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FOREWORD 

The usefulness of the sophisticated statistical 

techniques collectively known as Response Surface Methodology 

(RSM) has long been appreciated in some disciplines, partic-

ularly chemical-process control and metallurgical research. 

In other disciplines its use is not widespread, probably 

because its capability for describing complex interdependent 

relationships in relatively simple terms is not fully 

recognized. It is hoped that the following brief treatment 

of RSM will serve to demonstrate the same potential to other 

fields of endeavour as it did to the author's rather narrow 

field of flame research, 

Much of the material has been thoroughly covered 

in the technical literature, and in such cases it has been 

deemed sufficient to indicate the classic references. The 

ridge-analysis technique, being relatively new, is not so 

well documented, and has therefore been given somewhat fuller 

Ottawa, October 31, 1969 
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AVANT-PROPOS 

L'utilité des méthodes statistiques complexes communément 

désignées sous le nom de Méthodologie des surfaces de réponse est 

reconnue depuis longtemps dans certaines disciplines, en particulier 

dans le contrôle des processus chimiques et la recherche métallurgique. 

Dans d'autres disciplines leur usage n'est pas tr'ès répandu, probable-

ment parce qu'on n'est pas pleinement au courant de leurs possibilités• 

pour décrire en termes relativement simples des relations interdépendantes 

complexes. Nous espérons que ce bref exposé servira h démontrer que 

ces méthodes offrent les mêmes possibilités dans d'autres domaines 

d'exploration qu'elles ont values à l'auteur dans le domaine plutôt 

restreint de la recherche sur les flammes. 

Une bonne partie du sujet ayant été traitée à fond dans des ouvrages 

techniques, l'auteur s'est contenté d'indiquer les références classiques 

pour ces éléments. La technique d'analyse des pointes, relativement 

plus récente, n'est pas aussi bien documentée et est donc exposée en 

plus grand détail. 

hn Convey, 
Directeur, 
Direction des mines. 

Ottawa, le 31 octobre 1969 
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SOME COMMENTS ON 
THE INTERPRETATION OF RESPONSE SURFACES 

by 

F. D. Friedrich 

ABSTRACT 

In the application of statistical analysis to 

industry and research, a response surface is the geometric 

rendition of an equation or set of equations describing the 

relationship between a dependent variable and a number of 

independent variables. The present report briefly outlines 

various techniques for determining the physical meaning of 

a response surface, assuming that the defining equations have 

already been obtained by statistical techniques. 

Contour plots are briefly described, and an 

example shows how a computer can be used to extend them to 

three or more factors and three or more responses. The 

technique of ridge analysis is explained without mathematical 

proof. An example involving three independent variables is 

worked out. Finally, canonical analysis is discussed, and a 

brief example is given. 

Senior Scientific Officer, Canadian Combustion Research Laboratory, Fuels 
Research Centre, Mines Branch, Department of Energy, Mines and Resources, 
Ottawa, Canada. 
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OBSERVATIONS SUR L'INTERPRÉTATION 

DES SURFACES DE RÉPONSE 

par 

F. D. Friedrich* 

'RsumÉ 

Dans les applications de l'analyse statistique h 

l'industrie et h la recherche, on appelle surface de réponse 

la représentation géométrique d'une équation ou d'une série 

d'équations décrivant la relation entre une variable dépendante 

et un certain nombre de variables indépendantes. Le présent 

rapport expose brièvement diverses méthodes de détermination 

de la signification physique d'une surface de réponse, en 

supposant que les équations de définition ont ciéjà été obtenues 

par des méthodes statistiques. 

L'auteur décrit brièvement les tracés équiscalaires 

et donne un exemple de l'utilisation d'un ordinateur pour les 

étendre 'à trois facteurs ou plus, et h trois réponses ou plus. 

Il explique la technique d'analyse des pointes sans en faire la 

preuve m.athématique, et traite un exemple h, trois variables 

indépendantes. Enfin, il discute l'analyse canonique et en 

• donne un bref exemple. 

* Agent scientifique senior, Laboratoire canadien de recherches 
sur la combustion, Centre de recherches sur les combustibles, 
Direction des mines, ministère de l'Energie, des Mines et des 
Ressources, Ottawa, Canada. 
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INTRODUCTION 

Response Surface Methodology (RSN) is an efficient experimental 

strategy, developed primarily by Box and Wilson (1), which finds wide appli-

cation in empirically describing and optimizing systems and processes which 

cannot be readily treated from theoretical considerations. It is particularly 

advantageous to use RSM when it is desired to evaluate the effect of several 

independent variables or factors (xl , x2 , --- xk) on one or more dependent 

variables or responses (y1 ,  y2' --- yn). 

The method consists of four distinct steps,as follows: 

1. A decision is made as to the number and range of factors to be investi-

gated, and the number of responses to be measured. The levels of the 

factors are coded by denoting the highest experimental level or value 

by +1, denoting the lowest experimental level by -1, and denoting inter-

mediate levels by a number which is proportional to the extremities. 

For example, if the highest experimental level of the factor x l  = pressure 

were to be 150 psi, and the lowest level were to be 100 psi, then 150 psi 

would be coded as +1, 100 psi would be coded as -1, and 125 psi would be 

coded as O. A suitable experimental design is then prepared (1, 2, 3). 

This may take the form of a 2k factorial design in which tests are 

carried out at all combinations of +1 and -1 factor levels, i.e. 2k  tests 

are to be carried out, where k is the number of factors or independent 

variables. It may be pointed out that such a design takes the form of a 

cube in k dimensions, with the test points represented by the vertices. 

It is frequently desirable to add extra test points to the experimental 

design, such as the centre of each  face. of the cube, and the centre of 

the cube. 



•  2. The experiment.is carried out by setting up each combination of factor 

levels, preferably in randomized order, measuring the desired response 

or responses for each run, and repeating some or all of the runs to 

permit determination of variance. 

3. Mathematical models are fitted to the measured data by applying the 

theory of least squares. Techniques for fitting a model may be found 

in a number of text books (4,5). Common model forms are the first-

order polynomial 

y .b +bx +bx e 	o 	11 	22  + bk
X
k 

and the second-order polynomial 

.b
o 
+b

l
x
l
+b2x2 + 	+bx+b

11  x 1
2 
 + b22x22  + ----+ bkkxk

2 
+ 

k k  

b12x1x2 b13x1x3 	bk-1,k 

where ye 
is the value estimated by the model for the true response y, 

and the coefficients 
b' b 1

, etc,are parameters estimated from analysis 
o  

of the data. Such a model must be fitted for each response being 

considered. The fitted'mathematical model describes a surface in a k + 1 

dimensional space, which is called the response surface, and is a function 

of the factors x x2 --- xlc•  Most response surfaces can be adequately 

represented by a carefully fitted second-order polynomial, but in some 

cases it may be necessary to use a third-order polynomial, or employ 

transformation of the variables (6). 

4. The response surfaces represented by the mathematical models must be 

interpreted to establish, within the limits of the experimental region, 

the optimum conditions for the system or process, and to indicate in 

what region further experimeûts might be profitable. Interpretation is 
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an important step in response surface methodology. It is an often

overlooked truism that an experimental study is only as useful as the

use that is made of it, and,while it is relatively easy to interpret

the results of an RSM study involving only 2 or 3 factors and one or

two responses, accurately analyzing the results of a study involving

4, 5 or more factors may require fairly intricate techniques.

It is the purpose of this report to discuss only the interpreta -

tion of response surfaces. It will be assumed that the foregoing steps 1, 2

and 3 have been satisfactorily carried out, and it remains only to correctly

interpret the meaning of a set of fitted mathematical models describing the

r,esponse surfaces.

RESPONSE SURFACES FOR 1 AND 2 FACTORS

A trivial example of a response surface is the case of a single

response evaluated with respect to a single factor. The fitted response

f.ùnction (e.g., yl = yield) takes the form of a single line, which can be

plotted against the factor x (e.g., x = pressure) as shown in Figure 1, and

the factor level which produces the most desirable response can readily be

selected. Clearly a second response function (e.g., y2 = cost) can be

plotted as a second curve on the same graph, and a factor level can be

arbitrarily selected at which both responses are satisfactory according to

some additional criterion.

For the case of a single response (e.g., y = yield) which is

dependent on 2 factors (e.g., xl = pressure, x2 = temperature),the response

surface may be plotted in 2 dimensions as a series of contour lines, each

representing a constant level of the response. This is exemplified in Figure

2. Each plotted response level can be achieved by a set of factor combinations,

and response may be selected with an eye to optimum factor levels (e.g.,

satisfactory yield for minimum temperature and pressure). This approach can

be extended to two or more responses by superimposing the contour plots of

each response as shown in Figure 3, and then selecting factor levels which

optimize both responses.

The problem of optimizing two or more responses can be approached

in a more rigorous fashion by assigning a real-value function that is to be
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optimized, that is, maximized or minimized, subject to given constràints. In 

the previous single-factor example, z could be defined as z . Y2 	the cost 

per unit yield, where yl  = f(x) and y2  = g(x). Standard techniques Can then 

be used to minimize z. Or, if it were desirable to hold one response (e.g., 

yi = yield) between certain limits, such as 

b yi  < a, 

one could then define z = g(x) = cost, and by minimizing z subject to 

b < f(x) 5.. a it is possible to minimize cost in the subset of x where the 
specified inequality is satisfied. 

RESPONSE SURFACES FOR 3 FACTORS 

When  a single response depends on 3 factors, the response surface 

may be sketched in 3-dimensional space with the 3 factors as coordinates. If 

the response surface can be adequately described by a first-order polynomial, 

then a given response level will be represented by a plane, as shoWu in 

Figure 4. However, if the response function is a second, or higher,order, 	of 

polynomial, the response surface may be cumbersome to draw and difficult to 

visualize. In such cases it may be advantageous to construct a 3-dimensional 

model of the response surface (7, 8). 

Three-factor response surfaces can also be handled reasonably 

conveniently by 2-dimensional contour plots, and the tedium of drawing con-

tours can be avoided by using tables prepared by a computer. This is well 

illustrated in an example,from the food processing industry, given by Smith 

and Rose (9) and summarized below: 

Example 1.  Optimizing a Pie-Crust Recipe 

3 factors were considered: 

x
1 	water content • 

x2 	flour content 

x3 	shortening content 

The factor levels were coded, and 32 experiments were carried out. 

For each experiment, 3 responses were measured: 
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y
1 = flakiness, which was scored on a 1 to 10 scale by a trained 

panel, above 7 being considered acceptable. 

y2  = toughness, which was scored in the same manner as flakiness, 

below 3.75 being considered acceptable. 

y
3 = specific volume,  cc/g. 	Beeaeen 2.2 and 2.4 was desired. 

Using least squares, a second-order polynomial was fitted for each 

response, thus providing mathematical models of the response surfaces. 

The mathematical models were then programmed into a computer so as 

to  obtain,  for  each response, 3 tables of response levels, each at the 

same 9 levels of x1 and x2' but one table at each of 3 levels of x3' 
One table is shown in detail in Figure 5, and the entire set is shown 

schematically in Figure 6. On each table, the areas containing 

acceptable response levels were shaded. The tables corresponding to 

the same level of x3 were then superimposed on each other, and the 

region where all three shaded areas overlapped contained the sets of 

factor levels providing a satisfactory recipe. 

It must be kept in mind that tables such as those just described 

can only be superimposed if all factor coordinates are identical. If, for 

example, the table for x3  = 0 had been the only one containing satisfactory 

levels of specific volume, it would have been necessary to either (a) con-

clude that a satisfactory recipe could not be obtained with the factor levels 

used in the experimental design, or (b) relax the criteria for the responses 

to the point where overlapping was achieved. 

As shown schematically in Figure 7, the foregoing method can be 

applied to any number of responses and to several factors, but as the number 

of factors is increased the number of tables quickly becomes prohibitive. 

It then becomes desirable to employ a different approach. 

RESPONSE SURFACES FOR k FACTORS 

a. Ridge Analysis  

The advantage of ridge analysis in response optimization lies in 
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the fact that it permits the maxima and minima of the response to be plotted 

in two dimensions, regardless of the number of factors being considered. The 

basis for the method was laid by La Grange (10), and a mathematical derivation 

is given by Draper (11). A less rigorous but more readable account is given 

by Hoerl (12). Application of the ridge-analysis technique is probably best 

explained by the use of an example involving 3 factors. The extension to a 

larger number of factors will be obvious. 

Example 2.  Application of Ridge Analysis  

Consider the general second-order polynomial for 3 factors 

2 	2 2x2 2 b3x3  + b ilx i  + b22x2  + b33x3  + buxix2  

where the coefficients.have béen estimated by fitting thé model to the 

data. by means of least squares. The problem ià to'find maxima and Minima 

on this . surface. Essentially  the  ridge-analysis technique converts the 

problem to one of finding makimaand'minima for the same surface on a 

sphere with,origin at the centre of the experimental design, and radius 

R . 

Let R = (x1 2 + 'x2 2 +x32 ) 1/2 

Then x3  = ±_ (R
2 

- x1 2 - x2
2
) 1/2 

2 Consider only the positive root; i.e., x3  = + (R - x l 2 - x22 ) 1/2 

Substitute in (2.1) 

2 Theny 	b+bx+bx+ b- (R2 
- x1

2 
- x2

2
)
1/2 

+ b /ix i  + b22x2
2 

o 	11 	22  

2 	2 	2 	 2 	2 1/2 + b 	(R - x 	 + bi3x1  (R
2 

- x 	x 33 	1 - x2 ) 	bl2x1x2 	 1 	2 )  

+ b23x2  (R2 - x l
2 

- x2
2
) 1/2 (2.2) 
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Differentiate (2.2) with respect to x i  and equate to 0. 

IÇLZ = b
1 
 - b

3  x 1 
 (R2  - x1 2  - x2 2 ) -1/2  + 2b11x1  - 2b33x1  + b 12x2 

 + b13  (R2 - x12 - x22 ) 1/2 - b13x12 (R2 - x 12 - x22 ) -1/2 

- b23x1x2  (R2 - x1 2 - x2 2 ) -1/2 = 0 

back-substitute x3  = (R2 - x12 - x22 ) 1/2 

b
3x1 	 b

13x1
2 

Thenb1  - 	+ 2b11x1 - 2b33  x1 +b12  x2 +b13  x3  X3  	x3 
b23x1x2 

X
3 

ib 3  + b13x 1  + b23x2)]  
b13x3 + b12x2 = -b 1 11. 11 - 2b 33 x3 
	  + or x1 [2  

0 

(2.3) 

Then [2b11  - 2b 3 _ 
J 	xl 	1312x2 

+ b 13x3 =1 (2.4) 

Similarly, if e 
2 
 is evaluated, equated to zero, and X  is substituted, 

x  

the result is 

b12x1 	[2b22 	2b33  - k]x2  + b 23x3  = -b 2  

Also, Equation (2.3) can be rewritten as 

b 13x1 + b23x2 - Xx3 = -b3 

Equations (2.4), (2.5) and (2.6) now form a set relating 

xl , x2  and x3  in terms of the parameter X. 

(2.5) 

(2.6) 
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For purposes of this example, let it be assumed that the coefficients 

of Equation (2.1) have been evaluated and are as follows: 

b0  = 6.89462 	b = 0.06323 	b11 = -0.11544 	b12 = 0.09375 1 
—132 „0 . 123181,22 „0 .03997b_0 . 34375 13 - 

	

b3 = 0.15162 	b33 = -0.11544 	b23 = -0.03125 

The set of simultaneous equations then reduces to 

- X x 1 + 	0.09375 x2  - 0.34375 x3 = - 0.06323 

0.09375 xl  + (0.15094 - X) x2  - 0.03125 x 3 = 0.12318 

- 0.34375 x l  - 0.03125 - 	x3 = - 0.15162 

(2.4a) 

(2.5a) 

(2.6a) 

It is now necessary to determine the eigenvalues; that is, the values 

of X for which the simultaneous equations are not independent. This is 

done by equating the determinant of the coefficient matrix to zero, and 

solving the resulting equation for X. For the example in question, the 

equation is 3 
+ 0.15094 X

2 
- X 	 + 0.12793  X  - 0.01582 = 0 

and three eigenvalues exist. These are approximately 

X = + 0.37 

X = + 0.11 

= - 0.35 

For the present purpose they do not have to be determined accurately. 

Some comments on the properties of this system are now in order. 

1. For any assumed value of k, the values of x x2 and x3 are fixed, 

and can be evaluated by solving the simultaneous equations (2.4), 

(2.5) and (2.6). 	[x/ , x2 , x3 ] are coordinates of a point on a 

sphere at which y has a maximum or minimum value. The radius of 
2 the sphere is R; and R = (x1 + x2 2 + x32 ) 1/2 • 

2. The number of maximum and minimum ridges for y corresponds to the 

number of eigenvalues. Thus in this example y has 3 maximum ridges 

and 3 minimum ridges. 
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3. The y values along any one ridge can only go through one maximum 

or one minimum for increasing R. 

4. R approaches infinity as X approaches an eigenvalue from either 

side, as shown schematically in Figure 8. 

5. The highest maximum ridge for y will correspond to assumed values 

of X greater than the highest eigenvalue, the lowest minimum ridge 

for y will correspond to assumed values of X less than the lowest 

eigenvalue, and intermediate maxima and minima will correspond to 

the numerical order of the assumed values of X relative to the 

eigenvalues. Thus, referring to Figure 8; 

Curve 1 represents the highest maximum ridge, 
11 

1 1 

11 

11 

1 1 

2 

• 3 

6 

• 5 

• 4 

second-highest maximum ridge, 

" third 	 H 

" lowest minimum ridge, 

" second-lowest minimum ridge, 

" third lowest minimum ridge. 

The profile of the highest maximum ridge for y may be obtained as 

follows: 

1. Assume 3 or 4 values for X higher than the highest eigenvalue. 

2. For each X, solve Equations (2.4), (2.5) and (2.6) to obtain 

[x l , x2 3  x3 1 

3. Calculate R  for  each set [xl , x2 , x3 ] • 

4. Calculate y from Equation (2.1) for each set [x l , x2 , x3 ]. 

5. Plot x 	x2' 
x
3 
and y versus R. 

The same procedure, using appropriate values for X, can be used to 

obtain the profiles of the lowest minimum ridge or any of the inter-

mediate maximum or minimum ridges. 

It must be kept in mind that while y may increase (or decrease, in the 

case of a minimum) continuously as R increases, the mathematical model 

of the response surface can only be expected to hold within the bounds 

of the experimental region. Thus, if in the experiment the highest 
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• coded levels of x x2  and x
3 
were all 1, R = (3)

1/2 
would represent 

the limit of the experimental region in the plot of y versus R. For 

the numerical example, the highest maximum ridge was evaluated using 

the foregoing procedure. The results of the calculations are tabulated 

below, and the ridge profile and coordinates are plotted in Figure 9. 

•x1 	 x2 	x3 

1.0 	- 0.0054 	- 0.1515 	0.1582 	0.2191 	6.934 

0.6 • 	- 0.1502 	- 0.3304 	0.3560 	0.5084 	6.985 

0.5 	- 0.3773 	- 0.5074 	0.5944 •  0.8678 	7.060 

0.42 	- 1.4191 	- 1.1390 	1.6072 	2.4278 	7,599 

0.37 	highest eigenvalue root. 

It may now be explained that the numerical values assumed for the co-

efficients in Equation (2.1) are in fact the coefficients reported by 

Smith and Rose (9) for. the "flakiness" response discussed in Example 

1. Hence direct comparison between Figure 5 and Figure 9 should be 

possible. Figure 9 shows that,within the limits of the experimental 

region (in this case R 	( 1. 3332  +1.3332  + 12)1/2 	2.135), a maxi- 

mum "flakiness" of 7.5 can be achieved by employing the following 

factor levels: 

x1  =21 

x2  = -1.05 

x3 . +1.40 

But 'Figure 5 .  shows that a "flakiness" 'of  7.6 can be achieved with 

'factor 'levels Of 

x i  = -1.333 

x2  = -1.333 

x3  . +1.000 

However, substitution of these values into Equation (2.1) yields 7.4, 
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not 7.6. Further investigation demonstrated that the value of 7.6010 

given by Smith and Rose (9) in Figure 5 is a typographical error. It 

should be 7.4010. 

For the same numerical example, all ridges were evaluated using the 

same procedure, taking X from -1.00 to +0.98 in steps of 0.03. The 

results are summarized in Table 1, and the ridge profiles are shown 

in Figure 10. 

Other responses dependent on the factors x1 , x2 and x3 could be 

subjected to ridge analysis in the foregoing manner, and the results 

could all be plotted on the same graph against the common parameter 

R. This should simplify selection of factor levels which optimize 

all responses. A more rigorous procedure for optimizing multiple 

responses is described by Hoerl (12). 

While ridge analysis provides a reasonably quick way of obtaining 

the coordinates of a maximum or minimum on a response surface, it 

provides very little information about the general shape of the 

response surface. For this, another technique is more useful. 

b. Canonical An_aUsis 

Canonical analysis provides another powerful tool for interpreting 

response surfaces regardless of the number of variables. The technique is 

fully described by Davies (4) and by Box and Wilson (1). It will suffice 

here to present a brief outline of the approach and give an example which 

demonstrates the potential of the method. 

Example 3.  Application of Canonical Analysis_ 

Consider a response surface described by a mathematical model of 

the form 

y = b
0 
+ b

l
x
l 
+ b 2x2 + b3x 3 + b11x1

2 
+ b22x2

2 + b33x3
2 

(3.1) +Lb
12

x
1x2 + b13x1x3 + b23x2x3' 



2 b11x1 
+ b12x2 + b13x3 . 

x l  + 2b22x2  + b23x3 	 b2 

(3.3) 

(3.4) 

- 12 - 

Conversién>to Canonical «for'm ccinsiStS of shifting the' coordinate system 

sO that Equation (3.1) is reduced to the form 

2 
Y - 

s 	
B X

1  + B2X2
2 + B3X3

2 	 (3.2) 
1  

This.can be accomplished as folloWs: 	 ' 

1. To determine  y, carry out  par.tial differentiation of Equation 

(3.1) . with respect to x x2  and x3' 
 and equate each result to 

zero, thus getting the folleding 3 simultaneous equations: 

(3.5) b13
x 1 

+ b23x2 + 2b33x3 	- b3 

Solving these for x1, 
x
2 
and x3  yields the coordinates of the 

stationary point ys , and these substituted in Equation (3.1) 

give the value of y . If, for example, the coefficients of 

Equation (3.1) are as follows: 

b
o 

= 7.0418 	b
1  . 0.6985 

	

b
11 

. 2.9221 	b12 = 
»2.9359 

	

b2  . 2.6844 	b22 = 1.5410 	b13 
= -1.1921 

	

b3 . 2.4410 	b33 . 1.0510 	b23 . 2.6637 

Substituting these values in Equations (3.3), (3.4) and (3.5) and 

solving yields 

xl- = -0.3365  

x2 = 	0.2411 

x3 	1.6576 

These are the coordinates of the point at which the response 

surface is stationary, i.e., has a maximum, a minimum, or a 

minimax. By substituting these values in Equation (3.1), ys  is 

found to be 5.2247. 
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2. To determine B1, B2 and B3,the determinant of the following matrix

must be evaluated and the roots of the resulting cubic equation in

B must be determined.

b11 - B
b12 b13
2 2

b12 b22 - B b23
2 2

b13 b23 b33 - B
2 2

= 0

Substituting the assumed coefficients and evaluating the determinant

yields

B3 - 5.5141 B2 + 4.9114 B + 0.9290 = 0

the roots of which are

Substituting in Equation (3.2) produces the canonical form

Y - 5.2247 = - 0.1597 X12 + 1.3434 X22 + 4.3304 X32 (3.6)

From inspection of Equation (3.6) it is clear that the response

surface has the form of a hyperboloid of one sheet, and that Y

increases as the absolute values of X2 and X3 increase, but de-

creases as the absolute value of XI increases. Furthermore,

plotting contours of Y is considerably less tedious when the

canonical form is used.

Box and Wilson (1) deal with the foregoing example at considerable

length, and demonstrate the manner in which analysis of the canonical form

can lead to further important conclusions about the nature of the response

surface.
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One further point bears mention. In canonical analysis, as always, 

the mathematical model of the response surface cannot be expected to hold 

beyond the limits of the experimental region. It may happen that the centre 

of the coordinate system which produces the canonical form lies outside the 

experimental region, and in this case ys 
cannot be expected to be an actual 

maximum or minimum for the system. However, examination of that part of the 

canonical form which contains the experimental region is nonetheless useful, 

and can be particularly helpful in determining the area in which further 

experiments should be carried out. 
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TABLE 1 

Coordinates and Response for a Range of Values of X,  

Example 2  

X 1 
	 x

2 	 x3 	 R 	 Y X 

-1.00 	-0.141462 	0.113207 	-0.196710 	0.035761 	6.82424 

-0.97 	-0.149266 	0.116646 	-0.205448 	0.039048 	6.82025 

-0.94 	-0.157905 	0.120321 	-0.215042 	0.042827 	6.81576 

-0.91 	-0.167515 	0.124261 	-0.225626 	0.047205 	6.81071 

-0.88 	-0.178263 	0.128498 	-0.237366 	0.052316 	6.80496 

-0.85 	-0.190357 	0.133074 	-0.250466 	0.058339 	6.79836 

-0.82 	-0.204058 	0.138034 	-0.265184 	0.065508 	6.79072 

-0.79 	-0.219699 	0.143440 	-0.281847 	0.074140 	6.78178 

-0.76 	-0.237709 	0.149365 	-0.300874 	0.084670 	6.77119 

-0.73 	-0.258652 	0.155902 	-0.322821 	0.097710 	6.75848 

-0.70 	-0.283286 	0.163172 	-0.348428 	0.114139 	6.74295 

-0.67 	-0.312651 	0.171336 	-0.378716 	0.135266 	6.72361 

-0.64 	-0.348218 	0.180612 	-0.415118 	0.163099 	6.69897 

-0.61 	-0.392127 	0.191310 	-0.459730 	0.200857 	6.66669 

-0.58 	-0.447630 	0.203887 	-0.515726 	0.253958 	6.62288 

-0.55 	-0.519908 	0.219050 	-0.588170 	0.332116 	6.56076 

-0.52 	-0.617753 	0.237976 	-0.685646 	0.454181 	6.46742 

-0.49 	-0.757377 	0.262793 	-0.823992 	0.660821 	6.31565 

-0.46 	-0.972329 	0.297839 	-1.03598 	1.05369 	6.03902 

-0.43 	-1.34511 	0.353678 	-1.40221 	1.95030 	5.43509 

-0.40 	-2.14773 	0.464917 	-2.18844 	4.80908 	3.59822 

-0.37 	-5.11979 	0.852234 	-5.09438 	26.4456 	-9.59656 

-0.34 	14.9070 	-1.67458 	14.4716 	217.226 	-115.444 

-0.31 	3.11256 	-0.166124 	2.94560 	9.19608 	2.25258 

-0.28 	1.76375 	0.020055 	1.62606 	2.87765 	5.60228 

-0.25 	1.24388 	0.103422 	1.11678 	1.40256 	6.33777 

-0.22 	0.968933 	0.158572 	0.847303 	0.840949 	6.60055 

-0.19 	0.799073 	0.204012 	0.681249 	0.572119 	6.71816 

(Continued 	 



X y x1 
X

2 
X3  

-0.16 

-0.13 

-0.10 

-0.07 

-0.04 

-0.01 

0.02 

0.05 

0.08 

0.11 

0.14 

0.17 

0.20 

0.23 

0.26 

0.29 

0.32 

0.35 

0.38 

0.41 

0.44 

0.47 

0.50 

0.53 

0.56 

0.59 

0.62 

0.65 

0.68 

0.71 

0.74 

0.683728 

0.600037 

0.535954 

0.484186 

0.439453 

0.396620 

0.348113 

0.276386 

0.114052 

-0.997383 

1.29067 

0.852140 

0.778689 

0.791508 

0.866421 

1.03056 

1.39863 

2.59154 

-44.4554 

-1.92964 

-0.899278 

-0.550300 

-0.377295 

-0.275300 

-0.208822 

-0.162552 

-0.128820 

-0.103365 

-0.083638 

-0.068023 

-0.055448 

0.247254 

0.292809 

0.344674 

0.407769 

0.489690 

0.604302 

0.781428 

1.10111 

1.88102 

7.16942 

-3.51722 

-1.30043 

-0.725345 

-0.435862 

-0.231510 

-0.034854 

0.241472 

0.946549 

-24.5487 

-1.42668 

-0.837436 

-0.622840 

-0.507433 

-0.433460 

-0.381089 

-0.341582 

-0.310450 

-0.285128 

-0.264033 

-0.246124 

-0.230690 

-.16- 

TABLE .1 (Continued) 

0.569617 	0.426541 	6.77746 

0.490720 	0.343294 	6.80887 

0.433856 	0.297139 	6.82490 

0.393748 	0.277874 	6.83105 

0.368628 	0.284401 	6.82926 

0.360288 	0.326148 	6.81869 

0.376804 	0.436897 	6.79393 

0.444042 	0.743002 	6.73481 

0.670404 	2.00034 	6.53138 

2.45840 	29.2196 	3.07585 

-1.30096 	7.86457 	6.33870 

-0.592144 	1.38394 	6.87251 

-0.466937 	0.675255 	6.90766 

-0.464522 	0.516121 	6.91082 

-0.534529 	0.545001 	6.91161 

-0.694982 	0.773131 	6.92237 

-1.05220 	1.56080 	6.98329 

-2.19658 	6.21850 	7.49248 

42.6324 	2198.22 	338.032 

2.09638 	5.07686 	7.98978 

1.10663 	1.36731 	7.28759 

0.766486 	0.639130 	7.12652 

0.594344 	0.376542 	7.06033 

0.490188 	0.251981 	7.02514 

0.420199 	0.182701 	7.00347 

0.369782 	0.139920 	6.98880 

0.331618 	0.111472 	6.97818 

0.301633 	0.091482 	6.97012 

0.277384 	0.076825 	6.96376 

0.257315 	0.065708 	6.95861 

0.240390 	0.05704 	6.95434 

(Continued 	 



- 17 -• 

TABLE 1 (Concluded) 

x2 	 x3 
x1 	 Y  

	

0.77 	-0.045176 	-0.217223 	0.225892 	0.050127 	6.95072 

	

0.80 	-0.036683 	-0.205350 	0.213308 	0.044507 	6.94760 

	

0.83 	-0.029590 	-0.194790 	0.202263 	0.039865 	6.94490 

	

0.86 	-0.023614 	-.0.185327 	0.192475 	0.035975 	6.94251 

	

0.89 	-0.018540 	-0.176791 	0.183728 	0.032677 	6.94038 

	

0.92 	-0.014204 	-0.169046 	0.175853 	0.029851 	6.93848 

	

0.95 	-0.010477 	-0.161983 	0.168719 	0.027407 	6.93676 

	

0.98 	-0.007257 	-0.155513 	0.162218 	0.025276 	6.93520 
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FACTOR x 

FIGURE 1. RESPONSE-SURFACE PLOT FOR I FACTOR AND 2 RESPONSES. 

FACTOR x
l  

FIGURE 2 , RESPONSE-SURFACE PLOT FOR 2 FACTORS AND 1 RESPONSE. 
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FIGURE 3. RESPONSE-SURFACE PLOT FOR 2 FACTORS AND 2 RESPONSES. 

FIGURE 4. RESPONSE-SURFACE PLOT FOR 3 FACTORS AND 1 RESPONSE. 
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x2 
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7.3556 7.3040 7.2435 7.1741 7.0959 7.0087 6.9127 	6,8078 	6.6941 

7.2846 	7.2434 7.1933 7.1343 	7.0665 6. 98 6.9042 6.8097 	6.7063 

7.1879 7.1571 7.1175 7.0689 7.01 	6.9452 6.8700 6.7859 	6.6929 

7.0656 7.0452 7.0160 	 6.9308 6.8749 6.8101 6.7365 6.6539 

6.9177 6.9077 6.8889 6.8611 6.8245 6.7790 6.7246 6.6614 6.5893 

6.7441 6.7445 6.7361 6.7188 6.6926 6.6575 6.6135 6.5607 6.4990 

6.5449 6.5557 6.5577 6.5508 6.5350 6.5103 6.4768 6.4343 6.3830 

6.3200 6.3412 6.3536 6.3571 6.3517 6.3375 6.3144 6.2823 6.2414 

FIGURE 5. PART OF A TABULAR  RESPONSE  -SURFACE PLOT FOR 3 FACTORS AND 1 RESPONSE. 



y1 =  Flakiness y2  = Toughness y3  = Sp. Vol. 
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FIGURE 6.  SCHEMATIC DIAGRAM OF A TABULAR RESPONSE-SURFACE PLOT FOR 3 FACTORS AND 
3 RESPONSES. (Shaded areas represent satisfactory response.) 
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FIGURE 8. SCHEMATIC PLOT OF R VS X FOR EXAMPLE 2. 
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FIGURE 9. PLOT OF MAXIMUM RIDGE AND COORDINATES VS R 
FOR EXAMPLE 2. 
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FIGURE 10. PLOT OF MAXIMUM AND MINIMUM RIDGES VS R FOR EXAMPLE 2, 
(Dotted line shows limit of experimental region.) 




