
FOREWORD 

The Spectrochemistry Section. of the Mineral Sciences 
Division, Mines Branch, has been investigating the applica-

tion of infra-red vibration spectra to the study of the structure 

of a number of the sulphide and arsenide minerals. 

The complexity of the secular equations relating to the 
vibration frequencies, geometry and force-constants of the 

molecules requires the use of a computer. 

The mathematical method of greatest value to the pro-

blem is, in the opinion of our spectroscopist (Dr. A. H. 

Gillieson), that of Dr. Alois Fadini, which had appeared in 
German only. For the guidance, initially, of the Depart-

ment's Computer Sciences Division, his paper was translated 

into English. The method is, however, of such a fundaxnental 

character and of such wide interest to infra-red spectro-
scopists that it was felt the translation would merit a wider 

distribution than Departmental. 

It is therefore being issued as an Information Circular 

as a general contribution to the science in English-speaking 
cou.ntries and to assist infra-red research in universities 

and research establishments. 

John Convey, 

Director, Mines Bran 1 

ci 



AVANT- PROPOS 

La Section de la spectrochirnie de la Division des 
sciences minérales, Direction des mines, a examiné les 
possibilités d'application des spectres des vibrations infrarouges 
h l'étude de la structure d'un certain nombre de minéraux 
sulfurés et arsénieux. 

La complexité des équations décrivant les fréquences de 
vibration, la géométrie et les constantes de force des molécules 
exige le recours h l'ordinateur. 

La méthode mathématique la plus utile pour, cette étude, 
est, de l'avis de notre spectroscopiste (Dr. A. H. Gillieson), 
celle du Dr. Alois Fadini, qui n'a été publiée qu'en allemand. 
On a fait traduire en anglais l'étude de Fadini pour les besoins 
de la Division des sciences de l'ordination du ministère; mais 
cette méthode se révéla un instrument de travail fondamental 
et intéressa tellement les spectroscopistes spécialisés en 
infrarouge qu'on devrait diffuser la version traduite de cet exposé 
en dehors des cadres du ministère. 

Cette étude est donc publiée comme Circulaire d'information 
au titre de contribution h la science dans les pays anglophones 
et d'aide h la recherche en infrarouge dans les universités et 
les institutions de recherches. 

ohn Convey, 
Directeur, 
Direction des mines, 
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ABSTRACT 

A m.ethod is presented which permits calculation,by means of a 

digital computer, of a complete set of force constants, using only the vibra-

tional frequencies and the geometry of a molecule. The eigenvalues con-

taining the vibration.al frequencies are connected with the force constant 

matrix by the CAYLEY-HAMILTON theorem. This is resolved by the 

NEWTON method. As a first approximation the normal vibrations are 

assumed to be completely uncoupled. Then the known interactions of the 

kinetic energy are introduced stepwise and so a set of force constants is 

obtained which contains all the interaction terms of the potential energy. 

*Head, Spectrochemistry Section, Mineral Sciences Division, Mines Branch, 

Department of Energy, Mines and Resources, Ottawa, Canada. 

#By permission of the authors, December 20, 1967. 
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RÉSUMÉ 

Cette méthode permet, au moyen d'un calculateur digital, 
d'établir une série complète de constantes de force en utilisant uniquement 
des fréquences de vibration et la géométrie d'une molécule. Les valeurs 
propres contenant les fréquences de vibration sont reliées h la matrice de 
la constante de force par le théorème de Cayley-Hamilton. On résout 
l'équation par la méthode de Newton. Dans une première approche, on 
assume que les vibrations normales sont tout b. fait libres. On introduit 
alors graduellement dans les calculs les interactions connues de l'énergie 
cinétique, de sorte qu'on obtient une série de constantes de forces contenant 
tous les termes d'interaction de l'énergie potentielle. 

* Chef, Section de la spectrochimie, Division des sciences minérales, 
Direction des mines, ministère de l'Énergie, des Mines et des Ressources, 
Ottawa, Canada. 

# Avec la permission des auteurs, 20 décembre 1967. 
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INTRODLTC TION 

By neglecting the cubic and higher terms of the potential energy, which 
at sufficiently small amplitudes of vibration have only a minute effect, the 
problem of molecular vibrations can be reduced to a purely mechanical, 
harmonically vibrating system, for which the equation 

IG.F 	EXI =0 	 ... (1) 

is valid U, 21. In this, G is a matrix which contains the coefficients of 
kinetic energy - given by the masses, angles and separations of the atoms 
forming the molecule. E is the unit matrix and X is proportional to the 

square of the frequencies of the normal vibrations of the molecule. The 

matrix F is formed from the coefficients of the potential energy - the force 

constants. It seemed sensible to choose a mechanical model such that the 

forces of a stretching between atoms in the direction of the bond, and of a 
change in the angle between bonds, would act against one another. This is 

called the general valence-force field = GVFF. The terms of the F matrix 

are then a measure of the binding, angular-stability and interaction forces. 

Equation (1) is known  in mathematics as the characteristic equation of 
the Eigenvalue Function, and can be solved for the eigenvalues X by various 

methods [3]. In the application to the theory of molecular vibrations, it is 

not the eigenvalues (which can be found from the vibration spectra) but the 

terms of the F matrix N,vhich are the values sought. Thus we are presented, 

as it were, with an inverse eigenvalue problem, which stems from the basic 

difficulty, that for n given eigen_values and a symmetrical F-matrix, 

n( n+ 1)/2 force constants have to be calculated. 

It has been recommended either to obtain further determinantal equa-
tions from ancillary data, or to reduce the number of force constants to n 

by the assumption of a simplified force field. For the first method suggested, 

there can  be employed the normal vibrations of isotopically substituted 

molecules, vibration-rotation interactions such as Coriolis-coupling or 

centrifugal-expansion constants, and vibration amplitudes or band intensities 

[4].  Since such data are only known for a few, mostly simple,molecules, 

the applicability of this method is very limited. To reduce the number of 

force constants sought to the number of normal vibrations available, there 

have been developed a number of simplified potential expressions. In the 

modified valence-force field = MVFF, carefully selected constants of the 

general valence-force field (GVFF) are neglected, so that of the above-

mentioned n(n+ 1)/2 constants, only n remain for calculation. However, 

this simplification is, in general, not possible if the central atom is light 

in comparison with the ligand atoms, owing to the appearance of strong 

couplings, which cannot be neglected. Another m.ethod consists of choosing 

a model such that certain constants are given a defined relation to one 



A = G.F • • • • (3) 

- 2 - 

another, and their total number is thus diminished. The most useful 
model - developed by Urey and Bradley (UBFF) - describes all coupling 
constants as repulsion forces between unlinked atoms, but does not 
always give satisfactory results [6, 	. Heath and Linnett [8] originated 
a potential expression which defines the coupling and deformation constants 
by the distortion of the ligand electron cloud, taking place during the vibra-
tion, and the change in hybridisation. resulting - (orbital valence-force field 
= OVFF). This force field in a more developed form yields good force 
constants [7, 	, but is also only applicable to relatively simple molecules. 

Another difficulty is calculation time, which is so long, particularly 
• for molecules with many atoms and of low symmetry, that calculation by 

hand can no longer be considered practical. For this reason, in the last 
few years a number of procedures have been described in which digital 
computers have been used to determine force constants U.0, 111 All these 
procedures start from an assumed solution of F, which is varied by an 
iteration procedure until the calculated normal vibrations agree as well as 
possible with those found experimentally. At the same time, equation (1) 
is solved for eigenvalues X. Until now, for the converse problem only one 
method.of solution p. has been known which permitted the iterative 
calculation of an F-matrix - and only a diagonal one at that - from known 
eigenvalues. The MVFF constants in the normal and usual form are 
directly accessible by this procedure. However, with very many molecules 
the coupling constants f ik(ik) do not appear, and as these cannot be neglected, 
no sound solution can be obtained by this method. 

In the following, a new procedure is described, which permits the 
calculation of a complete F-rnatrix containing the GVFF constants, by 
suitable choice of an initial solution. 

DESCRIPTION OF THE CALCULATION PROCEDURE [13] 

From n known eigenvalues X of the determinantal equation (1), it is 
possible to calculate, by Vieta's expression for roots, the coefficients ci 
of the characteristic equation.: 

X n
+  C u  k

n-1 
+ c 	X

n-Z 
	c

l 
 X.

1 
+ c

o = 0 	• • • • ( 2 ) -1 	 n.-2 

which is connected with the matrix product 



E - c AN - v 

n-1 v-P-1 
E (AF T .G).X.(c y  .AN 	) 

P=0 vi i 
 

.... (7) 

R
N

.x =
N 

.... (9) 
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by the Cayley-Hamilton Theorem [3]among others. 
An + c An-1 + c An-2 + 

	 + c
l
A 1  + coE = 0 	• • • • ( 4 ) n-1 	n-2 

Since 0 is an n-rowed square null matrix, equation (4) produces a 
system of n2  algebraic equations, which can be drawn on for the determina-

tion  of the n2  elements of the F-matrix. In general, the system of equations 

can be solved iteratively by Newton's procedure, if a. sufficiently accurate 

approximate solution F N  is known and if the convergence requirements are 

satisfied [1 4]. By neglecting the quadratic, cubic and higher terms of the 

correction matrix F
K' 

there is obtained: 

F F
N 

+ F
K 

and by this equation (4) becomes: 

E cp[G(F N  FK) . 0 with [G(F N  + 
v = 0 

. • . • ( 5 ) 

.... (6) FK )i °  = E  
If, for simplification, one puts F

K 
= X and G.FN AN  one obtains, 

for the corrector X, the linear matrix equation: 

which with 

J
N 	

E (-c ).A
N 

 :P
P 
 = AP .G and  Q= c •Av-P-1  (P= 

v 	 N 	 P 	N 
v = 0 

1, 2, . . n) 

reads in simplified form: n n-1 

'TN = 	E 	E 	P,,  .x P 	
.... (7a) 

v -1 P= 0 

By the introduction of new coefficients r st , which are defined by: 
• 

n 	n-1n 	 n n-1 

i ik 	 E E 
n 
 Pih xhr qik = S1 E0 r st •xhe •  • • (8)  

	

v=1  p 0  h=  1 i= 1 	 v = 1P= 0 

s = n(i-1)+ k;  t=  n(h-1)+,•e; 	 1,2 ....n; s,t = 1,2 ....n2 ; 

there results: 

an inhomogeneous linear system of equations, in which RN  is an n-rowed, 

square matrix, obtainable, as can be seen from equations (7), (7a) and (8) 

from the coefficients c v  and the matrix product A N 
= G.F

N
(F

N 
is the 
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approximate solution), b'y fourfoid summation.. jN and x are column 
matrices with n 2  term.s, which contain the known values  i11 	 n.n of 

 matrix  N  from  equation (7a) and the corrections sought for the correction 
matrix FK or X,  x11 ° • "  x. 

If the rank of matrix RN  is n2  and at least one term of j N  is not zero, 
there exists an unique solution for x, which can be determined by Gaussian 
algorithm pj . This requirement i.s satisfied for n  3. (For n = 2, on the 
other hand, the ran.k of RN is srnaller than 4, so that this case cannot be 
dealt with by the procedure without additional information.) In this way the 
inverse eigenvalue problem is solved in so far as the convergence of the 
Newton procedure is assured. From equation. (4), however, there still arises 
an ambiguity in. the solution of the F-rnatrix, which results from the free 
choice of the various initial solutions F N  (cf., for example, the investigation 
of the multiplicity of solutions in the force constant calculation.s, using an 
analogue com.puter, by Mecke et al. in Spectrochirnica Acta, 19,  1540 (1963) 
and 20, 1295 (1964). It is therefore a question of finding a methOd of 
separating, from  this multiplicity of solutions, one which has meaning for 
the given problem. 

We set about this from the following consideration: In the discussion 
of molecular spectra, the concept of the characteristic vibration plays a 
major role, i.e. it is assum.ed that each normal frequency is defined as far 
as possible by only one symmetry co-ordinate, and therefore the coupling 
between different vibrations is as small as possible. Moreover, much use 
has been made, with considerable 'success, of a m.odified valence-force 
model which indeed considers all, the coupling terms of the G-matrix but 
disregards all the non-diagonal term.s of the F-m.atrix. Thus to a first 
approximation there should be a usable solution., in whièh the normal vibra-
tions are assumed to be fully decoupled. 

If, in the G-matrix, only the gii values are retained and all gik(ii-Lk) 
are taken as zero, from equation (1) is obtained: 

in. which the index D means that F and G are now diagonal matrices. L is 
also a diaganalmatrix,containing the eigen.values X. Since the sequence of 
k-values in L is given by the arrangement of the vibration spectrum, from 
equation. (10) there is obtained an unique solution for FD. This is now used 
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to calculate an F-matrix according to equations (6) and (9), whereby, in a 

number of iteration cycles, the known gik values are built up stepwise: 

GD 	p/m (G - GD ) with El = 1, Z, 	m:Gm=G 	(11b) 

Necessary a.ssurriptions for the convergence of the Newton procedure 

are that no second solution lies in the region GD to G, that the stepwidth m 

is chosen so that F iu ..1 is a sufficiently exact approximation to Fla, and that 
continuous partial alierivatives up to the second order exist for the algebraic 

system of equations (4) [14]. 

PROGRAIVIMING 

The calculation procedure described in the previous section was pro-

gramm.ed for the digital computer, Standard Electric ER 56. The details 

can be iaken from  the flow diagram, Figure 1. The most difficult problem 

is presented by the determination of the n4  coefficients of matrix R in 

equation (9). The course of this calculation is therefore reproduced in full 

in Figure Z. The memory requirement grows rapidly with increasing size 

of A. In addition to the programme memory of about 1500, an (n4  + n3  + 

811. 2  + 3n + 1 ) memory is required for the data - for n = 3, this is 190, but 

at n = 6, reaches 18Z0. Because of the high n-iatrix powers arising in the 

solutions of the system of equations (9), the number range of the machine 

can be exceeded. In this  cas e,equation (9) must be multiplied by a suitable 

factor (e.g. 10 -4). 

The procedure converges very rapidly; with the exam.ples calculated 

to date, a step number of m 5-10 has always been sufficient. Post-

iterations are only necessary with the last step (i..t re. m). Their number is 

limited by the accuracy attainable in the solution of the inhom.ogen.eous system 

of equations (9), since as 	so also does j —*- 0, and from this a marked 

diminution in the places of the determination of x occurs. This makes itself 

noticeable in the loss of symm.etry of the F-matrix. In general, one or two 

post-iteration.s suffice to reproduce the eigenvalues accurate to 6-7 places 

and concurrently to return the experim.entally obtained vibration frequencies 

exactly. The F-matrix appears - as required - symmetrical (xik is cal-

culated by another equation as xi). Sm.all. rounding-off errors can,however, 

appear due to the limited calculation. To avoid an accumulation of these 

errors by the iteration, before the beginning of each iteration cycle a 

symrnetrisation of matrix FN  is carried out. Calculation time with the 

digital computer ER 56 (mean addition tirne 300 rnicrosec.) amounts to 1.5 

minutes for n = 3, and 30 minutes for n = 6. At present the programme 
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exists only in the ER 56 machine code, but a reprogramming in Algol code 
will be undertaken shortly. 

EXAMPLES OF MOLECULES CALCULATED 

A few calculation results should serve as proof of the serviceability 
of the method. A series of unsymmetrical bent molecules, which possessed 
three normal vibrations of one type, were investigated. The geometric data 
and vibrations frequencies are given in Table 1. 

From these were obtained the force constants listed in Table Z. The 
constants for NSF and the valence-force constants fR(NO) of the nitrosyl 
halides agree -\,vith the values quoted in the literature [16,17,19,20]. On the 
other hand,the constants f r (NX) are throughout found to be higher. This is 
due to the coupling magnitudes fra , which were neglected in all the previous 
calculation.s made. 

The usability of the procedure is also shown by the results for ONC.£ 
with 14N and 15 N. The deviation between the separately calculated force 
constant expressions amounts only to circa 1% with the diagonal terms and 
up to 10% in the coupling constants. With an averaged force constant 
expression, the frequencies reproduced for 0 14NCX and 0 15 NC/ are: 

0 14NC,e: 1800.9 ; 604.6 ; 332.4 cm* 

0 15NC1: 1768.0 ; 589.7 ; 330.6 cm* 

The error is less than 1 per cent. 

Force constant expressions for molecules of the type YZX 3  are also 
quoted. Table 3 contains the geometric data and vibration frequencies used. 
Because of the surplus co-ordinates in the species A 1 , too few defining values 
are obtained to be able to specify the force constants for the linear co-
ordinates. In Table 4 the force constants for the syrn.metry co-ordinates 
are presented, while in Table 5 are reproduced only the valence-force 
constants calculated from inner co-ordinatesy together with comparative 
values from the literature  E18,2,0,22, Z4,251 . (ALI constants in mdyneM..). 

The valence-force constants for NSF and OPF 3  lie in the ranges 
which have previou.sly beon obtained by other methods of calculation. With 
FC,e0., for which no previous calculation was available, there is found an 
FC,e-force constant of the order of the value for CQF3 (3.93 melyne/A)  [2G]), 
while the C20-force constant equals the value in C40 7(9.10 m.dyneM.[20]). 
This agrees with the .value expected  from  the stan.dpoint of bond theory. 
Reasonable values were found throughout for the deformation and interaction 
magnitudes. 
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TABLE 

	

(MqF 	014Nci 	 015NCX 	CeBr 	NSF 

r 	(A) 	1.52 	 1.95 	 2.14 	1.646 ZX 
r

Y 	
1.13 	 1.14 	 1.15 	1.44 Z 

It 	XZY 	110 0 	 116' 	 117 0 	116°52 

v 1  cm 	
1844 	1800 	 1769 	1801 	1372 

V2 	 765.9 	604.7 	 589.7 	542 	640 

i 3 	 521 	332.4 	 330.6 	265 	366 

Lit. 	
[ 5] 	 q 	[1 q 	Ufi 	FE] 

TABLE 2 

0
1 

NC/ 	ONBr 	NSF ONF 	014Ncl 

f 	 14.833 	14.133 	 14.157 	14.157 	10.721 R. 
f
r 	

2.791 	2.246 	 2.227 	2.210 	2.884 

fa 	 0.751 	0.300 	 0.302 	0.204 	0.410 

frR 	 0.121 	0.067 	 0.060 	0.073 	0.008 

fita 	
0.143 	0.064 	 0.060 	0.052 	0.014 

f 	 0.278 	0.131 	 0.128 	0.115 	0.023 ra 

Al1 data in mdyne/X • 
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TABLE 3

NSF3 OPF3 FC,Q03

rZX(A) 1.55 1.53 1.45

r 1.42 1.45 1.66
Z Y

4XZX 9402^ 10Z'30 ^ 109 °27"

A1 vl 1515 1395 715

y 775 875 10612

v3
521 473 549

E v4 811 986 1314

y5 429 337 588

v6 342 485 408

Lit. [18]- r21] [2 2' 3

TAB LE 4

Force Constants

A1 E

NSF3 12.549 0.124 -0.1'72 4.257 -0.064 0.049
4.957 0.224 0.8410.009

1.402 0.296

OPF 11.380 0.305 -0.135 5.916 -0.045 0.1203

7.202 0.090 0.443 0.001

0.593 0.659

FC.Q03. 3.912-0.033 -0.438 9.800 -0.093 0.044

8.641 0.126 1.027 0.002

1.815 0.618
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TABLE 5 

Valence-Force  Constants 

fr (ZX) 	 Lit. 	f
R

(ZY) 	 Lit. 

NSF
3 	

4.49 	4.8 - 5.6 	12.55 	12.3 - 12.4 

OPF
3 	

6.35 	4.8 - 6.3 	11.38 	9.9 - 11.4 

FCÉ0
3 	

9.41 	 - 	 3.91 	• 	- 

TABLE 6 

Force Constants 

--e 

f 	 f 	f 	- 	f 	, 	f 	-f r 	 rr 	ra 	ra 	a 	CL CI, 

BF
3 	

. 	Lit. 	[2£1 	7.15-7.88 	0.47-0.84 	-0.25 to -0.64 	0.50-0.53 

0.T. pl 	7.148 	0.838 	-0.319 	0.528 

This work 	7.287 	0.768 	-0.328 	0.519 

BCÊ
3 	

Lit. 	 1.87-3.97 	0.33-1.01 	-0.29to+0.14 	0.23-0.38 

O.T. 	 3.293 	0.799 	0.030 	 0.274 

This work 	3.808 	0.442 	-0.205 	 0.227 

BBr
3 	

Lit. 	 2.74-3.43 	0.10-0.46 	-0.14 to-0.29 	0.18-0.22 

O.T. 	 2.951 	0.402 	-0.137 	0.212 

This work 	3.172 	0.247 	-0.232 	0.186 

BI
3 	

Lit. 	 2.054 	0.323 	-0.035 	0.151 

0.T. 	 1.877 	0.411 	0.021 	 0.177 

This work 	2.403 	0.147 	-.0.147 	0.128 
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SOLUTION OF DETERMINANTS WITH n 2 

As was shown previously, the inhomogen.eous system of equations (9) 
is soluble only for n ?-3, and this could be an incon.venient limitation of the 
method. However, it has been shown in practice that,in the case of n :11 2, 
solutions can be obtained liy an artifice. Either, two determinants of degree 
n 2 are combined, or one such is combined with a single equation., as 
shown in Figure 3. 

a
ll 

_ x 	0 	 0 

0 a22 	a
23 

x 

0 	 a
32 	

a
33

..X 

Figure 3. 

The resulting determinants of degree n 4 and 3 can be solved for the 
force constants 15y the method described. It is true that values are obtained 
for the term.s of the zero-blocks, but, in contrast with the true force con-
stants, they are sm.all enough to be disregarded (<10 -4 ). 

The boron halides BX3 are quoted as examples.of this kin.d of applica-
,;tion. With these molecules, the introduction of the 10B isotope data leads 
to no unique force constant expressions, because the isotope effect is too 
small [27]. Table 6 reproduces the force constants obtained by averaging 
the separate 10B and 1 1  B values. For comparison the literature values 28] 
are presented in condensed form, except that the most recent results [29 
receive separate mention. 

In each case the calculated force constants lie within the expected 
range and also in that of the other authors. On the other hand,the values 
of Orville-Thomas et al. [29] show marked differences. While by our 
calculations the interaction constants f ro,-fra , except for a small deviation 
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with BBr 3 , show a uniform shift, but, especially as required by Mills [9], 
are always negative, with Orville-Thomas marked differences occur, even 
changes in sign in the series. In our results, also, the bond degree calculat-
ed by the Siebert  [26] formulashows - after a large jump from the fluorine 
to the chlorine compound - a regular decrease, while the bond degrees 
arrived at from the Orville-Thomas force constants show a large jump from 
BF 3 to BCg 3 , then a small increase to BBr 3 , before, at B1 3 , an almost 
unitary bonding is reached at the lowest value (cf. Table 7). 

CONCLU-SION 

The procedure described in this work for the calculation of force 
constants takes into account all the coupling terms of the general valence-
force field, without additional data being necessary other than the normal 
vibrations and the molecular geometry. In our view this represents a 
significant advance over the previously much-used simplified potential 
functions, and extends the applicability of force-constant calculations. 

As well as the choice of a suitable molecular model and a meaningful 
assignment, both of which are indeed assumptions in the calculation of 
force constants, the choice of the first approximation, which is made here 
from the viewpoint of the characteristic vibration, is the only additional 
assumption. For weakly coupled systems, at least, this should be an 
acceptable approximation, but even a number of molecules with strong 
coupling have been successfully calculated by the method described. 

In what manner the interaction terms of the F-matrix are built up, is 
not ascertainable without further data, because of the complicated mathe-
matical relationships. Work on this point is, however, in progress. 
Investigations are also being carried out into how far the potentials obtained 
by our method agree with other force fields, especially with the general 
valence-force field (GVFF) produced with the aid of isotope- and rotation-
interaction data. The results to date indicate that the answer lies in the 
direction of a modified valence-force field (MVFF) developed from the GVFF. 

The complete argument and detailed proof of the so-called "Stepwise-
Coupling Procedure" (30) is to be found in reference 13. Other initial start-
ing solutions are employed in reference 30. In (31) there is given a com-
prehensive description, which includes the form suitable for computer 
programming, the working method, and numerous additional examples. The 
force constants of over 100 m.olecules and ions, calculated by the stepfflise-
coupling procedure and arran.ged according to type and symmetry group, are 
compiled (33) in Siebert's book (32). A procedure described in (34), the so-

called "Nearest-solution Procedure", permits very simple interpretation by 
a closely related mininum principle. 
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TABLE 7 

ORVILLE-THOMAS [29j 	T h i s 	.w o r k 

1 	 f
r 	

N 	 fr 	
,. 

f  U  	 

BF
3 	

5.06 	7.15 	1.29 	7.29 	 1.31 

BC i)3 	2.84 	3.29 	1.11 	3.81 	 1.24 

BBr
3 	

2.46 	2.95 	1.14 	3.17 	 1.21 

BI
3 	

1.93 	1.88 	0.98 	2.41 	 1.17 
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