 	4 	2 	 35 

2 	3 	 3 	 3 	48 
2 
1  
5 	- 	2 	 2 
4 	44 	 8 

1 	3 	1 	1 	 2 	12 
2 
1  

	

Total 	27 	91 	86 78 	48 	13 	343 

B - Zzy2x2  Zzxïxy  
Zy2Ex2 	(Exy)2  

A ZxzZS7.2  - Eyz Zxy  - 
Ex 2Z37 2  - (Zxy)2 

Coefficients:  
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EZ - 	- BEY -  AK C  

Correlation coefficient: 

r 2  = BEyz + Axz 
zz 2  

Calculations for the Line-of-Best-Fit are: 

1. Ex2  = 2.X 2 	(M) 2 /n 

2. 2y 2  = 2y 2  - (1.Y) 2  /n 

3. Zz 2  = ZZ 2  - (EZ)2 /n  

4. Zxy =ZXY - SXSY/n 

5. Zxz = 2XZ - ZXSZ/n 

6. .2yz =ZYZ - ZYZZ/n 

1. Calculation of Ex 2 : 

Sum X  =EX = (12 x 1) + (48 x 2) + ...(7 x 7) = 1356  

Crude sum squares  = EX 2  = (12 x 1 2 ) + (48 x 2 2 )+... (7x7 2 )=6052 

Correction: (2X)2  /n = 5361  

Ex 2  = EX 2  - (SX) 2 /n = 691 

2. Calculation of Ey 2 : 

Sum Y  = ZY = (2 x 1) + (58 x 3) + (252 x 4) + (31 x 5) = 1339  

Crude sum squares  = ZY2 = (2x12 ) + (58x3 2 ) + (31x5 2 ) = 5331 

Correction:  (ZY)2/n = 5227  

Zy 2  = 104 

3. Calculation of Ze: 
Sum z  =Z  = (27 x 1) + (91 x 2) + ... (13 x 6) = 1097  

Crude sum squares  =Z2 =  (27 x 1 2 ) + (91x2 2 ) + ...(13x6 2 )=4081 

Correction:  (Z,Z) 2 /n = 3508  

Zz 2  = 573 
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4. Calculation of Zxy: 

TABLE 4.6  

X 	1 	2 	3 	4 	5 	6 	7 	Total 

ZY 	2x3= 6 	3x3= 9 	7x3= 21 2x1= 2 19x3= 57 12x3=36 4x3=12 

4x8=32 35x4=140 60x4=240 11x3=33  E64=224 32x4=128 3x4=12 

	

2x5=10  10x5=50 	6m5= 30 58xL=2M 5x5=25 	
164 	24 

	

48 	199 	291 	8x5=4C 	306 
307 

2 XY 	48 	39 8 	873 	1228 	1530 	984 	168 	5229 

Crude Sum  = 7,XY = 5229 

Correction  =ZXZY/n = 5294  

Exy = 2XY - 2 XZY/n = -65 

5. Calculation of 2: xz  : 

TABLE 4.7  

, 

X 	
, 	1 	k 	2 	3 	4 	5 	6 	7 	t 	Total  

ZZ 	5x2=10 	- 	- 	- 	_ 	. 	- 

	

7x3=21 	- 	- 	- 	- 	.. 	- 

	

31 	99 	169 	240 	326 	199 	33 

ZXZ 	31 	198 	507 	960 	1630 	1194 	231 	4751 

Crude Sum  = SXZ = 4751 

Correction  = 2XEZ/n = 4337 

2.xz = 414 
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6. Calculation of Zyz:

TABLE 4.8

Z 1 2 3 4 5 6 Total

ZY

2x3 = 6

21x4=84

4x5 =20

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

110 366 325 297 190 51 -

,2YZ 110 732 975 1188 950 306 4261

Crude Sum = zYZ = 4261

Correction = EY2Z/n = 4282

Zyz = -21

Coefficients:

B= (-21 x 691) -(414 x -65) = 0.1833

(104 x 691) - (-65)Z

A = 0.6164

C = 0.0458

For this example, equation of the Line-of-Best-Fit:
p

z = 0.0458 + 0.1833X + 0.6164Y

The correlation coefficient

2 0.1833 x (-21) + (0.6164 x 414) = 0.4386
rz.xy -

573

r = 0.6623
zxy

indicates a high degree of correlation for 340 degrees of freedom.



In order to use the 

regular tables shown earlier 

(Tables 4.3.1 to 4.3.6) for 

calculating correlation, 

the number of classes of 

X and Y must be equal, and 

the frequency (n) of each 

class-interval of X must 

equal that of the correspond- 
o  

ing class-interval of Y. 

Neither of these conditions 

can be met here without dif-
ficulty. It is simpler 

in such a case to construct 

a table of frequencies from 

the original data as shown 

on the following page. 
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4.5 Example of Regression Analysis with Grouped Data  

Correlation of Summer Temperature vs. Length of Fir Shoots: 

Assuming a linear relationship, 

Regression Formula 1Y ' A + BX 

X = temperature, °C; Y = length of shoot, mm.; 

The data have been weighted, i.e., X and Y have been independ-

ently grouped in classes .  of equal interval and the frequency (n) of each 

class recorded. In calculating correlation, the mid-point of each class 

is taken as the value corresponding to X and Y respectively. 

TABLE 4.9  

X 	 Y 
Class-Interval 	nx 	Class-Interval 	ny  

	

6.45 - 	6.95 	1 	35 - 	45 	1 

	

6.95 - 	7.45 	1 	45 - 	55 	3 

	

7.45 - 	7.95 	1 	55 - 	65 	5 

	

7.95 - 	8.45 	1 	65 - 	75 	11 

	

8.45 - 	8.95 	6 	75 - 	85 	8 

	

8.95 - 	9.45 	8 	85 - 	95 	6 

	

9.45 - 	9.95 	6 	95 - 105 	2 

	

9.95 - 10.45 	8 	105 - 115 	1 

	

10.45 - 10.95 	1 	115 - 125 	1 

	

10.95 - 11.45 	2 	125 - 135 	1 

	

11.45 - 11.95 	1 

	

11.95 - 12.45 	1 

	

12.45 - 12.95 	2 

	

39 	 39 



Regression Formula : ly = A + BX 
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X = Average Summer Temperature, °C 

Y = Length of Fir Shoots, mm. 

TABLE 4.10 Frequencies of X vs Y 

	

1 	X = Class Mid-point 

6.7 7.2 7.7 8.2 8.7 9.2 9.7 10.2 10.7 11.2 11.7 12.2 12.7 Total 
.....----- — 

	

130 	 1 	1 

	

120 	 1 	1 

	

110 	 1 	1 
4 
0 
'61  100 1 1 2 
a 
rà 	90 	 2 	2 	1 	1 	 6 
..-1 
Z 
m 	80 	 1 	2 	1 	3 	1 	 8 
m 

‘--i u 

	

60 	1 	1 	3 	 5 
II 

›-1 	50 	 1 	2 	 3 

	

40 	1 	 1 
	 . 

	

Total 	1 	1 	1 	1 	6 	8 	6 	8 	1 	2 	1 	1 	2 	39 

This table shows the  true distribution and frequencies of the 

class-intervals of each variable with respect to one another, and is 

simply another form of the scatter diagram. 

Calculation of the Line-of-Best-Fit  

For Y = A + BX 

Coefficients: 

I. 	B = ncy/Ex 2 ; Y 

II: Bx = Ey 2 /2xy; 

III. Bxy = (kBy  + jBx)/(k + j) 
— EY 

n 	n 
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1. Calculation of 2,x 2 

 EX = (1 x 6.7) + (1 x 7.2) + ... (2 x 12.7) = 377.8 

Crude Sum Squares= 2.2= (1 x 6.7 a) + (1x7.2 2 ) + ...(2x12.7 2 )=3,725.06 

 Correction  = ÇaK) 2 /n = (377.8)2 /39 = 3,659'.82  

Ex2 =SX2 -(EX) 2 /n  =3725.06  - 3659.82 = 65.24  

Variance  = s c  =Ex 2 /(n-1)=65.24/38 = 1.72;standard error,sx  = 1.31 

2. Calculation ofEy 2  

EY = (1 x 40) + (3 x 50) + 	(1 x 130) = 3,000.00  

Crude Sum Squares=  EY2=(1x40 2 ) + (3x50 2 ) + 	(1x130 2 )=244,200  

Correction  = (EY)2 /n = (3,000) 2 /n = 230,769  

Ey 2  = EY 2 - (2Y)2 /n = 244,200 - 230,769 = 13,431  

Variance  = 	= 13,431/38 = 353.45;  standard error, sy  = 18.80  

3. Calculation of Zry  

Column 1 (X = 6.7); ZY = (1 x 40) = 40 

X = 7.2 ;.:EY = (1 x 60) = 60 

X = 12.7; 1Y = (1 x 120) + (1 x 130) = 250 

TABLE 4.11  

	

X 	6.7 7.2 7.7 	8.2 8.7 9.2 	9.7 10.2 10.7 11.2 11.7 12.2 12.7 	Total 
	 __...-- 	 

	

EY 	40 	60 	60 	50 360 620 	430 	660 	80 	190 	90 	110 	250 	3,000 

	

XEY 	268 432 462 410 3132 5704 4171 6732 856 	2128 1053 1342 3175 29,865 

Crude Sum Products  = X£Y = 29,865  

Correction  = (EX-EY)/n = (377.8 x 3,000) 139 = 29,062  

Zxy  = 29,865 - 29,062 = 803 

It will be recalled that, depending upon which of the 

YarLables is most subject to error, one of three possible equations 
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may be used for expressing the relationship (see Fig. 4.4). The three 

are given for illustration purposes: 

I. Y subject to error only: 

If variations in the data are assumed or are known to be 

largely due to measurement errors or to the variability of the length 

of fir shoots (Y): 

B =Z:xy/Zx 2  = 803/65.24 = 12.31  

A = 3000/39 - B(377.8/39) = -42.33  

Y calc. = 12.31X-42.33 

II. X subject to error only: 

If variations are largely due to measurement errors or to 

variability of temperature (X): 

B = Iy 2 /2xy = 16.73  

A = 76.9 - (16.73 x 9.7) = -85.14  

Y cale.  = 16.73X-85.14 

III. Both X and Y subject to error: 

If variability or measurement errors are not largely con-

fined to either X or Y: 

Variation Coefficients: k = 0.244, j = 0.136. 

B = (kBy + jBx)/(k + j) = 13.89  

A = 76.9 - (13.89)(9.7) = -57.63  

Y cale.  = 13.89X - 57.63 
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Fig. 4.4 - Correlation of Length of Fir Shoots 
vs. Summer Temperature 
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Referring back to 4.1.3, it is seen that for 

k = 0.244 and j = 0.136, Case III applies (both X and Y subject 

te) error) since 1/2 k<j<2k. In other words, the most accurate 

estimate of Y, length of fir shoot for a temperature X, will be 

given by equation III in this example, i.e. the weighted average 

curve of the two independent regressions. 

Correlation coefficient : 

Exy 
 r 	

803  

 Z>17-eÎT - 2 	1(65.24)(13,431) 
- 0.857  

This value of (r) denotes a high degree of correlation for 

37 degrees of freedom. 

4.6 Worksheets - Non-Linear Regression  

Worksheets that follow are for calculation of 2nd-, 3rd- 

and 4th-degree curves-of-best-fit for two variables. 



Regression coefficients: Correlation coefficient: 

c 
2x42x 2 	(ZX 2  )3  /n - (2x 3 )2  

rey  Zx2  2xy2x3  

Regression Formula, original units: C=  c - 

B = b 2CZ 

A = a - 135-C.  + ci 2+ 
[y = A + BX + CX2 
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4.6.1 Non-linear correlation - 2nd degree  

y = a + bx + cx2  Regression Formula : 

X 	Y 	 x.Y 	X2y 	X 3  

x 	y 	 X2 	y 2 - 	+ 	+ 	- 	+ 	x4 	Y' d2  dy 	Y 
(X-i) 	(Y-7) 	 (2)-(14)  

3 	4 	5 	6 	7 	8 	9 10 	11 	12 	13 	14 	15 	16 

b-  Zxy c2.x3  
SX2 

a- 	C2X
2 

To obtain equation on basis of the original units X, Y, 

substitute Y - 7= y and X - if= x in the regression formula for 

y and determine new coefficients: 



Znx2yEnx2  ZmcyZnx3  c - 
Znx4Znx2  -(Enx2)3/n - (Znx 3 )2  

b - Znxy - cZnx3 
 Znx 2  

Regression coefficients  : Original Units  : 

Coefficients: 

C= c 

B = b - 2c5t- 

A = a - b3E + ci 2  + 

4.6.2 Non-linear correlation - 2nd degree - weighted observations (grouped data) 

y = a + bx + cx 2  Regression Formula : 

	

x nx2y 	nx3 
Y, 	X 2 	y 2 	n X 2 	ny2 	11XY 	 nx4 	Y' 	dy 	d 2  n 	X 	nX 	Y 	nY (X-'7) (Y-Y) 	 - 	+ 	- 	+ 	- 	+ 	

Y 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 	16 	17 	18 	19 	20 	21 

a = _cZnx2  
Regression Fo/mula: 

Y = A + BX + CX2 
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4.6.3 Non-linear correlation - 3rd degree

Regression Formula : y = a+bx+cx2 +dx3

For sets of single observations, the following columns

should be added to worksheet 4.6.1:

X3y x5 x6

Simultaneous equations for regression coefficients:

Zx3y - aZX3 - b-x4 - cIX5
d =

C =

D =

a =

f..x6

EX2y - aZX2 - bZx3 - dZX5

EX4

Exv - cEx3 - dEx4

cEx2 - dEx3

n

Convert to original units : Y= A-I- BX + CX2 + DX3

D = d

C = c - 3dX

B=b - 2cX+3dX2

A a - bX + CX 2- X3 + Y

Similarly, for weighted observations, the following columns

should be added to worksheet 4.6.2:

nx3y I nx5 I nx6
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4.6.4 4th degree - non-linear regression  

Regression Formula : y= a + bx + cx2  + dx 3  + ex4  

Add the following columns to worksheet 4.6.1: 

x y 	x5 
5 	

X
6 

X
4 y 	x7 	X8 

Simultaneous equations for regression coefficients  : 

Zx4v - a2le - b2x 5 	c2x5 	d2x7  
e = 2x8  

d 2x3y - aEx3  b2x4  - cEx5  - eIx7  - 
Zx6  

-  Zx2y - a2x2  - b2x 3  - dIx 5  - e2x5  c  
Ex4  

b Zxy - cEx 3  - dEx4  eEx5  - 
Ex2  

c2x2  dSx3  - e2x4  a=  

Convert to original units : Y = A + BX + CX2  + DX3  + EX4  

E=  e 

D = d -  4e!  

C = c - 3e + 6eÎÈ.2  

B = b - 2cK + 3e2  -  4e 3  

A = a - 1)7 + ck 2  e3  + er + 

Similarly, for weighted observations, the following columns 

should be added to worksheet 4.6.2: 

nx3y 	 nxe 
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5. SAMPLING 

In this section a general theory
(10)

is presented for the 

sampling of materials and statistical populations that are encount-

ered in the field of engineering and in other disciplines. 

The basic concept of this theory is that the variability 

of a material consignment, or of any other population, can be ex-

pressed by two variance components that are constants and reflect 

statistical properties of the material in the same way that other 

material constants reflect certain physical and chemical properties 

of materials. 

These variance components or "sampling constants" are used 

for designing sampling experiments and, more specifically, for de-

termining in advance the precision ofasampling experi-

ment asafunction of sample size and the number of incre-

ments. Application of the method is illustrated with twelve 

examples that cover a large variety of materials and conditions. 

Condensed instructions are presented in a table. 

5.1 Notes on the Problems of Sampling  

When it is required to measure some property or attri b-

u t e of a large volume of material or some other statistical pop-

ulation, a small representative portion is collected as a sample for 

testing. Sometimes, as in opinion polls, the information can be ob-

tained without actuallyncollecting" the sample. This does not, how-

ever alter the procedure that follows. 

The sample value will generally differ from the true, un-

known value of the material consignment. This difference, called 
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sampling error, has a frequency distribution with a mean value and 

a variance. 

It is necessary to estimate this sampling error before the 

quality evaluation can be reported with any degree of assurance or 

precision. The sampling error depends upon the nature of the mater-

ial and on the manner of sampling. These two main factors are ex-

pressed as variance components that contribute to the overall samp-

ling variance, s 2 . 

Let the true unknown valüe ofa variate (Q) of a 

material consignment be X; the sample value of this same variate 

will have a value x, and the difference (x - X) will be character-

ized by a frequency distribution with standard error, s. The samp-

ling error can then be expressed as a function of s. 

Materials and variates may vary over wide ranges and the 

circumstances under which the samples are collected can vary widely, 

but the causes of Variation in sample value are limited. Two fact-

ors are inherent in the nature of the consignment, namely, "random 

variation" and "segregation". These are statistical properties in 

the nature of material constants, that will be termed "sampling 

constants" (A and B, respectively) of the population. A and B are 

variance components that can either be determined from a specially 

designed test or be estimated from prior knowledge if the material 

is known by composition and distribution. 

The other factors influencing precision of the sample are 

the number (N) of increments collected from all parts of the lot, 

and the size (W) of the resultant gross 	sample. 	W and 

N are in the nature of operating variables that can, within certain 

limits, be regulated at will by the sampler. The uquation !; 2 = A/W 

B/N operates independently of the shape oE the parent dis- 
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tribution of the variate. It applies generally for first-

order estimates of the upper limit of the sampling variance (s 2 ). 

The degree of segregation (z) is described by 

z 2  = B/A. 

• 	 Every sampling operation consists essentially of either 

extracting one single sample from a given quantity of material or 

extracting from different parts of the lot a series of small portions 

or "increments" that are combined into one "gross sample". The 

latter method, known as "sampling by increments", will be considered 

here. The former method can be regarded as a special case of in-

cremental sampling in which the number of increments equals one.' 

5.1.1 Comparison with other sampling theory  

One theory for sampling materials that are non-randomly 

distributed is known as "stratified sampling" or "representative, 

(random) sampling (of stratified populations)". In this theory, the 

precision of sampling is expressed as the sum of the variance "within-

strata" and the variance "between-strata", the strata indicating 

parts of the material consignment whose mean values differ signifi-

cantly from the overall mean value of the consignment. Sometimes, 

as in incremental sampling, these "strata" are imaginary, because 

they become identical to the portions represented by the individual 

increment. The "within" and "between" Variance estimates are then 

a function of the size and number of increments. It is common to 

identify the "between-strata" variance with the trend variance", 

and the "within-strata" variance-with the "random variance". Clear-

ly, however, with different size and number of increments, the esti-

mates of the between-strata variance and the within-strata variance 

will change. These variance estimates, therefore, cannot be regard-

ed as constants and consequentbr cannot ' be used without certain 
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corrections for calculating in advance the number and size of incre-

ments required to attain a projected over-all precision of sampling. 

The meaning of "random sampling error" as used here goes 

back to a classical experiment where a number of black and white balls 

are mixed in a vase and a sample consisting of one or more balls is 

withdrawn at random. The random error occurs when the hand collect-

ing  the  sample selects by chance a white ball instead of a black ball, 

or vice versa. The resulting variance is the "random vari-

a n c e", of which the "within-strata variance" used in representa-

tive sampling gives a biased estimate (depending upon the size of 

the samples used) when dealing with materials that are non-randomly 

distributed. This random variance is determined by the average com-

position of the material (in this case the relative amount of black 

or white balls) and by the size of the sample only. The same defin-

ition of random variance is adopted for variates with parent dis-

tributions that are not of the binomial type. 

5.1.2 Definitions  

In this section, the term "random variance" keeps its 

original meaning. "Trend variance" has been omitted because of its 

confusing nature; in its placeanew term, "segregation 

variance", is introduced which denotes the variance caused 

solely by deviations resulting from the non-random distribution of 

a consignment. Its physical meaning is simple to explain: the 

deviation of any sample value from the true mean of the lot or con-

signment is the algebraic sum of its random error and a remaining 

error which results from the fact that the variate is non-randomly 

distributed over the lot. The latter is called the segregation 

error and its variance the segregation variance. IL  will be shown 

that the segregation variance component of single  samples is in- 
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dependent of sample size; it depends only upon the degree of seg-

regation of the consignment. It will also be shown that the maxi-

mum degree of segregation, as expressed by the variance of segregat-

ion, is directly related to the random variance. This relationship 

is utilized to estimate sampling precision. 

5.2 General Sampling Theory  

When a sample of given size is drawn from an infinite pop-

ulation, its theoretical variance is always larger than if a sample 

of the same size were drawn from a finite population having otherwise 

identical characteristics. 

The fact that in practice all populations are finite does 

not necessarily invalidate the theoretical estimate of the variance, 

provided stipulation is made that it is an estimate of the maximum 

value that this variance will attain for an infinite population. 

The same problem is encountered when samples are drawn either system-

atically or at random from a stratified population. Samples that 

straddle the boundaries between two strata contribute less to the 

sampling variance estimate than those that are drawn wholly from in-

dividual strata. The latter variance estimate is consequently al-

ways larger than the former. 

A model population is introduced to demonstrate the fund-

amental relationship and its general applicability. Variance values 

found from tests on this model are only maximum estimates, because 

the model represents the conditions that cause the largest possible 

variations. Sampling variances derived from the tests are accurate 

by first-order approximation only. Conditions other than those govern-

ing test results from the model will lead to variance estimates that 

are smaller, as for instance when the samples are very large or when 

the population is relatively small. Other conditions are discussed 
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in the text. 

The above limitations do not seriously interfere with the 

requirements of industry regarding the testing and safeguarding of 

quality. 

5.2.1 Model population  

The model population of "black" and "non-black" items, as 

illustrated by a "sampling board" (Figure 5.1), is used for analyz-

ing variability of samples drawn from segregated consignments. 

This sampling board consists of a piece of 10" x 10" wire 

screen with 10 openings per linear inch, and a supply of 5,000 lead 

pellets. The lead pellets can be used entirely, or in part, for 

making model populations that are segregated in different ways. The 

pellets can be distributed in any conceivable manner, ranging from 

complete segregation to near-perfect random mixtures. The samples 

collected from this population are not removed but merely counted. 

A sample is taken by placing a square frame with its centre over the 

selected station and counting the number of pellets enclosed within 

it. The size of the samples can thus be varied and the number chosen 

at will. Samples can be collected either systematically at fixed 

stations marked off on the screen, or at random. In the latter case, 

a random sampling table is used for determining the co-ordinates. 

The method of analysis consists essentially of 'collecting 

samples of different size from a given population and determining 

the relationship between sample variance and sample size. 

It will be shown (Eq. 13) that the total sampling variance 

(s 2 ) consists of a random variance component (spw') that depends 

upon the size (w') of the sample, and a segregation variance compon-

ent (s 2 )  that is independent of sample size. 

The results of experiments carried out with the sampling 
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board are presented in the form of graphs which show the relationship 

between the variance of single samples and sample size, the latter 

being determined by the number of screen openings in a square frame. 

In the tests reported here, three different sample sizes are used: 

w' = 1, 

w; = 9 (located in the square of 3 x 3 openings), . 

and w; = 81 (9 x 9 openings). 

The numbers of pellets (x) found within the square frames 

are recorded and the series thus obtained used for calculating vari-

ance estimates. A simple formula for calculating this measure of 

dispersion for a series of observations is presented in Table 5.4, 

where p can be taken as equal to -7 • 

5.2.2 Relationship between the degree of segregation and the  

parent frequency distribution 

Example 1  

An example of complete segregation will be studied first by 

placing 2,500 beads in one corner of the sampling board (the lower 

left corner as shown by the inset on Figure 5.2). This corresponds 

to a binomial population designated by p = 0.25. Samples collected 

from this mixture will be either 1007. black or 100% white, except for 

those that straddle the boundary between the black area and the white 

area. This latter restriction is of little consequence as long as 

the samples are small compared with the "patch" of 2,500 beads, as 

shown in Table 5.1, where three series of systematic samples and three 

series of random samples are presented having sizes 1, 9 and 81 re-

spectively. Figure 5.2 shows that the six variance estimates found 

from these series do not deviate significantly from a straight hori- 

zontal line corresponding to the binomial variance s' = p(1-p) = 0.1875. 

The fiducial limits of the variance estimates correspond to variance 

ratios F 95  = 1.52 (24 and •vDd.f.) for variance estimates larger than 
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0.1875, and F95 = 1.73 (o.o. and 24 d.f.) for variance estimates small-

er than 0.1875. The results of this sampling experiment show that 

there is no significant difference between the samples drawn at ran-

dom and the samples collected systematically. The same conclusion is 

found when the Chi-square ()( 2 ) test is applied (see Table 1.2 for 

references). 

The experiments also show that, while the size-variance 

curve of a completely random mixture is defined by a straight line 

sloping lown at an angle of 45 0  on a double-log scale, the sample var-

iance never exceeds the theoretical value of 0.1875 in the case of 

complete segregation and remains substantially constant over the en-.  

tire interval. 

Patterns showing partial segregation may take many forms 

that are impossible to deal with in every aspect. The gradual tran-

sition from complete segregation into complete randomness can, how-

ever, be illustrated in an orderly fashion and the conclusions that 

can be drawn from this apply generally to any pattern of distribution. 

To study the characteristics of partial segregation it will 

be assumed that mixing takes place in five equal steps, reducing the 

degree of segregation first from 1.0 to 0.8, then to 0.6, to 0.4, to 

0.2, and finally to O. When segregation is zero, the number of pel-

lets within the black square should be 25% of the original number. 

The total reduction from 100% pellets to 25%, divided into five equal 

steps, is a reduction of 15% or 375 pellets for each step. 

The following mental experiment can now be conducted: 375 

pellets are selected at random from the black square containing 2,500 

pellets (Figure 5.2), and are redistributed randomly over the remain-

ing three quarters of the sampling board (the degree of segregation 

is reduced from 1 to 0.8). 

A sample drawn from the black quarter of the sampling board 
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TABLE 5.1

Complete Segregation (Figure 5.2) p = 0.25

Systematic Samples Random Samples

Sample

Size
9 81 1 9 81

Sample
coordinates coordinates coordinates

No. X X? X2 X2
X3

x3
2

X4
2

X4 X5
2

X5 X6
2

X6

1 17 07 1 1 68 55 44 04 81 6,561
2 76 74 34 74 22 33 81 6,5b1
3 37 21 1 1 30 30 9 81 78 46
4 13 19 1 1 13 77 84 09
5 04 30 1 1 70 40 26 52 27 729
6 70 97 74--• 59 71 13
7 33 77 57 29 91 58
8 24 46 1 1 25 97 38 18 81 6,561
9 03 44 1 1 65 68 67 24

10 54 80 76 60 54 76
11 1 1 6 36 45 2,025 04 94 27 48 9 81 96 96
12 1 1 6 36 45 2,025 43 77 42 55 57 4.6
13 1 1 4 16 25 625 18 24 1 1 37 90 69 92
14 66 21 86 65 36 42 81 6,561
15 79 90 53 72 10 45 81 6,5b1
16 1 1 9 81 81 6,561 12 99 00 66 77 10
17 1 1 9 81 81 6,5b1 72 27 39 37 9 81 84 45
18 1 1 6 36 45 2,025 07 72 68 32 57 b5
19 34 95 29 20 9 81 03 04 81 6,561
20 45, 14 1 1 .61 30- 29 2b 81 6,561
21 1 1 9 81 81 6,561 52 38 29 68 53 34 18 324
22 1 1 9 81 81 6,561 85 68 94 49 75 23
23 1 1 6 36 45 2,025 b6 88 98 69 91 20
24 60 11 94 10 93 57
25 11 44 80 24 82 30 27 81 6,561
Sum 9 9 64 484 529 1 34,969 11 8 8 36 324 693 5 3,541

s2 11 0.2400 0.1647 0.1510 11 1 0.2267 0.1400 1

.
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will have an expected value: 

E(X)
black 

= (2500 - 375)/2500 = 0.85 

Similarly, for samples drawn from the other three-quarters, we find 

expected sample values 

E(X)
white = 375/7500 = 0.05. 

The expected variance calculated from these figures for a 

degree of segregation 0.8 is, 

E (variance) = E [EX - E(K)1] = 0.1200. 

The total variance for a degree of segregation of 0.8 is 

0.64 times the total variance for the entirely segregated mixture. 

Continuing the experiment for lower degrees of segregation, 

the results presented in Table 5.2 are found when four samples are 

collected (one from each quarter of the sampling board) for each test. 

TABLE 5.2 

Effect of Segregation on Total Variance  

	

Degree of 	Deviation from Mean Grade 	Total Expected 

	

Segregation 	X - E(X) = X - 0.25 	Variance  

(z) 	 for Each Quarter 	E(s2 ) 	Fractional  

	

1.0 	0.75; 	0.25; 	0.25; 	0.25 	0.1875 	1.00 

	

0.8 	0.60; 	0.20; 	0.20; 	0.20 	0.1200 	0.64 

	

0.6 	0.45; 	0.15; 	0.15; 	0.15 	0.0675 	0.36 

	

0.4 	0.30; 	0.10; 	0.10; 	0.10 	0.0300 	0.16 

	

0.2 	0.15; 	0.05; 	0.05; 	0.05 	0.0075 	0.04 

	

0.0 	0.00; 	0.00; 	0.00; 	0.00 	0.0000 	0.00 

This table shows that the degree of segregation (z) and 

the expected variance are related: 

E (variance) = 0.1875 z2 



s .= z.s (Eq. 11) 
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A similar relationship holds for all ratios of "black" and "white" 

mixtures other than for 2,500 out of 10,000. 

Practically speaking, the expected variance is the limit 

of the total variance as sample size increases. The expected vari-

ance is therefore identical to the segregation variance: 

E (variance) =  4.  

Furthermore, the total variance for complete segregation 

appears to be identical with the parent variance, i.e. the variance 

of single items, which in this case follows from the binomial equat-

ion s2 = p(1-p). 

From the foregoing equations it is seen that: 

Stmunarizing the conclusions from the above experiment: 

1. The segregation variance has a maximum value equal to that 

of the parent variance of the population. 

2. The segregation variance is, within the range of actual 

sampling practice, substantially independent of sample size. 

It never exceeds the parent variance. 

3. The ratio between the segregation variance and the parent 

variance depends ml.ely on the degree of segregation (z). 

4. The total variance of samples consisting of a single unit 

equals the parent variance (4) ) regardless of the degree of 

segregation. 

On the basis of experimental evidence, it is proposed that 

the expected variance of sampling satisfies the following relation-

ship: 

E(s 2 ) = spw' + E(4 )  (1-  1 1w') •... (Eq. 12) 



s 2  =  41w' + (Eq. 13) 
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2 -. where sp 	parent variance; variance of single units; - 

E (s 2s ) = expected value of the segregation variance; and 

w' = sample size, expressed in number of units. 

This equation formulates the general relationship s = f (s 	s 	w') p , 	8 ,  

for any degree of segregation (z = 0 to 1) and sample size w' 1 

(compare Figures 5-.2, 5.3, 5.4 and 5.5 as illustrations). 

For samples consisting of two units the total variance 

becomes, by first approximation, 

2 
S 2  = 1/2  4  4-  1/2 s s . 

For samples consisting of ten or more units, Equation 12 

can be written by first approximation as: 

It is noted that the parent variance (s e ) is a constant 

which, according to the binomial equation, depends only upon the 

composition of the material. It is designated as "sampling con-

stant A'". 

The segregation variance (s ) for one and the same mat-

erial depends upon the degree of segregation (z) only, in accordance 

with Equation 11. It is known from experience that, while (z) may 

range from zero to 1, the stability of the segregation variance under 

otherwise normal conditions of handling, storage, and transportation 

is comparable to that of the parent variance. To illustrate with 

figures, it is known that noticeable blending occurs when a mixing 

device reduces the segregation variance of a product by a factor 

of 3 or more. Conversely, an increase of the segregation variance 

by a factor of 3 to 4 or more is equivalent to a distinct separat-

ing action. Therefore, while s 2s  may change, its value for a given 

material consignment will be constant within limits normal for 
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variance estimates (F-ratio), unless the consignment is noticeably 

mixed or segregated. Segregation variance es  is designated as 

"sampling constant B". 

The practical value of the "sampling constants" is 

demonstrated by examples 2 and 3. 

Example 2  

General Equation 12 was tested by distributing 2,500 lead 

pellets non-randomly over the sampling board. The samples of dif-

ferent sizes were collected systematically and at random as in the 

first example. The results are presented in Figure 5.3 and Table 

5.3. 

Two variance estimates,  s and s: , obtained from the 

systematic samples were used to evaluate the sampling constants from 

Equation 12, which can now be written as: 

s 2  = 	+ B(1 - 1 1w' )   (Eq. 14) 

The two constants were found by substituting the observed 

values for s, s:, 	and w; in the following equations: 

	

= A. 1 /w; + B(1 - 1/w:)   (Eq. 14a) 

	

s: = A'bq + B(1 - 1/w)   (Eq. 14b) 

It follows that A' = 0.1824 and B = 0.00761. 

From these values the size-variance curve for Equation 14 

was found; it is shown in Figure 5.3. This size-variance curve is 

approximately the algebraic sum of a straight line A'N', sloping 

down at 45 degrees from a point w' = 1; s2 = 0.1824, and a straight 

horizontal line, B = 0.00761. The former represents the random 

variance component and the latter, the segregation variance compon-

ent. The degree of segregation is found from the equivalent of 

Equation 11. 

z = .,„/B/A 1  = 0.20 
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Here, the Chi-square test provides spot-checks for the "goodness-of- 

fit" of Equation 14, using the experimental variance estimates 4, 

s2 , s 2  and s 2  4 	5 	 e. 

The size-variance curve calculated from e and 4 falls 

within the confidence interval defined by (n-1)-s2/x 2  of each of 

the above four variance estimates for probability levels P = 0.025 

and 0.975. For example, the confidence interval of the variance esti-

mate s:, which was found from 25 (systematic) samples, is 0.026 — 0.088 

at the 95 7e  level. The calculated variance (Equation 14) for A = 0.1875; 

B = 0.00761; w' = 9, falls within this range at 0.028. Since 4 shows 

the largest difference of all, the Chi-square test confirms the 

statistical identity of the calculated variance (Equation 14) and 

all four experimental variance estimates at the 95% level. In Fig-

ure 5.3 the confidence interval is shown only for the experimental 

variance 4. It is noted that similar results were found when ap-

plying the F-test. The Chi-square test was preferred, however, it 

being the more rigorous of the two tests. Frequency distributions 

for samples larger than 1 unit (w' = 1) will generally show deviat-

ions from the binomial distribution when the material is segregated. 

When the samples contain only a small number of units, as they nec-

essarily do in the experiments performed with the sampling board, 

these departures from the theoretical binomial frequency distribut-

ion cannot always be proven significant. 	When, however, the number 

of units contained in the sample becomes very large, such as in 

molecular binomial mixtures (fluids, pulps, etc.), the difference 

between the frequency curve of sample values as found from a test 

and the frequency curve of the sample values observed in the same 

material consignment when it is randomly mixed, will generally be 

significant, the more so when the degree of segregation is high. 
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TABLE 5.3 
Partial Segregation (Figure 5.3): p = 0.25  

Systematic Samples 	 Random Samples 

- Sample 	1 	9 	81 	 1 	 9 	 81 
Size 

 coordinates 	 coordinates 	 coordinates 

	

2 	 2 
Sample 	x, 	x2 	4 	x3 	x2  

	

3 	 X4 	 x5 	X5 	 Xs 	X
2 
6 

No. _  	 - 

	

1 	 2 	4 	21 	441 	03 	36 	 46 	33 	 60 	16 	17 	289 

	

2 	 2 	4 	20 	400 	47 	96 	1 	1 	98 	26 	 11 	22 	18 	324 

	

3 	 2 	4 	14 	196 	43 	47 	1 	1 	63 	16 	2 	4 	14 	77 	20 	400 

	

4 	 2 	4 	16 	256 	73 	36 	1 	1 	71 	80 	1 	1 	10 	94 	7 	49 

	

5 	 2 	4 	15 	225 	86 	61 	 62 	45 	4 	16 	95 	39 	28 	784 

	

6 	 1 	1 	15 	225 	97 	42 	 42 	27 	6 	36 	24 	84 	26 	676 

	

7 	 1 	1 	30 	900 	74 	81 	 53 	07 	1 	1 	51 	42 	23 	529 

	

8 	 3 	9 	35 	1,225 	24 	14 	 32 	36 	1 	1 	79 	17 	35 	1,225 

	

9 	 25 	625 	67 	57 	1 	1 	37 	07 	5 	25 	89 	53 	20 	400 

10 	 4 	16 	19 	361 	62 	20 	 32 	51 	2 	4 	73 	31 	20 	400 

	

11 	 1 	1 	19 	361 	16 	56 	 32 	13 	 88 	63 	20 	400 

	

12 	 2 	4 	21 	441 	76 	50 	1 	1 	90 	55 	 97 	01 	6 	36 

	

13 	1 	1 	1 	1 	20 	400 	62 	26 	 79 	38 	1 	1 	54 	63 	27 	729 

14 	 1 	1 	22 	484 	27 	71 	1 	1 	78 	58 	2 	4 	14 	78 	20 	400 

	

15 	1 	1 	5 	25 	28 	784 	66 	07 	 53 	59 	4 	16 	10 	59 	8 	64 

	

16 	1 	1 	4 	16 	26 	676 	12 	96 	 05 	57 	 88 	33 	16 	256 

	

17 	1 	1 	6 	36 	27 	729 	56 	96 	 03 	12 	 26 	21 	22 	484 

18 	 1 	1 	21 	441 	85 	68 	 72 	10 	5 	25 	49 	12 	23 	529 

	

19 	1 	1 	3 	9 	22 	484 	99 	27 	 93 	14 	4 	16 	81 	34 	11 	121 

	

20 	 15 	225 	26 	31 	 15 	21 	3 	9 	76 	29 	29 	841 

	

21 	 1 	1 	11 	121 	55 	38 	 31 	06 	1 	1 	23 	57 	21 	441 

	

22 	 1 	1 	20 	400 	59 	54 	 62 	18 	2 	4 	83 	60 	21 	441 

23 	 2 	4 	19 	361 	56 	82 	 43 	44 	1 	1 	01 	86 	6 	36 

24 	1 	1 	2 	4 	38 	1,444 	35 	46 	1 	1 	09 	32 	4 	16 	30 	32 	22 	484 

	

25 	 8 	64 	46 	2  116 	64 	22 	 90 	53 	3 	9 	30 	44 	17 	289  ... 
Sum 	6 	6 	57 	215 	565 	14,321 	 7 	7 	 52 	190 	 483 	1627  

	

s 2 	0.1980 	0.0438 	0.00986 	 0.2100 	 0.04210 	 0.00823 
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In fact, although the frequency distribution of large samples from 

segregated mixtures can take on any shape, independently of the shape 

of the parent distribution, the variance of such large samples is 

directly related to the variance of the frequency distribution of 

the single units. This relationship is demonstrated for variates 

that can be expressed by parameters having a binomial parent dist-

ribution. It will be shown further on that the same concept applies 

to parent distributions of different type, including normal,  poisson-

tan, and irregular parent distributions (see under "Non-binomial 

Variates", 5.4.2). 

Example 3  

A test similar to the preceding ones was done, using 1,000 

lead pellets distributed as evenly as possible over the sampling 

board. The curve for Equation 14 was based on variance estimates 

and s  (see Figure 5.4). A11 the other values which were de-

termined independently appear to check within the limits of chance 

variation with the curve 

s' = 0.1086/w' + 0.00137 (1 - 1/w'). 

The degree of segregation found from z =/B/A' = 0.11. 

These three examples confirm the correctness of the general 

Equation 14 for a range of conditions varying between complete seg-

regation and near-random dispersion of the variate. • 

In practice, the use of samples which consist of only a few 

units is common in such fields as the microscopic analysis of particle 

mixtures and in sampling for defectives. In many instances, however, 

the samples collected consist of a very large number of units that 

cannot be counted. In these cases,sample size is expressed in some 

unit of measurement (1 gram, 1 pound, etc.); each unit of measure-

ment may contain thousands or millions of elementary units of the 
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Fig. 5.4 - Size Variance Curve (minor segregation)  
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binomial. As a result, the size-variance curve of such samples will

be generally determined by the segregation variance component only.

In other words, the actual range of sample sizes lies somewhere with-

in the less steep section of the size-variance curve.

For this type of material it would be impractical to use

the parent variance for sampling constant A', because the number (w')

of binomial units'is too large to be counted. Instead, sampling

constant A' can be determined for a single unit of measurement. It

is then necessary to indicate the unit of measurement to which this

sampling constant refers.

5.2.3 Practical units and proximate equation

To illustrate the use of practical units and their relation-

ship to the general equation, the results of another test are present-

ed in Figure 5.5. One thousand lead pellets were distributed with a

high degree of segregation (see inset Figure 5.5) and the sampling

constants calculated from variance estimates s? and s3 as before:

s2 = 0.09923/w' + 0.01078 (1 - 1/w')

degree of segregation, z= 0.33.

The other variance estimates (obtained from random samples

as well as from systematic samples) correspond with this curve as.be-

fore within the 95% fiducial limits. It will be assùmed for the sake

of convenience that the sizé of samples is expressed in a practical

unit of measurement equal to ten elementary units. The general

equation-now becomes:

s2 = A/w + B(1 - 1/10w) ....... (Eq. 15)

where A = variance of samples of 1 unit of ineasuremént,

w = sample size expressed in same unit of measurement, and,

AN = random variance component.
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Fig. 5.5 — Size Variancn Curve (Practical Units) 
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2 = A/W B ....... (Eq. 16) 
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It is noted that the numerical value of the random variance 

component is not changed by this transformation, as shown in Figure 

5.5, the only difference being that A = 1/10 A'. 

It is also noted that the segregation variance B is in-

dependent of the unit of measurement. 

In those cases where samples must be expressed in some 

unit of measurement that is many times the size of an elemental bi-

nomial unit, the upper part of the size variance curve as shown in 

Figure 5.5 is not used, and the general Equation 14 can be replaced 

by: 

s2  = A'/w' + B, 

or, when using practical units of measurement, 

The curve corresponding to this equation is also shown in 

Figure 5.5. The discrepancy between the general curve and the pract-

ical curve turns out to be negligible for a first approximation of 

the total variance estimate. The same conclusion holds for higher 

degrees of segregation. Equation 16 will be used henceforth unless 

otherwise indicated. 

The equation for the degree of segregation (z) likewise 

changes when practical units of measurement are used: 

z =/B/Mi   (Eq. 17) 

where m = number of elemental units per unit of measurement. 

Equation 17 appears to be useful because (z) can often be 

estimated from available data on the average composition and distri-

bution of a material consignment. Examples 4 and 5 (Section 5.3) 

illustrate the application of Equation 17. 

It is noted that the product Am is dimensionless and ,can 

be estimated from any other unit for which the value of A is known. 
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In view of the above tests, it can be concluded that the 

variance of single samples drawn systematically or at random from 

segregated materials consignments can be expressed as a function of 

two constants which are determined by the composition of the mater-

ial, by the degree of segregation of the consignment, and by the size 

of the sample. 

When single samples are combined, as is done in incremental 

sampling,  the  total variance of a gross sample consisting of N in-

crements has a maximum value equal to 1/N times the total variance of 

the single samples. Theoretically, this maximum value will be at-

tained only when the "patches" caused by segregation of the consign-

ment are themselves distributed at random. This condition may not 

prevail in actual practice, and the total variance as formulated for 

gross samples consisting of N increments, 

s 2  = A/Nw + 

is in fact an estimate of the upper limit of the gross sample vari-

ance. The estimate of the total variance obtained from this equat-

ion is therefore a safe estimate; the same equation can be written 

as follows: 

s 2  = A/W + B/N   (Eq. 18) 

where W = Nw = the gross sample size. 

This equation is the general expression of variability for gross 

samples drawn f:'rom material consignments that are not perfect mix-

tures. 

5.3 Materials of Unknown Composition 

Sampling constants (A and B) and the degree of segregation 

(z) for materials of unknown composition can be determined by means 

of the duplicate sampling method, using small and large samples. 

This test requires the collection of two series of single  samples, 
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from which an estimate of the total variance (s 2 ) is found. For 

the first series, relatively mnall samples (1e7 / ) are chosen to ensure 

that the first term (A/w) in Equation 16 contributes more to the 

total variance than the second term. The estimate (e) therefore 

largely reflects the random sampling component (A/w). The second 

series of samples are of relatively large size (w2 ) and, as a 

result, the variance found from this series is caused mainly by 

the segregation component B. The following equations derived from 

Equation 16 provide maximum estimates, by first-order approximation, 

of sampling constants A and B. 

A = wi  • w2  • ( 	- s) /(w2 - 	) 	(Eq. 19) 

B = s; 	A/w2    (Eq. 20) 

The error of reduction and analysis of individual samples has been 

ignored in theSe equations; the inflation caused in the estimates 

of A and B is generally of no consequence. The sample sizes (w l , 

w2 ) should generally be the smallest and largest sizes practically 

possible. 

The degree of segregation (z) is expressed by Equation 17. 

In many materials that are mass-produced, the degree of segregation 

(z) does not change too much although the pattern of distribution 

may vary, and it is possible to estimate B without a test when A 

and (z) are known. 

A condensed schedule of the calculations required for 

determining sampling constants A and B and the degree of segregat-

ion (z) is presented in Table 5.4. 
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TABLE 5.4 

Calculation of (A,B) and (z) for Materials of Unknown Composition 

Sample 
No. 	Small Samples 	Large Samples 	Calculations 

	

2 	p2 	P 2  1 	P I 	P I 	 2 	Determine the variance 

• . 	. 	. 	• 	for each series, 	(s) 

. 	. 	. 	. 	. 	and (4), with the 

• . 	. 	. 	• 	equation: 

. 	. 	. 	. 	. 

• . 	. 	. 	• 
s 2  ....-, 	sum p 2 	- 	( sum p) 2  /n  

n - 1 
. 	. 	. 	. 	. 

• • 	. 	• 	• 	Determine (A,B) 	from 
• . 	. 	. 	• 	Equations 19 and 20. 

n 	• 	. 	• 	• 	Find (z) from Equation 17. 

(see note) 
, 	 - 	 — 

	

2 	 2 	NOTE: 	It is reco 	untended 
sum p l 	sum p i 	sum p2 	sum p 2 	

to collect a mini- 
mum of 25 to 30 

Average 
samples for each 

size of 
series. 

samples 	w, 	 w2 

Example 4  

An untreated stove coal (1-1/2" x 2-3/8") was sampled by 

collecting 35 increments with an average weight of 185 grams each, 

and a second series of 35 increments with an average weight of 6,539 

grams each. These samples were analyzed for ash content. The vari-

ance for the small samples (calculated from fractional ash content) 

was s 2 = 0.0234; the variance for the large samples was s 2 = 0.00219. 2 

Sampling constants found from Equations 19 and 20 are: 

A = 4.04 for samples of 1 gram 

B = 0.00157 
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The weight of the gross sample and the number of increments can be 

found for any pre-assigned accuracy from Equation 18: 

s 2  = 4.04 1W + 0.00157/N 

For instance, a sampling precision of 1 7.  ash (corresponding with 

s = 1 1 96 	0.005) would be obtained 19 times out of 20 (see 
.  

Section 1.6) when collecting 128 increments with a total weight of 

320 kilograms. The average particle weight of the coal was found 

from a sieve analysis to be 29.6 grams. Consequently, the number of 

particles per gram of sample was m = 1/29.6, and the degree of seg-

regation, as calculated from Equation 17, was found to be z = 0.11. 

Example 5  

The results of a general election were used in the follow-

ing duplicate sampling test: the variance e of the individual polit-

ical support for a certain party (X) was compared with the variance 

of the average political vote for the same party in the ridings. The 

average number of votes per riding was w2  = 15,430, while w l  = 1. 

The variance sf was found to be 0.27; variance s; appeared to be 

0.0045. The resulting variance formula is: 

s 2  = 0.27/W + 0.0045/N 

The number of investigators required for probing the politi-

cal opinion of the same population at some future date and the number 

of interviews to be made by each investigator can be estimated in ad-

vance by using this equation. For instance, public opinion regarding 

the same party (X) could be determined to the nearest 1.5 7.  by about 

320 pollsters who would each interview 20 persons. The degree of  seg-

regat  ion  (z) for this population, with regard to its political sup-

port for party (X), follows from Equation 17: for m = 1, z = 0.13. 

The following example demonstrates the application of 

Equations 16, 17 and 18 for materials that are characterized by a 
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variate (X) but that do not consist of mixtures of identical units. 

Example 6  

Mixtures of particles of unequal size that are sampled 

for size analysis can be regarded as binomial mixtures by defining 

variate (X) as a particle size interval within two given size limits. 

The material consignment can then be regarded as consisting of two 

fractions, (X) and (non-X), as before. The precision of the weight 

percentage of particles (X) found from a sample is determined by 

Equations 16 and 17. Estimates of the sampling constants A and B 

can be found from a duplicate sampling test, as demonstrated pre-

viously, by collecting two series of samples, one series consist- 

ing of relatively small samples and the second series of relatively 

large samples. 

The substance to be sampled might occur in the form of 

broken aggregate, solids in suspension, or droplets in an emulsion. 

When a material occurring in one of these forms is sampled, the 

chance error as expressed by the binomial variance is now caused 

by the accidental interchange of units of differing size and depends 

therefore on the size and relative abundance of the units. 

When the particles are small and the number of particles 

per unit of weight is large, the value of the sampling constant A 

for samples of unit weight will generally be small compared to 

that of sampling constant B. Since the effect of segregation pre-

vails over random variation, the frequency distribution of (X) 

will generally show an irregular form, depending upon the pattern 

of segregation and the number of particles contained in each sample 

used for the determination of (X). 

Solid Aggregates  

When the material consignment consists of a solid aggregate, 
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random errors caused by the accidental interchange of units (X) and 

(non-X) are automatically precluded because no movement of these 

units relative to one another is possible. While this does not ex-

clude all random variations, most of the variations are caused by 

segregation when the elemental units that are the carriers of the 

variate are very small in comparison with the sample. 

In materials of this type, the variability of (X) is often 

of the binomial kind, as, for instance, when sampling ore in place 

for its metal content. The ore consists of a mixture of molecular 

units (X) and other constituents (non-X). All variability originates 

from this binomial mixture, but substantially in the form of seg-

regation. The sampling constant B for molecular units can be cal-

culated with the binomial equation or measured directly. 

The practical value of the binomial theory lies in its 

application to materials of known composition and distribution, as 

will be demonstrated in the next section. 

5.4 Materials of Known Composition and Distribution  

When the main characteristics and distribution of a mater-

ial consignment are known, its sampling constants can often be de-

termined without a test. Sampling precision as expressed by the 

total variance of sampling can be determined from Equations 16, 17 

and 18 for binomial variates when the average value of the variate 

and the degree of segregation (z) of the consignment are known. 

5.4.1 Binomial variates  

Sampling constant A is calculated from the binomial equat-

ion, which takes on different forms, depending upon the type of mat-

erial and the variate. Sampling constant B is calculated from A, 

the degree of segration (z), and the ratio (m) which denotes the 

number of units of the material contained in the unit of measurement 
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used for expressing variate (X).

The "materials" are subdivided into three main classes (see

Table 5.5). The first class deals with materials consisting of dis-

crete units, each one of which bears a characteristic quality (X) or

(non-X). Variability in the values of samples drawn from a consign-

ment of such a material results from the fact that these elementary

units can move relative to one another; they can be either randomly

mixed or can cause a certain degree of segregation in the consign-

ment. It is generally easy to separate units (X) from units (non-X)

in these substances by physical or chemical methods. Most gases,

fluids, and mixtures of these with solids (amalgams, suspensions,

pastes) belong to this class. Applications of the method can be

found in the fields of microchemistry and assaying. Likewise, the

sampling of mass-produced items and similar "discrete populations"

also belongs in this first class.

The second class of substances includes materials in which

variability is caused, as before, by the free movement of elemental

units. In this case, however, the variate (X) is not restricted to

certain units, but is spread in varying degrees over all the element-

al units. Granular solids such as broken coal and ore, wheat and

many other materials fall into this class. The units can be separ-

ated into two fractions characterized by "high-X" and low-X"; the

variability caused by relative movement of the units of these two

fractions is reflected in the variations of the sample drawn from

such material.

A third class of materials is recognized where variability

is caused by uneven dispersion of the variate (X) throughout the con-

signment. Essentially, these materials differ from the ones above

only in that the elemental units (X) and (non-X), which may be real

or imaginary, cannot move relative to one another; this reduces ran-

dom variation. Many physical properties, such as the tensile strength



Table  5.5-  CALCULATION OF SAMPLING CONSTANTS FOR MATERIALS OF KNOWN COMPOSITION AND DISTRIBUTION  
BINOMIAL  VARIATES  ONLY 

	

Class 	of 	 I 	 IC 	 ICE 

Material 
-- 	 Other materials. 

Material 	consisting 	of separate 	items 	characterized 	by 	(X) 	and 	(non-X) in gaseous, 	 Material 	consisting 	of separate 
I. 	Vol- late 	(X1 is 	dispersed 	without

• 
 liquid, or 	solid 	form, or in mixtures 	of same (suspensions, 	emulsions, pulps, 	or 	pastes). 	 aggregates 	of (X) and (non-X). 	 being 	accumulated 	in 	sePorate 

Items 	(X) 	can 	be 	separated 	from 	items (non-X) by 	physical or chemical methods. physical 	unit s. The aggregates 	are 	characterized by • 

	

.. 	. 	.. 	.. 	... 	. 	 "high-X" and 	"low-X" and 	are 	separable. 	2. (X) occurs 	in 	units 	that 	cannot 
Items 	ore 	countable 	 The number 	of items in the somale 	iS 	tact 

large 	ta 	be 	counted 	 be identified 	or 	Set:tanned- 

M pier) ol 7 Group 	No. 	 (I) 	 . 	(2) 	 (3) 	 (4) 	 (5) 

	

The 	average 	grade is determined directly, by 
The 	average 	grade 	is 	determined 	by 	separating 	the The average 	grade is 	. 	 suitable 	chemical 	and/or 	physical 	analytical 	methods.  

Method 	of 	 determined 	by 	counting 	
sample by 	suitable 	physical 	and/or 	chemical 	methods 	into 	  

two 	fractions, (X) and 	(non-X). 	Fractions 	are 	measured 	by 
evaluating 	 the «number 	of 	items (X) 

a parameter, expressed 	in a suitable unit of measurement. 	 Standard 	specimen of the and  mon-X) 	in 	the 	sample, . 	 . Units 	may have 	different 	si>e average 	grade 	 . 	 material 	may be required either 	directly 	or 	fter 

Items (X) have  same 	 Items (X) differ 	 and/or 	specific 	gravity ,  
of 	consignment 	 separating 	items 	(X) 	 significantly 	in 	 for 	specific 	tests. 

specific gravity 	as 	 specific 	gravity 	tram  from 	(non-X). 

	

items (non-X). 	 items 	(non-XI.  

A 	dimension 	of the 	items: 
Parameter 	used 

A •Iength (diameter, depth,- length (width, height, 	 Weight 	of 	fractions 	 Weight 	of . froctions 
for 	measuring 	 Variole  IX) 	 exponsion,etc.); time; load (force), or depth, 	diameter, 	thickness, 	 (X) 	and 	(non-X) 	 "high-X" and  "10w-X'  
average 	grade 	 etc.); surface area; volume. 	 other parameters uSed in the test. 

Unit 	of 	 Unit 	of 	weight, volume, 	 A unit 	of weight, force, time, 

Number 	 length, area;  surface 	area 	 'A unit 	of 	weight 	 A 	unit 	of 	weight 	 - 	length, surface 	area, suitable' 
measurement 

Per unit of 	weight, etc. 	 for measuring . the 	parameter. 	, 

I. 	Size 	analyses. 	 • 	 I_ Sampling 	of ores 	in 	place. 
I. 	Sampling 	for public 	 I. 	Lightweight 	pieces 	in 	I, 	Ash 	content 	(X) 	of 	a 	consignment 	of 

2. The 	fineness 	of 
opinion, 	 hydraulic 	cement, 	 aggregate. 	• 	. 	• 	 broken 	coal. 	 2. The abrasion of crushed 	gravel 

.Examples 	 2. Proportion 	of 	defectives 	by 	surface 	area 	 by weight 	loss. 

(turbidimeter). 	 ` (X) 	in the 	manufacturing 	 2. 	Float-sink 	analysis 	of 
3. Sampling 	of 	textiles 	 2. SamPlinty ,  Of 	sands 	for, 	heavy 	minerals. 	3. Ductility 	of 	bitumen 	by,  

.of 	mass-produced 	goods, 	 coal. 
for 	wool 	content. 	• 	 elongation. 

- 

1. (X) is 	separable 	chemically. 

1 	A = p(I-p) 	 I 	A=P(1-p)/m 	1 
I 	A. = 4(t - P)d/Dm 	 I 	A= P(1-p)(0 1 -%)2 d 1 diem 	1 

1  B =i)(1-p)clzVD 	I 

A=rondom 	unit 	variance. 	A= as in (I). 	 A= as 	in 	(I). 	 A=as 	in 	(I). 

. p =as in (2), fractional 	weight, 	p  vas 	in 	(2), 	fractional 	weight, 	 B =as in (IL 
p =overage 	fractional 	 p= average 	proportional 	 =average 	proportional 	amount d = specific 	gravity 	of items 	a,,= X-values 	of 	fractions 	(. 	 p .x). 

number 	of 	items (X) 	 amount of (X) fraction. 	(X) or (non-X), 	 of chemical 	constituent. 

	

d.,= specific 	gravity 	of 	fractions (i.z), 
known by 	approximation. 	 d 	as in (3). 

Sampling 	 m= average number of items 	D = miroge 

	

of ernoterise.  cif ic 	g ravity  
D =specific 	gravity 	of 	materi a I. 

per unit of measurement. 	 z =as in (IL 
!ryas in (2). 	 m=as 	in 	(2). constants 	 D =as 	in, (3). 

I 	B = Az2 	1 
• 2_ (X) is not separable 	chemically. 

B = Amze 	 B = Arne 	 B = Amz= .1 
B = seg re g ation 	variance. 

1 	B = sr 	I 

z = degree 	of segregation 	B= os 	in (I). 	 B = as 	in 	(I ). 	 8= as 	in (I ).  
B=as in (1). (known). 	 z = as 	in (I), 	 z =as 	in 	(IL z =os 	in (I). 	 s =standard 	deviation of (X) from 

available 	data. 	. 
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of a wax or the abradability of a gravel, are in this category. 

Distribution of such a variate over the consignment can be attributed 

to segregation of elementary units characterized by either (X) or 

(non-X) which cannot be separated and often cannot even be identified. 

All three classes are seen as binomial populations; samples 

collected from material consignments belonging to the third class 

have a variance that is substantially determined by segregation. 

Five groups of materials are recognized under the main 
■ 

classifications; these will now be described in more detail, (see 

Table 5.5). 

Group No. 1 deals with substances that occur in the form of 

separate units, each characterized by either (X) or (non-X). A fea-

ture of this group of materials is that the samples are analyzed by 

counting the individual units (X) and (non-X). 

Groups No. 2 and No. 3 include materials consisting of 

separate units which are too numerous to be counted individually and 

which are consequently measured by some dimension of the items (length, 

surface area, volume or weight, etc.) expressed in a suitable unit of 

measurement (inch, square foot, gallon, pound, etc.). 

Group No. 2 includes materials where the items character-

ized by variate (X) have the same specific gravity as items (non-X); 

for example, granular materials sampled for size analysis. 

Group No. 3 deals with materials consisting of items (X) 

that differ significantly in specific gravity from items (non-X). 

These are materials that are sampled for specific gravity analysis 

(e.g. by float-sink analysis). 

Groups No. 4 and No. 5 include materials in which the vari-

ate (X) is dispersed without being necessarily accumulated in separate 

physical units of the material. 
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Group No. 4 includes all materials consisting of separate 

aggregates that are characterized by either a high percentage of vari-

ate (X) or a low percentage of variate (X), the two components being 

separable. 

Group No. 5 includes other materials where the variate (X) 

is either dispersed without being accumulated in separate physical 

units or occurs in units that cannot be identified or separated. 

The examples that follow may serve to illustrate the use of 

Table 5.5: 

Group 1  

Example 7  

A mass-produced item is known to contain about 4% defect-

ives. Therefore, p = 0.04 and sampling constant A = 0.0384. It 

follows from Equation 14 that the effect of any segregation can be 

eliminated by collecting and testing sample items one by one (Te' = 1). 

The number (N) of items required for determining the percentage of 

defectives to the nearest 1% nineteen times out of twenty is found 

from 

N = A/s2av  

where  s 	26 x 16
-6 
represents the variance of the av- 

erage expressed as a fraction of N (see Section 1.6). Consequently, 

N = 1476. 

Example 8  

The results of a general election are used to determine the 

number of investigators to be employed in a poll to survey changes in 

political popularity, and the number of persons to be interviewed by 

each investigator. The party whose election returns were closest to 

50% was party X, its vote amounting to 61% of the total returns; this 

figure is subject to the greatest variations and is used as a yardstick 

for evaluating sampling precision of the poll. Consequently p = 0.61 
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and the sampling constant A = 0.24. The degree of segregation for X 

is known to be z = 0.13. It follows that the sampling constant 

B = Az2 = 0.0041. From the many possible combinations of (w) and (N) 
a value w = 16 is chosen as a reasonable figure for the number of 

persons that can be interviewed by one investigator in one day. 

It is found from Equation 18 that by employing 155 investi-

gators, the results of the poli  will indicate political popularity 

with a precision of 2%, nineteen out of twenty times, s2 (0.02)2_  

(0.24 + 0.0041)/N. The total number of persons interviewed would 
16 

thus be: wN = 2480. 

Group 2  

Example 9  

It is required, for operational control in an ore benefici-

ation plant, that a daily sample of minus 14 mesh sand be collected 

for sieve analysis. The precision of the sieve curve is important, 

especially with regard to the silt fraction which needs to be deter-

mined with a precision of 1% nineteen out of twenty times. The sand 

is segregated (z = 0.20) and the average amount of silt (minus 200 

mesh material) is 3%. 

The accidental interchange of silt particles with sand 

particles during sampling is determined by the size-of the particle. 

Errors thus caused depend primarily upon the size and relative abund-

ance of the coarse particles; i.e., the sand fraction. The weighted 

average particle weight of the sand fraction (14 x 200 mesh) of this 

ore is known to be 0.010 gram. Therefore, m = 100 when the sample 

weight is expressed in grams. It follows that: 

A = p(1-p)/m = 0.0003 

B = Amz2  = 0.0012. 

Samples in this plant are collected automatically by incre-

ments weighing 30 grams each. The minimum required number of increments 

found from Equation 18: 

N = 47. 
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Group 3  

Example 10  

A non-uniform lightweight aggregate is tested by float-sink 

analysis for determining the percentage of lightweight pieces. The 

material is known to contain approximately 10 7e  by weight of lightweight 

pieces floating on bromotrichloromethane (sp. gr . = 2.00); the average 

specific gravity of the floats is d = 1.6; the average specific grav-

ity of the entire aggregate is D = 2.3, and the degree of segregation 

is known to be z = 0.3. The size of the lightweight aggregate is minus 

1-1/2 inch; the weighted average particle weight is 15 grams; and hence, 

m = 1/15 = 0.067. The sampling constants A = 0.934 and B - 0.0056 are 

found from  the  equations given in Table 5.5 under Group No. 3. Incre-

ments are collected by an automatic sample cutter, each cut weighing 

approximately 400 grams. The minimum number of increments required 

to attain a sample precision of 1 7.  is found from Equation 18: 

N = 303. 

The weighted average particle weight can be determined from a sieve 

analysis, using the following equation: 

V = Ek 3 q/Eq, 

where V = weighted average particle volume,  eu. cm., 

q = weight of individual size fraction, and 

k = central value of individual size fraction, cm. 

Group 4  

Example 11  

A minus 1 - 1/2 inch mine-run slack coal having an average ash 

content of about 307.  is sampled for ash by an automatic sampler col-

lecting increments of 5 lb. This coal is known to contain approximate-

ly 647.  (p = 0.64) fldats at 1.60 sp. gr . with 5 7.  ash (a2  = 0.05), and 

36% sinks with approximately 80% ash (a l  = 0.80). The specific gravi-

ties of these two fractions are known to be d2 = 1.30; d l  = 2.35; the 
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overall specific gravity D = 1.60. 

The weighted average particle weight of this coal is 5.26 

grams. Because the weight of sample is expressed in pounds (1 lb. = 

454 grams), the ratio m = 454/5.26 = 86. The degree of segregation 

of the mine-run slack is known to be z = 0.13. From this the sampling 

constants (see Table 5.5, Group 4) are: 

A = 0.00180 

B = 0.002616 

The minimum number of increments required to determine the ash con-

tent with a precision of 17. ash, nineteen out of twenty times, is 

N = 115. Gross sample weight is therefore 575 pounds. 

Group 5  

Materials in this group occur as a solid or fluid mass in 

which the variate (X) is either dispersed without being accumulated 

in separate physical units, or occurs in units that cannot be identi-

fied or separated and must be measured in some indirect manner. 

In these circumstances there can be no accidental inter-

change of units (X) and (non-X) during sample collection except at 

the molecular level as in the sampling of fluids. Therefore, while 

sampling constant A may have a distinct value for molecular units or 

similar very small aggregates, its value for any practical unit of 

measurement becomes negligibly small as the ratio (m) approaches in-

finity. While the binomial distribution is inoperative with regard 

to chance variations that occur during sample collection, it is still 

the prime cause of all segregation. 

For materials in this group where the variate (X) is a 

constituent that can be extracted by chemical means, sampling con-

stant A can generally be calculated for molecular units and constant 

B can be estimated as before from the average composition of the mat-

erial and its degree of segregation (z). 
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For other materials in this group, where (X) does not refer 

directly to units that can be determined or separated by chemical ex-

traction (such as the compressive strength of briquets, the ductility 

of bitumen, etc.), sampling constant B can only be determined from 

available variance data. 

Example 12  

The sampling of ore in place will be used as an example to 

illustrate use of the equations given in Table 5.5 under Group 5. 

Channel samples are collected from a zinc vein containing 

10% metallic zinc in the form of smithsonite (ZnCO 3 ); the degree of 

segregation of the metal is known to be z = 0.20. Since the zinc 

occurs in the form of the carbonate, it follows that the proportional 

amount of this constituent is p = 0.20; the specific gravity of smith-

sonite is d = 4.4; the average specific gravity of the ore is D = 2.8. 

Sampling constant B, 

B = p(1 	p).dz 2 /D = 0.010, 

and the total sample variance: 

s2  = 0.010/N. 

This variance is independent of sample weight. The number of increments 

required to attain a sampling precision of 17. zinc is found to be: 

N = 384. 

5.4.2 Non-binomial variates  

In actual sampling practice, many instances are found where 

the variate has a non-binomial parent distribution. For example, in 

sampling for the number of defectives, the variate has a parent dis-

tribution of the Poisson type. In many other cases the parent dis-

tribution is a normal curve although frequency curves of irregular 

shape are encountered as well. 

While the parent frequency curves of variates may differ, 



115 

they have one property in common: the difference between the true 

value of any sample and the true mean of the material lot from which 

a sample originates can be expressed as the algebraic sum of two devi-

ations, one caused by random variation, the other by segregation. The 

usefulness of this distinction lies in the fact that it applies to any 

variate and to any material. 

The law of propagation of errors applies (see derivation 

in Appendix A) provided that these two individual deviations are in-

dependent of each other for any sample or increment. It is imposs- 

ible to prove, by mathematical analysis, the correctness of this 

assumption for all materials and all variates. From tests on the 

sampling board and results of field trials, however, it can be under-

stood intuitively that the law of propagation of errors has a general 

application here, meaning that Equations19 and 20 apply, independent-

ly of the type of frequency distribution of the variate (X). It 

may be noted, also, that in cases where the mean value and the stand-

arà deviation of a variate are related, it is often possible to 

transform the variate by substitution of a variate whose mean (M) 

and standard deviation (s) are substantially independent of one an-

other. 
Generally, if (s) is even approximately a function of the 

mean (M) of (X), the transformations given below are appropriate for 

stabilizing (s). 

When relationship 	Use (s) calculated 
s = f (M): 	 from:  

(s) proportional to M 2 	Reciprocals of ob- 
servations 

(s) proportional to M 	Logarithms of ob- 
servations 

(s) proportional to0i 	Square roots of ob- 
servations 
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Such transformation variates can be used in extreme cases 

where the above conclusions would not apply. 
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6. 	SELECTED TECHNIQUES 

The simple techniques presented in this section will find 

application in a wide variety of problems. Some will be especially 

useful for the preliminary organization and evaluation of data. 

6.1 Rules for Rounding  

To minimize errors which might result from rounding off 

of data in calculations: 

1. The rounding interval for a series of observations should be 

no more than 0.6 time the standard deviation of a single observ-

ation. 

2. When rounding figures that end with a 5, round to the nearest 

even number. 

Examples:  

	

1.385 	 round off to 	 1.38 

	

1.475 	 round off to 	 1.48 

When two or more decimals are to be eliminated, always round off in 

a single step. 

3. When dealing with several series each containing (n) observ-

ations, data are rounded off according to the average range (ii) of 

each series as shown in Table 6.1 below. The average range (7) is 

the average difference between the highest and lowest value of the 

data. 
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TABLE 6.1 

No. of observations 	Minimum no. of 	Round off to a 
per series 	 series 	maximum interval  

2 	 5 	 0.6 7 

3 	 3 	 0.4 7 

4 	 2 	 0.3 7 

5-10 	 1 	 0.2w 

6.2 Estimating  Missing Data  

If it has been found necessary in the course of an experi-

ment to discard observations that were judged to be unreliable, or if 

some observations are simply missing, the set of data can be completed 

by estimating the missing values.  For  this purpose, the set can be 

regarded as consisting of rows and columns of data. As will be illus-

trated, blocks or replicates are re-arranged to form sub-rows (or sub-

columns) and the sums are then determined in order to estimate the miss-

ing value or values. 

6.2.1 One observation missing 

Estimation of a missing value XAp proceeds from the following: 

The residual sum of.squares for 

a complete set with no missing 

data is, 

= Œ—  ($ + ) 

or, 

	

XAP 	 A' 

B 

D 

	

P' 	4 	T 	_ 	M' 

r [x2 M 2] 	[P2 	Q2 	T2  - M2  1" A2 	B2 	D2-  M 2 ] 
CR 	 CR 	C 	CR 

= xe _ p 2  + Q 2  + T 2  — A2  + B 2  + D 2  + M2  
CR 



= minimum The condition is fulfilled when 

0 = XAp - P/R - A/C + M/CR 0 	• 	• 
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DXAp 

. . (Eq. 21) 

Substituting: A' = A - XAp, P' = P - XAp and M' = M - XAp  in 

Equation 21: 

. . . 	(Eq. 22) A I R + P I C - M'  XAp - 
(C-1) 	(R-1) 

Note: There is no preference regarding rows or columns, for arrang-

ing the data, i.e. replicates may be either placed in the col-

umns and tests in the rows, or vice versa. 

Example: 

Briquet strength for two types of asphalt (K,k) and for two 

methods of application (emulsifier m and atomizer M). 

Arranging the data as shown in the table below, the missing 

value is found from Equation 22: 

XAp (406 x 2) + (153 x 4) - 964 = 153 = 
(4-1) . 	(2-1) 

	

KM 	Km 	kM 	km 	Sum 

':à, 	1 	159 	108 	153 	138 	558 
e 	  
g 	2 	151 	106 	? 	149 	406 

Sum 	310 	214 	153 	287 	' 	964 

After filling in the missing  value, the data are analyzed in 

the normal way, but with one exception, namely, the number cf degrees 

of freedom for the residual variance VT is one less than for the 



A'R + P'C - M' - XDT  
(C 	1) • (R - 1) 

D'R + T I C - M - XAp 
(C - 1). (R - 1) 

XAp - 

XDT - 

XAp =  A'+  P I C - M' + XAT  (R-1) 
(C - 1) • (R - 1) 

XAT = 
(C - 1) • (R - 1) 

A I R + T'C - M' + XAp (R-1)  

XDP = 	+ P I C - M' + XAp (C-1)  
(C - 1) • (R - 1) 

XAP 
(C 	1) • (R - 1) 

A'R + P I C - M' + XDp (C-1) 
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normal case, owing to the fact that one value has been estimated, 

thereby reducing the number of independent observations by one. 

6.2.2 Two observations missing  

a) Missing observations in different rows and different columns: 

XAp 	 A'  

B  

	

XDT 	D i  

P I 	Q 	T' 	M' 

giving 2 equations with 2 unknowns. 

In the analysis of variance, subtract 2 extra degrees of freedom 

for calculating Vr . 

b) Missing values in same row: 

XAP 	X4T 	A'  

B 

D  

P' 	Q 	T' 	M' 

In the analysis of variance, subtract 2 extra degrees of freedom as 

in a) for calculating VT . 

c) Missing values in same column: 

XAp 	 A'  

B  

XDP 	 D'  

P' 	Q 	T 	M' 

In the analysis of variance, subtract 2 extra degrees of freedom for 

calculating  V.  
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Formulas for more than 2 missing values can be found in the 

same way by partial differentiation of the formula for (1-) and sub-

stitution of A' = A - XAp, etc. For calculating VT  in the analysis 

of variance, subtract 1 extra degree of freedom for each missing val-

ue that has been estimated. 

6.2.3 Correction of sum of squares between variates  

Reduction of the degrees of freedom due to missing data in-

flates the sum of squares between variates. Supposing the variates 

are classified in columns,  it follows generally, that, 

A  _ C - 1  1 (xAp - A' - 

C 	
1)2  + (XDT  - D' - 1)2 + • ... 	, 

and the corrected sum of squares between variates, 

e=  /S-A$.  

When variates are classified in rows  instead of columns, 

R - 1  . [(XAp - P - 1)2  + (XDT  - 
—L . 

 1)2  + 

6.3 Checking for "Tramp" Values  

In frequency distributions, a "tramp" value is one whose 

deviation (xi) from the mean (P) is greater than can be attributed to 

chance variation. It is also therefore, a biased value. 

The suspected value (observation) can be tested to determine 

the probability of bias in terms of the standard deviation (s) and the 

Normal Distribution as shown in the example given below. 

Example:  
In the set of data shown in Table 6.2 and Fig. 6.1, observ-

ation p4  appears to be a "tramp". This value will be checked for bias: 

2   = SP1 	(EP02 /11  . 8.5 s  
n - 1 

s = 2.92 

= 4.0 



where 
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n = total number of observations, 

s = standard deviation, in class units, 

pi = individual observation, and 

P = arithmetic mean of observations. 

Deviation of the observation p„ from the mean (F), 

x, = (p, - 	= 5 = 1.72s.  

TABLE 6.2 

Observation 
No. 	Pi 	pi  
	 ,  	 	

1 	2 	4 

2 	3 	9 

3 	4 	16 

4 	9 	81 

5 	 2 	 4 

Ep i  = 20 	Zpl = 114 

Fig. 6.1 



F3I  

Fig. 6.2 
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From a Normal Distribution table it is seen that the 

chances of finding a random deviation of x4 = 1.72s are 4.27%, or 

less than 1 chance in 20 when the number of observations is very 

large. 

The estimate of (s) in this case is based on only five ob-

servations, however, and the fiducial limit (a) with respect to the 

true(unknown) mean value F should therefore be corrected in accord-

ance with the t-test for normal distributions (a = t.$). The t-table 

for degrees of freedom (d.f) =00 shows that at the 5% level, a = 1.96s, 

which is identical to the Normal Distribution. For d.f. = 4, we find 

a = 2.78s at the 5% level; a = 2.13s at the 10% level; and a = 1.42s 

at the 25% level. Consequently, the level here is not 4.27% but ap-

proximately 19% or about 1 in 5. While p4  cannot be rejected on this 

basis, it must be remembered that it strongly influences the estimate 

of (s) itself. 

The above calculation is therefore repeated for 4 observ-

ations excluding p4 , and we find: 

4 = 6.53s'  

This difference indicates a systematic bias at a level of less than 1%, 

and on this basis, p4  should be eliminated. The corrected parameters 

(see also Fig. 6.2) are: 

n' = 4 

= 2.75 

s' = 0.957 

4 = 6.53s' 

= 6.25 
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6.4 Randomness of an Oscillatory Series  

The following table can be used to test whether the distri-

bution of (m) items A and (n) items B in a series of (Irt + n) items is 

random or non-random at the 5 7  level. 

TABLE 6.3 - Value of g  

Minimum number of groups - 5 7e,  level  

	

20 	3 	4 	5 	6 	7 	8 	9 	10 	10 	11 	12 	12 	13 	13 	14 	14 	15 	15 	16  

	

19 	11 	” 	It 	It 	11 	tt 	11 	
9 	It 	11 	11 	" 	

11 	It 	II 	It 	14 	"  

	

18 	it 	tt 	11 	/I 	II 	II 	II 	71 	II 	It 	Il 	11 	12 	" 	13 	" 	
II 

	

17 	It 	tt 	II 	11 	. 11 	II 	8 	It 	It 	10 	" 	11 	" 	12 	" 	13  

	

16 	11 	11 	II 	II 	II 	7 	11 	11 	9 	II 	II 	II 	11 	11 	71 

	

15 	tt 	It 	It 	II 	II 	11 	II 	11 	11 	11 	IO 	" 	Il 	" 

	

14 	" 	" 	" 	" 	6 	" 	" 	8 	" 	9 	Il 	10 	it • 

	

13 	It 	11 	11 	5 	tt 	11 	7 	It 	It 	7 1 	7, 	7 1  

co 
(j) 	12 	11 	II 	II 	II 	11 	II 	11 	II 	8 	It 	9 
4 	  

(4-1 	11 	" 	" 	4 	" 	" 	6 	" 	7 	" 	8 
o 	  

This table is sym- 
0 	10 	II 	II 	II 	II 	11 	11 	It 	It 	7 	 metrical; 	(n) 	and 	(m) 
P 	 can be read on either 
o 	la 	H 	3 	It 	u 	5 	11 	 11 
bp 	d 	 sCale. 	Use the verti- 
P 
0 

F-1 	 it 	It 	It 	4 	II 	5 	II 	 cal 	scale 	for the larg- 
er number. 

	

7 	2 	ti 	11 	It 	11 	11 

	

6 	ti 	11 	11 	11 	4 

	

5 	It 	II 	3 	It 

	

4 	" 	2 	" 

	

3 	tt- 	u 

	

2 	" 

2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 	16 	17 	18 	19 	20  

Smaller no. of items 
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The test applies to a series of numbers in which homo-

geneous groups having a property (A) alternate with homogeneous 

groups identifiable by characteristic (8). For instance, the series 

AA BBB A BB AAAA contains g = 5 homogeneous groups in a total of 

m = 7 items (A), and n = 5 times (B). The distribution of A and B 

over the series is random at the 57  level because the number of homo-

geneous groups found (g = 5) exceeds the required minimum of 4 shown 

in the g-table. 

Example 1  

A feeding test on calves is carried out using two different 

types of feed (A,B). Eight calves are tested for each type. When the 

average daily weight-increases for all calves are arranged in ascend-

ing order, it is found that there are 4 homogeneous groups of feed 

types A and B. Since the minimum number of groups for m = n = 8 is 

g = 6, this indicates a non-random distribution. It is thus concluded 

that either the two types of feed do not have the same effect, or the 

calf groups are not identical. 

Note: This test gives a quick indication only; further study, e.g. 

by analysis of variance,is required to evaluate the data more fully. 

Example 2  

A regression curve is drawn through 29 points. There are 

14 points (A) above the line and 15 points (B) beneath the line, 

distributed in 9 homogeneous groups. According to the g-table at 

(1 .5,14), there should be et.  least 11 homogeneous groups; distribut-

ion of the points is therefore not random. The regression curve 

does not fit the data sufficiently well for values of g<cll. 

.6.4.1 The randomness of an oscillatory time series may be tested by 

ascertaining the number of turning points. In a random series of n 

terms, this number has a  mean  value of 
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and a variance

nt = 2/3 (n - 2)

st = (16n - 29)/90

A member Ut is said to be a "peak" if

- (Ut-i ) <Ut>(Ut+i)^

and a "trough" if

(Ut - f )> Ut -:-- (Ut+I ) .

In either case it is a "turning point". The results of the above 2

formulas are independent of the parent distribution. The interval bé-

tween turning points is called a "phase" (1/2 wave length). For large

(n), the average number of points per unit interval or phase is 2/3

and the average phase is therefore 1.5 turning points. Hence, the av-

erage distance between peaks (i.e. the wave length) is 3 turning

points, which is what we expect to find in a random series.

Exkampl e
For n F= 48 terms;

Expected nt = 2/3 (48-2) = 30.67; Observed n`t = 14.

st = 8.21; st = 2.866.

Since the difference between expected and observed mean values

nt = 16.67 >5 st, distribution of the terms is non-random, i.e., the

time series shows a trend.

Note: Borderline cases cannot be judged without repeating the ex-

periment and applying the x2 test. In this case the xZtest is used

as follows:



Mean Square  between columns  
Residual Mean Square 

= (n - 1)A2  • 
nB - A2 
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Tit 	non- irt 	Total 

Observed 	14 	34 	48  

_Ecected 	30.67 	17.33 	48 

Difference-16.67 	16.67 	0 

x2 
 (-16.67)2  + (16.67)2_ 25.1  = 

30.67 	17.33 

For d.f. = 1, conclusion is that the oscillations are not random, in-

dicating segregation. 

6.5 Estimating_Samplingllias  or Analytical Bias  

A simple test can be used for detecting bias in a series of 

duplicate observations obtained by some method of sampling or analysis. 

When a sampling device is to be tested, analysis is carried out on 

duplicate samples collected from different materials, using the device. 

For instance, the significance of bias of a sample splitter can be 

found by collecting one duplicate from the "save" side of the splitter, 

and the second duplicate from the "reject" side, repeating the oper-

ation (n) times. To test an analytical method, one duplicate obtained 

by the method may be compared to a second duplicate obtained by some 

standard method, or to the known true value or, if the bias of an in-

dividual analyst is in question, to the average of a large number of 

observations from different analysts. 

Using the results calculated as indicated in Table 6.4, 

the F-test is applied to check for bias, as follows: 
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TABLE 6.4  

Obs. 	Duplicates 	(x, 	- 	x2) 	(x, 	- x2)2  
No. 	x, 	x2 

	

› 	

20.13 	20.03 	0.10 	0.0100 

20.39 	20.07 	0.32 	0.1024 

. 	. 	. 	 . 

. 	• 	. 	. 	 • 

. 	. 	 . 	 • 

n 	20.10 	20.05 	0.05 	0.0025 

Sum 	 A 	 B  

Mean 	7 1 

The F-table is entered at d.f. = 1 and d.f. = n-1 respect- 

ively. 

The actual bias value for sampling devices is found from: 

Bias = (X 1 - X 2 )-(1 - c), 

where c = cutter ratio. The term "cutter" refers to a sampling de-

vice (usually an automatic sampler), where a receptacle or cutter 

selects a email portion from the main flow of the material. The ratio 

between the size of the sample secured by the cutter and the size of 

the entire material lot that was sampled is called the "cutter ratio". 

When two analytical methods are compared, the actual bias 

value is found from: 

Bias = 	- 

6.5.1 Precision of a biased sample or biased method of analysis  

Precision, expressed as the standard deviation of the dif-

ference between duplicates, can be formulated as the maximum permissible 
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difference (P = 5%) between duplicates. 

(x, - x 2 ) max  = 	A2 /n)/(n - 1) 

Note: For a very large number of duplicate observations, the coeffic-

ient ahead of the root sign is 1.96 instead of 2; for a smaller number 

of duplicate observations, the coefficient increases slightly (see 

t-table). 

6.6 Construction of the Normal Distribution Curve  

This procedure is used for determining the most probable 

parent distribution curve (Normal Distribution) for a set of (n) 

observations, whose mean (7) and standard deviation (s) are known. 

The method is particularly useful for a large number of observations. 

1. Classify the (n) observations into 8 - 12 classes of equal 

interval and draw a frequency histogram. 

2. Calculate the standard deviation (s) from the observations and 

express it in class-units (the class interval of the histogram 

is used as the unit); e. g. when the standard deviation is 2% 

and the class intervals are 5%, then Sc  . 2/5 = 0.4. 

3. Calculate the mode (top of curve) yo  from 

Yo = n/(scl/i71) = 0.3989 n/sc 

4. Using factors in Table 6.5, calculate ordinates y for five 

positive and five negative values of x, where x is the dis-

tance along the abscissa taken from the mean (7). The most . 

probable form of the normal curve for the observations can 

now be drawn through the points derived from the table. 
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TABLE 6.5  

Abscissa 	Ordinate  

	

=x 	= y  

0 	 Yo 

	

0.5S 	0.8825y0  

	

S e 	0.6065yo  

1.5% 	0.3248y0  

	

2so 	0•1353yo  

	

3se 	0.0111yo  

Comparison of the curve with the histogram may shbw up dis-

crepancies between the observed frequencies and the theoretical fre-

quencies for the various classes. Large discrepancies indicate sig-

nificant departures from the normal curve. This can be checked using 

the t-test and/or the X 2  test. 

Example  

Given,  n=  85 observations of the moisture content of a 

raw material, grouped in classes having an interval of 2% moisture, 

the mean moisture content (7) is 18.6%, and the standard deviation 

(s) equals 1.3%. The shape of the normal frequency distribution curve 

which best fits these data is determined in the following manner: 

The standard deviation expressed in class-units (s o ) is 

= 	  = 1 . 3  = 0.65, se   

and the mode, yo , is found from: 

0.3989 n  _ 0.3989 x 85  = 52.2. 
S c 	 0.65 

class interval 	2 

yo 
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Using the values given in Table 6.5, the coordinates for the normal 

curve are the following: 

Abscissa, 	Ordinate 

(47  ±x)  
X 	 Y 

0 	 52.2 

	

0.325 	 46.1 

	

0.650 	 31.7 

	

0.975 	 17.0 

	

1.300 	 7.1 

	

1.950 	 0.6 

6.7 Calculation of Index Formula  

A useful modification of the regression formula is that ob-

tained in an index formula: one which expresses relationship in com-

parative or relative terms. It becomes possible by this means to 

gauge the percentage change that will take place in the value of a 

variable by reason of change in values of the other variables. 

It will be assumed that the regression formula is of the 

form: 
P = AX + BY + CZ + D 

Procedure:  

1. Substitute the average values, I77 , 	Y, 2- , for P, X, 

Y, Z, in the regression formula; thus, 15  = Ai + B'Y + CZ + D. 

2. Multiply both sides of this equation by 122. 

100 _ 100e  4_ 100ffif 100C-2-  100D  

3. Replace "100" in the first four terms by the index 

percentage numbers Ip , Ix , Ty, I z • The index formula thus reads: 
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Ip = 	 BY Y --- 
Ci 	100D  Z 

Note that the constant term has no index number but retains the value 

100 . 

-15  

The index formula is used as follows: if the average value 

of variable X increases by 10%, then the index Ix  increases by 10 

points as well, and consequently the index value of the dependent 

AY 10 variable, Ip, will increase by 	x 	7  0. The effect of a change in 

the value of each of the independent variables (X,Y,Z) on the depend-

ent variable (P) can thus be read off directly from the index formula. 

6.8 Law of the Propagation of Errors  

When a relationship between two or more variables (X,Y,Z) 

can be expressed mathematically Z = f(x,y), and estimates of the 

variances of the independent variables (X,Y) are available, the vari-

ance of the dependent variable (Z) is found from: 

2 	 - 
 â \2 2  

) 52Z  (-2-12 - ) 	(-
f

) SY  az 	 a y 

Example 1:  A rectangular piece of land having sides X and Y has been 

measured with a noticeable error. The error in the surface area of the 

land z = xy will be: 

2 2 S2 =y s +X2 S 2  Z 	x 	Y 

This is depicted in the sketch, where ysx  and xsy  represent the areas 

of two strips alongside the piece of land. The small square, sx  sy , 

in the upper right hand corner is ignored, it being of a lower order 

of magnitude. 

Fig. 6.3 

Sy  

X 	 sx 

Y 
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Example 2: The formula for the variance of a mean is found by apply-

ing the Law of Propagation of Errors as follows:

P = Zpi/n = Pl + P2 + Pn
n

where

Therefore

s2 n / I s? + ( ^ S z + . . . ( n )2 S n
P

Si = S2 = S3 ... sn = s.

S2 = S2
P n

Example 3: The variance of the difference between two variates equals

the sum of the variancesof the individual variates:

Z = X - Y

It follows directly from the formula for the propagation of errors

that
sZ = sX + sÿ.

The Law of Propagation of Errors applies generally to any

relationship, provided that the variables X, Y, ..... are substantially

independent of one another.

A further application of the Law of Propagation of Errors

is illustrated in Appendix A.
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GLOSSARY OF TERMS 

Synonymous or related terms used in the text of the definitions 
are underscored. Terms that are defined elsewhere in this Gloss-
ary are spatiated. 

accuracy,  a term generally used to indicate the closeness of agree- 
ment between an experimental result and the true 
value; it is affected by chance errors 
as well as by bias. The term accuracy is not used 
specifically asameasure of variability; see preci s-
i on. 

attribute,  a quality of an item or component part that is either 
affirmed or denied (e.g. a machine part is either accepted, 
or rejected as defective). 

average value, s. mean value. 

bias, s.systematic 	error; 	significant 
b i a s. 

biased sample,  a sample whose composition is biased by con-
tamination with foreign matter or by disproportionate in-
clusion or exclusion of certain true components of the 
shi, pment. 

central value,  the value half-way between the upper and lower limits 
ofaclass interval; see frequency distr 
bution. 

chance deviation, s. chanc'e 	error. 

chance error, error associated witha probability dis-
tribution and whose algebraic sum tends to zero; 
random error; random deviation;  chance deviation. 

component, s. random sampling variance , 
segregation variance. 

composite sample, s. gross 	sample. 

consignment, s. shipment. 
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constant, s. unit 	random variance; 	segreg- 
ation variance. 

degree of segregation,  a numerical value on a scale ranging from zero, 
indicating a perfect mixture, to one indicating a state of 
complete segregation. See segregated, homo-
geneous. 

deviation, s. error;chance 	error; 	standard 
error, 

distribution, s. frequency 	distribution; 
parent 	distribution; 	probabil- 
ity 	distribution. 

duplicate samples, two samples collected from the same population. 

error, 1) a mistake; 2) the difference between the observed or esti-
mated value and the mean value, or the true 
value, or some other standard value; deviation.  The 
term deviation is coamtonly used when an involuntary error 
or discrepancy is indicated, while the term error infers 
that the difference can be controlled to some degree by a 
voluntary act. 

error,  s. chance 	error; 	standard 	error; 
systematic 	error. 

error variance, the mean square of errors. 

frequency distribution,  graphical or tabular presentation of the 
quantitative relationship between the relative abundance 
of material units of a given size within a given range or 
class interval ofa variate (ordinate), and the 
values of the variate representing the central 
✓ alues of these classes, in numerical order (abscissa). 

gross sample,a  sample consisting ofanumber of increm- 
e nts; composite sample. 

homogeneous, 1) of the same nature or kind throughout; 2) the state 
of being perfectly blended; zerodegree 	of 	seg- 
✓ egation. 

increment,  a sample 	taken by one operation ofasampling de- 
vice, for the purpose of combining it with other increments 
to forma gross 	sample. An increment is usually 
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not analyzed separately; and if so, is preferably termed a 
one-increment sample. 

lot, s. shipment. 

mean value,  arithmetic average; average value. 

parameter, 1) a quantity conveniently used for indirectly measuring a 
variate or variable property ofamaterial or any 
other statistical 	population. 
para (Gr.) = beside, near. 

parent distribution,  frequency distribution ofa variate 
characteristic ofa statistical 	populat- 
i o n of units having a specified size. 

population, s. statistical 	population. 

precision, 1) a term used to indicate the capability of a person, an 
instrument or a method to obtain reproducible results; 
2)ameasure of the chance error as expressed 
by the variance, the standard devi-
ation, oramultiple of the standard deviation (see 
ASTM Recommended Practice E177, Parts 27 and 30 (1968). 

probability distribution,frequency distribution 
of any random variable, e.g. a chance error. 

random deviation, s. chance error. 

random error, s. chance error. 

random sampling, collecting samples at random. 

random sampling variance, variance of the parent distribution of a 
given sample; random variance component. 

random, s. unit random variance; 	random 
variance component ; random samp-
ling variance. 

random variance component, s.random sampling vari-
a n c e. 

replicate samples,  a series of more than two samples taken from the 
same population. 
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representative sample,a sample without bias; true sample; 
unbiased sample. 

resample, 1) to sample again, for the purpose of replacing another 
sample collected previously; 2) a samplecollected 
for the purpose of replacing another sample. 

sample, 1) a quantity of material taken from a larger quantity for 
the purpose of estimating properties of the larger quantity; 
2) to collect sample. 

sampling constant A, s. unit 	random variance. 

sampling constant B, s. segregation variance. 

sampling, s. random sampling; random samp-

ling variance; 	systematic 	samp- 

1 i n g ; 	total variance of samplin g. 

segregated, 1) not homoge ne o u s; 2) the state of being im-

perfectly mixed. 

segregation, degree of segregation. 

segregation variance, 1) variance due to segregation; 2) difference 

between the total variance of sampling and the random samp-

ling variance; segregation variance component; sampling  

constant B. 

segregation variance component, s.segregation vari-

a n c e . 

shipment, 1) a comtercial or negotiable quantity of material that is 

transferred from seller to buyer; 2) a discrete quantity of 

material that is presented for inspection and acceptance; 

consignment; 3) a specified quantity of material from a com-

mon source; lot. 

significant bias, bias that is of appreciable economic import-

ance to the concerned parties. 

standard deviation, s. standard 	error. 

standard error,  the root mean square of errors; standard devi-

ation.  

statistical collection, s. statistical 	populat- 

ion. 
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statistical population, 1) a collection of discrete items or units of 
a given size characterized by a common variate; universe; 
statistical collection; 2) all of the pieces, particles, 
items, persons or other component parts that constitute the 
whole content of that which is the subject of specific 
interest separately and individually and about which know-
ledge is to be inferred from one or more samples drawn from 
it. 

subsample,  1) a sample taken from another sample; 2) to col-
lect sample from another sample. 

systematic error,error, 	that is consistently positive, or con- 
sistently negative; 2) error associated with a probability 
distribution whose mean value does not tend to the true val-
ue; bias. 

systematic sampling,  collecting samples at regular intervals. 

total variance of sampling,  1) the mean square of errors due 
to sampling; 2) the sum of the random sampling 
variance and the segregation vari- 
a n c e . 

true sample,  s. representative 	sample. 

true value,  1) mean value 	ofa variate; 2) any 
standard value concurrently accepted by joint parties as 
a basis for negotiation. 

unbiased sample,  s. representative 	sample. 

unit random variance, variance of the parent distribution of a sample 
of unit size (e.g., 1 item, 1 lb., 1 kg.) unit variance; 
sampling constant A. 

unit variance, s. unit random variance. 

universe, s. statistical 	population. 

value,  s. central value; 	mean value; true 
value. 

variance, the root mean square of errors. 

variance, s. error variance; 	random samp- 
ling variance;segregation  van- 
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a n c e ; 	total variance 	of 	s a m p - 
1 i n g ; 	unit  random variance. 

variate,  a quantity used to express and measure a variable property 
ofamaterial or any other stati . stical pop-
u lation. 
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LIST OF IMPORTANT SYMBOLS 

Total sum of squares of all items in Analysis of Variance 
(ANOVA). 

A 	Sampling Constant, denoting the parent variance of a sample 
of unit size; random unit variance. 

a, a95 	Precision at a given probability level (e.g. P = 95 7.). 

av 	Precision of the error variance. 

Sum of squares between columns of an array (ANOVA). 

Sampling Constant, denoting the segregation variance of a 
consignment. 

8 	Sum of squares between cells of an array (ANOVA). 

Horizontal deviation of an obs'erved value and corresponding 
value on the regression curve. 

d 	Vertical deviation of an observed value and corresponding 
value on the regression curve. 

d.f. 	Degrees of freedom. 
• 

Interaction sum of squares (ANOVA). 

E(...) 	Expected value of a quantity. 

Ratio of two variance estimates; test-ratio; F-ratio. 

FA, FB.. Test ratio of variance (subscripted) (ANIMA). 

Degrees of freedom. 

Sum of squares between rows of an array (MOVA). 

Average deyiation in a series of observations; theoretical 
minimum number of homogeneous groups required to ascertain 
randomness of the groups in an oscillatory series. 

H 	Number of replicate observations. 

h, hj... Sum  of 11 replicates. 

dx  
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Ip,Ix ... Index numbers relating to terms in a regression formula. 

Variation coefficient of the independent variable, X. 

Variation coefficient of the dependent variable, Y. 

True mean value of a population. 

Mean square: = Sum of squares/d.f. = Variance. 

Average number of elemental units (items) per unit of 

measurement. 

Residue or proportion of variation not explained by regression; 

number of increments (items) in a gross sample. 

Frequency of observations in an interval of grouped observ-

ations; total number of observations; as exponent, refers to 

the number of factors in Factorial testing. 

Average number of "turning points" in an oscillatory time 

series containing n terms. 

— P 	Arithmetic mean of a number of observations p i . 

Probability (significance) level. 

PI,Pz... Individual observations. 

Binomial probability. 

X 2 	Chi-square, a quantity representing the relative size of dif- 

ferences between observed and theoretical frequencies (Chi-

square test). 

Probable error; correlation coefficient. 

True standard deviation of a population: = E(s). 

Sum of squares. 

SA,SB ... Sum of squaSs of factor (subscripted) in Factorial Analysis. 

Sum of observations within a cell (ANOVA). 

Standard error (deviation) of a population based on a limited 

number of observations. 
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V 

Vt3 

VI  

VT 

Vc 

VCR 

vR  
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sc 	Standard deviation expressed in class-units. 

s s 	Standard deviation of a standard error. 

sv 	Stândard deviation of a variance. 

s 2 	Variance; mean square of errors (deviations); total sampling 
variance. 

S
2 Random unit variance; parent variance of a sample of unit 

size. 

2 
Ss 	 Segregation variance component of total sampling variance. 

2 
st 	Variance of turning points in an oscillatory time series. 

Error/residual sum of squares (ANOVA). 

Absolute value of the ratio of a variate to its standard 
error (t-test). 

ti 2 	Random deviation (1) and deviation caused by segregation (2) 
of a sample (i) from the true average value of the populat-
ion (lot, consignment). 

Member of an oscillatory time series. 

Variance estimate; variate; attribute of a variate. 

Mean square between columns of an array (ANOVA). 

Interaction mean square of an array (ANOVA). 

Mean  square  between rows of an array (ANOVA). 

Error/residual mean square of an array (ANOVA). 

True variance estimate between columns of an array (ANOVA). 

True variance estimate of interaction in an array (ANOVA). 

True variance estimate between rows of an array (ANOVA). 

Size of gross sample. 

Range of values in a series of n observations; size of 
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increments in sampling; fractional number of units in

binomial sampling.

X Variate of a lot, consignment or any other population.

XAP,... A missing value in an array, to be estimated. Subscripts

denote row and column coordinates.

Observed value of a variate.

x Deviation of a value from the arithmetic mean (x = p - P).

xi,... Arithmetic mean of a series of observations.

y Relative frequency of a variable.

yo Mode of frequency curve.

z Quantity representing the degree of segregation of a

population attribute.
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APPENDIX A  

LAW OF PROPAGATION OF ERRORS 

Application to Random and Segregation Variations  

The true value (x) of a sample (i) collected from a segregat-

ed population having a true average value (y) can be written as follows: 

xi = y ± ti l  ± t1 2  

where 	 t, = random deviation, and 

ti2  = deviation caused by segregation. 

The total deviation for any sample (i) is, therefore: 

xi - y = ti = 	± ti 2 . 

For a large number of samples, it follows that 
2 	2 	2  

ti = tH 	
+ 2t i ct i2  

2 	2 	2  
t2 = t21 	t 4,22 - 2t21 •t 22  

• • 	• • • 

• • 	• • 	• • 	• • • 

2 	2 
= tni + tnz 	2t tnz 

,The average: 
2 	2 	2 

zti = 2,ti i  Zti2 	2Z(±t1 l  ta).  

It follows, by first-order approximation, that: 

2 	2 
S = 8, + 4, 

where 	 s = random variance, and 

sz = segregation variance. 2 

The mean value of the double products is of a lower order of magnitude 

owing to opposite signs, provided that there is no correlation between 

ti l  and ti2 . 

This derivation applies to any type of parent distribution 

and supports the general validity of Equation 16. 
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APPENDIX B  
Significance of Correlation Coefficient (r) for  

57 and 1% Points  
(d.f. = N 	nr) 

Number of Variables*, 	 Number of Variables,(ur) 
% 	d.f. 	 d.f. 

Points 	(e) 	2 	3 	4 	5 	((I>) 	2 	3 	4 	5 

5 	1 	.997 	.999 	.999 	.999 	24 	.388 	.470 	.523 	.562 
1 	 1.000 	1.000 	1.000 	1.000 	.496 	.565 	.609 	.642 

5 	 .950 	.975 	.983 	.987 	.381 	.462 	.514 	.553 
2 	 25 

1 	 .990 	.995 	.997 	.998 	.487 	.555 	.600 	.633 

5 	 .878 	.930 	.950 	.961 	.374 	.454 	.506 	.545 
3  1 	 .959 	.976 	.983 	.987 	26 
	.478 	.546 	.590 	.624 

5 	4 	.811 	.881 	.912 	.930 	27 	.367 	.446 	.498 	.536 
1 	 .917 	.949 	.962 	.970 	.470 	.538 	.582 	.615 
5 	 .754 	.836 	.874 	.898 	28 	.361 	.439 	.490 	.529 5 
1 	 .874 	.917 	.937 	.949 	.463 	.530 	.573 	.606 

5 	 .707 	.795 	.839 	.867 	.355 	.432 	.482 	.521 
6 	 29 

1 	 .834 	.886 	.911 	.927 	.456 	.522 	.565 	.598 
5 	 .666 	.758 	.807 	.838 	30 	.349 	.426 	.476 	.514 7 
1 	 .798 	.855 	.885 	.904 	.449 	.514 	.558 	.591 

5 	 .632 	.726 	.777 	.811 	.325 	.397 	.445 	.482 
8 	 35 

1 	 .765 	.827 	.860 	.882 	.418 	.481 	.523 	.556 
5 	 .602 	.697 	.750 	.786 	40 	

.304 	.373 	.419 	.455 
9  1 	 .735 	.800 	.836 	.861 	.393 	.454 	.494 	.526 

5 	 .675 	.671 	.726 	.763 	.288 	.353 	.397 	.432 
10 	 45 

1 	 .708 	.776 	.814 	.840 	.372 	.430 	.470 	.501 
5 	 .553 	.648 	.703 	.741 	.273 	.336 	.379 	.412 

11  1 	 .684 	.753 	.793 	.821 	50 .354 	.410 	.449 	.479 
5 	 .532 	.627 	.683 	.722 	.250 	.308 	.348 	.380 

12 	 60 1 	 .661 	.732 	.773 	.802 	.325 	.377 	.414 	.442 
5 	 .514 	.608 	.664 	.703 	.232 	.286 	.324 	.354 

13 	 70 1 	 .614 	.712 	.755 	.785 	.302 	.351 	.386 	.413 
5 	 .497 	.590 	.646 	.686 	.217 	.269 	.304 	.332 

14 	 80 1 	 .623 	.694 	.737 	.768 	.283 	.330 	.362 	.389 
5 	 .482 	.574 	.630 	.670 	.205 	.254 	.288 	.315 

15 	 90 
1 	 .606 	.677 	.721 	.752 	.267 	.312 	.343 	.368  
5 	 .468 	.559 	.615 	.655 	.195 	.241 	.274 	.300 

16 	 100 1 	 .590 	.662 	.706 	.738 	.254 	.297 	.327 	.351  

5 	17 	.456 	.545 
	.601 	.641 	125 	.174 	.216 	.246 	.269 

1 	 .575 	.647 	.691 	.724 	.228 	.266 	.294 	.316  
5 	18 	.444 	.532 	.587 	.628 	150 	.159 	.198 	.225 	.247 
1 	 .561 	.633 	.678 	.710 	.208 	.244 	.270 	.290 
5 	19 	.433 	.520 	.575 	.615 	200 	.138 	.172 	.196 	.215 
1 	 .549 	.620 	.665 	.698 	.181 	.212 	.234 	.253  
5 	20 	.423 	.509 	.563 	.604 	300 	.113 	.141 	.160 	.176 
1 	 .537 	.608 	.652 	.685 	.148 	.174 	.192 	.208 
5 	21 	.413 	.498 	.552 	.592 	400 	.098 	.122 	.139 	.153 
1 	 .526 	.596 	.641 	.674 	.128 	.151 	.167 	.180 
5 	22 	.404 	.488 	.542 	.582 	500 	.088 	.109 	.124 	.137 
1 	 .515 	.585 	.630 	.663 	.115 	.135 	.150 	.162  
5 	23 	.396 	.479 	.532 	.572 	1000 	.062 	.077 	.088 	.097 
1 	 .505 	.574 	.619 	.652 	.081 	.096 	.106 	.115 

'e Includes both dependent and independent variables 
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APPENDIX C 

Chartb of Statistical Functions 

Chart 1 

Correlation Coefficient r  - 2  Variables *  

For more than 2 variables, rofer to table of r-values, p. 147. 
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Consignment, 136 

Constants, 
regression, 53 
sampling, 78, 91-116, 139 

Correlation, 5, 11, 50-77 
coefficient, 34, 55, 56 
significance of, 148 (chart) 

147 (table) 
sources of error, 51-55 
spurious, 2, 6, 34, 35, 50 

Cowden, D. J., 11 

Curve of best fit, 6, 50-55 
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INDEX 

A 

Accuracy, 136 
of error variance, 37, 38 
of sampling, 104 

Analysis, factorial, 39-49 

Analysis of data, 5, 12-14, 23-32 

Analysis of Variance, 9, 10, 22-38 
for regression, 63 
in factorial testing, 39-49 

Attribute, 136 

Average deviation, 20 
and standard deviation, 21 
and probable error, 21 

Benson, M. A., 50 

Bias, see Systematic error 

Bias, detection of, 121-123 
sampling, 127-129 
analytical, 127-129 

Binomial variance, 85 

Binomial variates, 
sampling of, 106-114 

Boyard, G., 40 

Central tendency, 15 

Central value, 136 

Chance error, 13, 105, 136 

Chi-square, 151 (chart) 
test, 86, 93, 126, 127, 130 

Coefficient, 
of correlation, 34, 55, 56 
regression, 52-54 
variation, 54, 55, 71, 73 

Data, 
analysis of, 5, 12-14, 23-32 
grouping of, 13, 57, 58, 60-69 
linearization of, 11, 50, 56 
missing, 118-121 
rounding, 117, 118 

Degree of segregation, 80, 82, 90, 
91, 100-102, 108, 137 

Degrees of freedom, 23-32 

Design of experiments, 33, 35-37 

Deviation, 137 
average, 20 
from curve of best fit, 51-55 
standard, see Standard deviat-

ion. 

Error, 137 
average, 20 
probable, 20 
random, 13, 105, 138 
standard, 20, 37, 38, 139 
systematic, 13, 140 
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Error variance, 25, 32, 37, 38, 
li7 

Estimate of missing data, 
1 observation, 118-120 
2 observations, 120, 121 

Estimator, 5, 8 

Experimental design, 33, 35-37 
defining the problem, 5-8 
premises, 2, 5, 8, 9 

Experimental procedure, 5, 9, 10 

F, 150 (chart) 

F-test, 25, 26 

Factorial analysis, 39-49 

Factorial design, 35-37 

Factors, levels in testing, 32, 
33, 36, 39-46 

Frequency distribution, 12-18, 137 
bimodal, 16 
compound, 16 
histogram, 13, 15 
non-normal, 14, 16 
normal, 17-18 
skew, 16 

G 

g, 124 (table) 

Galton experiment, 14, 15 

Gauss curve, see Normal curve 

Gross sample, 80, 137 

Grouping of data, 13, 57, 58, 60-69 

11 

Histogram, 13, 15, 129, 130 

Increment, 79, 137 
sampling by, 80, 81, 101-106 

Index formula, 131, 132 

Interaction, 3, 25, 40-49 
sum of squares, 29, 41, 44, 

47, 48 
variance, 25, 30, 32, 33, 40, 49 

Law of large numbers, 15, 18 

Law of propagation of errors, 115, 
132, 133, 146 

Least squares, 51-55 

Likelihood, calculation of, 11 

Line of best fit, 6, 50-55 

Linear regression, 56-73 

Linearity, 
in factorial testing, 36 
transformations for, 11, 50, 56 

Main effects, 39-46 

Mean, 
arithmetic, 19, 20 
deviation, 20 
true, 17-19 

Mean square, see Variance 

Mentzer, E. G., 11, 36 

Minimum no. of observations, 
37 (table), 38 

Missing data, estimating, 118-121 
1 observation, 118-120 
2 observations, 120, 121 

Mode, 129 
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Model population, 83-85 

Moroney, M. J., 11 

Non-linear regression, 73-77 

Normal curve, 12,  16-18 
area under, 17,18 
construction of, 129-131 
ordinates, 130 (table) 
parameters, 17, 18, 20, 21 

Null hypothesis, 22, 25 

0 

Observations, minimum no. of, 
37(table), 38 

Outliers, see Tramp values 

Parameter, 8, 33, 35, 138 

Parent distribution, 13, 79, 138 

Pearson, K., 34 

Poisson distribution, 114 

Population, 13, 15, 138 
mean, 17-19 
model, 83-85 
parent, 13 
standard deviation, 17 
statistical, 140 

Precision, 138 
of error variance, 37, 38 
of sampling, 78-82, 106 

Probability, calculation of, 11, 
18 

Probability distribution, 138 

Probability levels, 25, 26 

Probable error, 20, 21 
and average deviation, 21 

and standard deviation, 21 

Procedure, experimental, 9, 10 

Procedure, statistical, 
aim of, 17, 18 
classification of, 11 (table) 

Propagation of errors, law of, 
115, 132, 133, 146 

r, 148 (chart) 

r, 147 (table) 

Random error, 13, 105, 138 

Random variance, 80, 81, 83, 
138, 146 

unit, 140 

Randamness, test for, 124-127 

Range, 117 
and standard deviation, 20 

Ranking, 11, 61 

Regression analysis, 6, 11, 50-77 

Regression analysis worksheets, 
linear correlation, 56-60 

2 variables, 56, 57 
3 variables, 57, 58 
4 variables, 59, 60 

non-linear correlation, 73-77 
2nd degree, 74, 75 
3rd degree, 76 
4th degree, 77 

simplified calculations, linear, 
2 variables, 61-63, 68-73 
3 variables, 63-67 

Regression coefficient, 52-54 

Replicates, 43-49, 138 
minimum number, 37 (table) 

Residual variation, 5, 9, 49 

Rounding of data, 117, 118 



155 

s, see Standard deviation 

S2 , see Variance 

Sample, 139 
biased, 136 
duplicate, 137 
gross, 80, 137 
incremental, 10, 78 
minimum size, 10, 78 
replicate, 101, 138 
representative, 139 

Sampling, 11, 78-116 
binomial, 81, 83-85 
by increments, 80, 81, 101-106 
constants, 78, 91-116, 139 
duplicate, 101-105 
error, 79-81 
model population, 83, 85-92 
of binomial variates, 106-114 
of defectives, 114 
of non-binomial variates, 114-116 
precision, 78-82, 106 
random, 80, 83, 138 
segregation in, 85-96 
stratified, 80 
systematic, 82, 85, 92, 101,140 
theory of, 80-83 
variance, 79, 82, 83-85, 90, 140 

Sampling constants, 78, 91-116, 139 
calculation of, 108 (table) 
practical units, 98-101 

Scatter, measures of, 17-21 

Significance, 
levels, 25, 26 
tests of, 11, 25, 26 

Spurious correlation, 2, 6, 34, 
35, 50 

Standard deviation, 17-20, 139 
and average deviation, 21 
and probable error, 21 
calculation of, 18-20 
from range, 20 
of standard error, 37, 38 
of variance, 37 
true, 17, 18 

Standard error, 20, 139, see also 
Standard deviation 

Statistical procedure, 
aim of, 17, 18 
classification of, 11 (table) 

Subsample, 140 

Sum of squares, calculation of, 
between cells, 29 
between columns, 24, 29 
between rows, 24, 29 
in regression, 61, 62, 65, 70 
interaction, 29, 41, 44, 47,48 
main effects, 41, 44, 46 
residual, 24, 29, 49 
total, 24, 29 

Systematic error, 13, 140 

Scatter diagram, 50, 69, 72 

Segregation, 79, 139 
degree of, 80, 82, 90, 91, 100- 

102, 108 
error, 81 
in sampling, 85-96 
variance, 81, 83, 90, 91, 139, 

146 

t, 149 (chart) 

t-test, 123 

Tramp values, 13, 14, 121-123 

transformations, linearizing, 11, 
50, 56 

Trend variance, 80, 81 
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Unit random variance, 140

Universe, 15, 140

parent, 13

Variance, 19, 49, 140

analysis of, 9, 10, 22-38

binomial, 85

error, 25, 32, 37, 38, 137

estimate of, 17-20

explanation of equations, 26

interaction, 25; 30, 32, 33,

40, 49

of difference, 133

of mean, 133

of product, 132

parent, 90, 91, 98

random, 80, 81, 83, 138, 146

residual, 25, 49

sampling, 79, 82, 83-85, 90,

140

segregation, 81, 83, 90, 91,

139, 146

Variate, 141

Variation coefficient, 54, 55,

71, 73

.Visman, J., 78

z, degree of segregation, 80


