FOREWORD

The usefulness of the sophisticated statistical
techniques collectively known as Response Surface Methodology
(RSM) has long been appreciated in some disciplines, partic-
ularly chemical-process control and metallurgical research.
In other disciplines its use is not widespread, probably
because its capability for describing complex interdependent
relationships in relatively simple terms is not fully
recognized., It is hoped that the following brief treatment
of RSM will serve to demonstrate the same potential to other
fields of endeavour as it did to the author's rather narrow

field of flame research,

Much of the material has been thoroughly covered
in the technical literature, and in such cases it has been
deemed sufficient to indicate the classic references, The
ridge-analysis technique, being relatively new, is not so

well documented, and has therefore been given somewhat fuller

treatment.
A o

ohn Convey,

Director,
Hines Branch,

Ottawa, October 31, 1969
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AVANT-PROPOS .
L'ufilité des méthodes étatistiques complexes communément
. désignées sous le nom de Méthodologie des surfaces de réponse est.
réconnue depuis longtemps dans cgrtain:es disciplines, en particulier
‘dans 1e contrdle des processus c.:himi.ques et.la recherche métallurgique.
Dans d'autres discviplihes leuf usage n'est pas' tres répandu, probable-
ment parcé qu'on n'est pas pleiﬁement au courant de leurs possibilités-
pour décrire en termes relativement simples desb'r‘elatioris int'e'rdépendantes
complexés. Nous espéi'ons ‘qué_ ce 'bi‘éf‘echjj's‘é se;r'v'iraxé. démdﬂtrer que

ces méthodes offrent les mémes possibilités dans d'autres domaines

“

d'exploration qu'elles ont values & l'auteur dans le domaine plutdt
restre'iﬁt de la recherche sur les flamm.es. )
Une bonne partie du‘Sujet ayant été trait,ée‘é fond dans des ouvrages
'techniques, 1'auteur s'est contenté d'indiquer les référAences classiques
pour ces éléments, La technique d'analyse des'pointes, relativement

plus récente, n'est pas aussi bien documentée et est donc exposée en

hn Convey,

Directeur,
Direction des mines,

plus grand détail,

Ottawa, le 31 octobre 1969
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SOME COMMENTS ON
THE INTERPRETATION OF RESPONSE SURFACES

by

L3
F. D. Friedrich

ABSTRACT

In the application of statistical analysis to
industry and research, a response surface is the geometric
rendition of an equation or set of equations describing the
relationship between a dependent variable and a number of
independent variables. The present report briefly outlines
various techniques for determining the physical meaning of
a response surface, assuming that the defining equations have

already been obtained by statistical techniques,

Contour plots are briefly described, and an
example shows how a computer can be used to extend them to
three or more factors and three or more responses, The
technique of ridge analysis is explained without mathematical
proof. An example involving three independent variables is
worked out, TFinally, canonical analysis is discussed, and a

brief example is given,

*

Senior Scientific Officer, Canadian Combustion Research Laboratory, Fuels
Research Centre, Mines Branch, Department of Energy, Mines and Resources,
Ottawa, Canada.
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OBSERVATIONS SUR L'INTERPRETATION
DES SURFACES DE REPONSE

par

F. D. Friedrich*

RESUME

Dans les applications de 1'analyse statistique a
1'industrie et & la recherche, on appelle surface de reponse
la representation geometrique ‘d'une equation ou d'une serie
d'equatmns décrivant la relatlon entre une variable dépendante
et un certain nombre de variables independantes Le prééent
rapport expose brigvement dlverses methodes de determinatmn o
de la mgnification physique d'une surface de reponse, en
supposant que les équations de d,éfinition ont déja été obtenues
par des méthodes statistiques. |

L'adteur décrit bridvement les tracés équiscé.laires
et donne un exemple de l'utilisa.tion d'un ordina.teur poﬁr les
etendre 3 trois facteurs ou plus, et a trois reponses ou plus.
Il explique la technique d'analyse des pointes sans en faire la
preuve mathématique, et traite un exemple 2. .trois varlables
indépendantes. Enfin, il discute 1'analyse canonique et en. .

donne un bref exemple,

* Agent scientifique senior, Laboratoire canadien de recherches
sur la combustion, Centre de recherches sur les combustibles,
Direction des mines, ministeére de 1'Energie, des Mines et des
Ressources, Ottawa, Canada,
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INTRODUCTION

Response Surface Methodology (RSM) is an efficient experimental

strategy, developed primarily by Box and Wilson (1), which finds wide appli-

cation in empirically describing and optimizing systems and processes which

cannot be readily treated from theoretical considerations. It is particularly

advantageous to use RSM when it is desired to evaluate the effect of several

independent variables or factors (Xl’ Xyy === xk) on one or more dependent

variables or responses (yl, Ygs === yn).

1.

The method consists of four distinct steps,as follows:

A decision is made as to the number and range of factors to be investi-
gated, and the number of responses to be measured., The levels of the
factors are coded by denoting the highest experimental level or value
by +1, denoting the lowest experimental level by -1, and denoting inter-
mediate levels by a number which is proportional to the extremities.

For example, if the highest experimental level of the factor x, = pressure

were to be 150 psi, and the lowest level were to be 100 psi, tien 150 psi
would be coded as +1, 100 psi would be coded as -1, and 125 psi would be
coded as 0, A suitable experimental design is then prepared (1, 2, 3),
This may take the form of a 2% factorial design in which tests are
carried out at all combinations of +1 and -1 factor levels, i.e. 2k tests
are toAbe carried out, where k is the number of factors or independent
variables. It may be pointed out that such a design takes the form of a
cube in k dimensions, with the test points represented by the vertices,
It is frequently desirable to add extra test points to the experimental

design, such as the centre of each face. of the cube, and the centre of

the cube.



¥, = bt bix o+ byx, + ===+ bx, + boix,” + byox

2, 'The experiment is carried out by setting up each combination of factor

levels, preferably in faﬁdomized order,;meésuring the desired response
or responses for each run; and repeating some or all of the runs to

permit determination of variance.

Ma;hématical models are fitted to theAmeaéured data by applying the

.theory of least squares. Techniques for fitting a model may be found .

in a number of text books (4,5). Common model forms are the first-

order polynomial

1¥1 F Pp¥y t oo b

yey='bo.+ b
and the éecoﬁd-order'polynomial

2
Kk 11f1 T P22%2

+ ek by

11

bllexz +:b13xlx3 + -f-f}+'bk_l’k kalﬁk‘t

where ye_is the value estimate& by the model for the true respoﬁse Vs

and. the coefficients BO; bl,etc”are parameﬁers estimated from analysis

of the data, Such a model must be fitted for each response being

_ considered. The fitted mathematical model describes a. surface in a k + 1

dimensional space, which is called the response surface, and is a function

~ of the factors Xy Xy "TmT X Most response surfaces can be adequately -

represented by a carefully fitted second-order polynomial, but in some
cases it may be necessary to use a third-~order polynomial, or employ

transformation of the variables (6).

The response surfaces represented by the mathematical models must be
interpreted to establish, within the limits of the experimental region,
the optimum conditions for the system or process, and to indicate in

what region further experiments migﬁt be profitable; Interpretation is




an important step in response surface methodology. It is an often

overlooked truism that an experimental study is only as useful as the
use that is made of it, and,while it is relatively easy to interpret
the results of an RSM study involving only 2 or 3 factors and one or
two responses, accurately analyzing the results of a study involving

4, 5 or more factors may require fairly intricate techniques,

It is the purpose of this report to discuss only the interpreta-
tion of response surfaces., It will be assumed that the foregoing steps 1, 2
and 3 have been satisfactorily carried out, and it remains only to correctly
interpret the meaning of a set of fitted mathematical models describing the

response surfaces,

RESPONSE SURFACES FOR 1 AND 2 FACTORS

A trivial example of a response surface is the case of a single
response evaluated with respect to a single factor. The fitted response
function (e.g., v, = yield) takes the form of a single line, which can be
plotted against the factor x (e.g., x = pressure) as shown in Figure 1, and
the factor level which produces the most desirable response can readily be
selected, Clearly a second response function (e.g., Yy = cost) can be
plotted as a second curve on the same graph, and a factor level can be
arbitrarily selected at which both responses are satisfactory according to

some additional criterion.

For the case of a single response (e.g., y = yield) which is

= pressure, X, = temperature), the response
1 P 2 p P

surface may be plotted in 2 dimensions as a series of contour lines, each

dependent on 2 factors (e.g., x

representing a constant level of the response. This is exemplified in Figure

2. Each plotted response level can be achieved by a set of factor combinations,
and response may be selected with an eye to optimum factor levels (e.g.,
satisfactory yield for minimum temperature and pressure). This approach can

be extended to two or more responses by superimposing the contour plots of
each response as shown in Figure 3, and then selecting factor levels which

optimize both responses,

The problem of optimizing two or more responses can be approached

in a more rigorous fashion by assigning a real-value function that is to be




optimized, that is, maximized or minimized, subject to given constraints, In
_ﬁhe.prévious single~-factor example, z could be defined as z = ;% > the cost
per unit yield, where 3 = f(x) and y, = g(x). Standard techniques can then
be used to minimize z. Or, if it were desirable to hold one response (e.g.,
y1 = yleld) between certain limits, such as

bS}’lSa;

one could then define z = g(x) = cost, and by minimizing z subject to
b < f(x) < a it is possible to minimize cost in the subset of x where the

specified inequality is satisfied,

RESPONSE SURFACES FOR 3 FACTORS

‘When a single response depends on 3 factors, the response surface
may be sketched in 3-dimensional space with the 3 factors as coordinates, If
the response surface can be adequately described by a first-order” polynomial,
then a given response level will be represented by a plane, asfshan'in‘ |
Figure 4. However, if the response function is a second, or higher, order of -
polynomial, the reSponsevsurface may be cumbersome to draw and -difficult to
visualize, 1In such cases it may be advantageous to coﬁsﬁruct a 3-dimensional

model of the response surface (7, 8).

~ Three-factor reSpqnsé surfaces can also be handled reasonably
conveniently by 2-dimensional contour plots, and the tedium of drawing con-
- tours can be avoided by using tables prepared by a computer. This is well
illustrated in an example, from the food processing industry, given by Smith

and -Rose (9) and summarized below:

- Example 1. Optimizing a Pie-Crust Recipe

3 factors were considered:

X, = water content
X, = flour content
Xg = shor tening content

The factor levels were coded, and 32 experiments were carried out,. . . .

For each experiment, 3 responses were measured:




vy, = flakiness, which was scored on a 1 to 10 scale by a trained

panel, above 7 being considered acceptable,

Yo = toughness, which was scored in the same manner as flakiness,

below 3.75 being considered acceptable.

Vg = specific volume, cc/g. .Between 2,2 and 2.4 was desired,

Using least squares, a second-order polynomial was fitted for each

response, thus providing mathematical models of the response surfaces.

The mathematical models were then programmed into a computer so as
to obtain, for each response, 3 tables of response levels, each at the

same 9 levels of x, and x but one table at each of 3 levels of x

s .
One table is shownlin detzil in Figure 5, and the entire set is shgwn
schematically in Figure 6., On each table, the areas containing
acceptable response levels were shaded, The tables corresponding to
the same level of Xy Were then superimposed on each other, and the
region where all three shaded areas overlapped contained the sets of

factor levels providing a satisfactory recipe,

Tt must be kept in mind that tables such as those just described
can only be superimposed if all factor coordinates are identical. If, for
example, the table for Xq = 0 had been the only one containing satisfactory
levels of specific volume, it would have been necessary to either (a) con-
clude that a satisfactory recipe could not be obtained with the factor levels
used in the experimental design, or (b) relax the criteria for the responses

to the point where overlapping was achieved,

As shown schematically in Figure 7, the foregoing method can be
applied to any number of responses and to several factors, but as the number
of factors is increased the number of tables quickly becomes prohibitive.

It then becomes desirable to employ a different approach.

RESPONSE SURFACES FOR k FFACTORS
a., Ridge Analysis

The advantage of ridge analysis in response optimization lies in



the fact that it permits the maxima and minima of the response. to be plotted
‘in two dimensions, regardléss of the number of factors being considered, The
basis for the method was laid by La Grange (10), and a mathematical derivation

is given by Draper (11). A less rigorous but more readable account is given

explained by the use of an example 1nvolv1ng 3 factors. The extension to a

by Hoerl (12), Application of the ridge-analysis techniqué is probably best
larger number of factors will be obvious. |
' |

|

Example-2. Application of Ridge Analysis o

Consider the general second-order polynomial for 3 factors

o e i 2, o2 2 o
= bg t byxy ot byxy ¥ Byy F byyxy T b bypky Hbygry F bppaixy |

b13"1"3 + bzsxzxs - e = (2.1)
where the coefficients have béen estimated by'fitting the model to the
data by means of least squares, The problem is to find maxima and minima
on this surface, Essentially the ridge-analysis techniqué'converts the
problem to one of finding maxima and minima for the same surface on a

sphére with origin at the centre of the expérimeﬁtal désign, and radius

R;‘ .
Let R = (x 24 %%+ 2)1/2
1 2 tE3) T
‘ 2 2 2,1/2
Then x5 =+ (R X7 = %7
Cénsiderbonly the positive root; i.e,,'x3 =+ (RZ - Xlz x22 1/2
Substitute in (2.1) S o o |
| | o ” l
| - 2 2 2.1)2 2 2 |
_ Thea y = bo + blxl + b2x2A+ b3 (R Xy X, ) + bllxl' + b22x2 E
' 2 2. 2 2 2 2.1/2
bag (R X7 - xy) + b12x1x2 + b13x1 (R™ - X0 %)

2 2.1/2
by 4%, (8> - B ) / | (2.2)




Differentiate (2.2) with respect to x, and equate to O,

1
3y . } 2 2 2.-1/2 }
o b1 ?le (R X, Xy ) + 2b11x1 2b33x1 + b12x2
2 2 2,1/2 2 .2 2 2,-1/2
+ b13 (R X =%y ) - b13x1 (R - X" =%y )
2 2 2,-1/2
- b23x1x2 (R" - "%, ) =0
back-substitute x, = (R2 - X 2. x 2)1/2
3 1 2
bgx, b13"12
Then b1 - -;;— + 2b11x1 - 2b33x1 + b12x2 -+ b13x3 - —-;;——
b,.%x,x
) 23X1 2 _,
3
b, + b, .x, + b,.x
3 1371 23 2) _
or x, [?bll - 2b,, { - ]+ by gy + byxy = by
b, + b, x, + b,.x
let ) = =3 1371 2372 (2.3)
X
3
Then [2b,, = Zbyy = A] ®y + byoxy + bygxy = -by 2.4)

Similarly, if '%% is evaluated, equated to zero, and A\ is substituted,
2

the result is

-b (2.5)

byo¥y + [2byy = 2bgq = Ax, + bygxg = b,

12
Also, Equation (2.3) can be rewritten as

byg%y F bygxy - Axy = -bg (2.6)

Eqﬁations (2.4), (2.5) and (2.6) now form a set relating

X5 Xy and Xq in terms of the parameter A,



For purposes of fhis'ékémplé,.let it be éssumed'fhat_the coefficients

of Equation (2.1) havé been evaluaﬁed and are as follows:.

b = 6.89462 . b 0.06323 b

o = by = 11 = -0.11544 by, = 0.09375
| b, = -0.12318 f by, = 0.03997 by = -0.34375
by = 0.15162 byy = ~0.11544 by, = -0.03125
: The.éet of‘simultaneous equations theﬁ reduces to
- Ak + 0.09375x, - 0.34375 x, = - 0.06323 (2.4a)
0.09375 =, + (0.1509 - 1) x, - 0.03125 x, = 0.12318  (2,5a)
- 0.34375 x, - 0.03125x, - Axy = - 0.15162 (2.6a)

bIt is now necessary to dete?mine the eigenvélues; that is, the values

of A for which the simultaneous equations are not independent. This is
dqne by eqdating the determinant of the coefficient matrix to zero, and
soiving the resulting equation for NA. For the example in question, the

equation is 3 2 : ,
' At 0.15094 A~ + 0,12793 A - 0.01582 = O

and three eigenvalueé exist. These are approximately

= + 0.37
= + 0.11
= - 0.35

For the present purpose they do not have to be determined accurately,
Some comments on the properties of this system are now in order.

1. For any assumed value of A\, the values of-xl, X, and x, are fixed,

3
and can be evaluated by solving the simultaneous equations (2.4),
(2.5) and (2.6). [Xl’ Xps X3J are coordinates of a point on a
sphere at which y has a maximum or minimum value., The radius of
the sphere'is R; and R = (xl2 + xzz + x32)1/2.

2. 'The number of maximum and minimum ridges for y corresponds to the

number of eigenvalues, Thus in this example y has 3 maximum ridges

and -3 minimum ridges.




The y values along any one ridge can only go through one maximum

or one minimum for increasing R,

R approaches infinity as A\ approaches an eigenvalue from either

side, as shown schematically in Figure 8,

The highest maximum ridge for y will correspond to assumed values

.0of A greater than the highest eigenvalue, the lowest minimum ridge

for y will correspond to assumed values of A less than the lowest
eigenvalue, and intermediate maxima and minima will correspond to
the numerical order of the assumed values of \ relative to the

eigenvalues, Thus, referring to Figure 8;

Curve 1 represents the highest maximum ridge,

"2 n " second-highest maximum ridge,
1" 3 n " third n " 1"

u 6 " " lowest minimum ridge,

"5 " " second-lowest minimum ridge,
"4 " "  third lowest minimum ridge.

The profile of the highest maximum ridge for y may be obtained as

follows:

1. Assume 3 or 4 values for A higher than the highest eigenvalue.

2. TFor each A\, solve Equations (2.4), (2.5) and {(2.6) to obtain
[*¥12 %92 %3] -

3. Calculate R for each set [xl, Xy5 ¥4]

4, Calculate y from Equation (2.1) for each set [xl, X, XB].

5. and y versus R,

Plot Xl’ x2, x3

The same procedure, using appropriate values for A, can be used to

obtain the profiles of the lowest minimum ridge or any of the inter-

mediate maximum or minimum ridges.

It must be kept in mind that while y may increase (or decrease, in the

case of a minimum) continuously as R increases, the mathematical model

of the response surface can only be expected to hold within the bounds

of the experimental region., Thus, if in the experiment the highest



- 10 =

-,codgd levels of X5 22 and X, were allkl, R = (3)1/2 would represent
the limit of the experimental region in the plot of y versus R, For
the numerical example, the highest maximum fidge was evaluated using
the foregoing procedure. The resulﬁs of the calculations are tabulated

- below, -and the ridge profile and coordinates are plotted in Figure 9.

R Ly

M %) ) 3

1.0 - 0.0054 . - 0.1515  0.1582  0.2191  6.934
0.6 - 0.1502 - 0.3304 0.3560 0.5084 6.985
0.5  -0.3773 - 0.5074  0.5944  0.8678  7.060
0.42 - 1.4191 - 1.1390 1.6072 - 2.4278 7,599
0.37 highest eigenvalue root. | '

It may'ﬁow be explained.that the numerical values assumed for the co-
efficients in Equation (2.1) are in fact the coefficilents reported by
Smith and Rose (9) for the "flakiness" fe8ponse discussed in Exdmple
1; Hence direct comparison between Figure 53énd Figure 9 should be
possible, Figure 9'Showé that, within the limits of the expefimental
region (in this cé.sevR‘=’(1.'3332 +_1.3332 + 12)1/2 = 2,135), a maxi~
mum ""flakiness" of 7.5 can be achieved by employing the following

factor levels:

Xl = ~1.21
Xy = ~1.05
Xq = +1.40

But Figure 5 shows that a "flakiness" of 7.6 can be achieved with

" ‘factor levels of

x = ~1,333
Xy = =1.333
xq = +1.000

However, substitution of these values into Equation (2.1) yields 7.4,




not 7,6, Further investigation demonstrated that the value of 7.6010
given by Smith and Rose (9) in Figure 5 is a typographical error. It
should be 7.4010.

For the same numerical example, all ridges were evaluated using the
same procedure, taking A from =-1.00 to +0.98 in steps of 0.03. The
results are summarized in Table 1, and the ridge profiles are shown
in Figure 10,

Other responses dependent on the factors X5 X, and Xq could be
subjected to ridge analysis in the foregoing manner, and the results
could all be plotted on the same graph against the common parameter
R. This should simplify selection of factor levels which optimize
all responses. A more rigorous procedure for optimizing multiple

.responses is described by Hoerl (12),

While ridge analysis provides a reasonably quick way of obtaining
the coordinates of a maximum or minimum on a response surface, it
provides very little information about the general shape of the

response surface, TFor this, another technique is more useful,

b, Canonical Analysis

Canonical analysis provides another powerful tool for interpreting
response surfaces regardless of the number of variables, The technique is
fully described by Davies (4) and by Box and Wilson (l). It will suffice
here to present a brief outline of the approach and give an example which

demonstrates the potential of the method,.

Example 3, Application of Canonical Analysis

Consider a response surface described by a mathematical model of

the form
= b+ b.x. + box. +b.x. 4+ b .x.2+b 2 4 box2
y = P 1%1 2%y T Dg¥Xg T Dyq¥y 22%9 33%3
+b,. . x.x, + b + b,.X.X (3.1)

12%1%2 13%1%3 23%9%3+



=12 -

yconvetsiOn:to,eahoﬁicél'fofmeOhéistS'bf‘shifting tﬁejcoordinate system
8o that Equation (3.1) is reduced'to the form
e e o2 2, 2
Y - v, = Ble + B,X," + BaXy (3.2)
This_éan be accomolished as follows:
1. To determine y > carry out partial"differentiétion of Equation
(3.1) with respect to xl, X, and x,, “and equate each result to

2 3
zero, thus getting the follow1ng 3 51mu1taneous equatlons

I
1
o

.2 b..x, + b X, + by .x

1151 7 P12%2 T P13¥3 = by (3.3)
byg¥y + 2byy¥y + bygxy = - b, (3.4)
byg¥y T Pyg¥y * Zbygxy = - by (3.5)

Solving these for Xy2 Xy and Xq ylelds the coordinates of the
statlonary point Vg and these substltuted in Equation (3.1)
give the value of Vg If, for example, the coefficients of

Equation. (3.1) are as follows:

b. = 7.0418 b 0.6985 b 2.9221 b

0 . 1° 11 = 12 = =2.9359
b, = 2.6844 . b,, = ;.5410_  byg = ~1.1921
by = 2.4410 byy = 1.0510 b23 = 2. 6637

'Substltutlng these values in Equatlons (3. 3), (3 4) and (3.5) and
‘ solving yields - o _ {

x, = =-0.,3365
X, = © 00,2411
x, = 1.6576

~ These are the coordinates of the point at which the'reSponse
surface 1s statlonary, i.e., has a maxlmum, a mlnlmum, or a
minimax, By substltutlng these values in Equatlon (3.1), y_ is
_found to be 5.2247,




- 13 =

2. To determine Bis By and B3,the determinant of the following matrix
must be evaluated and the roots of the resulting cubic equation in

B must be determined,

bjy -8B by by3
2 2
b,y byy = B byg -0
2 2
b3 b, byg = B
2 2

Substituting the assumed coefficients and evaluating the determinant
yields

B> - 5.5141 BZ + 4.9114 B + 0.9290 = 0

the roots of which are

B1 = ~-0.,1597
B2 = 1.3434
B3 = 4.,3304

Substituting in Equation (3.2) produces the canonical form

2 2 2

Y - 5.2247 = ~ 0.1597 X + 1.3434 X2 + 4.,3304 X3 (3.6)

1

From inspection of Equation (3,6) it is clear that the response
surface has the form of a hyperboloid of one sheet, and that Y

increases as the absolute values of X, and X, increase, but de-

2 3

creases as the absolute value of X1 increases, Furthermore,
plotting contours of Y is considerably less tedious when the

canonical form is used,

Box and Wilson (1) deal with the foregoing example at considerable
length, and demonstrate the manner in which analysis of the canonical form

can lead to further important conclusions about the nature of the response

surface,
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One further p01nt bears mentlon In canon1ca1 analysis, as always,v

the mathematlcal model of .the response surface cannot be - expected to hold

beyond the 1lm1tS of the experlmental region, It may happen that the centre -

of the coordinate system which produces the canonical form lies outside the

experimental region, and in this case'ys,cannot’bereXpected to be an actual

maximum or minimum for the system. However,jexamination of that part of the

canonical form which contains the experimental region is nonetheless useful,

and can be particulatl& helpful in detetmining the area in which further

experiments should'be'carried out,

10,
11,

12,
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TABLE 1

Coordinates and Response for a Range of Values of ),

Example 2
A X, Xy Xq R y
-1.,00 -0.141462 0.113207 -0.196710 0.035761 6.82424
-0.97 ~0.149266 0.116646 -0.205448 0.039048 6.82025
-0.94 -0.157905 0.120321 -0.215042 0.042827 6.81576
-0.91 -0.167515 0.124261 -0.225626 0.047205 6.81071
-0.88 -0.178263 0.128498 -0.237366 0.052316 6.80496
-0.85 -0.190357 0.133074 -0.250466 0.058339 6.79836
-0.82 -0.204058 0.138034 -0.265184 0.065508 6.,79072
-0.79 ~-0.219699 0.143440 -0.281847 0.074140 6.78178
-0.76 -0.237709 0.149365 -0.300874 0.084670 6.77119
-0.73 -0.258652 0.155902 -0.322821 0.097710 6.75848
-0.70 -0.283286 0.163172 -0.348428 0.114139 6.74295
-0.67 -0.312651 0.171336 -0.378716 0.135266 6.72361
-0.64 -0.348218 0.180612 -0.,415118 0.163099 6.69897
-0.61 -0.392127 0.,191310 -0.459730 0.200857 6.66669
-0.58 ~0.447630 0.203887 -0.515726 0.253958 6.62288
-0.55 -0.519908 0.219050 -0.588170 0.332116 6.56076
-0.52 -0.617753 0.237976 -0.685646 0.454181 6,46742
~0.49 -0.757377 0.262793 -0.823992 0.660821 6.31565
-0.46 -0.972329 0.297839 -1.03598 1.05369 6.03902
-0.43 -1.34511 0.353678 -1.40221 1.95030 5.43509
-0.40 -2,14773 0.464917 ~2,18844 4.,80908 3.59822
~0.37 -5,11979 0.852234 ~5.09438 26,4456 -9,59656
-0.34 14,9070 ~1.67458 14,4716 217,226 -115,444
~-0.31 3.11256 -0.166124 2.94560 9.19608 2,25258
-0.28 1.76375 0.020055 1.62606 2,87765 5.60228
-0.25 1.24388 0.103422 1,11678 1.40256 6.33777
-0.22 0.968933 0.158572 0.847303 0.840949 6.60055
-0.19 0.799073 0.204012 0.681249 0.,572119 6.71816

(Continued
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TABLE 1 (Continued)

X

Xq 2 Xq R y
-0.16 0.683728  0.247254 0.569617 0.426541 6.77746
-0.13 0.600037 = 0.292809 0.490720 0.343294 6.80887
~0.10 " 0.535954 0.344674 0.433856 0.297139 6.82490
-0.07 0.484186 0.407769 0.393748 0.277874 6.83105
-0.04  0.439453 0.489690  0.368628 0.284401  6.82926
-0.01 0.396620 10.604302 0.360288 0.326148 6.81869
0.02 0.348113 0.781428 0.376804 0.436897 6.79393
0.05 0.276386 1.10111 0.444042 0.743002 6.73481
0.08 ~ 0.114052 1.88102 ~ 0.670404 2.00034 6.53138
0.11 -0.997383 7.16942 2.45840 29,2196 3.07585
0.14  1.29067 -3.51722  =1.30096 7.86457 6.33870
0.17  0.852140  -1.30043  -0.592144 1.38394 6.87251
0.20  0.778689 -0.725345  ~0.466937 0.675255  6.90766
0.23 0.791508 = =-0.435862  -0.464522 0.516121 6.91082
0.26 0.866421 ~0.231510  -0.534529 0.545001 6.91161
0.29 1.03056 -0.034854  -0.694982 0.773131  6.92237
0.32 1.39863 0.241472  -1.05220 1.56080 6.98329
0.35 2.59154 0.946549  -2,19658 6.21850  7.49248
0.38  -44.4554 24,5487 42,6324 2198,22° 338.032
0.41  -1.92964 ~1.42668 2.09638 5.07686 7.98978
0.44  -0.899278 -0.837436 1.10663 1.36731 7.28759
0.47  -0.550300 -0.622840 0.766486 0.639130 7.12652
0.50  ~-0.377295 ~0.507433 0.594344 0.376542 7.06033
0.53  -0.275300  =0.433460 0.490188 0.251981 7.02514
0.56  -0.208822 -0.381089  0.420199 0.182701  7.00347
0.59  -0.162552 ~0.341582 0.369782 0.139920 ° = 6.98880
0.62  -0.128820  ~0.310450 0.331618 0.111472 6.97818 "
0.65  -0.103365 -0.285128 0.301633 0.091482  6.97012
0.68  -0.083638 ~0.264033 0.277384 '0.076825 6.96376
0.71  -0.068023  -0.246124  0.257315 0.065708  6.95861
0.74  -0.055448  =-0.230690  0.240390 0.05704 6.95434

(Continued .....
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TABLE 1 (Concluded)

A Xy X, Xq R y
0.77 -0.045176 ~-0,217223 0.225892 0.050127 6.95072
0.80 ~0.036683 -0.205350 0.213308 0.044507 6.94760
0.83 ~0.029590 ~0.194790 0.202263 0.039865 6.,94490
0.86 "=0.023614 -0,185327 0.192475 0.035975 6.94251
0.89 -0.018540 ~0.176791 0.183728 0.032677 6.94038
0.92 ~0.014204 ~0.169046 0.175853 0.029851 6.93848
0.95 -0.010477 -0.161983 0.168719 0.027407 6.93676
0.98' -0.007257 -0.155513 0.162218 0.025276 6.93520
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RESPONSE y,

FIGURE 1.

FACTOR X

FACTOR x ___ .

RESPONSE~SURFACE PLOT FOR 1 FACTOR AND 2 RESPONSES,

y=f(x1, x2)=a

L 1 1

FIGURE 2,

FACTOR Xy

RESPONSE -SURFACE PLOT FOR 2 FACTORS AND 1 RESPONSE.
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'FIGURE 4, RESPONSE-SURFACE PLOT FOR 3 FACTORS AND 1 RESPONSE,
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FIGURE 5.

PART OF A TABULAR RESPONSE-SURFACE PLOT FOR 3 FACTORS AND 1 RESPONSE.
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yl‘= Flakiness ¥y = Toughness Y4 = Sp. Vol.
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SCHEMATIC DIAGRAM OF TABULAR RESPONSE-SURFACE PLOT FOR
5 FACTORS AND n RESPONSES.




- 24 -

Curve 3

Curve 4
. Curve 2
Curve 5

Curve 1
Curve 6

—
-1 -.35  +.11 +,37 +1

FIGURE 8. SCHEMATIC PLOT OF R VS A FOR EXAMPLE 2.
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