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The dispersion effect can be eliminated in the analysis of X-ray diffraction lines by transforming the
true angular scattering distribution E(0), which has been corrected in advance for instrumental aber-
rations, to distribution P(Qo') in the parameter

ae' = In(sin 0/sin 6)

and expressing the radial interference distribution and the spectral wavelength distributions as func-
tions of

and
aQ = ln(e/c^)

a,,' =1n(^/^)

respectively, where p is the reciprocal lattice spacing, .l is the wavelength and the reference values are
related by

A q=2sinB.

The scattering distribution E(O) determined from a single crystal using the co scan with a narrow
detector slit at successive 0 positions has the mapping relation

P(aé)a{(sin 0)/(1 +cosz 20)}E(0)

while the scattering distribution E(O) for the conventional powder diffraction line measurement has
the mapping relation

P(aô)«{(sinz 0)/(l +cos2 20)}E(0) .

The radial interference distribution i(aQ) can be expressed in a general form as the convolute of
distributions due to crystal size and imperfections with an elastic strain distribution. The mapped
scattering distribution P(ao') is shown to be the exact convolute of this radial interference distribution
with a modification of the characteristic wavelength distribution L'(vx):

Unfolding the distribution
P((3,ô)=J{U^/1^)1 (at)}1(Qp'-ox)clax.

M(az') _ (13lA3)L'(aa )

gives the true radial interference distribution regardless of the width of either the spectral or the radial
interference distribution over the full range of scattering angles. The procedure has a particular applica-
tion in the measurement of lattice parameters.

,1

Introduction

In the present paper a procedure is described whereby
the spectral distribution of the characteristic X-ray line
can be unfolded from the scattering distribution for a
single crystal or powder specimen. If the measured
scattering distribution has been corrected for the ef-
fects of instrumental aberrations the distribution
obtained after unfolding is the true radial interference
distribution defined by crystallite size, imperfections
and elastic strain.

Since the present treatment is free of approxima-
tions, the results are valid regardless of the width of
either the spectral or the radial interference distribu-

tion. The spacing of the reciprocal lattice node is deter-
mined directly in terms of the reference wavelength and
is independent of dispersion effects.

If the X-ray wavelength is sharply defined, the inter-
ference function for a reflexion can be determined
directly by correcting the scattering distribution for the
dependence of intensity on scattering angle and map-
ping the distribution in reciprocal space.

When, however, the incident beam has a distribution
of wavelengths dispersion occurs, since the angular

-scattering distribution due to a given interference func-
tion is wavelength dependent.

Lang (1956) has shown that the dispersion effect for
a powder specimen could be treated by transforming
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the scattering distribution to a scale of sin 0, which is 
equivalent to a radial mapping in reciprocal space. 

Lang showed that in terms of this parameter the 
scattering distribution could, to the first approximation, 
be regarded as the convolute of the spectral distribu-
tion and the powder interference function, which could 
then be extracted by unfolding. 

Pike (1959) has treated the dispersion effect exactly 
for the limiting cases where either the wavelength.is  
sharply defined relative to the single-crystal radial 
interference distribution, or the interference distribu-
tion is sharply defined relative to the spectral distribu-
tion. Pike's treatment has the disadvantages that the 
mapping functions are different for the two cases, and 
the intermediate case remains unsolved. 

Using the new variables to be introduced in thé 
present paper in the transformation described here, the 
scattering distribution can be expressed as the convo-
lute of the single crystal radial interference distribution 
and a distribution derived from the characteristic wave-
length distribution. 

The radial interference distribution 

The intensity scattered at an angle 20 from a single 
crystal irradiated by a monochromatic X-ray beam, 
due to a family of planes of indices hkl, is 

J (0)— 1(e 2  m c 2)2(1 + cos2  20)I() 	(1) 

per unit solid angle, per unit incident beam, intensity, 
where /(Q) is the interference distribution in reciprocal 
space at a vector distance from the reciprocal lattice 
origin, and 20 is the angle between ko  and k, the vectors 
of the incident and diffracted rays. 

For the wavelength A, is given by 

= (k — ko)P, 

where Iç o  and k are unit vectors, and has the magnitude 

g = 2 sin OR . 
The radial interfere'nce distribution about the recipro-
cal lattice node ehki is determined by integration of the 
interference function /(e) over a plane S normal to 
ehki and at a distance s from the lattice node. 

(sQ) S S /(e)dS 	 (2) 

where for the plane S 
Q= Qua-1-s 

and s 	+ u, where sc, is constant, parallel to ehki and 
u lies in the surface of integration. 

The effects of crystal size and of a homogeneous 
distribution of imperfections in a single crystal have 
been expressed by Wilson (1949) in terms of the radial 
interference distribution, so that these effects can be 
studied with either single-crystal or powder specimens. 
Wilson's treatment can be readily extended to the case 
of a mosaic crystal dr a povvder having a distribution of 
reciprocal lattice parameters as in the case of a spe-
cimen ha% ing a distribution of elastic strain. 

Following Guinier's (1963) treatment of Wilson's 
theory, the radial interference function  i(s) can be 
expressed as the convolution of the function A(s,) due 
to crystal shape and Y(s,) due to a homogeneous 
distribution of imperfections. 

i(s,) = (1/ VOS A(s,— si)Y (si)dsi 	(3) 

where V, is the unit-cell volume. 
The crystal shape function A(s,) has the Fourier 

transform in object space, 

V(t)=  V S A(s,) exp (27ris0t)dt 

where t is a vector perpendicular to the hkl planes, and 
consequently the scalar product 

s.t=s,t . 

V(t) is the 'image volume' defined by Wilson. 
The transform of the imperfection function in object 

space is 
y(t)= S  Y(s,) exp (27-cis0t)ds0  . 

y(t) is the average of the product of the structure fac-
tors for cells ni and n separated by the vector t. 

• y(t)= 	. 

In a mosaic crystal having a distribution of reci-
procal lattice nodes, where the domains have a small 
angular orientation about the reference direction, 
G(s) is the probabilit yclistribution of cells having the 
reciprocal spacing Okla where 

S = ehkl 2hk1 

iS the displacement from the reference node -Qhki, which 
corresponds to a domain of mean spacing and mean 
orientation. 

The component of s parallel to êhki iS 

Se= 

provided the angle between the position vectors is 
small. 

The radial reciprocal lattice strain function is 

g(se)— SS G(s)dS . 

The resultant radial interference distribution is ob-
tained by integrating the interference function for the 
strained lattice over a surface at a distance 

SC = Se -  S  = — ehk1 

from the node am and then integrating over the lattice 
strain distribution. The resultant can be expressed as 
the double convolution. 

i(s,) = 1/ V, S S A(s e • si)Y(si)dsi . g(s,—s e)dse  . (4) 

The line integral of the radial interference distribu-
tion is equal to the volume integral of the interference 
function about the reciprocal lattice node. 
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S i(s4)dse=S I(s)dVs=Fhkj2VlV2C (5)

where Fltkt is the mean structure factor and V is the
-rystal volume.

Relation between the scattering
and interference distributions

The radial interference distribution for the single crystal
can be determined using the `co scan' with a narrow
detector slit.

The total energy recorded by a fixed detector when
the crystal is rotated about an axis normal to the plane
of incidence, through the lattice node hkl, is

E(0)=(cps/co)(e2/mcz)2(l+cosz 20) sin Of(sQ)/o2 (6)

per unit incident beam intensity, as shown in the. Ap-

pendix, where c^ is the angular velocity and cps is the
angular detector slit width.

A crystalline powder having a random orientation
distribution will have a resultant interference distribu-
tion in reciprocal space constant over a spherical sur-
face of radius p, of magnitude

Ip(sQ) = npi (sQ)/47ro2 (7)

where i(sQ) in the radial interference distribution for a
single crystal of equal volume, and np is the multiplicity
of the reflexion.

The power over a detector element of solid angle
Sls is, from (1)

E(0)=J(0)Sls= 2(e2/mc2)2(1 +cosz 20)Ip(sQ) . Sls

= Sls(np/87c)(ez/mcz)2(I + cosz 20)f (sQ)/oz . (8)

This expression for the powder scattering distribu-
tion differs from the corresponding expression for the
single-crystal scattering distribution by the factor sin 0.

Dispersion

The dispersion of the scattering distribution due to the
spectral wavelength distribution can be treated initially
by introducing the parameter:

Qo=(sin 0-sin 6)/sin 9 (9)

where is the scattering angle for the reference wave-

length due to lattice node ^hkt, so that

4hkt = 2 sin 0 .

The radial interference distribution can be expressed
in terms of a similar parameter QQ as

where QQ=SUI Qhki=o'o(12,1)

and the characteristic wavelength distribution as L(ux)

where
Qx=(), -^)/^ =Q©(jhkl, )) •
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The resultant scattering distribution due to the spec-
tral distribution L(v,t) is derived from relation (6) for
the single crystal and relation (8) for the powder as

PL(QO) = S i„(UQ)ln2) . L(cx)d ua ^ (10)

where for the single crystal

PL(Q0)=kSE(0)/[(1 +cos2 20) . sin 0]

k8 = (c^lcPs)l(e2/mc2)2

and for the powder

PL(vo) = kpE(0)/(1 + cos2 20)

and

where

convolute, using the approximation that the equation

ICp = 87r/np [Sls(e2/f)jc2)z]

The transformation df E(0) to the Qo scale is equi-
valent to Lang's (1956) tranformation to the sin 0
scale. The Pr,(ao) distribution for single-crystal and
powder specimens includes the correction for the 0
dependence of the scattering distribution.

Lang carried out the dispersion correction for the
powder case by replacing the scattering integral by the

d.l/^+do/ô=d(sin 0)/sin B

is valid over finite increments in .l and o.
On the v scale this approximation gives

Qo=Cx+aQ

and the scattering integral

PL(Q'o)=4n S Ir(Qe-ux)L(a^)dQx. (11)

Unfolding L(QA) gives the powder interference distribu-
tion.

In order to avoid the approximation involved in the
convolute Pike (1959) has evaluated the scattering
integral in the limiting cases. He has treated the special
case of a powdér having relatively large perfect grains
and a distribution of lattice spacings, but as shown in
(4) this does not impose a restriction on his result.

The integral can be evaluated directly when the
wavelength is sharply determined so that the inter-
ference function is slowly varying and effectively con-
stant over the spectral range:

PL(a'o) _[I (a'Q)l4 sin2 0] S 22L(Q,t)d ax

PL(Co) cc l (cQ)/sin2 0. (12)

Similarly when the interference function is sharply
determined relative to the wavelength integration over
vQ gives,, with the use of relation (5),

PL(9O)=(1/Qhk1)2(sin 0/sin 0)(Fhki)2(V/V,2)L(ax)

PL(Qo) cc L(ux) sin 0. (13)

The resultant distributions in the limiting cases have a
dependence differing by a factor sin3 0. The intermedi-
ate case remains unsolved.
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Exact treatment of the dispersion effect 

The approximation involved in forming the convolu- 
tion ( I I ) can be avoided by introducing the parameters 

do =ln(sin 0/sin 
=1n(i.1)-.) 

do' = 111 (010) • 	 (14) 

It can be seen that for small differences 0-0' 0-0  and 
these parameters approach those of relation (9). These 
parameters have the property that do = ofQ + al' which is 
required for the formation of the convolute. 

Substituting for e in the integral and changing the 
variables gives the convolution integral 

P (el ) = S M (e)( 0.  cri) d .1' 

M (a-  ) = (21 )3  L' (o-  ) 

ii(cr<2')=i"(ae).= i(s,) . 

From (15) and the definition of M it is at once obvious 
why the correction factors calculated by Pike in the 
extreme cases, leading to i"(cre) and  L(o) respectively, 
differ by a factor sin 3  O. 

P m(o-'0) is obtained from the scattering distribution 
E(0) for the single crystal by using the relation 

P AI 	(lc81.1.2)(sin 01(1 + cos2  20))E(0) , 	(16) 

and for the powder as 

Pm(4)-- (4k v/;i2){si n2  0/(1 +  cos z 20)}E(0); (17) 

by using the mapping given by relation (14). 
The wavelength function M( 4) can be derived direct-

ly from the characteristic wavelength distribution, and 
unfolding this function from the transformed scattering 
distribution Pm(o-o') gives the exact radial interference 
function for the crystal, which can then be expressed.as  
a distribution i(sd'in reciprocal space,  about the lattice 
node. 

Conclusion 

The procedure enables the dispersion effect to be 
eliminated and the radial interference distribution to 
be determined within the accuracy of the measure-
ments of scattering intensity and scattering angle, 
provided the instrumental aberrations have been cor-
rected in 'advance within these limits. 

It should be particularly useful in measurements in 
the region of scattering near 180 0 . Here the dispersion  

effect is large, but the theoretical limit of accuracy is 
high since the angular range of the scattering distribu-
tion is a maximum and the distortion  due  to the 
majority of instrumental aberrations approaches zero. 

APPENDIX 
Measurement of the single-crystal radial interference 

distribution 

The radial interference distribution for a single crystal 
is measured by scanning about the axis w normal to 
the plane of incidence with the scattering angle 20 
fixed and defined by a narrow detector slit. 

The energy received over a solid angle Qs of the 

detector in scanning at an angular velocity co.  is 

E(0)=(11co)S JQsd . 

The area of reciprocal space normal to the lattice vector 
p swept out by rotation through an angle dm by a 
detector element normal to the plane of incidence is 

dS (Q1 it)dw , 

where  ç  is the angle normal to the incident plane sub-
tended by the detector element, and 98  is the angular 
slit width in the incident plane: 

The energy 

E(0)=0.10)(q)81(à)S JdS 

--=(y91(;)(e21mc 2)2  O(1+cos2  20)[i(sdie 

which is equivalent to (6). 
The integrated intensity is obtained by allowing v, 

to increase to include the full scattering distribution 
in the co scan. 

By use of the relation 

do  = 2c/s,/(cos 0) 

the integrated intensity is obtained as 

Eel.) -= Q . V 

per unit incident beam intensity, with the usual meaning 
for Q. 
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