- i -

Mines Branch Information Circular IC 189

AN INTRODUCTION TO THE PDP-8 COMPUTER,
ITS OPERATION AND PROGRAMMING

by

C. A. Josiing*

A description of the functioning and programming
of a small computer (Digital PDP-8) which may be used

to control experiments (on-line) is given in this circular.

In part one the principal components and their
operation are discussed. Special features that enable it to

be used on-line are described. The arrangement of the

memory into pages is explained.

Part two deals with the programming of the
computer in a symbolic language known as "PAL" or
program assembly language. A sample program which
adds two numbers together is given. It is assumed that

the reader has no previous knowledge of computers.

*Technician, Mineral Physics Section, Mineral Sciences Division, Mines
Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

o= di -

Direction des mines

Circulaire d'information IC 189

UNE INTRODUCTION A L'ORDINATEUR PDP-8,
SON FONCTIONNEMENT ET SA PROGRAMMATION

paz
C.A, Josling*

- e e e

- RESUME

' Cette circulaire décrit le fonct1onnement et la programmatlon
' d'un petit ordinateur (Digital PDP--S) qui peut &tre employé pour contrdler
des experlences. :

Dans la premidre part1e, on discute des principales _
composantes et de leurs opérations., On décrit également des caractér-
istiques spéciales qui permettent de l'employer Vsur ligne" (on-line),

On explique aussi l'arrangement de la mémoire en pages,

Dans la deﬁxiéme partie, on traite de la programmation
de l'ordinateur dans un langage symbolique connu sous le nom de
"PAL", On donne l'addition de deux nombres comme exemple de Pro=
- grammation. L'auteur suppose que le lecteur n'a pas de connaissances

préalables des ordinateurs, :

*Technicien, Section de la physique minérale, Division des sciences ,
minérales, Direction des mines, ministere de 1'Energie, des Mines et
des Ressources, Ottawa,.Canada,

- iii -

CONTENTS
Page
Abstract e e - - i
Resume- . . e .. . ii
Introduction - . - . - .. 1
Part 1 - An Explanation of Digital Computers
Overall Description of a'Computer - .. 3
A Description of Various Parts of a Computer .. 4
Registero . 4
Accumulator | 4
Link 5
Program Counter 5.
Auto-Index Registers 6 .
Memory Buffer Register 6
Input-Output Devices 6
Input Devices 6
Output Devices .. 8
Data Break Channel 11
Flags - ION 11
Part 2 - Programming
Program Languages and Instructions .- . - o 12
Writing a Program .. . - .o - ce 15
Editing and Assembling .. .o . .o .o . .. 18
Acknowledgements - - .. e .. . oo 21

Suggested Reading - ‘e .o - .. 21

B W N

T ot

O 0 o =N O

FIGURES

Overall view of computer

Schgmatic of computer and peripheral equipment
Console panel | | >
Teletype ASR33

High-speed reader

- High-speed pﬁnch

Alphabet in ASCiiaand IB”M c_odés ‘
Flow chart
Third pass, as typed by the ASR33

- Binary progression

s
[\
o

® N o8 N N

16
o
-

INTRODUCTION

Computers have been in use for over thirty years. The first
computers were huge machines using thousands of vacuum tubes and relays,
and were, of course, very expensive. When transistors were introduced,
the size and cost of computers dropped considerably and in the past few
years small, high-speed, very reliable, low-cost computers have been
available.

Large computers are still necessary for complex mathematical
problems, bookkeeping, etc., while the small ones may be used in the
laboratory to control experiments. When a computer is used for this
purpose it is referred to as "on-line™.

There are instruments used to control variables in experiments,
e.g. temperature, pressure, pH, etc., but these are limited to the use
for which they were designed. Computers may be programmed (soft ware)
to control practically any experiment, and, in fact, may look after several
at the same time. For example, the PDP-8 computer® at the Mines Branch
is programmed to control the Mossbauer effect spectrometer and an X-ray
diffractometer simultaneously.

There are two types of computers, the digital and the analogue.
There are many "analogue computers'" in use which are generally not
thought of as computers. For example, a temperature controller is
essentially an analogue computer. Basically, an analogue computer is a
device which works on a variation of voltage or speed.

The digital computer is the one generally used for mathematical
computation, etc. It works with pulses and is therefore more accurate
than an analogue device.

This report will deal only with the latter type of computer, using
the PDP-8 machine and its peripheral equipment (see Figures 1 and 2) as
an example.

*Program Data Processor 8, manufactured by Digital Equipment of Canada,
Ltd., Carleton Place, Ontario.

Figure 2.

Figure 1. Overall view of computer.

DATA BREAK

CORE MEMORY

rJ CHANNEL

|
|
|
|
| MEMORY ADDRESS REGISTER
|
|
|
|

L___.___._.-__—____.___—

HIGH
ASR 33 SPEED

READER

HIGH
SPEED
PUNCH

Schematic of computer and peripheral equipment.

PART 1 -- AN EXPLANATION OF DIGITAL COMPUTERS

OVERALL DESCRIPTION OF A COMPUTER

Most people think of a computer as a glorified desk calculator;
this idea is entirely wrong. The correct definition of a computer is that
it is a device which can automatically perform a series of operations on
data presented to it in digital form. Outwardly it is a box with blinking
lights and various devices coupled to it, as shown in Figure 1, but it
might be compared to a hotel with many rooms.

In the case of the PDP-8, there are 4,096 rooms (Registers).
Each room accommodates twelve people (Bits).. The twelve people, as a
group, would be a party (Word). It could be said to be a

4,096 12-person party hotel, or a
4,096 12-bit word computer.

The hotel has 32 floors (Pages). Every floor has 128 rooms
(Registers). Each room has a number (Address) on the door. The occu-
pant of one room may call the occupant of any room on the same floor
(Current Page) or on the ground floor (Page Zero).

To call the occupant of a room on any other floor, a switchboard
(Indirect Addressing) must be used. When called, the switchboard gives
the number of the room whose occupant is to be contacted.

The hotel has a front door (Accumulator), through which most of
the people (Bits) pass. It also has a back door (Data Break Channel),
through which only certain people (Experimental Data) are allowed to pass.
The back door is an express entrance which allows faster movement of
traffic that has precedence over the data entering the front door.

A DESCRIPTION OF VARIOUS PARTS OF A COMPUTER

The analogy of the hotel has explained the computer in broad
‘térms. In this section the parts will be dealt with in detail. Flgure 2 is
a block diagram showing the pr1nc1pa1 components of the computer and of ‘
- the peripheral equlpment _ o . ' _ ~

Begistﬁ_r

A Register-is an electronic device which stores twelve binary bits
_of information called a "Word". A binary bitis either a zero -or a one. . .
Just as the occupant of a room may change, the twelve bits of a word stored
in the register can be changed on command. There are 4,096 twelve-bit
registers in the PDP-8, and these comprise what is commonly referred to
as the ”Memory" or "Core Memory!'.

Accumulator

The Accumulator (AC) is a complex reglster through wh1ch the
, 1nformat10n normally passes to and from the computer. The exceptlon is

y the Data Break channel.

'The AC does much more than allow information to pass through
it, for it is there that all the arithmetic 'ope'ratlons' are performed. The
contents may be cleared, rotated left or right, or complemented (all zeros
changed to ones and all ones to zeros). The contents of the Memory Buffer
can be added to those of the AC and the results stored away. The contents
of the AC may be seen on a set of 12 lights on the console panel (Figure 3).

Auto-Index Registers

Fight registers are reserved for Auto-Indexing. "Addresses"
may be stored in these registers, and when called on indirectly, they are '
incremented by one. The contents of the AC may be stored .in the new
address. For example, if the address 1234 is stored in an Auto-Index
register and the instruction "DCA I 10" is given, the computer will take"
the address found in core location 10, which is 1234, increment it to 1235,
and DCA (Deposit Contents of Accumulator) in the new address.

‘Memory Buffer Register

All information being transferred to and from the memory must
pass through a 12-bit register known as the "Memory Buffer Register'..

Input-Output Devices

The input-output devices, which operate via the AC, use a binary
code (0 or 1). Information must be encoded, for the computer can recog-
nize only information given to it in this form. This code is known as the
ASCII, or "asky', code (American Society for the Computer Interchange of
Information). Most of the computer input and output consists of paper tape
punched with this code. There are two types of paper. tape. The first is a
rolled tape used by the slow-speed devices. The second is a folded tape
“known as "fan fold'" and is used by the high-speed reader and punch. In-
formation from the tape enters the computer through the AC, 8 bits at a
time; similarly, information from the computer passes through the AC and
is punched on tape 8 bits at a time. The AC can handle 12 bits, but the
tape requires only eight.. = ' ' ') L '

Input Devices

The devices that input information through the AC are:

1. Switch Register (SR}

2. Teletype - . (ASR33)
3. Slow-Speed Reader (SSR)

4. High-Speed Reader (HSR)

IBM

-

® o e o o ® o o o o
.o e) ee o0
o000 0 00

e oee 0 e 0.0 e 0 s e 0 000 0 0

X J e ® o

o e o ® [N @

@ B BN BN BN BN NN @

©® o 600 000

—TOouLWDOOOI OO N~OOEON—O

e o o o o e o o o o
@ e e A LN] L N)
se0 0 es oo

o ® o ® 8 0.0 ¢ o.oo‘o‘ooo.oo

L I
TEEXXXEXXXX
000000 00 00

000060 00090

LR 0000 oO0O 2900 00 0000

- - O Lw OO Og coM~OOITMmN-—O

ASC

Alphabet in ASCII and IBM codes.

Figure 7.

- 11 -

Data Break Channel

The data break is the feature of the PDP series of computers that
makes them such a valuable laboratory tool. The data break stops the
program at the end of the instruction being executed, enters the data from
the experiment, and restarts the program at the next instruction.

Flags - ION

Since a computer can perform instructions faster than external
devices can respond, "Flags' are used as a signal to the computer that a
device is ready for further attention. The computer may be programmed
to look for certain or all flags, but it can service only one request at a
time. When the instruction ION (Interrupt On) is given, the computer will
acknowledge sequentially any flags that occur. When the computer "sees"
(senses) a flag, it completes the instruction, stores the address of the next
instruction, services the device which signalled, then returns to the
program. Thus more than one device may be in operation at one time.
For example, the computer could sequentially display one point on the
oscilloscope, type or punch a character, and execute one or more instruc- |

tions of the program.

-12 -.

PART 2 -- PROGRAMMING-

. PROGRAM LANGUAGES AND INSTRUCTIONS

Programs for computers are wr1tten in a spec1a1 language su1ted .
to the particular machine. The most popular computer language is Fortran,
of which there are several varieties. Some of the less common ones are
Cobol, Algol, Altac, Autocom, and Automath. In all cases the program'
is translated into a binary machine language by the computer.

~The PDP computers use a. 1anguage known as PAL or Program
Assembly Language.- , , .

A program is a series of 1nstruct10ns Wthh tell the computer ', o
what is required. There are six basic instructions, called "Memory

" Reference-Instructions”™. These are coded as: AND TAD, ISZ, DCA

JMS, -and IMP, and are used -as follows:

AND X : is a b1t by b1t mu1t1pllcatlon between the. contents of the AC
and the contents in location X. The answer is in the AC and
the contents of X are unchanged. This, in conjunction with
-other 1nstructlons, is useful for looking for specific numbers,
or bits, by "Masking" the bits you are not 1nterested in.

Example - Contents of X 001 001 = 111 011
: C AND 111 111 - 000 000:

- The AC contents 001 001 000 000

TAD X ' is the addition of the contents of the AC and the contents of

location X. The AC will then contain the sum of its original - ‘

contents and those of X .

Example - Contents of AC are 000 010 - 010 010
Contents of X are 000 100 . 100 100
The instruction
TAD X is given;
the AC then contains 000 110 110 110

- 13 -

ISZ is increment and skip if X equals zero.

Example - The contents of X are -5.
The instruction ISZ is given.
One is added to -5, making it -4,
and when X equals zero the next
instruction is skipped.

This may be used in a programming technique, known as "Looping",
which allows the programmer to have a given set of instructions performed
a required number of times, in this case five.

DCA X is Deposit and Clear Accumulator.
Example - The contents of the AC are 000 010 010 010
The instruction DCA X is given.
The AC now contains 000 000 000 000
and location X contains 000 010 010 010
JMS X is Jump to Sub Routine X.
Example - The program arrives at the instruction

stored in B, which is JMS X. The program
jumps to location X, does these instructions,
then returns to location B + 1.

JMP X is Jump to X.

Example - The program gets to the instruction stored
in B, which is JMP X. The program jumps
to location X and continues.

The next group of instructions are "Operate Instructions'". They
are listed below with their meanings:

NOP No Operation

IAC Increment Accumulator
RAR Rotate Accumulator Right
RAL Rotate Accumulator Left
RTR Rotate Two Right

RTL Rotate Two Left

CML Complement Link

CMA Complement Accumulator

CIA . Complement and Increment Accumulator

CLL Clear Link

STL Set Link N
CLA '~ Clear Accumulator
STA _ Set Accumulato_rv' .

CHLT | Halt |

. OR Or With Switch Reg’ister; '

SK'P' : . Skip Unconditional
SNL = Skip On Non Zero Link

SZL " Skip On Zero Link
SZA ‘Skip On Zero Accumulator
SNA Skip On Non Zero Accumulator

- SMA . Skip On Minus Accumulator -
SPA Skip On Positive Accumulator
CLA | Clear Acicurnulator

These 1nstruct1ons are bu11t 1nto the computer by the manufacturer
" and cannot be changed. .

. There are four insti‘uctions used oniy by'the assembler, namely:
JMP |, -X '; Jump this point back X instructions.

JMP . +X = “Jump this point ahead X insttuctibns.
(X is the number of instructions to be jumped.)

sk

~ - sets the starting address of the program.

$ ' - signifies the end of the program.

These are the only 1nstruct10ns the computer obeys, and with
them all programs are written.

There is one other symbolism to be described, and this is a "tag'',
A tag is equivalent to an address location, and is a group of one to six
letters and/or numbers, which must always start with a letter and be
followed with a comma. Tags should be meaningful, if possible, to help
keep track of them in programming. For example; a positive number may
be designated as PXX or P123, and a negative or minus number MXX or
M123. ’ -

- 15 -

WRITING A PROGRAM

Before writing a program, a "FLOW CHART" should be drawn.
This is a symbolism showing graphically the basic functions of the program.
The symbols used are as follows:

represents an operation

O connects two program points

<> a decision is to be made

beginning or stopping point

 — direction of flow.

16 -

The various instructions and steps used in preparing a program
will be described. The preparation of a short program which will add the
first two numbers from a table designated as P 7, store away the sum,and
halt the computer, is illustrated in Figure 8.. - P

‘-’_ L‘*‘m'w'izxuzgj e

GET FIRST
NUMBER

ADD NEXT
J NUMBER

MODIFY
PROGRAM

Figure 8. Flow chart.

o The program may now be written,us'ing the steps outli‘ned in‘ the.
flow chart. S
*10
SUMM . P7
*400
CLA
TAD M2
DCA CT
TAD I SUMM
ISZ CT
IJMP . -2
DCA SUM
TAD SUM ° .
HLT -
Mz, : -2

-17 -

P7, 7
15
20
CT, 0
SUM, 0
$

The analyses of the various steps of the program are as follows:

*10 - tells the computer to store the next instruction in
’ location 10, in this case SUMM, P7.

SUMM, P7 This is stored in location 10, which is an Auto Index
Register. When this location is called indirectly, it
gives the address of the required information. In
this case it gives SUMM, which is the address P7
whose contents are 7.

*400 The next instruction will be stored in location 400.
CLA "Clear the AC". That means put all zeros in the

: accumulator.
TAD M2 ""Add M2". Put the conteants of location whose address

is M2 in the AC. M2 contains -2.

DCACT "Deposit and clear the AC". Deposit -2 in the location
CT and clear the AC.

TADISUMM '"Add the contents of the location given in SUMM",
The location or address given in SUMM is P7; the
contents of this address (7) are put into the AC.

ISZ CT "Increment and skip on zero'". Add one to the
contents of CT. CT contains -2 and with one added
to it, it is now -1.

IMP . -2 "Jump this poiat miaus 2", Jump the program back
two locations to TADI SUMM.

DCA SUM "Deposit and Clear the AC". At this point the computer
has completed the addition of 7 and 15 and the answer is
in the AC. The instruction DCA SUM tells the computer
to store the total away in the location designated as SUM
and clear the AC. Any time a result is stored the AC is
automatically cleared. This is due to the limited set of
instructions and cannot be changed. Therefore if one
wishes to see the answer, or use,it further, it must be
called back by the next instruction.

- 18 -

TAD SUM This puts the results back in the AC for further use
and also leaves the same information in the Locatlon
suM.

HLT 'I‘ells the computer the task is completed and to stop.

M2, -2 M2 is a tag, and, as the rule says, the computer does
not recognize a number alone as a tag -- it must be

preceded by a letter. This instruction tells the com-
puter to store -2 in the location the address of whlch

is M2.
P7, 7 _ P7is a tag, and the location designated by it contains 7.
15 The 7, 15, 20 are a table, and the computer recognizes
20 _ this and stores 15 in' P74+ 1,20 in P7 + 2 and would
‘ store as many numbers as there are in the table in this .
manner. o _
SUM, 0 This- ta.g, SUM, sets aside a 1ocatlon and clears it, i.e.

puts zeros in it.

$ All programs must end with a $ sign. This s‘ignals the
computer that the end of the program has been reached
- and to begin assembling it.. -

EDITING AND ASSEMBLING

The program is typed on the ASR33 and stored in the memory of
the computer. The computer is under. control of a program known as the
Symbolic Tape Editor or STE. This allows the programmer to call back
any line or lines for . correction. When the program has been typed and
corrected it is punched out on paper tape. This is known as 4‘_che Symbolic
Tape ' : '

The symbohc tape must be processed to produce a "bmary tape®,
as the computer only understands information in this form. This is done
by the computer under control of a program known as PAL, or Program
Assembly Language. '

. The. tape must be read into the memory of the computer twice. The
first "pass! stores the program and types out certain error messages, i.e.,
unidentified addresses. The second pass assigns storage locations to the
instructions and produces a paper tape of the program in machine language
called the "Binary Tape®.

13

- 19 -

A third pass may be made which lists the locations used in
memory, the machine language equivalent of the instruction, and the
instruction as written. The third pass as it is typed out is shown in
Figure 9.

*10

2210 0412 SUMM, P7

* 400
D4R 7200 cLA
R4p1 1211 TAD M2
D42 3215 Dca Ct
D403 1410 TAD 1 SuUWMM
D404 2215 1zS CT
D4PS 5203 JMP .-2
D4p6 3216 DCA SUM
0407 1216 TAD SUM
D410 7402 HLT
P411 7776 M2, -2
412 Q0BT P7T, 7
D413 0015 15
Par14 Q020 ' 20
415 000 CT» %)
D416 0OOAB SUMs %)

Figure 9. Third pass, as typed by the ASR33.

To run the program, the binary tape is read into the memory with
the SR set at 7777. The SR is then set to the starting address of the pro-
gram (400) and the "LLOAD" tab is depressed. The answer will be shown
on the AC lights. But the answer is 26, and not 22 as one would expect.
This is because the AC which does the mathematics can only operate in
binary (zeros and ones) and the most convenient binary notation is octal.
When an AC light is on, it represents a "one'; when it is off, it is a "zero".
Fach digit starting from the right represents a power of 2 greater than the
one before it (Figure 10).

1 1 1 1 1 1 1 1 1
256 128 64 32 16 8 4 2 1

Figure 10. Binary Progression.

It can be readily seen that this is very cumbersome, so the digits
have been grouped in sets of three:

111 111 111 111
421 421 421 421

- 20 -

If the three digits are all onés_they total seven. By changing a
one to a zero, any number from 0 to 7 may be obtained. '

Number |
0o Birary 000 .
-Decimal 0O+0+0 = 0
1 Binary 001 L
' Decimal 0+0+1 = 1
2 Bimary 010 -
' - ~Decimal - 042+ 0 5= 2.
3 Binary 011 .
. Decimal 0+ 2+ 1 = 3
4 ° Binary 100
' Decimal 4+ 0+ 0 ~ = 4. -
5 Binary 101 '
Decimal 44+ 0+ 1 = -5
6 Binary 110 -
' Decimal 4+ 2+ 0 = 6
7 Binary 111

‘Decimal. 4+ 2+ 1 "= 7

Eight is represented by the first digit in the next group of three.
To convert a decimal number to octal (0g), the decimal number is divided
by 8, the remaindér is put in the second column on the right, and the
answer is placed in the third columin J{)n the right (see below).: '

,'151 converted to 0 - "1',5—:8 '=’ 1Aw"11_:h 7 oer'er_, of 17:

56 O Moo _56x8 =7 " 0 M or70

57 M mom o_57sg = 7 1M 1 W or7l
The addition of 7 and 15 would be done as follows:

07 or, in binary, 000 111

7 converted to-voctal,' 7+ 8

15 momo.m g5 g

R4

I7 or, in binary, 001 111
' Total binary 010 110
Total octal 2 6

- 21 -

To change 26 in Og back to decimal, the procedure for changing
to Og is reversed: A

6 is the remainder 6
2 is the answer 2x 8=16
Total 22

A programmer must always keep in mind that all numbers must
be converted to octal and that in octal the numbers 8 and 9 do not exist.

ACKNOWLEDGEMENTS

I wish to express my thanks to Drs. R. H. Goodman and E. J.
Gabe for their assistance in preparing this manuscript and to Mrs. V.,
Belanger for typing it. The guidance of P. E. Shannon, Mines Branch
editor, is also gratefully acknowledged.

SUGGESTED READING

1. D. D. McCracken, "Digital Computer Programming' (John Wiley and
Sons, Inc., New York), eighth printing, 1963, 253 pp. Library of
Congress Catalog No. 57-8891.

CAJ:{PES):vb

