
- i -

Mines Branch Information Circular IC 189

AN INTRODUCTION TO THE PDP-8 COMPUTER,
ITS OPERATION AND PROGRAIVIMING

by

C. A. Josling*

■••■ 	 4•1•1

A description of the functioning and programming

of a small computer (Digital PDP-8) which may be used

to control experiments (on-line) is given in this circular.

In part one the principal components and their

operation are discussed. Special features that enable it to

be used on-line are described. The arrangement of the

memory into pages is explained.

Part two deals with the programming of the

computer in a symbolic language known as "PAL" or

program assembly language. A sample program which

adds two numbers together is given. It is assumed that

the reader has no previous knowledge of computers.

*Technician, Mineral Physics Section, Mineral Sciences Division, Mines
Branch, Department of Energy, Mines and Resources, Ottawa, Canada.

Direction des mines

Circulaire d'information IC 189

UNE INTRODUCTION A L'ORDINATEUR PDP-8,
SON FONCTIONNEMENT ET SA PROGRAMMATION

par

C. A. Josling*

r r r

RÉSUMÉ

Cette circulaire décrit le fonctionnement et la programmation
d'un petit ordinateur (Digital PDP-8) qui peut étre employé pour contr8ler, ,
des expériences.

Dans la première partie, on discute des principales
composantes et de leurs opérations. On décrit également des -
caractér-istiques spéciales qui permettent, de l'employer "sur ligne" (on-line).
On explique aussi l'arrangement de la mémoire en pages.

Dans la deuxième partie, on traite de la programmation
de l'ordinateur dans un langage symbolique connu sous le nom de
"PAL". On donne l'addition de deux nombres comme exemple de pro-
grammâ.tion. L'auteü.r suppose que le lecteur n'a pas de connaiss.ances
préalables des ordinateurs.

*Technicien, Section de la physique minérale, Division des sciences
minérales, Direction des rnines, ministére de l'Energie, des Mines et
des Ressources, Ottawa, .Canada.

- 111 -

CONTENTS

Page

.. . Abstract 	' • 	• • 	i

Résumé 	 .. - 	 ••

.. Introduction 	.. 	• • 	• • 	• • 	1

Part 1 - An Explanation of Digital Computers

..

	

Overall Description of a Com.puter 	3

	

A Description of Various Parts of a Computer .. 	. 	4

..

	

Register 	• . 	4

.. .. Accumulator 	 4

	

Link 	5

	

.. 	 ..

.. Program Counter 	5

Auto-Index Registers 	6 .

Memory Buffer Register 	6

Input-Output Devices 	 	 6 ..

	

. 	 .. Input Devices 	 6

.. . Output Devices 	 8

.. Data Break Channel 	 11

. 	 .. 	 . Flags - ION 	11

Part Z - Programming

.. Program Languages and Instructions 	12

.. Writing a Program 	15

.. Editing and Assembling 	18

.. Acknowledgements 	21

Suggested Reading 	.. 	 21

Overall view of computer ..
2

- iv -

FIGURES

No. 	 Page

	

Z. 	Schematic of computer and peripheral equipment .. 	 Z

3. Console panel 	 6
a

4. Teletype ASR33 	 7

5. High-speed reader 	 8
,

6. High-speed punch 	 9

7. Alphabet in ASCIIaand IBM codes 	10

8. Flow chart • 	16

9. Third pass, as typed by the ASR33 	19

.. 10. Binary progression 	 19

- 1 -

INTRODUCTION

Computers have been in use for over thirty years. The first
computers were huge machines using thousands of vacuum tubes and relays,
and were, of course, very expensive. When transistors were introduced,
the size and cost of computers dropped considerably and in the past few
years small, high-speed, very reliable, low-cost computers have been
available.

Large computers are still necessary for complex mathematical
problems, bookkeeping, etc., while the small ones may be used in the
laboratory to control experiments. When a computer is used for this
purpose it is referred to as "on-line".

There are instruments used to control variables in experiments,
e.g. temperature, pressure, pH, etc., but these are limited to the use
for which they were designed. Computers may be programmed (soft ware)
to control practically any experiment, and, in fact, may look after several
at the same time. For example, the PDP-8 computer* at the Mines Branch
is programmed to control the Mtcissbau.er effect spectrometer and an X-ray
diffractomete r simultaneously. .

There are two types of computers, the digital and the analogue.
There are many "analogue computers" in use which are generally not
thought of as computers. For example, a temperature controller is
essentially an analogue computer. Basically, an analogue computer is a
device which works on a variation of voltage or speed.

The digital computer is the one generally used for mathematical
computation, etc. It works with pulses and is therefore more accurate
than an analogue device.

This report will deal only with the latter type of computer, using
the PDP-8 machine and its peripheral equipment (see Figures 1 and 2.) as
an exam.ple.

*Program Data Processor 8, manufactured by Digital Equipment of Canada,
Ltd., Carleton Place, Ontario.

Figure 1. Overall view of computer.

DATA BREAK
CHANNEL

- - - - - - - - - - - - - - 1

MEMORY BUFFER REGISTER SWITCH REGISTER ^

LINK ACCUMULATDR

I

CORE MEMORY

MEMORY ADDRESS REGISTER

ASR 33
HIGH
SPEED
READER

I
HIGH

SPEED
PUNCH

Figure Z. Schematic of computer and peripheral equipment.

- 3 -

PART 1 -- AN EXPLANATION OF DIGITAL COMPUTERS

OVERALL DESCRIPTION OF A COMPUTER

Most people think of a computer as a glorified desk calculator;
this idea is entirely wrong. The correct definition of a computer is that
it is a device which can automatically perform a series of operations on
data presented to it in digital form. Outwardly it is a box with blinking
lights and various devices coupled to it, as shown in Figure 1, but it
might be compared to a hotel with many room.s.

In the case of the PDP-8, there are 4,096 rooms (Registers).
Each room accommodates twelve people (Bits). The twelve people, as a
group, would be a party (Word). It could be said to be a

•
4,096 12-person party hotel, or a

4,096 12-bit word computer.

The hotel has 32 floors (Pages). Every floor has 128 rooms
(Registers). Each room has a number (Address) on the door. The occu-

pant of one room may call the occupant of any room on the same floor
(Current Page) or on the ground floor (Page Zero).

To call the occupant of a room on any other floor, a switchboard
(Indirect Addressing) must be used. When called, the switchboard gives
the number of the room whose occupant is to be contacted.

The hotel has a front door (Accumulator), through which most of
the people (Bits) pass. It also has a back door (Data Break Channel),
through which only certain people (Experimental Data) are allowed to pass.
The back door is an express entrance which allows faster movement of
traffic that has precedence over the data entering the front door.

- 4 -

A DESCRIPTION OF VARIOUS PARTS OF A COMPUTER

The analogy of the hotel has explained the computer in 1Droad
• terms. In this section the parts will be dealt with in detail. Figure 2 is
a block diagram showing the principal compon.ents of the computer and of
the peripheral equipment.

Register

A Register is an electronic device which stores twelve binary bits
of information called a "Word". A binàry bit is either a zero or a one.
Just as the occupant of a room may change, the twelve bits of a word stored
in the register can be changed on command. There are 4,096 twelve-bit
registers in the PDP-8, and these comprise what is commonly referred to
as the "Memory" or "Core Memory".

Accumulator

The Accumulator . (AC) is a complex register through which the
information norm.ally passes to and from. the computer. The exception is
the Data Break channel.

The AC does much more than allow information to pass through
it, for it is there that all the arithmetic operations are performed. The
contents may be cleared, rotated left or right, or complemented (all zeros
changed to ones and all ones to zeros). The contents of the Memory Buffer
can be added to those of the AC and the results stored away. The contents
of the AC may be seen on a set of 12 lights on the console panel (Figure 3).

DATA FIELD • • • • • 	• •10 • •1• • •i• • •
IIEIIORYADDRESS • 1,10 • • I• • •I• • •

IRENORveuFFER l• • •I• • •I• • •I• • •
LINK 	 ACCuruLATOR • •I• • •I• • •I• • •

.0 	 FETCH

1'40 	 ExECUTE

'SU 	 DEFER

DCA 	 BREAK

1110S

»OP 	 ION

10r 	 PAUSE

OPR 	 RUN

le • • Ie • • le • • I ■ • •
Melf1:11:1= CIMI211MIMZûnIIIE

-5-

Figure 3. Console panel.

Link

To the left of the AC lights is a light by itself. This represents
a one-bit register, known as the "Link", which may be cleared, comple-
mented, or rotated as part of the AC. The Link detects accumulator over-
flow and is used for double precision arithmetic. It may be used as a
"Signal Flag".

Program Counter

In a computer the instructions must be done sequentially. This
sequencing (program control) is carried out by a 1Z-bit register known as
the "Program Counter". The address of the next instruction is stored here.

Auto-Index Registers

Fight registers are reserved for Auto-Indexing. "Addresses"
may be stored in these registers, and when called on indirectly, they are
incremented by one. The contents of the AC may be stored in the new
address. For example, if the address 1234 is stored in an Auto-Index
register and the instruction "DCA I 10" is given, the computer will take
the address found in core location 10, which is 1234, increment it to 1235,
and DCA (Deposit Contents of Accumulator) in the new address.

Memory Buffer Register

All information being transferred to and from the memory must
pass through a 12-bit register known as the "Memory Buffer Register".

Input-Output Devices

The input-output devices, which operate via the AC, use a binary
code (0 or 1). Information must be encoded, for the computer can recog-
nize only information given to it in this form. This code is known as the
ASCII, or "asky", code (American. Society for the Computer In.terchange of
Information). Most of the computer input and output consists of paper tape
pun.ched with this code. There are two types of paper tape. The first is a
rolled tape used by the slow-speed devices. The second is a folded tape
known as "fan fold" and is used by the high-speed reader and punch. In-
formation from the tape enters the computer through the AC, 8 bits at a
time; similarly, information from the computer passes through the AC and
is punched on tape 8 bits at a time. The AC can handle 12 bits, but the
tape requires only eight.

Input Devices

The devices that input information through the AC are:

1. Switch R.egister 	(SR)

Z. Teletype 	 (ASR33)

3. Slow-Speed Reader 	(SSR)

4. High-Speed Reader 	(HSR)

-7

The switch register is a set of twelve switches on the console
panel, Figure 3. Each switch represents a bit; if the tab is down the bit
is a "zero", if the tab is up the bit is a "one". The SR is a slow means of
communicating with the computer. Each switch has to be set for every
"bit" of a word and the word deposited in the memory by lifting the
"Deposit" tab. Only short messages, under special circumstances, are
ever relayed to the computer by this means. An example of such a message
is the RIM Loader, which sets up the computer to receive messages from
other input devices.

The teletype (ASR33), Figure 4, is used to write prograrns and
give commands to the computer. It is an electric typewriter that encodes
the typed character into binary form. The encoded character is held in a
buffer register until it is transferred to the AC.

Figure 4. Teletype ASR33.

The next devices are readers which scan punched paper tape and
convey the information to the computer. The first is a ten-character-per-
second reader (SSR), Figure 4, which is mechanically coupled to the
A5R33. The reading is done by eight small metal fingers. The second and
more frequently used is a three-hundred-character-per-second photo-
electric unit (HSR) (Figure 5), which mechanically feeds the tape over eight
midget photo-diodes which read the data. Both of these devices store the
information in buffer registers until it is accepted by the computer.

IC Q. T.J I i M 1■T CORPOR.A.T'ION IG II' .A.L.

11.
g-

- 8 -

Figure 5. High-speed reader.

Output Devices

The system includes three output devices:

1. Teletype 	 (ASR33)

Z. Slow-Speed Punch 	(SSP)

3. High-Speed Punch 	(HSP)

The teletype can either send or receive messages from the
computer, but is only used as an output device if a typed copy is required.
The punched paper tape is by far the most useful. There are two devices
which produce this: the first of these is the Slow-Speed Punch (SSP),
Figure 4. This is the output equivalent of the SSR and punches out the
contents of a section of memory on rolled paper tape at ten 8-bit
characters per second.

The second of the paper tape output mechanisms is an accessory
called the High-Speed Punch (HSP), Figure 6, also known as the "BRPE"
(pronounced "Burpee" from the four letters in the identifying code). This
produces fan fold tape at 63.5 8-bit characters per second.

Usually, paper tapes are punched in the ASCII code, but with
programming any code may be produced. For example, if the data
collected from experiments must be processed on machines which use

1- 9 -

only IBM code, the PDP-8 computer can be programmed to translate
ASCII to IBM. Figure 7 shows the alphabet in ASCII and IBM codes for
comparison.

Figure 6. High-speed punch.

9
8

7
6
5
4
3

2

o

•
s • • • •
• • • • • 	•
• • • • •
• • • • • • •
• 6 	• • • • • • • • 	• • • • • • 	•
• • • 	• • •
• • • 	• •
• • 	• 	• 	•• •
• • • 	•
• • 	 .555
• • 	• 	• • •
• • 	• • •
• • 	• ■
• • 	• • •
• • 	• 	•

•
• • 	•
• • 	• • ■ •
• • • •
• è 	• • •
• • 	6 •
• • 	• • •
• • 	• 	■
• • 	• 	•

•
•

• • • • •
• • to • •
• • • 	• • • •
• • • 	• • •
• • • 	• • •
• • • 	• •
• • • 	• 	• •
• • • 	• •
• • • 	• 	•
• • • • 	••

•

e 	.

• • • 	•
• • • •
• • 	• • • • • • • •
• • 	•
• • 	e •

• • 	• •
• • 	• 	•

• • • 	•
• • • •
• • 	• • • •
• • • •
• • •
• • 	• •
• • 	• •
■ 	• 	• 	•
• • 	• 	•
e • • • • 	•
tb • 	• •
• • 	• • • •
• • • 	• • •
• • • 	•
• • 	• •
• • • 	• 	• •
• • 	•
• • 	• 	•

• • • •
• *

• • • •
• • • •
• • •

• •
• I • •

• •
• •

• •
•

Y .

X

V

0

1

H
G

A

9
8

7
6

5
4
3

2
1

0

- 10 -

1 2345 678 1234 5 6 7

Y

X

V

0

1

H
G

D

A

A SC II IBM

Figure 7. Alphabet in ASCII and IBM codes.

- 11 -

Data Break Channel

The data break is the feature of the PDP series of computers that

makes them such a valuable laboratory tool. The data break stops the

program at the end of the instruction being executed, enters the data from
the experiment, and restarts the program at the next instruction.

Flags - ION

Since a computer can perform instructions faster than external

devices can respond, "Flags" are used as a signal to the computer that a
device is ready for further attention. The computer may be programmed
to look for certain or all flags, but it can service only one request at a

time. When the instruction ION (Interrupt On) is given, the computer will
acknowledge sequentially any flags that occur. When the computer "sees"

(senses) a flag, it completes the instruction, stores the address of the next
instruction, services the device which signalled, then returns to the

program. Thus more than one device may be in operation at one time.
For example, the computer could sequentially display one point on the
oscilloscope, type or punch a character, and execute one or more instruc-

tions of the program.

- 12 -

PART 2 -- PROGRAMMING

PROGRAM LANGUAGES AND INSTRTJÇ TIONS

Programs for computers are written in a special language suited

to the particular machine. The most popular computer language is Fortran,

of which there are several varieties. Some of the less common ones are

Cobol, Algol, Altac, Autocom, and Automath. In all cases the program

is translated into a binary machine language by the computer.

The PDP computers use a, language known as PAL or Program

Assembly Language.

A program is a series of instructions which tell the computer

what is required. There are six basic instructions, called "Mernory

Reference Instructions". These are coded as: AND, TA.D, ISZ, DCA,

JMS, and JMP, and are used as follows:

is a bit by bit multiplication between the contents of the AC

and the contents in location X. The answer is in the AC and

the contents of X are unchanged. This, in conjunction with

•other instructions, is useful for looking for, specific numbers,

or bits, by "Masking" the bits you are not interested in.

Example - Contents of X 	001 	001 	111 	011
AND 	 111 	111 	000 	000 ,

The AC contents 001 	001 	000 	000

AND X

TAD X is the addition of the contents of the AC and the contents of

location X. The AC will then contain the sum of its original
contents and those of X.

	

Example - Contents of AC are 000 	010 • 010 	010

Contents of X are 	000 	100 • 100 	100

The instruction
TAD X is given;

	

the AC then contains 000 	110 	110 	110

- 13 -

ISZ is increment and skip if X equals zero.

Example The contents of X are -5.
The instruction ISZ is given.
One is added to -5, making it -4,
and when X equals zero the next
instruction is skipped.

This may be used in a programming technique, known as "Looping",

which allows the programmer to have a given set of instructions performed

a required number of times, in this case five.

DCA X 	is Deposit and Clear Accumulator.

Example - 	The contents of the AC are 000 	010 010 	010
The instruction DCA X is given.
The AC now contains 	000 	000 000 	000

and location X contains 	000 	010 	010 	010

JMS X 	is Jump to Sub Routine X.

Example - The program arrives at the instruction
stored in B, which is JMS X. The program
jumps to location X, does these instructions,
then returns to location B 	1.

JMP X 	is Jump to X.

Example - 	The program gets to the instruction stored
in B, which is JMP X. The program jumps
to location X and continues.

The next group of instructions are "Operate Instructions". They
are listed below with their meanings:

NOP 	No Operation

LAC 	 Increment Accumulator

RAR 	Rotate Accumulator Right

RAL 	Rotate Accumulator Left

RTR 	Rotate Two Right

RTL 	Rotate Two Left

CML 	Complement Link

CMA 	Complement Accumulator

CIA 	 Complement and Increment Accumulator

- 14 -

CLL 	Clear Link

STL 	Set Link

CLA 	Clear Accumulator

STA 	Set Accumulator

HLT 	Hait 	1.

OR 	 Or With Switch Register .

SKP 	Skip Unconditional

SNL 	Skip On Non Zero Link

SZL 	Skip On Zero Link

SZA 	Skip On Zero Accumulator

SNA 	Skip On Non Zero Accumulator

SMA 	Skip On Minus Accumulator

SPA 	Skip On Positive Accumulator •

CLA 	Clear Accumulator

These instructions are built into the computer by the manufacturer
and cannot be changed.

There are four in.structions used only by the assembler, nam.ely:

JMP . -X = Jump this point back X instructions.

JMP . +X = Jump this point ahead X instructions.
(X is the number of instructions to be jumped.)

sets the starting address of the program..

- signifies the end of the program.

These are the only instructions the computer obeys, and with
them all programs are written.

There is one other symbolism to be described, and this is a "tag".
A tag is equivalent to an address location, and is a group of one to six
letters and/or numbers, which must always start with a letter and be
followed with a comma. Tags should be meaningful, if possible, to help
keep track of them in programming. For example, a positive number may
be designated as PXX or P123, and a negative or minus num.ber MXX or
M123 .

WRITING A PROGRAM

Before writing a program, a "FLOW CHART" should be drawn.
This is a symbolism showing graphically the basic functions of the program.
The symbols used are as follows:

0

O

represents an operation

connects two program points

a decision is to be made

beginning or stopping point

direction of flow.

- 16 -

The various instructions and steps used in preparing a program
will be described. The preparation of a short program which will add the
first two numbers from a table designated as P7, store away the surn,and
halt the computer, is illustrated in Figure 8 1.

START

P7

INITIALIÉE'

GET FIRST
NUMBER

ADD NEXT
NUMBER

NO MODIFY
PROGRAM

Figure 8. Flow chart.

The program may now be wrilten,using the steps outlined in. the
flow chart.

*10

SUMM

*400

CLA

TAD M2

DCA CT

TAD I SUMM

ISZ CT

JMP . -Z

DCA SUM

TAD SUM

HLT

M Z , 	 - z

P7, 7

15

20

The

*1 0

0

0

- 17 -

SUMM, P7

*400

CLA

TAD M2.

DCA CT

TAD I SUMM

ISZ CT

JMP .

DCA SUM

CT,

SUM,

analyses of the various steps of the program are as follows:

tells the computer to store the next instruction in
location 10, in this case SUMM, P7.

This is stored in location 10, which is an Auto Index
Register. When this locatiori is called indirectly, it
gives the address of the required information. In
this case it gives SUMM, which is the address P7
whose contents are 7.

The next instruction will be stored in location 400.

"Clear the AC". That means put all zeros in the
accumulator.

"Add M2". Put the contents of location whose address
is M2 in the AC. M2 contains -Z.

"Deposit and clear the AG". Deposit -2 in the location
CT and clear the AC.

"Add the contents of the location given in SUMM".
The location or address given in SUMM is P7; the
contents of this address (7) are put into the AC.

"Increment and skip on zei ro". Add one to the
contents of CT. CT contains -2 and with one added
to it, it is now -1.

tt jurrip this point minus 2". Jump the program back
two locations to TAD I SUMIvl.

"Deposit and Clear the AC". At this point the computer
has completed the addition of 7 and 15 and the answer is
in the AC. The instruction DCA SUM tells the computer
to store the total away in the location designated as SUM
and clear the AC. Any time a result is stored the AC is
automatically cleared. This is due to the limited set of
instructions and cannot be changed. Therefore if one
wishes to see the answer, or use,it further, it must be
called back by the next instruction.

- 18 -

TAD SUM This puts the results back in the AC for further use
and also leaves the same information in the Location
SUM.

HLT 	 Tells the computer the task is completed and to stop.

MZ, -2 M2 is a tag, and, as the rule says, the computer does
not recognize a number alone as a tag -- it must be
preceded by a letter. This instruction tells the com-
puter to store -2 in the location the address of which
is M2.

P7, 7 	 P7 is a tag, and the location designated by it contains 7.
15 	 The 7, 15, 20 are a table, and the computer recognizes
ZO 	 this and stores 15 in P7 + 1, 20 in P7 -I-. Z and would

store as many numbers as there are in the table in this
manner ..

S UM, 0 This tag, SUM, sets aside a location and clears it, i.e.,
puts zeros in it.

All programs must end with a $ sign. This signals the
computer that the end of the program has been reached
and to begin assembling it.

EDITING AND ASSEMBLING

The program is typed on the ASR33 and stored in the memory of
the computer. The computer is under control of a program known as the
Symbolic Tape Editor or STE. This allows the programmer to call back
any line or lines for correction. When the program has been typed and
corrected it is punched out on paper tape. This is known as the Symbolic
Tape.

The sy-mbolic tape must be processed to produce a "binary tape",
as the computer only understands information in this form. This is done
by the computer under control of a program_ known as PAL, or Program
Assembly Language.

The tape must be read into the memory of the computer twice. The
first "paiss" stores the program and types out certain error messages, i.e.,
uniden.tified addresses. The second pass assigns storage locations to the
instructions and produces a paper tape of the program in machine language
called the "Binary Tape".

P7

CLA
TAD M2
DCA CT
TAD I SUMM
IZS CT
JMP .-2
DCA SUM
TAD SUM

-2
7
15
20

- 19 -

A third pass may be made which lists the locations used in

memory, the machine language equivalent of the instruction, and the

instruction as written. The third pass as it is typed out is shown in

Figure 9.

*10
0010 0412 SUM,

*400
0400 7200
0401 	1211
0402 3215
0403 1410
0404 2215
0405 5203
0406 3216
0407 1216
0410 7402 HLT
0411 7776 M2,
0412 0007 P7,
0413 0015
0414 0020
0415 0000 CT,
0416 0000 SUM,

Figure 9. Third pass a as typed by the ASR33.

To run the program, the binary tape is read into the memory with

the SR set at 7777. The SR is then set to the starting address of the pro-
gram (400) and the "LOAD" tab is depressed. The answer will be shown

on the AC lights. But the answer is 26, and not 22 as one would expect.

This is because the AC which does the mathematics can only operate in

binary (zeros and ones) and the most convenient binary notation is octal.

When an AC light is on, it represents a "one"; when it is off, it is a "zero".
Each digit starting from the right represents a power of 2 greater than the

one before it (Figure 10).

1 	1 	1 	1 	1 	1 	1 	1 	1

256 	128 	64 	32 	16 	8 	4 	2 	1

Figure 10. Binary Progression.

It can be readily seen that this is very cumbersome, so the digits

have been grouped in sets of three:

111 	111 	111 	111
421 	421 	421 	421

0

4 	Binary 	100
Decimal 4+ 0+ 0

5 	Binary 	1 0 1
Decimal 	4+ 0+ 1 5

MOO

7

- 20 -

If the three digits are all. ones.they total seven. By chan.ging a
one to a .ero, any nuMber from. 0 ip 7 may be . obtainéd. „

Number

0 	Binary 	000
 Decirrià1 	0+ 0+ 0

1 	Binary 	0 0 1,
Decirrial 	0+ 0+ 1

2 	Binary 	010
Decimal 	0+2+ 0 	=

3 	Binary 	011
Decimal 	0+ 2+ 1

Binary 	11 0
Decimal 	4+ 2+ 0

Binary 	111
Decimal 	4+ 2+ 1

Eight is represented by the firsi digit in. the next group of three.
To convert a decimal number to octal (0 8), the decimal number is divided
by 8, the remainder is put in the second column on the right, and the
answer is placed in the third colurrin on the right (see below).

15 converted to 0 - 15+8 = 1 with 7 over, or 17
8

56 	" 	" " - 56+8 	. 	" 0 17 	or 70

57 	" 	" " - 57+8 = 7 " 1 " 	or 71

The addition of 7 and 15 would be done as follows:

7 converted to octal, 748 e: 07 or, in binary, 000 111

15 	t"' " 	1.5 + 8 = 17 or, in binary, 001 111

Total binary 	010 110

Total. octal 	2 	6

- 21 -

To change 26 in 0 8 back to decimal, the procedure for changing
to 0 8 is reversed:

6 is the remainder 	 6

2 is the answer 	Z x 8 = 16

Total 	22

A programmer must always keep in min.d that all numbers must
be converted to octal and that in octal the numbers 8 and 9 do not exist.

ACKNOWLEDGEMENTS

I wish to express my thanks to Drs. R. H. Goodman and E. J.
Gabe for their assistance in preparing this manuscript and to Mrs. V.
Belanger for typing it. The guidance of P. E. Shannon, Mines Branch
editor, is also gratefully acknowledged.

SUGGESTED READING

1. D. D. McCracken, "Digital Computer Programrning" (John Wiley and
Sons, Inc., New York), eighth printing, 1963, 253 pp. Library of
Congress Catalog No. 57-8891.

CAJ:(PES):vb

