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Chap ter 3 

ANALYSIS OF ACCURACY IN THE 
DETERMINATION OF THE GROUND-STRESS 

TENSOR BY MEANS OF BOREHOLE DEVICES 

by W. M. Gray and N. A. Toews 

The determination of the state of stress existing at a point in any 
solid body requires the determination of the six components of the 
stress tensor relative to a convenient set of axes. One general method of 
doing this in rock is to make strain or deformation measurements asso-
ciated with local relief of stress in a number of boreholes penetrating a 
limited volume in the vicinity of the point at which the stress is to 
be determined. The stress is assumed to be constant throughout this 
volume. 

Leeman 1  has described a number of the instruments that have been 
developed for making deformation or stra. in measurements in boreholes. 
Panek 2  has described the application of statistical methods to the de-
termination of the average components of ground stress from sets of 
measurements made in, boreholes by means of deformation meters of 
the type developed by the U.S. Bureau of Mines. 

In this paper attention is given initially to the strain cell developed 
for use on the flattened ends of boreholes by the Council for Scientific 
and Industrial Research (CSIR), South Africa. The equations required 
for evaluating the average components of ground stress from measure-
ments made by means of the CSIR strain cell are derived. These equa-
tions are similar in form to those applying to measurements made by 
the borehole deformation meter developed by the U.S. Bureau of Mines. 

The results of an investigation of the properties of the equations 
are described. These results are important in the practical use of both 
the instruments mentioned above and any instrument based on similar 
principles. 

W. M. Gray and N. A. Toews are in the Mining Research Centre; Dept. of Energy, 
Mines and Resources; Ottawa, Ont., Canada. 
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M11 = erni 

M22 = crm2 

 MaJ= um3  

M12 = Trn1M2 

M23 = TII12M3 

Mal = rm3m1 
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DERIVATION OF EQUATIONS FOR THE CSIR STRAIN CELL 

For ease of reference, borehole directions and strain-gage orientation 
will be specified according to the convention adopted by Panek. 2  Thus 
we assume a basic rectangular system of coordinates  g1 , g2 , g, equivalent 
to Panek's x, y, z, (Fig. 1). We also assume a second rectangular system 
hi , h2 , h, where h 2  is in the direction of a particular borehole and hi  lies 
in the g1  g2  plane. Quantities referred to the h-system do not appear 
directly in the final mathematical equations, but this system is im-
portant for the practical definition of borehole direction and gage 
orientations. 

The derivation of the relationship between the strain measured by a 
particular strain gage and the stress components referred -t,o the basic 
g-system of coordinates is simplified if a third coordinate system, m 1 , 
m2 , m,, is introduced. m 1  is in the direction of the strain gage and thus 
makes the angle 0 with 14. m2  is identical with h 2 . 

Let Mu  be the components of the ground-stress tensor referred to 
the m-system, i.e., 

The stress components 	at the center point on the end surface 
of the borehole must be linear combinations of the Mii. MI22, the normal 

Fig. 1—Coordinate systems. 
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component at the surface, and M' 12 and M'23  the shear components 
acting tangentially to the surface must all be zero. It can be shown (Ap-
pendix A), that M12, M23, M31 cannot contribute to M'il  and M133. 

Thus 

Leeman 1  reports laboratory work showing that approximately 

a = 1.5 
b = 0.0 

No laboratory determination of c was known to the authors when this 
work was done. 

The point at which the strain gage is applied to the end surface of 
the borehole is assumed to be so close to the center that the stress 
conditions are the same as at the center.* Thus the strain at the point 
of measurement is 

en = 	—1M'331 

where E and y are Young's modulus and Poisson's ratio for the rock, 
respectively. Since the mi -axis is the direction of the strain gage, e11  is 
the strain that is measured when the stress  is relieved by overcoring. 

Substituting from Eqs. 1 we get 

1 
e il  =—E [ (aMii + bl‘133 + c1\1 22 ) — v (bMii + aM33 + cM22) 

1 	 [3] 

[ (a— 
by)Mii + (b—av) M33 +C( 1- 0 1\1 221, 

or 
en  = 	+BM33 + CM22 	 [4] 

where 
A= (a—bv)/E 
B= (b—av)/E 
C= c (1—  y) /E.  

In the basic g-system of coordinates we shall let Gij  represent the 
components of the ground-stress tensor. (These are the components that 
are to be determined. If the direction cosines of ml , m2 and m3  in the 

*it is important that the requirements of this assumption should be fulfilled; 
otherwise an accurate treatment would require the introduction of additional 
factors. 

and 	 [1] 
M'33  = bMii  + aM33 + c1\122 

M'n = aM 11  + bM33 + cM22} 

Min  = + a1133+cM22 

[2] 

and 
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g-system are 1,1, 1., and 13i, respectively, the M,j are related to the Gti by
the equations

3 3

Mij -:E Ilir ljt Grt, i, ]=1, 2, 3
r=1 t=1

For example,

All I= 1112 G11+111.2 G22+1132 G33

+A1 112 G12+2112 113G23+2113 •11 G31•

[5]

Substituting from Eq 5 in Eq 4 and dropping the subscripts from ell,
we obtain,

3 3

e- :E I[Al lr 11t Grt+Bl3r l8t LTrt+ C12r 12t Grt]
r=1 t=1

or
3 3

e= :^ N44[Al,r 1,t+B13r 13t+ C12r 12t]Grt [6]
r=1 t=1

An equation of this type is associated with each measurement that
is made. The equations associated with a set of measurements may
thus be written,

3 3

e,= :^ :^ [Allr 11t+B13r 13t+C12r 12t1t Grt, ( i=1, . . . M) [7]
r=1 t=1

where M is the number of measurements.

PROPERTIES OF BASIC EQUATIONS

Eqs. 7 have been derived with reference to the CSIR Strain Cell.
The equations are similar in form, however, to those that are applicable
when the USBM Deformation Meter is used. The following discussion
therefore applies in general to the use of either type of instrument and
the measured values e, may represent either strains or deformations.

Number of Independent Equations

Eqs. 7 express the measured values e, as linear combinations of the
stress components G,j in the basic coordinate system. The coefficients of
the G,j depend only on instrumental constants, on the elastic constants
of the medium, and on the direction cosines of the measurement direc-
tions. (mj and of the borehole directions (m,). (The direction cosines
of the m3 directions can be calculated from those of the ml and m2
directions.)
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A solution of Eqs. 7 for the six stress components G I, is only possible 
if there are a minimum of six independent equations. Equations re-
sulting from a number of measurements using the same borehole direction 
and gage direction are not independent. They merely improve the results 
through the averaging of observations. If di fferent measurement direc-
tions are used in a single borehole only three independent equations can 
result. If more than three measurement directions are used, the equations 
are mutually dependent, but again they may serve to improve the results 
through averaging. 

Since each borehole can furnish three independent equations it would 
seem to be possible to determine the six stress components by the use 
of two boreholes. It turns out, however, that the structure of the 
equations is such that there is one relation between the six equations for 
any pair of boreholes. Consequently only five independent equations 
can be derived by the use of two boreholes. The foregoing assertion can 
be proved in general terms, as shown in Appendix B, but it is enlightening 
to consider a particular example, from which a clear appreciation of the 
existing relationships can be gained. 

Let us choose boreholes in the directions of the g, and g, axes and 
choose three measurement directions in each, as indicated below. The 
corresponding sets of direction cosines and the equations derived by 
using them in Eqs. 7 are as follows: 

Borehole (1): m, is parallel to g1 

121= 	1, 	0, 	0 

Measurement (1): m„ is parallel to g, 

111= , 0, 	1, 	0 
1 21.= 	1, 	0, 	0 
1 3 , ----- 	0, 	0, 	—1  

e, =CG,, 1-AG 22 +BG33  

Measurement (2): m, is inclined 45 0  to g, direction 

111= 	0, 	1/V2- , 	1/V2 
1 21 = 	1, 	0, 	0 
1 31 = 0, 	1/V2, —1/V2 

e2 --, CG11i-1(A+B)G22+FA+MG33+ (A-13)(123 

Measurement (3): m, is parallel to g:, 

Ili= 	0, 	0, 	1 
1 2,= 	1, 	0, 	0 
1, 1 = 	0, 	1, 	0 

e3=CG11i-BG22+A033 
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Borehole (2): m2  is parallel to g2  
1, 1 = 	0, 	1, 

Measurement (4): mi  is parallel to g1 

1, 	o, 
o, 	1, 

o, 	o, 
e4=AG11+CG22+BG33 

Measurement (5): m1  is inclined 45° to gi  direction 

l ii = 1/V2, 	0, 	1/V-2-  

121= 	0, 	1, 	0 

1 31 :---- —i/V, 	0, 	1/V• 

 e3 =1(A+B)Gn+CG22+-MA+B)G33+ (A—B)G31 

Measurement (6): m, is parallel to g3  
0, 	0, 	1 

121 .= 	0, 	1, 	0 
1 31 = —1, 	0, 	0 

e6 =BG11 +CG22 +AG33  

Collecting equations, we have, 

	

C G11+ 	A G22+ 	B G33 	 =ei 
C G11+1(A+B)G 22+-(A+B)G33+ (A—B)G23=e2 

	

C Gii + 	B G22+ 	A G33 	 =e3  

	

A Gii + 	C G22+ 	B G33 	 =e4  

	

i(A+B)Gii+ 	C G22+i(A+B)G33+(A—B)G31=e5 
B Gii + 	C G22+ 	A G33 	 =e6 

These are six equations in five of the stress components. Considered as 
six equations in all six components they have a zero determinant since 
the coefficient of G12 is zero throughout. A zero determinant indicates 
that a solution cannot be obtained for all six components, a fact that is 
obvious in this particular case since G 12  does not appear in the equations. 

The determinant is zero, however, even when the angle between the 
boreholes is not a right angle, as shown in Appendix B, and again a 
solution cannot be found. The fundamental reason for this in both cases 
is that all the measurement directions project into only two directions in 
the plane of the boreholes (the gi g., plane). The complete state of stress 
in a plane cannot be determined by measurements in two directions. At 
least one more measurement direction is needed and this can be obtained 

0 

111= 

1 21 = 

 131= 

0 
0 

1 
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only by the use of a third borehole when instruments of the types under 
discussion are used. 

Relationship between Parameters A, B, C 

Returning to the equations for e, to e6 , let us consider solving for 
the five stress components. The shear components G23 and G31 appear 
only in the second and the fifth equations, respectively, and can therefore 
be determined if the remaining equations can be solved. The remaining 
four equations contain only the three normal components G 11 , G,, and 
G 33 . We may thus solve any three of these equations for G 11 , G,, and 
G33 (since the respective determinants differ from zero). If we substi-
tute the resulting expressions in the fourth equation we eliminate the 
stress components from it and obtain a compatibility relation connecting 
the parameters A, B, C and the measured values. The result of this 
elimination is 

A — C e,— e4  
B —C e3 — 

as can easily be verified. 
The evaluation of the parameters A, B, C rests on the results of 

laboratory .experiments (including the determination of the elastic con-
stants of the rock) and of theory combined mith a knowledge of the 
direction cosines of the boreholes and the measurement directions. Thus 
a value for the left side of Eq. 8 is known independently of measure-
ment of the e's and the equation provides a means of checking that 
A, B, and C are consistent with the measured values. 

Eq. 8 has been established with reference to boreholes in the directions 
g, and g2 . Similar equations can be derived using pairs of boreholes 
in the directions g, and g 3 , or g, and g,. In each of these pairs of bore-
holes only five independent measurements can be made. 

In the three boreholes in the g 1 , g, and g, directions, taken together, 
only six independent measurements can be made. If seven, eight or 
nine mea.surements are made, involving a maximum of three different 
independent directions in each borehole, a relation equivalent to Eq. 8 
can be determined in addition to the stress components. When nine 
measurements are made there are two additional compatibility relations 
connecting the measurements, but these are independent of the param-
eters. Since they are also independent ,of the stress components they 
afford a means of checking the measurements for consistency. 

In practice it may not be convenient to use an equation like Eq. 8 
directly to establish the relationship between A, B and C. When the 
number of measurements is large and the stress components are deter- 

[8] 
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mined by the method of least squares the relation expressed by Eq. 8 
can be found in an indirect way that will be described below. 

SOLUTIONS OF THE BASIC EQUATIONS BY THE 
METHOD OF LEAST SQUARES 

Panek 2  has described the application of the method of least squares 
to the solution of a set of equations such as Eq. 7 for the components 
of the stress tensor. The basic relations of the method will be summarized 
here for completeness, with slight changes in notation. A new treatment 
of the solution will be given and its results will be discussed. 

Eq, 7 is first rewritten in the following form which includes a residual 
error term, 

6 

et = 	Kti  bi -Ert  (i=1, . . . M) 

52 

[9] 

where 

K11—  [Al31 2  +B131 2  Cl212 

 K12 = [A142 2  +B1322  + C 1 22 2 ] 1, 

K13=  [A1132  +B133 2  + C1 23 2 } II 

1Ci4 = 2 [A1 11 1 12  +B1 31 1 3 2 + C 1 21 1 2211) 

= 2 [A112113 +B1 32 1 33  + C122123] b 

K 1 6 = 2 [A113111 + B 133131 4- C1 23121 ]1f 

bt  = Gil 
132 = G22 

b3 = G33 

b4 = G12 

b5  = G23 

bo = G34 

The least squares solution of this equation consists in the set of b i  
that minimizes the sum of the squares of the residual errors, 

[10] 
1=1 

The normal equations for the least squares solution may be written 
6 

ati bi =gt  (t= 1, . . . M) 	 [11] 
j=1 

where 

au = Kit  Ku 
1=1 

gt = 	Kit  ei  
1.1 
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The solution for the bj is

bjCjkgk (j=1, . . . 6)
k=1

[12]

where cjk are the components of the matrix [C],* the inverse of the
matrix [A] * whose components are atj.

Q', the minimum value of Q that is associated with the solution, is
called the sum of squares about regression. Division by (M - 6), the
"degrees of freedom" of Q, gives the variance about regression

V=Q'/(M-6). [13]

If the coefficients K,j in Eq. 9 are accurately known, the value of
V is determined solely by the errors involved in making the measure-
ments ei and the standard error of measurement is estimated by the
standard deviation about regression, s, given by

s=V1. [14]

In practice the K,j, as applying to the actual conditions under which
a given set of measurements is made, may not be accurately known.
One reason for such inaccuracy is that the values of these coefficients
depend on the elastic constants of the rock in which the measurements
are made. Unless accurate values of the average elastic constants apply-
ing to the rock in situ can be established, the functional relationship that
is assumed to relate the strain or deformation measurements to the stress
components will be incorrect.

A more complex reason for inaccuracy is that the rock may not be
isotropic as assumed, in developing the basic equations. The conse-
quences of this possibility will not be discussed in detail and in what
follows it will be assumed that the form of the basic equations is correct
but that there may be inaccuracies in the coefficients.

Effect of Inaccuracies in the Kij

If the functional relationship that is assumed to relate the measured
values to the stress components is incorrect the minimum sum of squares,
Q', will tend to be larger than it would be if due to error in the e, only.
The variance about regression V, given by Eq. 13, is then an incorrect
estimate of the basic error variance and an independent estimate is
required. It is possible to make such an estimate if replicate measure-
ments having the same borehole directions and the same measurement
directions are made. The variability among such measurements is due

* Brackets are used to distinguish these matrices from the previously defined C
and A.
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solely to experimental error (including any error due to the variability 
of the rock properties from point to point). 

Suppose that one such set of measurements is represent,ed by 
e11  e12  - - - ei„, where n is the number in the set. (n need not be the same 
for all sets and there may be a few unreplicated measurements.) From 
Eq. 9 the corresponding residual errors are given by 

rit=eit—E1 (t=1, . . . n), 	 [15] 
6 

where Et = Kti  bi  is constant because all the measurements are asso-
pi 

ciated with the same borehole and measurement directions. Introducing 
ét , the mean value of en  - - - eh, defined by 

(eit—éi) =0, 
t.=1 

and summing the squares of the residual errors we have, 

qi = 
t=1 

= 	(eit — Ei) 2  
t= 1 

= 	[ (eit — él) + (et  — Et ) ] 2  
t=1 

= 	(ett—éi) 2 +2 	(ett —êt ) (êt —Et)+ 	(êt —Et ) 2  
t=1 	 t=1 	 t=1 

= 	(eit—êt) 2 +n(êt—E1) 2 . 	 [17] 
t=1 

Summing (i t  over all measurements (grouped in m sets) we obtain 

Q0 = qi  

1=1 
n 

= 	(eit — êt) 2  + 	n (éi  — Ei ) 2 	 [18] 

The first component of Q' is the sum of the squares of the deviations 
of the individual measurements from the means of the replicate sets 
to which they belong and may be called "the sum of squares within 
sets." The second component of Q' is the sum of the squares of the de-
viations of the set means from the regression value, each square being 

54 

[16] 
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weighted according to the number of measurements in the set. The 
second component may be called "the sum of the squares of means 
about regression." 

Eq. 18 is a type well kno- wn in the analysis of variance. 3  The first 
component of Q' has (n— 1) degrees of freedom for each set of n repli-
cated measurements. The total of freedom for all sets is (M —m). 

The degrees of freedom of Q' are (M  —6).  Thus the degrees of freedom 
of the second component of Q' are (M — 6) — (M —m) = (m— 6) . 

The variance within sets is then given by 

V w = 	(eit—éi)V(M—m) 	 [19] 
1.1 

and the variance of means about regression is given by 

V.= 	n(èi —E 1 ) 2/(m— 6). 	 [20] 
1=1 

Unreplicated measurements (n=1) contribute only to V. since the 
corresponding terms in V. are zero. 

V, is the basic estimate of the variance due to experimental error. 
If V. can be shown by a variance ratio test 3  not to differ significantly 
from V, it can be concluded that V. is also caused by experimental error 
and V, from Eq. 13, can be used as the estimate of the variance due to 
experimental error. Then s, from Eq. 14, is the estimate of the standard 
error of measurement. 

If on the other hand V. is significantly greater than V„ the standard 
error of measurement must be estimated by 

f 
s=V„I. 	 [21] 

It must folloi,v also that the mathematical formulation is incorrect 
in some respect. For this reason the residual sum of squares Q' is greater 
than it would be if the correct formulation were known and used. 

Q' is associated with the given values of A, B and C. If the least 
squares solution is carried out again with a different value of one of 
the parameters, say C, keeping A and B unaltered, a different value of 
Q' will in general be found. By solving repeatedly with different values 
of C a minimum value of Q" may be found. Let the corresponding value 
of C be C". 

A  —C"  
The quantity 	corresponds to ,  the right side of Eq. 8, i.e. we 

B — C" 	 •, 

would find 

A — C" —  — e4 
B — C" e 3 — e6 
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if the measurements el, e3j e4 and ee were made ( neglecting experimental
error and provided always that the rock is isotropic and ideally elastic).

Q' can be minimized by varying C under the same conditions under
which Eq. 8 can be established. This means that, in general, to mini-

mize Q' it is necessary to use at least seven different measurement di-
rections, properly distributed in at least three boreholes.

Q' can also be minimized by varying A or B. But no absolute mini-
mum occurs for a unique set of A, B and C values. Suppose that X is

the value of B- C for some set that minimizes Q'. For example, let

A- C" =X. It was discovered empirically that any set of values, A',
C"

B' and C' that satisfies the equation

A'-C'
[ 22 1

B'-C'
X

gives approximately the same residual sum of squares Q".

Eq. 22 can be written

(X)B'/A'+ ( 1-X)C'/A'-1. [23]

This is a linear relation between B'/A' and C'/A'. It is provided by the
field data and may be used in conjunction with other data to establish the
values of A, B and C that are most consistent with all the available
information.

It should be noted that if two orthogonal boreholes are used, six
different measurement directions can in general be used to determine
five stress components and also minimize Q'. If, however, the boreholes
are in the gl and g2 directions ( for example) and if G11 happens to
equal G22, it will be impossible to minimize Q by varying C. It is shown

in Appendix B that Â-B is indeterminate if G11 equals G22. If three

orthogonal boreholes ( in the g,, gz, g3 directions) are used, a minimum
can be found for Q even if G„ equals Gz2j so long as G33 does not
equal G22 also.

It can be inferred from the results of Appendix B that Q' can be
A- C"minimized and B C„ can be found even if the boreholes are not orthog-

onal so long as certain special relationships ( of relatively rare occur-
rence) do not exist between G11j G2, and G33. Computations carried out on
field data have shown that the inference is justified.
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Orientation of Boreholes and Measurement Directions 

[24] 

where the cik  are the components of the matrix [C] defined on page 53. 
The bi  represent the stress components as indicated on page 52. 

The components cik  depend only on the parameters A, B and C, on the 
number of measurement directions and on the geometrical relationships 
between the borehole and measurement directions and the coordinate axes. 
It is therefore possible to compute the factors multiplying s in Eq. 24 for 
any proposed measurement system, quite independently of the measure-
ments. This has been done by means of an electronic computer for a 
number of hypothetical systems and the results are presented here as a 
general guide to the choice of a system to suit particular circumstances. 

The various syst,ems are illustrated in Fig. 2 and the corresponding 
values of the standard-error factors are tabulated in Table I. The particu-
lar values of A, B and C used in the calculations are shown also in Table I. 
They are typical values for the CSIR Stràin Cell (when the measured 
strains are expressed in units of 10-6  and E is of order 10 x 106  psi). 

System (a) was designed to be highly symmetrical. It uses three orthog-
onal boreholes oriented in the direction of the coordinate axes (g1,  g2 , g3) 
which are disposed  as  in Fig. 1. There are four measurement directions in 
each borehole, two parallel to the other coordinate axes and two bisecting 
the angles between the axes (oblique directions). It is seen that G H , G2 2  
and G33  are determined with equal precision since the corresponding 
factors are equal. The same applies to G,,, Gn, and G 31 . The difference 
between the factors relating to the normal and shear stresses reflects the 
fact that the two types of stresses enter differently into the equations. 
The actual difference is dependent on A, B and C (as shown later in 
Table II) . 

System (b) differs from (a) in that one oblique measurement direction 
is dropped from each borehole. The resulting factors indicate that the 
shear components are now determined, less precisely than the normal 
components. In general, the precision with which a component, G ib  is 
determined is closely linked to the number of measurements made in the 
direction bisecting the angle (gi , gi ) and in the orthogonal direction. 

57 

When the standard error of measurement, s, is known, the standard 
errors of the stress components are given 2  by, 

sb 1 =s(c11) 1 
 sb, = s(c2 2)i 

sbn=s(c66) 4  sbn =s(c66) 4  



(e) 

(i) 

(a) 

(f) 

(b) 

(g) 

(c) (d) 

(1) 

01  
OD 

ST
A

T
U

S  
O

F
 P

R
A

C
T

IC
A

L
 R

O
C
K

 M
E

C
H

A
N

IC
S 

Fig. 2—Systems of  boreho  les and measurement directions. 
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Table I. Standard-Error Factors for Systems of Fig. 2 

Notes: (1) Calculated for: A = 0.13346, B = - 0.02389, C  =-0.01647.  
(2) When A, B and C are all multiplied  by  the same constant, f, the 

standard-error factors are divided by f. 

The results for System (c) show the effects of adding to System (b) 
one oblique measurement in the direction bisecting the angle (g,, - g 1 ), 
while dropping one measurement in the g, direction. The main effects are 
an increase in the factor for the normal stress component Ch i  (indicating 
decreased precision) and a decrease in the factor for the shear component 
G„. The factors corresponding to other stress components are also af-
fected, but to a lesser degree. 

System (d) consists of three boreholes in the g, g, plane, each with four 
symmetrically distributed measurement directions. G33, G 23  and G 31  are 
now determined more precisely than by Syistem (a) but G 11 , G.», and G12 

are determined less precisely. 
Systems (e) and (f) each include one oblique borehole. All boreholes 

include four symmetrically disposed measurement directions. The factors 
tend to lie between those for Systems (a) and (d) but G„ is rather poorly 
determined by System (e) because the direction of the oblique borehole 
approaches g 2 . G„ is the component that cannot be determined at all 
when two boreholes in the g, and g, directions only are used. 

Systems (g), (h), (i), (j) and (k) are modifications of (d) intended 
to have factors closer to those of System (a). The total number of mea-
surement directions is twelve in all cases, but certain directions used in 
System (d) are omitted while others are replicated as indicated by the 
numbers on the diagrams. The best arrangement is that of System (k) but 
the factors are not as uniform as in System (a). 

System (I) is similar t,o System (a) except that the measurement, in the 
g, borehole, that bisects the angle (g 1 , g,) is omitted and the measurement 
at right angles to it is duplicated. It might well be expected that the 
arrangement of System (1) should be equivalent to that of System (a) 
since only three measurement directions in each borehole can be inde-
pendent. The factors given in Table I, however, reveal the curious result 

Stress 
Component 	(a) 	(b) (c) (d) (e) 	(f) (g) (h) 	(i) 	(j) (k) 	(1) 

4.61 5.77 6.64 6.60 4.69 5.90 6.61 6.61 6.60 6.61 5.07 5.10 
4.61 5.77 5.12 6.60 6.16 5.90 6.61 6.61 6.60 6.61 5.07 5.10 
4.61 5.77 5.74 3.85 4.44 4.45 4.33 4.50 4.01 4.61 4.61 4.61 
4.49 7.07 4.49 6.77 7.78 6.43 5.80 5.51 5.59 5.27 5.64 5.31 
4.49 7.07 7.01 3.89 3.68 3.82 3.89 4.14 4.49 4.49 4.49 4.49 
4.49 7.07 7.21 3.89 4.49 3.82 3.89 4.14 4.49 4.49 4.49 4.49 

G11 (b1) 
G22 (b2) 
G33 ( 33) 
GI2 (b4) 
G23 (b5) 
G31 ( 1D6 ) 



Table II. Standard-Error Factors: Dependence on Parameters B and C with A-0.1

(1) Borehole System (a) (Fig. 2)

B 0.00 -0.01 - 0.02 -0.03 0.00 - 0.01 -0.02 - 0.03 0.00 -0.01 - 0.02 -0.03
C 0.00 0.00 0.00 0.00 - 0.01 - 0.01 - 0.01 -0.01 - 0.02 - 0.02 - 0.02 - 0.02

5.92 5.97 6.07 6.25 5.74 5.92 6.17 6.56 5.68 6.00 6.46 7.15

12

GZS^ 7.07 6.43 5.89 5.44 7.07 6.43 5.89 5.44 7.07 6.43 5.89 5.44
G,, 1

(2) Borehole System (k) (Fig. 2)

G11 6.44 6.44 6.55 6.78 6.51 6.54 6.74 7.14 6.80 6.91 7.24 7.90
G22

G33 5.98 5.93 6.05 6.35 5.86 5.93 6.19 6.69 5.79 6.00 6.47 7.30
G12 8.45 8.45 8.45 8.45 7.68 7.68 7.68 7.68 7.04 7.04 7.04 7.04

G23 7.07 6.43 5.89 5.44 7.07 6.43 5.89 5.44 7.07 6.43 5.89 5.44
Gsi

M
0

Note: When A, B and C are all multiplied by the same constant, f, the standard- error factors are divided by f.
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that the symmetrical arrangement of System (a) is superior to that of 
System (1). The reason for this will be discussed below. 

In System (k) the measurement directions are arranged similarly to 
those in System (1) ; it is impossible to arrange them similarly to those in 
System (a). Consequently the standard-error factors for Systems (k) 
and (1) are similar, differing from those of System (a) for similar rea-
sons. The difference between the factors for Systems (k) and (1), caused 
by the different borehole arrangements, are dependent on A, B and C. If 
B and C were both zero the differences would be zero. 

The dependence of the standard-error factors on A, B and C is illus-
trated in Table II where factors are given for borehole Systems (a) and 
(k). The computations were carried out with A equal to 0.1. B ranges 
from 0 to —0.03 and C, from 0 to —0.02. To use the table for another 
value of A, A' say, the tabulated values of A, B and C must all be multi-
plied by the ratio A'/A and the standard-error factors must be divided 
by A'/A. 

The results summarized in Table I have shown that three orthogonal 
boreholes provide the best configuration of three boreholes for measuring 
all six stress components with uniform precision. It requires four measure-
ment directions in each borehole (System (a) ) to achieve uniformity when 
the angle between these directions is 45 degrees. When the measurement 
directions are inclined to each other at 60 degrees and are disposed simi-
larly in all boreholes three directions in each borehole give results equiva-
lent to those for System (a). The standard-error factors tabulated for 
System (a) are simply multiplied by (4/3)a. Thus the two arrangements 
are equally efficient since, in general, when the total number of measure-
ments is multipliqd by a number, f, (by making f measurements in each 
measurement direction of a given system) the standard-error factors are 
multiplied by (1/0 1 . By this criterion System (b) is less efficient than 
the above arrangements. 

It remains to consider the result of using an orthogonal system of three 
boreholes all of which are inclined to the axes of coordinates. No simple 
relationships are to be expected but it can be shown by means of the theory 
for the combination of variances 3  that the standard-error factors should 
not differ greatly from those for System (a) if the measurement directions 
have the same relative orientations as in System (a). 

To verify this point the standard-error factors were computed for an 
oblique system (0) of boreholes (b„ 1.), ) derived from System (a) as 
follows: The system is first imagined to be situated so that b i , b, and 13 3  
coincide with g„ g, and g3 ,  respectively, as for System (a). Then the bore-
hole axes are given a rigid rotation of 45 degrees about g3 , followed by a 
rotation of 30 degrees about g,. The measurement directions of System (a) 
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are also rotated rigidly with the borehole axes. The standard-error factors
for Systems (0) and (a) are compared in Table III.

It will be seen that, for the same A, B and C, the average value of the
factors is slightly less for System (a) than for System (0), and that the
values are more uniform. Thus the stress components could be deter-
mined with a little more precision, and with more uniform precision, by
means of System (a) .

DISCUSSION AND CONCLUSIONS

The ideas put forward in this paper were developed in conjunction with
computations on a limited amount of field data and on some artificial
data. The least squares fits and the computation of standard-error factors
were carried out on a CDC 3100 computer by means of programs based
on the Gram-Schmidt ortho-normalization procedure.4 A detailed account

Table III. Standard-Error Factors for Systems of Three Orthogonal
Boreholes (Typical Values of A, B, C)

System (a) System (0)
Stress Parallel to Coordinate Oblique to Coordinate

Component Axes Axes

Gll

G22

G33

Gi2

G23

G31

1.61 1.91
1.61 1.91
1.61 1.86
1.41 1.10
1.41 1.18
1.41 1.32

Average
Factor 1.51 1.56

-^-
A-0.40,B--0.10, C--0.05

Direction Cosines of Boreholes

System (a) :

bl = gl: 1, 0, 0

b2 - 92: 0, 1, 0

b3 - g3: 0, 0, 1
System (0) :

bl: cos 45°, cos 45°. cos 30°, cos 45°. cos 60°
b2: -cos 45°, cos 45°. cos 30°, cos 45°. cos 60°
hs: 0, -cos 60°, cos 30°
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of the work on particular sets of data is outside the scope of this paper 
and it will be reported elsewhere, but the general conclusions that follow 
from the theoretical and the numerical work will be discussed below. 

Number of Boreholes Required 

It has been shown theoretically that a solution for the complete stress 
tensor cannot be obtained from measurements in only two boreholes. 
Attempts to solve two sets of field data from pairs of boreholes inclined at 
less than 90 degrees to each other led to completely unrealistic results. The 
associated standard-error factors were in general so large that they indi-
cated errors that would make any result meaningless. 

In each of the foregoing cases, when the measurements from the two 
boreholes were combined with measurements from a third borehole an 
excellent solution was obtained. This proved that the data per se were not 
faulty. 

It was also verified by using artificial and field data from pairs of 
orthogonal boreholes that it is possible to solve for five stress components 
and to find Q', the minimum sum of squares of the residual errors, if the 
boreholes are parallel to two of the axes of coordinates. In one case Q 
changed very little as C was changed so that a value of C associated with 
minimum Q could not be determined. The full solution for the stress tensor 
showed that the normal stresses in the directions of the boreholes were 
almost equal. Thus the condition B2 of Appendix B was not properly 
satisfied and the indeterminacy of C was explained. 

Choice of Borehole Directions 

It has been shown that three orthogonal boreholes provide the best con-
figuration of three boreholes for measuring all six stress components with 
uniform precision. (System (a) of Fig. 2). 

It is possible, however, to obtain good results by the use of three bore-
holes in one plane. In System (k) (Fig. 2) pairs of nearest boreholes are 
inclined at 45 degrees to each other. A smaller angle should not be used 
if this can be avoided. Work on the combination of measurement direc-
tions, on the other hand, suggests that an angle of 60 degrees between 
nearest boreholes may be optimum (in the coplanar case only). This L 
possibility has not yet been investigated. 

In all cases the relative orientation of the boreholes is more important 
than their orientation with respect to the coordinate axes in determining 
the precision of the computed stress components. 

63 
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Choice of Measurement Directions 

When three orthogonal boreholes are used and when 45 degrees is 
chosen as the angle between nearest measurement directions, four measure-
ment directions per borehole are required for the greatest and the most 
uniform precision in the determination of all the stress components. 
Equivalent results are given by three measurement directions per bore-
hole if the angle between nearest directions is 60 degrees. The standard-
error factors for the two cases differ only by a multiplier determined by 
the relative number of measurements. Ideally, then, the measurements 
made for each borehole direction should be based on sets of four different 
directions if the angle between nearest measurement directions is 45 de-
grees, or on sets of three different directions if the latter angle is 60 degrees. 

When three coplanar boreholes directed as in System (k), Fig. 2, are 
used, the measurement directions shown for this system provide optimum 
uniformity of precision in the determination of the stress components. 
As mentioned in the previous section, it is possible that an equally good 
system can be based on coplanar boreholes inclined at 60 degrees to each 
other. The best measurement directions for such a system remain to be 
investigated. 

In the above discussion we have taken account only of the variances 
of the stress components, i.e., the diagonal components, c ii  — — — c 68 , of 
the variance-covariance matrix [C]. In general, the off-diagonal co-
variance terms, cik , are not zero. They must be taken into consideration 
when the variance of any function involving more than one stress com-
ponent is calculated. 3  

System (a) of Fig. 2 (and the similar system employing three measure-
ment directions inclined at 60 degrees, per borehole) is more efficient than 
the other systems because all of the corresponding covariances are zero 
except the three between the normal stress components. Reduction of 
these three covariances to zero requires that the four measuring directions 
in each borehole be reoriented to occupy directions at approximately 
-± 10 degrees to the oblique (45 degree) directions of System (a). The 
exact angle depends on the values of A, B and C and it is perhaps imprac-
tical to fulfill the requirements for all covariances to be zero. 

Significance of Relationship Between Parameters A, B, C 

The parameters A, B and C, introduced in Eq. 4, are characteristic of 
a given instrument and are dependent on the elastic properties of the 
rock in which the instrument is used. Some preliminary ideas on the 

A — C  significance of the ability to evaluate the function X= 
B —C 
	that occurs 

in Eq. 8, from field data, are discussed below. 



C=f2 
dv 
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USBM Deformation Meter 

In the case of the USBM Deformation Meter the parameters given by 
theory are as follows: 

d(3-2y2 )  A=f1 (0=0).= 

d(1-2v2 )  B.f3 (0=0)= [25] 

where f„ f 2  and f2  are functions given by Panek 2 , d is the diameter of 
the borehole, E is Young's modulus and y is Poisson's ratio. 

A C We can therefore evaluate the function
— 

  
	
with the result, 

	

A —C 	3-2v 
• 	 [26] 

	

X.= 
 B—C 	1-2v 

It is noteworthy that X is a function of Poisson's ratio only. Values of X 
calculated for a range of values of y are shown in Table IV. 

As an illustrative example Panek 2  has applied the method of least 
squares to a set of field measurements. The value of y is given as À. It 
follows that the corresponding value of X is.— 7.0. 

The parameters A, B and C calculated from Panek's data 2  are: 

A= 0.453 x 10' 

B — 0.127 x 10' 

C = — 0.054 x 10' 

The authors first verified Panek's least squares solution and then, by 
letting C vary, they found the solution giving the minimum sum of 
squares about regression, Q". Q" is 30  pet.  lower than the original Q' and 

Table IV. Values of X calculated for range of values of v. 

X 

	

0 	 —3.0 

	

0.1 	 — 3.5 

	

0.2 	 — 4.3 

	

0.3 	 — 6.0 

	

0.4 	 —11.0 

	

0.5 	 — 00 
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occurs for C= C"= - 0.172 x 10-6. The corresponding value of X is

A-C 0.453+0.172
B -C -0.127+0.172

0.625
0.045

Substituted in Eq. 26 this leads to

v=0.567

[27]

This value of v is outside the range allowed in the theory of elasticity.
It is instructive, however, to calculate the set of parameters, Ao, Bo, Co,
that is obtained by substituting v=0.567 in Eqs. 25. The result is,

Ao = 0.390 x 10-°

Bo = - 0.0587 x 10-6

Co = - 0.0924 x 10-11

Of all the sets of parameters that satisfy Eq. 27, Ao, Bo, Co are the
only ones that also satisfy Eqs. 25. They therefore supply the only solu-
tion compatible with the measurement data that is also consistent with
Eqs. 25.

The stress components associated with Ao, B,,, Co are shown in Table V,
where they are compared with the components associated with the original
parameters, A, B, C.

It is important to notice that in the new solution seven quantities have
been determined from the measurements, v and the six stress components.
Thus the statistical theory that applies when v is accurately known in
advance does not apply and it is not possible without further work to
quote standard errors for the new solution.

Table V. Comparison of Solutions for Stress Components *

New Solution

V
A
B
C
Gll

Gyy

Ggg

G12

G23

G31

0.567
0.390 x 10-6

- 0.0587 x 10-6
- 0.0924 x 10-6

9800 psi
5590 psi
5570 psi

840 psi
-100psi
1910 psi

Original Solution 2

0.333 (assumed)
0.4529 x 10-e

-0.1269 x 10-11
- 0.0544 x 10-e

8570 psi
4630 psi
4830 psi

650 psi
- 80 psi
1480 psi

* Compressive stresses are taken as positive.
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The problem is a non-linear one. The correct solution for y and the 
stress components has been found in a step-by-step manner but the 
standard errors can be found only by a unified solution. 'Work is con-
tinuing on a unified (non-linear) solution. 

The above results are presented merely as an illustration of the type 
of information that can be sought, by means of an extended application 
of the method of least squares, on the basis of the special properties of 
Eq. 7. The full significance of the new results with respect to the particular 
case discussed cannot be judged without a careful study of other relevant 
data. At time of writing, however, these results are believed to be sig-
nificant to the extent that a value of Poisson's ratio in the neighborhood 
of j,  rather than is indicated by the measurements. Certainly this is 
the case if anisotropy of the rock in which the mea.surements were made 
can be ruled out and if the discrepancy cannot be assigned to some instru-
mental peculiarity not included in the theory. 

Whatever the case may be, it has been demonstrated that a useful 
check can be placed on the field measurements. Since Poisson's ratio 
in situ is difficult to determine, Eq. 26 should prove to be of considerable 
value in the analysis of field measurements. 

CSIR Strain Cell 

In the case of the CSIR Strain Cell we must go back to the definition 
of A, B and C following Eq. 4 in order to ev.aluate X. We find 

A —C  (a—bv)—c(1—v) X=
B—C (b—av)—c(1—v) 

	

(a—c)—(b—c)v 	 [28] 
(b—c) — (a—c)v 

A set of measurements made by means of the CSIR Strain Cell has 
been treated by the authors. When it is assumed that a=1.53 and b=0 
in accordance with the values given by Leeman it is found that 
c= —0.105 leads to a minimum sum of squares about regression. The 
corresponding value of X is —19.6 (since v=0.115). 

The following relation between the parameters, applying to the actual 
conditions under which the measurements were made, is therefore avail-
able for comparison with laboratory determination of a, b and c: 

(a—c)—(b—c)v' 

	

__ 	19.6 [29] 
(b—c) — (a—c)v 

The relation is valid if the rock is isotropic and elastic and if the Strain 
Cell functioned as intended while the measurements were being made. 
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AUTHORS' NOTE 

/t is appropriate to include the following note to complete the 
discussion of the non-linear statistical problem introduced in this 
paper. It is of considerable interest that meaningful solutions to the 
non-linear problem can be found: 

Unified solutions of the respective non-linear statistical problems 
have been carried out for the USBM Deformation Meter (to det,er-
mine V and the stress components) and for the CSIR Strain Cell 
(to determine C and the stress components, given A and B). In 
both cases the non-linear problem can be closely approximated by 
a linear problem. Q is accurately expressible as a quadratic, in the 
95-pet confidence region surrounding its minimum, and thus the 
computed statistics can be interpreted in the normal way.5  

When standard errors are included (in brackets) the "new solu-
tion" to the example relating to the USBM Deformation Meter is 

	

0.567 	(0.057) 
G11 	9800 	(500) 
G22 	 5590 	(460) 
G33 	 5570 	(320) 
G12 	840 	(480) 
G23 	 - 100 	(240) 
G31 	 1910 	(280) 
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APPENDIX A

Surface Stress at Center of End Surface of Borehole

The components of the stress acting in the rock in which the borehole
is located are represented by Mii, referred to axes ml, m2j m3 where mZ
is the direction of the borehole axis. The end of the borehole is assumed
to be plane and normal to the axis. The stress components at the center
of the end surface are represented by M'ii. M'22, M'12 and M'23 must equal
zero at the free surface.

It is required to show that M'11 and M'33 depend only on Ml1j M:2 and
M33. (A knowledge of M'13 is not required as it does not affect the reading
of a strain gage oriented in the ml direction, when stress is relieved.)

As indicated in Fig. A-1, the shear stress M1.. can be replaced by the
normal stresses P and Q acting in directions inclined 45 degrees to the
borehole axis, where P=M12 and K= -M12.

Suppose that P causes a stress x A112 in the ml direction at C, the center
point on the end surface of the borehole. By symmetry Q must cause a
stress -x M12 in the ml direction at C. The effects of P and Q cancel
each other and thus the shear component Al,, contributes nothing to
M'„ at C.

Similarly, M1Y cannot contribute to M'33. The same procedure can also
be used to show that M23 and M31 cannot contribute to M'11 and M'33.

It should be noted that the symmetry argument holds only for the
center point C. Thus the strain gage must be applied within an area
surrounding C in which the stress conditions are the same as at C, within
experimental error.

APPENDIX B

General Proof that Only Five Independent Measurements
Can be Made in Two Boreholes

Choose boreholes B1 and Bz in the plane gl g2 so that B, makes the
angle a and B2 the angle 7r/2-a with gl (see Fig. B-1). Choose measure-
ment direction 1 to 3 in B1 and 4 to 6 in B^ so that 1 and 4 lie in the
gl g2 plane, 3 and 6 are normal to the plane and 2 and 5 are inclined at
45 degrees to it. The special choice of borehole directions does not limit
the validity of the proof as the final result is not affected by a transforma-
tion to a new system of reference. The chôice of measurement directions is
also sufficiently general since, in each borehole, the measurements chosen
can be derived from measurements in any three independent directions.

Consider first borehole B1. It has direction cosines 121=cos a, sin a, 0.
The sets of direction cosines associated with the chosen measurement

#
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Fig. A-1—Boreholes in shear-stress field. Fig. B-1—System of two non-orthogonal 
boreholes. 

directions, and the equations derived from them by substitution in Eqs. 7 
are as follows: 

Measurement (1): 

hi = —sin a, COS a, 	0 

121= COS a, sin a, 	0 

1 31 = 	0, 	0, 	—1 

e1 =  (A sin2  a+C cos2  a) Gn  + (A cos2  a ± C sin2  a) G22 

+BC433  —2 (A — C) sin a COS a Gi2. 

Measurement (2): 

hi = —sin a/V-i, cos ahri, 1/Vi 
1 21 = cos a, 	sin a, 

1 31 = —sin a/V-Œ, COS a/\/, —1/Vi 
e2 = [i(A+B)sin2  a+C cos2  cell+ [i(A+B cos 2  a+C sin2  a] 

-1- i (A +B)  G33 —  (A +B —2C) sin a cos a G12 

+ (A —B) cos a G23 — (A —B) sin a Gal• 

Measurement (3): 

hi  = 	0, 	0, 1 
1 21 = cos a, sin a, 

1 31= —sin a, COS a, 

e3 =  (B sin2  a + C COS 2  a) G11 + (B cos2  a+ C sin2  a) G22 

+AG33 —2 (B — C) sin a COS a G12. 

G22 
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The equations for borehole B2 may be got similarly, or by substi-
tuting (7r/2—a) for a in the equations for borehole B i . The results are: 

- Measurement (4): 

e4 = (A cos2  a+ C  5 in2  a)  G11+  (A  5in2  a +C cos2  a) G22 

+BG-33  —2 (A —C) sin a COS a G12. 

Measurement (5): 

e5 = [(A +B) cos2  a +C 5in2  al  G11+  [4 (A +B) sin 2  a +C cos2  a] G22 

(A+B) G3 3 — (A+B —2C) sin a COS a G12 

+ (A —B) sin a G23 (A —B) cos a G31. 

Measurement (6): 

e6 = (B cos 2  a + C  5in2  a) Gn (B  5in2  a + C cos 2  a) G22 + AG33 

—2 (B — C) sin a COS a GI2. 

It will be noted that the components G23 and G31 aPpear only in the 
second and fifth equations above. The remaining four equations contain 
four unknowns and it is sufficient to prove that these four equations are 
not independent, to prove that all six equations are not independent. 

The determinant of the four equations is - 

A s1n2  a +C cos2  a, A cos 2  a + C sin2  a, B,-2  (A — C) sin a cos a 

B s1n2  a + C COS2  a, B cos 2  a + C sin2  a, A, —2 (B —C) sin a COS a 

A cos2  a +4C 5in2  a, A sin2  a + C COS2  a, B, —2 (A — C) sin a COS a 

B cos2  a + C sin2  a, B  5in2  a +C COS 2  a, A,— 2 (B —C) sin a cos a 

= (A — C) (sin2  a — COS2  a), (C —A) 
( 5 in2  a — cos 2  a), 0, 	 0 

—C) (5in2  a — COS2  a), (C —B) 
(sin2  a — COS 2  a), 0, 	0 

A cos2  a + C s1n2  a, A 5in2  «+C  COS2  a, B, — 2 (A — C) sin a cos a 

B cos2  a + C sin2  a, B sin2  a +C COS 2  a, A, —2 (B —C) sin a cos a 

= (A — C) (B —C) (sin2  a — COS 2  a) 2  1, —1, 0, 0 
1, —1, 0, 0 

=-. 0, since the first two rows are identical. 
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Thus the equations are not independent. Subtraction of the fourth
and sixth equations from the first and third gives the following equations:

(A-C) (sin2 Q - casZCL) (Gll-G2Z) = (el-e,)

(B - C) (sin2 a-cos2a) (G,1-Gz2) = (e3-ee)

Division of the above equations gives the relation

A-C _el-e4
[B11B-C e3-ee

which is similar to that derived in the text for the special case of
orthogonal boreholes. The division of the above equations can only be
carried out if

(sin2 Q,-cos2 p,) (Gil-Gy2) 5:; L- O.

If this condition is not fulfilled the expression el - e4 is indeterminate
e3 -e4

and the relation between the parameters cannot be established.
The above condition implies

Gll -G22 77^- 0 [BZl
except when sin2 a equals cosz a, i.e., a equals 45 degrees. The latter is
not a case of any interest since it means that the two boreholes have
the same direction.

Thus the relation given by Eq. Bi can be established for two bore-
holes in the (g1 g2) plane, inclined at any angle different from zero,
provided that G„ is not equal to G22.



DISCUSSION OF CHAPTER 3 

G. B. Barla, Columbia University, New York, N.Y.—The stress relief method to 
determine the absolute value of principal stresses at a point of a solid rock has been 
extensively studied, as both the papers 1, 2  presented at this Symposium confirm. 

Here the rock is regarded as an isotropic, homogeneous medium and classical linear 
theory of elasticity is applied. Then, an analysis of the method which removes some 
of these assumptions must be considered as a natural extension of present knowledge. 

The nonlinear mechanical effects and the rheological properties, which most of the 
rocks exhibit, are not taken into account. These effects may be assessed separately by 
using the nonlinear theory of continuous media and the linear theory of creep. 

Physical Nonlinearity 

Within the theory of elasticity, one can speak of two types of nonlinearity, 
geometrical and physical, which may be regarded as independent of each other. 
There are four types of problems which can be considered 3  : 1) those having both 
physical and geometrical linearity, 2) those which are physically nonlinear but 
geometrically linear, 3) those physically linear but geometrically nonlinear, 4) those 
both physically and geometrically nonlinear. 

If a rock is regarded as a material which exhibits physical nonlinearity even when 
sustaining small deformations, a theory of elasticity of Type 2, for which kinematic 
linearity is retained but where physical nonlinearity is permitted, can be very 
appropriate. 

Mechanical constitutive equations for this special case have already been devel-
oped. The plane elastostatic problem has been formulated, and an approximate 
solution of the problem of uniform extension of an infinite plate containing a 
circular hole has also been worked out by using perturbation techniques. 4  

An examination of some simple states of stress and deformations can lead to 
define, with a carefully planned experimental program, material functions which 
take into account the features arising from physical nonlinearity. 

Creep Effect 

Many rocks defÔrm with time, while the stress condition does not change. Con-
versely, their stress condition may change while further deformation is impossible. 

In both cases the stresses at any time are determined not only by the deformation 
at the present time, but also by their total prior deformation. Therefore, a theory 
of creep can be developed on the assumptions that the rock is regarded as a homo-
geneous isotropic medium and the relationship between the creep deformation and 
the stresses is linear. In these instances, the creep characteristics of the rock may 
be defined by two constants and two creep functions. A general theory to calculate 
stresses and deformations in a body, with consideration given to creep when the 
solution of the corresponding-instantaneous linearly elastic problem is available, has 
been developed. 5  It is possible to adapt the general theory to the case in discussion. 

Careful experimental programs are required to account for the effects of creep, as 
well as for the effects of physical nonlinearity. 

Conclusion 

In both preceding cases, a model is introduced for the specific purpose of taking 
into account two properties of rocks which have been neglected in the existing 
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solution. It is necessary to show that these models are in good agreement with the 
experimental data. It should be pointed out that these models are of interest not 
only in the investigation of the particular problem mentioned, but that they may 
be very conveniently used to analyze more general problems occurring in Rock 
Mechanics. 

Work along these lines is being carried on at the Henry Krumb School of Mines, 
Columbia University, New York. We hope to report upon it in the future. 

W. L. van Heerden, Rock Mechanics Division, National Mechanical Engineering 
Research Institute, South African Council for Scientific and Industrial Research, 
Pretoria, South Africa—Dr. Gray and Mr. Toews provide in their paper an excellent 
analysis of the conditions under which the components of the ground stress tensor 
can be determined from a set of measurements made by means of borehole devices. 
Since it is also shown that the choice of borehole and measuring directions can affect 
the precision with which the various stress components can be determined, the paper 
should be extremely useful in planning future stress measurement investigations of 
this nature. 

Since the paper deals to a large extent with a strain gage device developed by the 
South African Council for Scientific and Industrial Research (CSIR), the contributor 
would like to give some additional information regarding the use of this device, 
which was not available at the time the paper was presented. 

As mentioned in the paper the CSIR device was developed to measure the strain 
on the flattened face of a borehole drilled into rock. During recent months extensive 
laboratory tests were conducted by the CSIR to determine, for the flat borehole end, 
the three stress concentration factors, a, b and c, as defined by Gray and Toews. 

Testing Procedure 

(a) Photoelastic investigations. A three-dimensional photoelastic investigation was 
conducted on a block of Bakelite to determine the stress concentration factors a and 
b. The block, which had a height to width ratio of 2, had a hole drilled into one 
face, the end of the hole being machined flat. Uniform uniaxial compression was 
applied to the block by means of compressed air acting through rubber membranes. 
After the block was stress frozen, a slice containing the center of the flat borehole end 
vas  analyzed in order to determine factor a. A subslice was subsequently cut from 
the original slice so that the factor b could also be determined. 

(b) Direct loading tests. Direct loading tests were conducted on blocks of norite 
and sandstone and on blocks and cylinders of steel and aluminum. A small hole was 
drilled into each block and cylinder and the ends of the holes were machined flat. 
A small rosette strain gage was cemented to the center of the end face of each hole. 
The blocks and cylinders in each instance had a height to width or height to 
diameter ratio of at least 2, so that a uniform stress distribution could be obtained 
at the center where the hole was drilled. The blocks and cylinders were subsequently 
loaded in a uniaxial compression testing machine while the strain readings were 
recorded at ,suitable increments of load. In some of the specimens the hole was 
drilled normal to the direction of the applied load while in others the hole was 
drilled in a direction parallel to the applied load so that from the strain readings 
obtained the three stress concentration factors a, b and c could be calculated. 

Results 

The results obtained for the stress concentration factors a and b are summarized 
in Discussion Table I while the results for the stress concentration factor c are 
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Discussion Table I. Results of Tests Aimed at Determining Stress Concentration Factors a and b

Hole Depth of
diameter hole Modulus of Poisson's

Material Shape of model Dimensions (inches) (inches) elasticity (psi) ratio v a b

Bakelite Rectangular block 5 in. X 6 in. X 12 in. 0.75 2 5000 0.48 125 - 0.071
Aluminum Cylinder 6 in. diam. X 12 in. 0.75 2 10.65 X 10g 035 128 - 0.022
Steel Block 6 in. X 6 in .^X 12 in. 0.75 2 29.00 X 106 0287 124 - 0.065
Sandstone Block 6 in. X 6 in. X 12 in. 0.90 2 4.74 X 106 025 1.31 - 0.19
Norite Block S in. X 8 in. X 24 in. 0.90 3 13.83 X 106 0261 1.22 - 0.098

Average values for stress concentration factors a and b
(Sandstone block not included)

Discussion Table II. Results of Tests Aimed at Determining Stress Concentration Factor c

125 -0.064

Hole Depth of
Dimensions diameter hole Modulus of Poisson's

Material Shape of model (inches) (inches) (inches) elasticity (psi) ratio (v) c

Aluminum Cylinder 6 in. diam. X 12 0.75 6 10.65 X 106 0.35 - 0.740
Steel Cylinder 6 in. diam. X 12 0.75 6 30.6 X 106 0.308 - 0.720
Norite Block 6 X 6 X 12 0.90 6 13.98 X 106 0.273 - 0.688
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given in Discussion Table II. It should be noted that the result obtained for sand-
stone must be treated with caution since the sandstone used did not have a linear 
stress-strain relationship. It does, however, show that even for a poor material such 
as sandstone the stress concentration factors a and b do not deviate much from the 
average values obtained for better quality materials. 

It can be seen from Discussion Table II that stress concentration factor c seems 
to be dependent on Poisson's ratio, Y. From the results obtained it is found that c 
is approximately given by the following relationship: 

c = — 0.75 (0.645 + p) 

It is believed that these results would be valuable in conjunction \yith the paper 
by Gray and Toews because it was shown in their paper that a useful check can be 
made on a set of field measurements provided the three stress concentration factors 
a, b and c are accurately known. 
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Authors' Closure—The authors have used stress concentration factors extrapolated 
from Mr. van Heerden's experimental results in the analysis of a set of data ob-
tained 6  in rock for which E = 11.55 X 106  lb in -2  and y  =_- 0.115, and which 
appeared to be elastically isotropic. Using a  = 1.25, b — 0.064 and c = — 0.57 
we find the values of A, B and C shown in Column (1) of Discussion Table III. 
The value of Q, the residual sum of squares, associated with the set A, B, C is 
also given. 

Columns (2) and (3) show the sets that are obtained by minimizing Q through 
variation of C and B respectively. Column (4) shows values of A, B and C obtained 
by extrapolation from results given by Hiramatsu and Oka,7  together with the Q 
obtained when these values are applied to the analysis of Barron's data. It is seen 
that the set in Column (4) comes remark- ably close to minimizing the residual sum 
of squares. 

It may be remarked that the stresses associated with Columns (1) to (4) differ 
widely. 

It will be noticed that when the values in Columns (1), (3) and (4) are scaled. to 
A = 0.1 they fall outside Table II. Moreover Hiramatsu and Oka 7  have found, by 
assuming equal measurement errors (expressed as strain), that stresses determined by 
means of the CSIR Strain Cell are subject to higher errors than those determined 
by means of the USBM Deformation Meter. Calculations have therefore been done 
to extend Table II and the results are given in Discussion Table IV. 

It is evident that the normal stress components are indeterminate if A + B 

Discussion Table III 

(1) 	 (2) (3) 	 (4) 
A 	 0.1090 	 0.1090 	 0.1090 
B 	— 0.0180 	— 0.0180 	— 0.0514 
C 	—0.0436 	—0.0119 	—0.0436  
Q 	13.12 X 104 	6.98 x 104 	6.93 X 104  

0.1212 
— 0.0563 
—0.0476 

 6.94 x 104 

Note: Strains have been expressed in units of 10-6 . 



DETERMINATION OF THE GROUND-STRESS TENSOR 

Discussion Table IV. Standard-Error Factors: Dependence on Parameters B and 
C with A = 0.1 

Borehole System (a) (Figure 2) 
• 

0.00  -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07  

	

5.92 	5.97 	6.07 	6.25 	6.58 	7.19 	829 	10.38 0.00 

	

7.07 	6.43 	5.89 	5.44 	5.05 	4.71 	4.42 	4.16 

	

- 0.01 	5.74 	5.92 	6.17 	6.56 	721 	8.32 	10.41 	14.93 

	

- 0.02 	5.68 	6.00 	6.46 	7.15 	8.31 	10.42 	14.94 	29.11 

	

- 0.03 	1.84 	629 	7.04 	8.24 	10.38 	14.93 	29.11 	Co  

	

- 0.04 	6.10 	629 	8.14 	10.32 	14.90 	29.10 	03 	29.07 

	

- 0.05 	6.74 	8.02 	10.24 	1425 	29.08 	CO 	29.06 	14.81 

	

- 0.06 	7.91 	10.16 	14.80 	29.06 	CO 	29.05 	14.79 	10.13 

	

- 0.07 	10.09 	14.76 	29.03 	Co 	29.03 	14.76 	10.10 	7.83 

Note: The standard error factors for the shear stress components appear below 
the corresponding factors for the normal components, in the C = 0.00 row. They 
are omitted from the remainder of the table since they do not vary with C. The 
figure 1.84 in the first column is correct. 

C =-- 0, and are subject to large errors when this condition is nearly fulfilled. The 
values in Column (4) of Discussion Table III come close to fulfilling the condition 
and this accounts for Hiramatsu and Oka's conclusion regarding the relative accuracy 
of stress determinations made by means of the CSIR Strain Cell. 

The analysis employed here assumes that strains are measured symmetrically 
about the center of the end of the borehole. In some versions of the strain cell, 
including that used by Barron, the strain gages are offset from the center. By an 
extension of the reasoning used in Appendix A it can be shown that if a gage is 
offset in the direction of measurement it may be sensitive to the shear stress com-
ponent M12. Sensitivity to M23 and M21 should be zero if the gage is symmetrical 
about a radius. It is thus possible that, even if A, B and C are not affected, an 
accurate determination of the stresses would require the knowledge of an additional 
parameter, the sensitivity to M12. A standardized gage arrangement, symmetrical 
about the center, would appear to be desirable for purposes of comparison. It 
appears that further experimental work is required to establish agreed parameters 
for the strain cell. 

For the USBM Deformation Meter, 

Al-B±C=-d (2 -v). 

A + B C, therefore, cannot be zero and the indeterminacy discussed above cannot 
arise. 
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