## GEOLOGICAL SURVEY OF CANADA OPEN FILE 8050

# Regional centroid moment tensor solutions for Eastern Canadian earthquakes: 2015 

A.L. Bent

2017

Canadä

# GEOLOGICAL SURVEY OF CANADA OPEN FILE 8050 

# Regional centroid moment tensor solutions for Eastern Canadian earthquakes: 2015 

## A.L. Bent

2017
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017
Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified.
You are asked to:

- exercise due diligence in ensuring the accuracy of the materials reproduced;
- indicate the complete title of the materials reproduced, and the name of the author organization; and
- indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan.
Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at nrcan.copyrightdroitdauteur.rncan@canada.ca.
doi:10.4095/299816

This publication is available for free download through GEOSCAN (http://geoscan.nrcan.gc.ca/).

## Recommended citation

Bent, A.L., 2017. Regional centroid moment tensor solutions for Eastern Canadian earthquakes: 2015; Geological Survey of Canada, Open File 8050, 26 p. doi:10.4095/299816


#### Abstract

Regional centroid moment tensor solutions have been determined for seven moderatesized earthquakes in eastern Canada during 2015. The moment tensor inversion method is used to determine the focal mechanism, depth and seismic moment of the earthquakes. These parameters, in turn, provide information about the seismotectonic environment in which the earthquakes occur and may help improve seismic hazard estimates. The purpose of this report is not to provide an in-depth analysis of any specific earthquake but to catalog the solutions and data used to obtain them to make them available for future research projects.


## Introduction

Earthquake focal mechanisms provide information about the orientation and direction of motion on the fault that generated the earthquake. A suite of focal mechanisms from a particular region can be used to improve the understanding of the seismotectonic environment in which the earthquakes occur. In the past, focal mechanisms were most often determined by the polarity distribution of first motions. This method is tedious and requires a large number of clear readings from a wide variety of azimuths, which makes it difficult to obtain unique solutions for smaller earthquakes or those occurring in regions, such as the offshore, where the station density is low and azimuthal coverage poor. The moment tensor inversion, which makes use of a longer portion of the waveform, is a more robust and more objective method to determine focal mechanisms. They also provide the hypocentral depth, which has implications for seismic hazard as well as information about regional seismotectonics, and seismic moment (and moment magnitude), which is generally considered the best measure of earthquake size. However, moment tensors use relatively long-period data and they, too, do not always result in good-quality solutions for smaller earthquakes. Having said that, there has been an increase in the percentage of magnitude 4+ earthquakes for which focal mechanisms could be determined since regional centroid moment tensor (RCMT) method was implemented in eastern Canada around 2005-2006. The impact is most notable in the north where it was difficult to obtain focal mechanism solutions for all but the few earthquakes large enough to be well-recorded at teleseismic distances. For example, Bent et al (2003) were able to obtain focal mechanisms for only four of fourteen events evaluated in the region extending from the Labrador Sea to northern Baffin BayBaffin Island during the period 1994-2000. From 2011 through 2014 nineteen solutions were obtained via the RCMT inversion method for twenty-two events evaluated in the same region (Bent, 2015a.b) and another five out of five for 2015 (this paper).

For seismological purposes eastern Canada is roughly defined as east of $100^{\circ} \mathrm{W}$ longitude. Some judgment calls in whether to treat earthquakes as western or eastern, however, are made in the case of the extreme north where lines of longitude are close together and where the $\mathrm{m}_{\mathrm{N}}$ or Nuttli magnitude scale (Nuttli, 1973) used for eastern Canada may be used as the primary or database magnitude for earthquakes west of this line. As a general practice earthquakes falling within the territory of the United States or Greenland are not included although exceptions may be made in the case of any event close to the border that was widely felt in Canada. In some cases the closest seismograph station to the earthquake may be in the United States or Greenland even if the earthquake is in Canada. With respect to offshore earthquakes there are no strict criteria used to determine which earthquakes to study but most earthquakes occurring close enough to Canadian territory that have been recorded by a reasonable number of seismograph stations at distances between 150 and 1500 km will be evaluated.

RCMT solutions for all of Canada through the end of 2010 were summarized by Kao et al. (2012) and Bent (2015a,b) catalogued eastern solutions for 2011-2014. The current paper catalogs the RCMT solutions for eastern Canada in 2015. Solutions that met the minimum quality criteria were obtained for seven out of eight earthquakes evaluated. This report is the third in a series of RCMT summaries for eastern Canada intended to be produced on an annual basis although other options for the dissemination of RCMT solutions, such as the creation of an online database are being explored. It should be noted that although this report focuses on eastern Canada, the RCMT method is also
routinely applied to earthquakes in western Canada. (for example, Ristau, 2004; Ristau et al., 2007; Kao et al., 2012)

## Regional Centroid Moment Tensor Inversion Method

Moment tensor inversion is one method by which earthquake focal mechanisms, or faulting parameters may be determined. It also provides additional source parameters including depth, seismic moment and source time function as well as a measure of any non-double couple component of the source. Note that source time function is generally not well resolved for small and moderate earthquakes. For all earthquakes summarized in this paper a 1.0/1.0/1.0 (sec) time function is assumed. Because it is based on fitting a relatively long portion of the recorded waveform and provides a quantitative measure of the fit, the RCMT is advantageous over other methods of focal mechanism determination, such as first motions which are based on a very small portion of the waveform, which can be difficult to pick accurately for small earthquakes and which require a larger number of good quality recordings for a unique solution to be determined.

The RCMT method used to analyze Canadian earthquakes is that of Kao et al (1998). More details about the method may be found in that paper and an in-depth discussion of its implementation in Canada is covered by Kao et al (2012). Both papers also include references which provide supplementary background information on centroid moment tensors. The discussion below is focused on topics specifically related to eastern Canada.

In eastern Canada the RCMT inversion is run for all earthquakes of magnitude 4.0 or greater. Note that the Nuttli $m_{N}$ magnitude is the most commonly used magnitude scale in eastern Canada but that $M_{\llcorner }$may be listed as the magnitude for offshore earthquakes for which the Lg wave is either not observed or is strongly attenuated. Moment magnitude, $\mathrm{M}_{\mathrm{w}}$, for eastern Canada is, on average, about 0.5 magnitude units smaller than $m_{N}$ (Bent, 2011). Good quality solutions cannot always be obtained for the smallest earthquakes because the signal to noise ratio is generally poor at the long periods modeled. The default frequency range is $0.03-0.06 \mathrm{~Hz}$ but the inversion code will modify the range if there is sufficient long period energy in the data in other frequency bands, sufficient energy being roughly defined as a signal to noise ratio $(\mathrm{S} / \mathrm{N})$ of 2.0 or greater.

Data from three-component broadband (both bh* and hh*) stations are used in the inversion. Standard practice is to use only stations from which data are received in real time by the Geological Survey of Canada (GSC; CNWA, 2016). Data from additional stations may be added if an earthquake is of particular interest and if additional data are likely to improve the quality of the solution. For example, data from Greenland often help constrain the solutions for earthquakes occurring in Baffin Bay.

Two velocity models are used- one for southeastern Canada and one for the north. Essentially these are the same model, the only difference being the depth of the Moho discontinuity- 40 km for the south and 35 km for the north. These are referred to as EM40 and EM35 models respectively. With the exception of the modified Moho depth the velocity model is that of Brune and Dorman (1963). The boundary between north and south is at approximately $60^{\circ} \mathrm{N}$. If an earthquake occurs close to the boundary the
inversion may be run with both models and the best solution selected. At some future point a suite of regional models may be implemented if there is evidence that this would improve the quality of the solutions. The current model is based on shield paths but it should be noted that even for those earthquakes that occur in the Appalachians most of the paths modeled are sufficiently long that there will be a strong shield component. This statement may not be true for all offshore events. The southern model is shown in Table 1. For the northeast the thickness of layer 3 is decreased to 19 km . The lowermost layer is a mantle half-space.

## Table 1 <br> Velocity Model for Southeastern Canada

| Layer | Thickness (km) | $\mathbf{V p} \mathbf{( k m} / \mathbf{s})$ | $\mathbf{V s ( k m} \mathbf{s})$ | Density $\mathbf{( \mathbf { g } / \mathbf { c m } ^ { \mathbf { 3 } } )}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 5.64 | 3.47 | 2.70 |
| 2 | 10 | 6.15 | 3.64 | 2.80 |
| 3 | 24 | 6.60 | 3.85 | 2.85 |
| 4 | - | 8.10 | 4.72 | 3.30 |

Solutions are rated using the quality classification table in Kao et al. (2001). The classification consists of a character value from $A$ through $F$ based on the average misfit and a numerical value from 1 through 4 based on the compensated linear vector dipole (CLVD) component. Solutions must have a minimum quality of C 4 to be accepted. The user of these solutions should bear in mind that the quality classification is strictly based on the fit of the solutions to the data modeled and does not consider the number of components modeled. Solutions based on small numbers of modeled waveforms should be used with some caution even if the fit is reasonably good.

## Regional Centroid Moment Tensor Solutions for Eastern Canada

Eight earthquakes were evaluated (Figure 1 and Tables 2 and 3). Solutions of quality C4 or better were obtained for all events in Table 2. The event in Table 3 is one for which the solution quality was not acceptable.

## Earthquakes Evaluated: Solutions Obtained

| Date | Time (UT) | Lat ( $\left.{ }^{\circ} \mathbf{N}\right)$ | Lon $\left({ }^{\circ} \mathbf{W}\right)$ | Mag (M $\left.\mathbf{M}_{\mathbf{w}}\right)$ | Location/Region | Quality |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
|  |  |  |  |  |  |  |
| $2015-01-16$ | $13: 05: 28$ | 49.43 | 66.79 | 3.9 | 37 km N of Cap-Chat, QC | B3 |
| $2015-02-12$ | $02: 11: 41$ | 72.05 | 75.09 | 4.8 | 125 SE of Pond Inlet, NU | B4 |
| $2015-05-02$ | $09: 49: 24$ | 73.64 | 70.26 | 4.1 | 271 km NE of Pond Inlet, NU | B2 |
| $2015-06-03$ | $10: 01: 08$ | 62.85 | 60.06 | 4.2 | 306 km E of Resolution Island | B1 |
| $2015-07-01$ | $18: 32: 53$ | 44.09 | 66.25 | 3.8 | 30 km N of Yarmouth, NS | B3 |
| $2015-08-18$ | $11: 01: 34$ | 71.98 | 75.20 | 3.9 | 124 km SE of Pond Inlet, NU | B4 |
| $2015-11-18$ | $10: 19: 53$ | 71.19 | 64.35 | 3.9 | Baffin Bay | C4 |

Table 3
Event Evaluated: No Reliable Solution Obtained

| Date | Time (UT) | Lat $\left({ }^{\circ} \mathrm{N}\right)$ | Lon $\left({ }^{\circ} \mathrm{W}\right)$ | Mag (ML) | Location/Region | Quality |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2015-02-18 | $23: 58: 59$ | 50.94 | 50.97 | 4.1 | Offshore Newfoundland | NA |



Figure 1: Locations and quality of solutions of all earthquakes evaluated in this study. Note that some points may plot on top of each other. Symbol size is scaled to $\mathrm{M}_{\mathrm{w}}$ if a solution of A-C quality was obtained and to the magnitude type listed in Table 3 otherwise.

The solutions for the earthquakes listed in Table 2 are presented below (Figures $2 \mathrm{a}-2 \mathrm{~g}$ ) in chronological order without additional comments. Each solution is presented as a figure with the format discussed in the next few paragraphs. The solution is summarized in the upper left corner. The origin times and epicenters are taken from the Canadian National Earthquake Database (CNED, 2016). All other parameters are derived from the RCMT inversion. Only the best fitting double couple solution is summarized on the figure. The complete moment tensor solutions may be found in the Appendix.

The map in each plot shows the best fitting focal mechanism (lower hemisphere projection) from the inversion. The solid lines show the best fitting double couple solution and the shaded and white regions show the full moment tensor solution with the shaded regions representing compressional regions and white dilations. The P - and T -axes are indicated by gray and white dots, respectively.

To the right of the map the average misfit is plotted as a function of depth. The best fitting focal mechanism for each depth is plotted and the size of the symbol is scaled to the moment magnitude for that particular solution. Lack of variation in symbol size, as is most often the case, indicates that the calculated seismic moment is not heavily dependent on depth. A flat misfit plot indicates that the depth is not well constrained (for example, 20151118, Figure 2 g ) whereas a sharp dip in the misfit function is an indication of a well-constrained depth (for example, 201603, Figure 2d). In most cases the focal mechanism is relatively independent of depth but there are solutions for which this is not the case. If the best fitting mechanism has a significantly lower misfit than one indicating a different style and/or orientation of faulting it is likely correct (for example, 20150502, Figure 2c). If two significantly different mechanisms have similar misfits (for example, 20141003, Figure $2 f$ in Bent, 2015b) anyone with a particular interest in that earthquake may need to consider both as viable options or apply additional techniques to the data to determine which solution is better.

Below that, the waveforms are shown with the solid lines representing the data and the dashed lines the synthetic seismograms. For each station the waveforms from left to right are the vertical, radial and tangential components respectively. The misfit is indicated below the waveforms. The horizontal (time) and vertical (amplitude) scales are indicated to the right. The waveforms for each station are scaled to the largest amplitude at that station. Components not plotted were not used in the inversion. The most common reason for rejecting a component is a poor signal to noise ratio at the periods modeled. There could be other reasons, however, such as lack of data from one component. Note that the RCMT inversion program allows for more complicated weighting schemes but practice is to use either 1.0 (full weight) or 0.0 (not used). There were other weighting schemes proposed in RCMT studies in other regions, such as given higher weighting for stations with good S/N or lower weight for a group of stations in the same area. Give the station distribution in eastern and northern Canada there have been no obvious benefits derived from using other weighting schemes. The text to the left of each set of waveforms provides information about the station. The first line is the station code and velocity model used. The second line indicates the azimuth of the station with respect to the epicenter. The third line gives the epicentral distance, the fourth the frequency range modeled and the fifth the average misfit for the station.


Source Time Function: 1.001 .001 .00
Figure 2a

2015/02/12 02:11:41.5 (UT)
Epicenter: 72.05-75.09 Depth: 6 km Mw: 4.84 Mo: $2.235 \mathrm{e}+16 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 359.08 12.34-51.22
FP2: 139.6580 .41 -97.80
Iso. $=3.0$ \% CLVD= 51.4 \% Misfit= 0.346

EUNU (EM3
346.59 deg.
939.63 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.479

FRB (EM35)
160.40 deg. 964.85 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.239 RES (EM35) 304.21 deg. 693.66 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.321
TULE (EM35) 17.73 deg . 534.56 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.347

V-comp
R-comp

0.188

0.327

0.247

0.368



T-comp


100 sec

Source Time Function: 1.001 .001 .00

Figure 2b

2015/05/02 09:49:24.6 (UT) Epicenter: 73.64-70.26 Depth: $\mathbf{8 k m}$ Mw: 4.05 Mo: $1.484 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$ Best double couple solutions FP1: 156.0443 .8572 .35
FP2: 359.8548 .69106 .24
Iso.= -4.5 \% CLVD= 16.5 \% Misfit= 0.461
EUNU (EM35)
337.87 deg.
818.84 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.608 Misfit: 0.608
KULL (EM35) 69.02 deg. 411.40 km $0.01-0.06 \mathrm{~Hz}$ Misfit: 0.463 RES (EM35) 290.60 deg. 754.12 km $0.02-0.06 \mathrm{~Hz}$ Misfit: 0.410
TULE (EM35) 6.58 deg. 326.16 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.364

V-comp
V-comp



0.410

0.134


R-comp

0.634


T-comp




Source Time Function: 1.001 .001 .00

Figure 2c

2015/06/03 10:01:8.2 (UT)
Epicenter: 62.85 -60.06
Depth: $\mathbf{8 k m}$ Mw: 4.23
Mo: $2.777 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 47.0947 .53131 .94
FP2: 174.0256 .7353 .87
Iso.= -3.1 \% CLVD= 7.7 \% Misfit= 0.326



FRB (EM35)
287.00 deg . 436.98 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.227

KAJQ (EM35) 217.25 deg. 562.28 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.396
KNGQ (EM35)
262.48 deg. 633.46 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.342
NANL (EM35) 188.15 deg. 709.02 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.373
SCHQ (EM35) 206.60 deg. 973.61 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.292
V-comp

$$
0.219
$$


0.171


R-comp
T-comp

##  <br> A-N


0.528


Source Time Function: 1.001 .001 .00

Figure 2d

2015/07/01 18:32:54.5 (UT)
Epicenter: 44.18-66.32
Depth: 9 km Mw: 3.78
Mo: $5.800 \mathrm{e}+14 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 4.9148 .02130 .62
FP2: 132.8655 .6554 .11
Iso.= 0.2 \% CLVD= 28.9 \% Misfit= 0.484


A16 (EM40)
323.30 deg. 464.49 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.769
BATG (EM40) 3.33 deg .
345.13 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.436
ELNB (EM40) 25.98 deg.
208.11 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.304
GBN (EM40)
68.58 deg.
404.45 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.369
GGN (EM40)
338.77 deg.
112.37 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.486
HAL (EM40)
75.82 deg.
223.68 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.575
LMN (EM40)
32.22 deg.
221.32 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.450

V-comp

0.084

0.219


R-comp


Source Time Function: 1.001 .001 .00
Figure 2e

2015/08/18 11:01:34.1 (UT) Epicenter: 71.98-75.20 Depth: 11 km Mw: 3.87 Mo: $8.010 \mathrm{e}+14 \mathrm{Nt}-\mathrm{m}$ Best double couple solutions FP1: 272.8365 .90167 .37 FP2: 8.0678 .4924 .63
Iso.= -0.2 \% CLVD= 53.5 \% Misfit= 0.466



V-comp


R-comp
T-comp




Source Time Function: 1.001 .001 .00
Figure $2 f$

2015/11/18 10:19:53.8 (UT)
Epicenter: 71.19-64.35
Depth: $\mathbf{2 9} \mathbf{~ k m ~ M w : ~} 3.90$
Mo: $8.895 \mathrm{e}+14 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 176.7083 .981 .07
FP2: 86.5988 .94173 .97
Iso.= 0.0 \% CLVD= 50.9 \%
Misfit= 0.588


V-comp
CLRN (EM35)
244.83 deg.
174.54 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.397
FRB (EM35)
194.15 deg.
848.69 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.699
KNGQ (EM35)
201.13 deg.
1121.50 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.668

R-comp

$4.61 \mathrm{e}-05 \mathrm{~mm}$
50 sec

$2.09 \mathrm{e}-05 \mathrm{~mm}$
100 sec

Source Time Function: 1.001 .001 .00
Figure 2g

## Related Studies

The section below provides a brief summary of known studies or alternate solutions related to earthquakes catalogued in this paper. It also discusses one study that uses this catalog as part of its dataset.

The earthquake of 16 January 2015 occurred within the Lower St. Lawrence Seismic Zone. While it was not the subject of a detailed study, a regional moment tensor solution was also determined by Herrmann (2016), whose solution suggests a more north-south striking focal mechanism at a slightly greater depth ( 19 km ) although his depth is not well-constrained.

Very few earthquakes occur onshore in Nova Scotia and thus the magnitude 3.8 earthquake and a smaller ( $\mathrm{M}_{\mathrm{N}} 2.2$ ) aftershock that occurred on 1 July 2015 between Yarmouth and Digby provided a rare research opportunity. This earthquake has been studied in detail by Bent et al. (2016), who include the RCMT presented in the current study. A regional moment tensor solution was determined by Herrmann (2016). The focal mechanism of Herrmann (2016) is very similar to the one determined in this study although he obtains a slightly greater depth (12 km) and smaller $M_{w}$ (3.5). The uncertainties in the two studies overlap and the difference is of little concern. The Bent et al. (2016) paper also included the results of the Regional Depth Phase Method, which gave an average depth of 10.5 km with results from individual stations ranging from 8.5 km to 12 km .

Magnitude recurrence rates are a primary data source for seismic hazard assessment in Canada and elsewhere. For hazard assessments to be uniform across the country it is essential that magnitudes be uniform in space and time. Moment magnitude is currently the preferred magnitude scale and a series of magnitude conversion relations have been developed for the various magnitude scales in common use across the country, in particular $m_{N}$ in the east (Bent, 2011) and $M_{L}$ in the west (Ristau et al., 2004, 2007). The Lg-based $m_{N}$ scale cannot be used for offshore eastern events as Lg does not propagate in oceanic crust and the $M_{L}$ scale is used instead. An $M_{L}-M_{W}$ conversion relation could not be developed previously because of the scarcity of $M_{W}$ values available for offshore earthquakes. However, with the implementation of the RCMT method in the east, the number of $\mathrm{M}_{\mathrm{w}}$ 's for this region has increased in recent years and it is now possible to establish a conversion relation. Using the results of this study, the two previous RCMT catalogs (Bent 2015a,b) and a handful of other offshore moment magnitudes, Bent (2016) was able to establish that for the eastern offshore region
$M_{W}=M_{L}-0.21$.

## Summary

Regional moment tensor solutions have been determined for seven moderate earthquakes occurring in eastern Canada during 2015. An eighth event was evaluated but a good quality solution was not obtained. These moment tensor solutions include focal mechanisms, depths and moment magnitudes which provide input into further studies regarding seismic hazard, regional seismotectonics or stress field to name a few. These results are particularly valuable in regions, such as the north and offshore, where there have been considerable difficulties in obtaining these parameters through other methods. A highlight of 2015 was obtained the first known focal mechanism solution for an earthquake occurring onshore in Nova Scotia. This paper is the third in what is intended to be a series of annual updates but other methods, such as an online database, for disseminating the solutions are being explored.

## Acknowledgments

I thank Honn Kao for his review of the manuscript.
The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for access to waveforms and metadata required in this study from the following stations of the Danish Network operating in Greenland: TULEG and KULLO. The IRIS DMS is funded through the National Science Foundation and specifically the GEO Directorate through the Instrumentation and Facilities Program of the National Science Foundation under Cooperative Agreement EAR-1063471. Some activities of IRIS are supported by the National Science Foundation EarthScope Program under Cooperative Agreements EAR-0733069, EAR-1261681.

## References

Bent, A. L. (2011). Moment magnitude ( $\mathrm{M}_{\mathrm{w}}$ ) conversion relations for use in hazard assessment in eastern Canada, Seismological Research Letters, 82, 984-990, doi:10.1785/gssrl.83.3.984.

Bent, A. L. (2015a). Regional Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2011-2013, Geological Survey of Canada Open File 7726, 71 p.

Bent, A. L. (2015b). Regional Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2014, Geological Survey of Canada Open File 7834, 35 pp., doi:10.4095/296822.

Bent, A. L. (2016). Moment Magnitude ( $\mathrm{M}_{\mathrm{w}}$ ) Conversion Relations for Use in Hazard Assessment in Offshore Eastern Canada, Geological Survey of Canada Open File 8027, 12 р., doi:10.4095/297965.

Bent, A. L., J. Drysdale and H. K. C. Perry (2003). Focal mechanisms for Eastern Canadian Earthquakes; 1994-2000, Seismological Research Letters, 74, 452-468.

Bent, A. L., V. Peci and S. Halchuk (2016). The 2015 Canada Day Earthquake in Nova Scotia, Seismological Research Letters, 87, 1224-1231, http://dx.doi.org/10.1785/0220160074.

Brune, J. and J. Dorman (1963). Seismic waves and earth structure in the Canadian shield, Bulletin of the Seismological Society of America, 53, 167-210.

Canadian National Earthquake Database (CNED, 2016). On-line database, http://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php, last accessed 27 January 2017.

Canadian National Waveform Archive (CNWA, 2016). On-line database, http://www.earthquakescanada.nrcan.gc.ca/stndon/wf index-eng.php, last accessed 27 January 2017.

Herrmann, R. B. (2016). Moment Tensors for North America. Saint-Louis University, http://www.eas.slu.edu/eqc/eqc mt/MECH.NA/MECHFIG/mech.html on line database last accessed 27 January 2017.

Kao, H., P.-R. Juan, K.-F. Ma, B.-S. Huang and C.-C. Liu (1998). Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophysical Research Letters, 25, 3619-3622.

Kao, H., Y.-H. Liu and P.-R. Juan (2001). Source parameters of regional earthquakes in Taiwan: January-December 1997, Terrestrial, Atmospheric and Oceanic Sciences, 12, 431-439.

Kao, H., S.-J. Shan, A. Bent, C. Woodgold, G. Rogers, J. F. Cassidy and J. Ristau (2012). Regional Centroid-Moment-Tensor Analysis for Earthquakes in Canada and Adjacent Regions: An Update, Seismological Research Letters, 83, 505-515, doi:10.1785/gssrl.83.3.505.

Nuttli, O. (1973). Seismic wave attenuation and magnitude relations for eastern North America, Journal of Geophysical Research, 78, 876-885.

Ristau, J. P. (2004). Seismotectonics of western Canada from regional moment tensor inversion, Ph.D. Thesis, University of Victoria, Victoria BC, Canada.

Ristau, J., G. Rogers and J. F. Cassidy (2007). Stress in western Canada from regional moment tensor analysis, Canadian Journal of Earth Sciences, 44, 127-148, doi:110.1139/E1106-1057.

## Appendix

Complete Moment Tensor Solutions for Earthquakes in Table 1
For each event listed in Table 1 the full moment tensor from the RCMT inversion is given. The format is described below (written communication from Kao, 2005). The earthquakes are identified by date of occurrence. In the case of two events on the same day, the origin time (hh:mm) is added for clarification.

Line 1-25: depth, E_nosh, E_sh, Mxx, Myy, Mzz, Mxy, Mxz, Myz (E_nosh: average misfit without any shift of synthetic seismograms)
(E_sh: average misfit with shift of synthetic seismograms)
< repeat for each depth >
Line 26: station(i), ishift(i), E(i), Ez(i), Er(i), Et(i)
(station: station name)
(ishift: number of shifted points,
original position + ishift = final position)
( E : average misfit for this station at the best-fitting depth)
(Ez: Z-comp misfit for this station at the best-fitting depth)
(Er: R-comp misfit for this station at the best-fitting depth)
(Et: T-comp misfit for this station at the best-fitting depth)
< repeat for each station >
Author's note: the misfit for each component is given for all stations used regardless of whether the component was used in the inversion; the average misfit, both for each station and overall, is calculated only from the components that were used.

## 2015-01-16

| 6 | 1.0000 | 1.0000 | $0.10000 \mathrm{E}+01$ | $-0.10000 \mathrm{E}+01$ | $0.00000 \mathrm{E}+00$ | $0.00000 \mathrm{E}+00$ | $0.00000 \mathrm{E}+00$ |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.00000 \mathrm{E}+00$ |  |  |  |  |  |  |  |  |
| 7 | 0.6383 | 0.3988 | -14.55354 | -37.33959 | 105.98734 | 51.58540 | -33.40866 | -18.95355 |
| 8 | 0.5895 | 0.4367 | -50.58563 | -83.81283 | 177.91947 | 61.31291 | -27.15459 | -16.92674 |
| 9 | 0.4904 | 0.3997 | -50.37606 | -64.80808 | 128.56384 | 38.48860 | -15.67374 | -10.71592 |
| 10 | 0.4348 | 0.3540 | -54.90417 | -58.99003 | 115.89596 | 34.67639 | -14.88489 | -9.85675 |
| 11 | 0.4075 | 0.3335 | -51.53506 | -48.36773 | 96.01677 | 30.33400 | -13.91085 | -9.27203 |
| 12 | 0.4063 | 0.3319 | -49.08766 | -41.40256 | 83.72205 | 28.15002 | -13.52385 | -8.37281 |
| 13 | 0.4063 | 0.3366 | -45.76126 | -34.63634 | 72.43301 | 24.63219 | -12.76856 | -7.79880 |
| 14 | 0.4148 | 0.3459 | -43.65289 | -28.63053 | 63.81720 | 20.57954 | -11.98693 | -6.59765 |
| 15 | 0.4203 | 0.3549 | -42.89937 | -23.71064 | 57.83566 | 16.04286 | -11.42153 | -5.98854 |
| 16 | 0.4293 | 0.3597 | -44.57361 | -30.76731 | 67.29354 | 18.52409 | -12.81566 | -5.66939 |
| 17 | 0.4344 | 0.3668 | -44.56448 | -24.22722 | 60.90498 | 11.30639 | -12.24749 | -5.36323 |
| 18 | 0.4442 | 0.3765 | -44.59825 | -18.45875 | 55.46468 | 4.90564 | -11.49155 | -4.49831 |
| 19 | 0.4518 | 0.3842 | -45.04793 | -16.36241 | 53.75033 | 0.52477 | -11.36356 | -4.15790 |
| 20 | 0.4622 | 0.3921 | -44.09043 | -14.03472 | 50.15677 | -3.19851 | -10.69047 | -2.91683 |
| 21 | 0.4675 | 0.3989 | -42.59822 | -13.55651 | 47.70741 | -5.87896 | -10.30454 | -2.35484 |
| 22 | 0.4748 | 0.4051 | -39.85816 | -12.24065 | 43.52717 | -7.52408 | -9.67043 | -1.43744 |
| 23 | 0.4799 | 0.4100 | -38.54792 | -12.22336 | 41.83038 | -8.91826 | -9.53671 | -0.97044 |
| 24 | 0.4846 | 0.4145 | -37.34691 | -12.35366 | 40.69834 | -10.61087 | -9.11329 | -0.54072 |
| 25 | 0.4927 | 0.4194 | -36.91054 | -11.32046 | 39.28597 | -12.34162 | -8.63249 | -0.04720 |
| 26 | 0.4974 | 0.4229 | -37.34542 | -11.88852 | 40.19195 | -14.40595 | -8.53190 | 0.44749 |
| 27 | 0.5047 | 0.4277 | -37.54827 | -10.13509 | 39.20675 | -16.60226 | -7.97681 | 1.50065 |
| 28 | 0.5084 | 0.4315 | -37.78042 | -8.88053 | 38.72646 | -19.09637 | -7.54820 | 2.10639 |
| 29 | 0.5170 | 0.4368 | -38.82877 | -6.39808 | 38.03820 | -21.69557 | -7.16968 | 3.27507 |
| 30 | 0.5194 | 0.4402 | -39.33707 | -5.30067 | 38.18216 | -23.84622 | -7.04869 | 4.00948 |

a64 10.2135410 .1116490 .3154340 .986070 batg -1 0.2309420 .2309420 .9751020 .965247 dmcq 00.0985670 .0985670 .9957050 .991545 ggn 00.2283440 .2283440 .8893540 .952783 hal -10.5716880 .3141530 .8292230 .940659 Imn -2 0.3385550 .3385550 .9942350 .988683 Imq 10.3057490 .3057490 .9114150 .996658 pkme 00.5319030 .1000320 .7343320 .761344 sado -3 0.4681040 .4681040 .9271260 .778569

## 2015-02-12

| 6 | 0.4425 | 0.3465 | -160.33099 | 719.06254 | -324.41345 | 760.22048 | -1249.69094 | -1591.44765 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.4547 | 0.3570 | -330.29906 | 518.89778 | 98.81938 | 749.68621 | -1089.85566 | -1342.45626 |
| 8 | 0.4561 | 0.3769 | -627.48165 | 240.99490 | 649.50938 | 743.74051 | -990.17859 | -1171.89872 |
| 9 | 0.4359 | 0.3792 | -817.86776 | 117.18850 | 843.34033 | 766.89200 | -921.64253 | -1059.91076 |
| 10 | 0.4087 | 0.3652 | -1084.04562 | 241.34849 | 897.08125 | 1059.11416 | -1155.52440 | -1280.86847 |
| 11 | 0.4047 | 0.3634 | -952.49364 | 361.44931 | 580.04517 | 1031.81697 | -1058.94598 | -1154.27768 |
| 12 | 0.4030 | 0.3636 | -863.22167 | 465.29814 | 358.60136 | 1033.57468 | -1017.66447 | -1096.09388 |
| 13 | 0.4021 | 0.3658 | -823.19289 | 560.84118 | 208.28650 | 1070.02077 | -1021.83931 | -1091.71426 |
| 14 | 0.4024 | 0.3690 | -770.82733 | 617.15706 | 92.63974 | 1067.37124 | -995.23251 | -1055.53404 |
| 15 | 0.4061 | 0.3760 | -708.58946 | 634.37341 | 6.47783 | 1049.91210 | -974.52846 | -1045.21849 |
| 16 | 0.4065 | 0.3801 | -684.16228 | 680.17378 | -59.33699 | 1074.78021 | -1126.51629 | -1189.88352 |
| 17 | 0.4066 | 0.3799 | -663.53146 | 741.69337 | -137.95932 | 1078.08333 | -1105.55619 | -1144.75539 |
| 18 | 0.4094 | 0.3829 | -625.83300 | 763.95697 | -195.58525 | 1063.12976 | -1091.36732 | -1122.94162 |
| 19 | 0.4145 | 0.3872 | -630.36915 | 796.64441 | -223.57035 | 1077.04801 | -1113.91340 | -1152.33184 |
| 20 | 0.4179 | 0.3888 | -502.58835 | 674.19709 | -217.60543 | 885.51290 | -921.19863 | -948.89941 |
| 21 | 0.4182 | 0.3902 | -469.49576 | 675.27655 | -250.13853 | 885.96564 | -914.12378 | -941.54840 |
| 22 | 0.4169 | 0.3913 | -469.97014 | 706.57942 | -281.02821 | 911.11708 | -945.43712 | -970.35464 |
| 23 | 0.4166 | 0.3924 | -453.22143 | 709.06169 | -298.64335 | 902.10563 | -940.76083 | -962.13334 |
| 24 | 0.4165 | 0.3936 | -437.23477 | 709.39819 | -313.34742 | 894.55465 | -935.95009 | -953.39786 |
| 25 | 0.4144 | 0.3910 | -487.68902 | 806.66190 | -361.07288 | 981.75411 | -1002.47188 | -1002.59804 |
| 26 | 0.4132 | 0.3886 | -472.08109 | 806.79851 | -375.02361 | 977.83893 | -996.49961 | -994.98363 |
| 27 | 0.4131 | 0.3877 | -455.98652 | 804.43844 | -387.00121 | 975.72717 | -990.80006 | -984.17504 |
| 28 | 0.4157 | 0.3892 | -469.24526 | 821.73472 | -392.07894 | 1004.84122 | -1020.81257 | -1017.69481 |
| 29 | 0.4153 | 0.3884 | -432.72342 | 805.51190 | -411.39033 | 1022.18570 | -1014.35345 | -1009.92117 |
| 30 | 0.4155 | 0.3886 | -411.07339 | 797.21763 | -422.25519 | 1027.48875 | -1006.69113 | -996.35327 |
| eunu | 3 | 0.479099 | 0.196224 | 0.760970 | 0.480103 |  |  |  |
| frb | -1 | 0.238704 | 0.188142 | 0.247161 | 0.280808 |  |  |  |
| res | 1 | 0.320653 | 0.327189 | 0.367837 | 0.266933 |  |  |  |
| tule | 2 | 0.347453 | 0.247196 | 0.447709 | 0.908796 |  |  |  |


| 6 | 0.5693 | 0.5142 | -8.83893 | -107.92059 | 122.64644 | -23.53209 | 38.44490 | -23.68848 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 0.5409 | 0.4714 | -18.48111 | -121.44272 | 136.30752 | -23.95595 | 31.58187 | -18.75652 |  |
| 8 | 0.5463 | 0.4612 | -18.08112 | -141.52418 | 139.53462 | -27.97591 | 31.07964 | -19.04642 |  |
| 9 | 0.5771 | 0.4933 | 1.25897 | -124.46771 | 93.52390 | -28.14246 | 27.75347 | -15.90054 |  |
| 10 | 0.6166 | 0.5416 | 24.10837 | -119.11164 | 60.34111 | -31.96841 | 27.68183 | -16.16883 |  |
| 11 | 0.6333 | 0.5756 | 41.24185 | -109.71026 | 35.07338 | -33.83391 | 26.44722 | -15.28285 |  |
| 12 | 0.6117 | 0.5625 | 52.41985 | -104.02119 | 20.60096 | -35.13760 | 25.38340 | -14.61892 |  |
| 13 | 0.6277 | 0.5794 | 59.36581 | -100.50715 | 12.44678 | -35.88439 | 24.46748 | -14.14095 |  |
| 14 | 0.6389 | 0.5961 | 63.52792 | -98.14672 | 7.74941 | -36.15961 | 23.66891 | -13.80305 |  |
| 15 | 0.6486 | 0.6136 | 65.81959 | -96.37232 | 5.00032 | -36.05239 | 22.95627 | -13.61032 |  |
| 16 | 0.6973 | 0.6622 | 63.24151 | -94.35682 | 8.49960 | -34.70797 | 24.52536 | -14.75505 |  |
| 17 | 0.7068 | 0.6756 | 65.69033 | -94.19061 | 6.37642 | -34.86211 | 24.70496 | -14.89849 |  |
| 18 | 0.7222 | 0.6895 | 59.23045 | -82.81906 | 4.31225 | -30.54484 | 22.03288 | -13.33011 |  |
| 19 | 0.7311 | 0.6998 | 58.14598 | -80.03445 | 3.26842 | -29.17743 | 21.68635 | -13.18764 |  |
| 20 | 0.7407 | 0.7079 | 49.67990 | -67.41755 | 2.03121 | -24.43919 | 18.59140 | -11.34735 |  |
| 21 | 0.7460 | 0.7138 | 50.19223 | -67.70801 | 1.57447 | -23.95063 | 19.09762 | -11.73215 |  |
| 22 | 0.7518 | 0.7187 | 48.76822 | -65.53476 | 1.15425 | -22.46379 | 18.93077 | -11.71514 |  |
| 23 | 0.7556 | 0.7240 | 48.40860 | -63.11623 | -0.41917 | -20.66676 | 19.20504 | -11.37304 |  |
| 24 | 0.7603 | 0.7270 | 47.55678 | -60.71423 | -1.54558 | -18.33304 | 19.73894 | -10.85049 |  |
| 25 | 0.7664 | 0.7295 | 57.05199 | -71.30251 | -3.22547 | -19.50703 | 24.68024 | -12.67847 |  |
| 26 | 0.7697 | 0.7336 | 52.65388 | -64.85340 | -3.77259 | -15.65100 | 23.60655 | -11.49207 |  |
| 27 | 0.7745 | 0.7354 | 51.92871 | -63.16640 | -4.29526 | -13.12562 | 23.90338 | -11.15617 |  |
| 28 | 0.7791 | 0.7378 | 51.40201 | -62.04318 | -4.69608 | -10.77046 | 24.09619 | -10.88657 |  |
| 29 | 0.7822 | 0.7401 | 52.14852 | -62.22134 | -5.08774 | -9.42515 | 24.06699 | -10.78084 |  |
| 30 | 0.7865 | 0.7427 | 54.58763 | -64.20844 | -5.25212 | -8.02503 | 24.73626 | -11.02117 |  |
| eunu | 3 | 0.607551 | 0.458448 | 0.633872 | 0.730335 |  |  |  |  |
| kull | 1 | 0.463388 | 0.240209 | 0.440457 | 0.709498 |  |  |  |  |
| res | 1 | 0.409852 | 0.409852 | 0.952289 | 0.994306 |  |  |  |  |
| tule | -1 | 0.363848 | 0.133647 | 0.565151 | 0.392745 |  |  |  |  |


| 6 | 0.3719 | 0.3616 | 28.45205 | -153.53575 | 135.94867 | 83.04610 | 102.26745 | 82.71152 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 0.3556 | 0.3417 | 11.69584 | -227.76793 | 215.06308 | 108.72854 | 116.09821 | 91.68316 |
| 8 | 0.3514 | 0.3259 | 11.47215 | -235.71259 | 198.38157 | 109.21962 | 105.28070 | 81.24411 |
| 9 | 0.3662 | 0.3328 | 46.85952 | -224.02434 | 132.47028 | 118.06560 | 103.49522 | 76.40772 |
| 10 | 0.3827 | 0.3468 | 86.66312 | -198.73417 | 64.09470 | 124.41776 | 99.46315 | 69.60878 |
| 11 | 0.4032 | 0.3531 | 114.28909 | -182.67773 | 24.16446 | 132.16846 | 97.01735 | 65.12278 |
| 12 | 0.4236 | 0.3617 | 127.53358 | -168.97534 | 2.84839 | 135.19901 | 92.27496 | 60.74066 |
| 13 | 0.4458 | 0.3717 | 133.99453 | -158.98730 | -8.77985 | 137.18752 | 88.29971 | 57.35627 |
| 14 | 0.4689 | 0.3807 | 136.37241 | -150.67048 | -15.61451 | 138.30819 | 84.87476 | 54.68138 |
| 15 | 0.4919 | 0.3896 | 136.32941 | -143.21093 | -19.96414 | 138.80369 | 81.85309 | 52.52938 |
| 16 | 0.5157 | 0.4035 | 135.45959 | -133.95128 | -25.26973 | 139.77121 | 89.60202 | 57.81707 |
| 17 | 0.5381 | 0.4081 | 131.88251 | -124.00002 | -29.20054 | 138.75368 | 87.26084 | 55.08658 |
| 18 | 0.5536 | 0.4132 | 128.11151 | -116.07288 | -31.41384 | 136.45657 | 85.61521 | 52.38530 |
| 19 | 0.5677 | 0.4180 | 123.46110 | -106.74744 | -34.67395 | 134.93632 | 83.20628 | 51.06400 |
| 20 | 0.5817 | 0.4240 | 118.70818 | -98.23315 | -37.02191 | 135.76106 | 81.51101 | 50.43189 |
| 21 | 0.5971 | 0.4318 | 112.21588 | -89.16054 | -38.37993 | 134.19443 | 79.15734 | 48.95021 |
| 22 | 0.6095 | 0.4387 | 108.31362 | -80.41070 | -42.07685 | 132.71645 | 77.04600 | 47.56299 |
| 23 | 0.6209 | 0.4455 | 104.98450 | -72.24921 | -45.83620 | 131.45070 | 74.87934 | 46.27378 |
| 24 | 0.6303 | 0.4519 | 102.36222 | -64.77562 | -49.67678 | 130.45189 | 72.63619 | 45.06935 |
| 25 | 0.6355 | 0.4593 | 101.95746 | -60.40401 | -52.71490 | 128.21518 | 71.01213 | 43.68200 |
| 26 | 0.6403 | 0.4638 | 100.88326 | -54.29759 | -56.78244 | 127.79457 | 68.77275 | 42.53922 |
| 27 | 0.6438 | 0.4681 | 100.59061 | -48.82563 | -61.01050 | 127.78089 | 66.56701 | 41.37066 |
| 28 | 0.6459 | 0.4684 | 101.14733 | -45.50267 | -64.34684 | 132.63435 | 64.60031 | 42.07393 |
| 29 | 0.6500 | 0.4733 | 99.90107 | -40.63219 | -67.25924 | 134.03923 | 62.74356 | 40.78303 |
| 30 | 0.6500 | 0.4758 | 102.52690 | -36.93690 | -72.54140 | 135.88941 | 60.85437 | 39.36432 |

frb -1 0.2268920 .2191160 .2346680 .538146 kajq -1 0.3960320 .1969740 .5281780 .462943 kngq -1 0.3423790 .1708600 .6812800 .174999 nanl 00.3726080 .3743110 .3709051 .000000 schq 00.2916910 .2916910 .9241130 .831723

| 1 | 0.6691 | 0.6040 | 11.13422 | -12.42304 | 1.84622 | -10.88687 | 72.90223 | 24.76094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.6510 | 0.5929 | 12.38352 | -14.09193 | 3.00054 | -11.75824 | 39.23248 | 14.53949 |
| 3 | 0.6227 | 0.5727 | 10.29529 | -12.35781 | 3.84615 | -10.12127 | 21.64135 | 7.36321 |
| 4 | 0.6056 | 0.5658 | 10.73194 | -14.46709 | 6.62732 | -11.00195 | 17.34583 | 4.83932 |
| 5 | 0.5825 | 0.5480 | 10.39630 | -18.93092 | 12.82052 | -12.79351 | 15.91105 | 3.61004 |
| 6 | 0.5681 | 0.5370 | 11.67491 | -21.69294 | 14.39428 | -14.69062 | 17.10488 | 3.12367 |
| 7 | 0.5403 | 0.5098 | 8.83949 | -28.65699 | 24.58355 | -16.83105 | 16.30154 | 1.68924 |
| 8 | 0.5230 | 0.4907 | 8.04533 | -46.99517 | 42.95727 | -25.27519 | 21.05633 | 0.84542 |
| 9 | 0.5083 | 0.4840 | 8.54085 | -50.32372 | 42.20157 | -27.63614 | 20.18717 | -0.03142 |
| 10 | 0.5104 | 0.4900 | 12.08166 | -50.44813 | 36.30181 | -29.75924 | 19.43114 | -0.54987 |
| 11 | 0.5198 | 0.5028 | 15.40307 | -48.19079 | 29.70460 | -30.55405 | 18.21097 | -0.90275 |
| 12 | 0.5280 | 0.5119 | 17.91032 | -46.49131 | 25.13884 | -31.25395 | 17.22851 | -1.46204 |
| 13 | 0.5338 | 0.5178 | 19.71775 | -45.26267 | 22.07918 | -31.96711 | 16.48212 | -2.05609 |
| 14 | 0.5395 | 0.5212 | 20.83890 | -44.40904 | 20.17167 | -32.23352 | 15.68271 | -2.77468 |
| 15 | 0.5461 | 0.5246 | 21.73276 | -43.67012 | 18.58948 | -32.85440 | 15.16844 | -3.32632 |
| 16 | 0.5516 | 0.5257 | 21.70414 | -44.34406 | 19.87504 | -33.42886 | 16.77665 | -4.25651 |
| 17 | 0.5443 | 0.5231 | 16.29729 | -31.47023 | 13.25297 | -24.69541 | 11.88935 | -3.26402 |
| 18 | 0.5506 | 0.5274 | 16.81729 | -30.56609 | 11.95721 | -25.21069 | 11.74784 | -3.19771 |
| 19 | 0.5581 | 0.5316 | 17.25834 | -29.76431 | 10.85683 | -25.56965 | 11.67931 | -3.43084 |
| 20 | 0.5645 | 0.5343 | 17.56133 | -29.06038 | 9.88767 | -25.98450 | 11.66836 | -3.72711 |
| 21 | 0.5715 | 0.5380 | 17.85704 | -28.55842 | 9.09522 | -26.28485 | 11.68974 | -3.94880 |
| 22 | 0.5779 | 0.5416 | 18.04270 | -28.01018 | 8.34826 | -26.72429 | 11.69736 | -4.18927 |
| 23 | 0.5839 | 0.5451 | 18.31490 | -27.49384 | 7.58924 | -27.24507 | 11.76442 | -4.42877 |
| 24 | 0.5927 | 0.5514 | 17.61306 | -25.64464 | 6.56951 | -26.33145 | 11.19596 | -4.39393 |
| 25 | 0.5992 | 0.5545 | 17.87393 | -25.29999 | 6.00203 | -26.88291 | 11.24634 | -4.56044 |

a16 -10.7688700 .7583920 .9616310 .779348
batg 00.4358910 .0843190 .9725190 .787463
elnb 00.3036210 .2189560 .8301580 .388286
gbn -2 0.3692490 .3692490 .9722380 .991236
ggn 00.4859620 .7047540 .2671710 .885142
hal 20.5746160 .8896730 .3358200 .498353
Imn 00.4501380 .5060980 .8798250 .394177

| 1 | 0.5022 | 0.4956 | -16.36064 | 40.70148 | -23.73591 | 27.18529 | -74.83132 | -179.06340 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.4916 | 0.4869 | -17.38996 | 44.72838 | -25.45951 | 31.04997 | -60.52065 | -135.14248 |
| 3 | 0.4896 | 0.4819 | -16.85837 | 44.15181 | -24.67937 | 32.86535 | -43.88262 | -95.41878 |
| 4 | 0.4920 | 0.4814 | -17.00186 | 42.57633 | -22.00564 | 34.30741 | -36.13201 | -75.43045 |
| 5 | 0.4942 | 0.4805 | -17.83780 | 39.31870 | -16.42644 | 36.42976 | -31.19431 | -63.93040 |
| 6 | 0.4976 | 0.4788 | -19.88413 | 34.20601 | -10.51877 | 38.81985 | -32.32017 | -65.28487 |
| 7 | 0.4986 | 0.4771 | -21.24211 | 26.84808 | -2.04013 | 40.02401 | -27.26134 | -53.72648 |
| 8 | 0.4969 | 0.4738 | -23.02297 | 21.95967 | 3.40087 | 44.10989 | -25.19833 | -48.07907 |
| 9 | 0.4948 | 0.4706 | -21.78798 | 19.43064 | 3.11727 | 49.55807 | -23.79832 | -44.08686 |
| 10 | 0.4956 | 0.4687 | -17.83152 | 18.96054 | -1.48956 | 55.58018 | -22.75457 | -41.13510 |
| 11 | 0.4919 | 0.4657 | -12.99801 | 16.48093 | -4.09017 | 64.65845 | -22.10945 | -38.95028 |
| 12 | 0.4934 | 0.4670 | -8.32269 | 14.67312 | -7.16522 | 72.59604 | -21.52792 | -37.19933 |
| 13 | 0.4943 | 0.4688 | -4.30006 | 11.93583 | -8.50474 | 80.80882 | -21.12918 | -35.87446 |
| 14 | 0.5090 | 0.4736 | -2.41688 | 14.95237 | -13.92012 | 129.37449 | -31.44784 | -52.07800 |
| 15 | 0.5040 | 0.4801 | -0.79035 | 14.19587 | -14.97111 | 131.66899 | -30.98719 | -51.01716 |
| 16 | 0.5141 | 0.4919 | -1.23639 | 16.67149 | -17.05767 | 126.65054 | -35.23692 | -57.56458 |
| 17 | 0.5215 | 0.4990 | -3.47624 | 16.29076 | -14.05506 | 89.22315 | -27.25759 | -44.39681 |
| 18 | 0.5319 | 0.5075 | -6.66579 | 20.99311 | -15.62132 | 82.63203 | -28.27587 | -46.52822 |
| 19 | 0.5422 | 0.5157 | -10.36606 | 25.45378 | -16.39483 | 75.42060 | -29.68881 | -48.73742 |
| 20 | 0.5530 | 0.5252 | -12.33111 | 28.06028 | -17.00373 | 67.60584 | -29.72822 | -48.70683 |
| 21 | 0.5582 | 0.5281 | -14.20467 | 31.16880 | -18.25768 | 64.45819 | -31.09150 | -50.81669 |
| 22 | 0.5647 | 0.5334 | -14.98693 | 32.40701 | -18.67553 | 60.00461 | -31.17677 | -50.80836 |
| 23 | 0.5672 | 0.5353 | -17.03936 | 35.37996 | -19.53473 | 57.55529 | -31.09109 | -50.50589 |
| 24 | 0.5714 | 0.5386 | -17.13616 | 35.82955 | -19.85562 | 55.37012 | -31.24828 | -50.55923 |
| 25 | 0.5723 | 0.5379 | -17.69604 | 37.48398 | -20.96642 | 56.21525 | -32.73051 | -52.72170 |

frb 10.6101310 .6101310 .9358520 .835397
res -20.3671030 .1801080 .8682280 .554099
tule 00.4198430 .4173680 .4223170 .860810

## 2015-11-18

| 6 | 0.6624 | 0.6526 | 3.23476 | -6.16487 | 2.92968 | 18.73150 | 9.63226 | 0.74676 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.6610 | 0.6502 | 2.51573 | -6.64322 | 4.12204 | 21.92745 | 8.67817 | 0.39066 |
| 8 | 0.6590 | 0.6467 | 1.43127 | -6.57736 | 5.14133 | 25.08976 | 8.10153 | 0.03918 |
| 9 | 0.6575 | 0.6442 | -0.42365 | -6.08728 | 6.50683 | 28.48461 | 7.73659 | -0.28675 |
| 10 | 0.6553 | 0.6427 | -3.09923 | -4.61527 | 7.71118 | 30.42311 | 7.20164 | -0.60087 |
| 11 | 0.6529 | 0.6417 | -6.77741 | -2.42213 | 9.19667 | 33.18607 | 7.11982 | -0.96431 |
| 12 | 0.6524 | 0.6395 | -16.32384 | 1.04471 | 15.27585 | 51.27789 | 10.35630 | -1.97421 |
| 13 | 0.6438 | 0.6331 | -21.84247 | 5.72862 | 16.11145 | 51.04824 | 10.07235 | -2.40415 |
| 14 | 0.6340 | 0.6215 | -18.55512 | 6.67556 | 11.87854 | 36.46070 | 7.15469 | -1.96675 |
| 15 | 0.6274 | 0.6116 | -19.77021 | 7.82141 | 11.94853 | 36.40136 | 7.11377 | -2.10776 |
| 16 | 0.6243 | 0.6040 | -20.77596 | 6.40274 | 14.37370 | 41.14867 | 8.37837 | -2.58048 |
| 17 | 0.6236 | 0.5982 | -19.83386 | 4.57508 | 15.26070 | 44.09569 | 8.56870 | -2.61006 |
| 18 | 0.6242 | 0.5965 | -17.24705 | 1.63171 | 15.61873 | 45.88584 | 8.39543 | -2.49022 |
| 19 | 0.6258 | 0.5961 | -15.31706 | -1.53860 | 16.86064 | 50.33218 | 8.58769 | -2.48149 |
| 20 | 0.6260 | 0.5963 | -12.96794 | -4.58606 | 17.56057 | 53.05000 | 8.45733 | -2.38602 |
| 21 | 0.6259 | 0.5967 | -10.98589 | -7.36082 | 18.35470 | 56.04544 | 8.35308 | -2.32578 |
| 22 | 0.6274 | 0.5977 | -10.52370 | -8.53814 | 19.07154 | 57.77396 | 8.13108 | -2.21931 |
| 23 | 0.6304 | 0.5974 | -9.18951 | -11.46841 | 20.66912 | 62.91125 | 8.38406 | -2.25976 |
| 24 | 0.6301 | 0.5958 | -7.87764 | -13.58050 | 21.47046 | 66.14585 | 8.33591 | -2.27758 |
| 25 | 0.6291 | 0.5939 | -6.70929 | -15.56244 | 22.28490 | 69.63661 | 8.29546 | -2.32573 |
| 26 | 0.6279 | 0.5921 | -5.63038 | -17.42583 | 23.06999 | 73.25246 | 8.26284 | -2.40125 |
| 27 | 0.6261 | 0.5901 | -4.60536 | -19.25510 | 23.87464 | 77.29217 | 8.23656 | -2.51743 |
| 28 | 0.6243 | 0.5887 | -3.62645 | -20.89466 | 24.53560 | 81.25025 | 8.21467 | -2.65808 |
| 29 | 0.6224 | 0.5878 | -2.68008 | -22.34504 | 25.03943 | 85.26017 | 8.20096 | -2.83681 |
| 30 | 0.6207 | 0.5880 | -1.77913 | -23.48965 | 25.28202 | 89.02881 | 8.19607 | -3.04715 |

clrn 10.3966040 .3966041 .0000000 .977589
frb 00.6990230 .6990230 .9626651 .000000
kngq 20.6677290 .6677290 .9681351 .000000

