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Summary

River flow process usually was affected by a wide variety of factors and it is very difficult to
make the trend prediction. Various mathematical techniqgues have been developed to tackle
the prediction, but these techniques are less accurate compared with physically-based
models. In this paper | presented the recurrent support vector machine methods to study a
series of climate variables, such as temperature and precipitation, and then predict the future
trend of flow river rate based on these climate variables. The Athabasca River data have
been tested and the flow river rates in 100 years have been predicted.

Introduction

River flow rate prediction is an extremely complex problem because the flow process can be
influenced by a wide variety of factors including the precipitation intensity and distribution,
temperature, channel characteristics, watershed geology and topography, vegetation cover,
human activities (e.g. land-use changes) and even, indirectly, the greenhouse gas releases
[Hu 2001].

Attempts to make the predictions of river flow rate have been a relentless pursuit by
hydrologists and water resources engineers. Broadly speaking, two different approaches can
be used to predict the river flow rate: physically-based models and stochastic models.
Physically-based models try to represent the physical processes observed in the real world.
Typically, such models contain representations of surface runoff, subsurface flow,
evapotranspiration, and channel flow, but the physically-based models can be far more
complicated. In contrast, the stochastic models based on data are black box systems, using
mathematical and statistical concepts to link a certain input (for instance precipitation) to the
model output (for instance flow rate). The stochastic models have the advantages of being
simple and reasonably accurate and many hydrologists favor the use of stochastic models.

Various mathematical techniques have been developed to tackle the stochastic models, such
as regression, neural networks and system identification. Recently, a number of complex
processes have been modeled with the aid of neural networks for the river flow rate
prediction. All these techniques are often less accurate compared with physically-based
models which need the extremely complex relationships between river flow and its
influencing factors. However, the physical parameters and effort required for calibrating a
physical model are tremendous such that prediction of river flow using a physical process
model is not viable in many circumstances.

To introduce an explicit link between climate variables in forecasting of future water supply,
we proposed a model based on Support Vector Machines in this work. Firstly, the Support
Vector Machine recursively predicts the temperature and precipitation for 100 coming years.
Then, the forecasts of the temperature and precipitation obtained can be used further to
predict the river flow rate for 100 coming years using the Support Vector Machine.



Support Vector Machine for Regression

The Support Vector Machine (SVM) (Vapnik, 1998) has become widely established as one of
the main stream approaches to pattern recognition and machine learning. It makes
predictions in terms of a linear combination of kernel functions centred on a subset of the
training data, known as support vectors.

Despite its widespread success, the SVM suffers from some of its weakness, notably the
absence of probabilistic outputs. The relevance vector machine (Tipping, M. E., 2004) uses
the same kernel functional form as SVM's, but generates predictive distributions instead of
point predictions by introducing Bayesian statistics. Under the assumption of a Gaussian
distribution of the data, a Bayesian-based Support Vector Machine Classification employs the
same kernel functions and also can make predictions based on the Gaussian likelihood.

Under the assumption of regression, we are given a set of input variables, X = {x; i =
1, ... N} together with corresponding targets, such as river flow rate, Y = {y; i = 1, ... N}

The goal is to predict the annual river flow rate target using existing observed data based on
the regression through supervised learning of the Bayesian-based Support Vector Machine.

The proposed method makes the predictions based on the following linear combinations of
the form:

Y(.'X,']) = Zﬁ:l Wy K(.'X,'j,xn) + wy (1)
Where {w, n =1,..N} are the model weights, and {K(x;,x,} denotes the kernel functions

(Scholkopf et al.,, 1999). The table 1 provides examples of kernel functions that have been
extensively tested in the machine learning literature (Vapnik, 1998).

Table 1
Type of Kernel Function Kernel Function
Polynomial of degree p K(u,v) = v+ 1)?
Gaussian Radial Basis with width p Ku,v) =exp(—(u—v)(u—v)T/p?)

To avoid notational clutter we will re-write equation (1) in matrix form:
Y = W¢ (2)

where {@} denotes the design matrix of kernel functions, the vector of targets is given by{Y},
and {W} indicates the vector containing the unknown weights.

In the Bayesian-based support vector machine, the likelihood function of the dataset can be
written as:
2



p(tlw,0?) = (2mo?) zexp{- It —wol?}  (3)

The posterior over the weights is then obtained from Bayes' rule:

_+1) 1
pwlt,a,0%) = (2m)" 2 |5l 2exp{-S(w—- 'S w-w} (@)
with
Y =(@"Bp + A)71 (5)
u=Y0oTBt (6)

where we defined A = diag(ay, a4, ..., ay)

By integrating the weights from (4), we obtain the marginal likelihood (Tipping, M. E., 2004):

(N

+1)
p(tla,0%) = 2m)™ = |B~ + pA~'¢T| " V2exp {—3tT (B~ + pa19T) e} (7)
For the regression, we cannot experimentally explore the space of possible ¢ so we instead
optimise directly via the iterative procedure to obtain the a; and then calculate the weights
using the following procedure.

1) Calculate a; = y;/u? where we definedy; =1 — a;3;

2) Compute the variance matrix Y = (7 B@ + A)

3) Calculate the residual between original and predicted results.

4) Repeat 1) to 3) until the residual does not be reduced or other convergence criteria
are satisfied.

In practice, during the iteration, a; could approach infinity and Eq. (4) become infinitely
peaked at zero — implying that the corresponding kernel functions can be ‘pruned’. Those «;
will be removed during the iteration.

Methods for Annual River Flow Rate Prediction

1) Recurrent Support Vector Machine to Forecast Annual Temperature and
Precipitation

Support Vector Machines has been gaining popularity in regression and classification due to
its excellent performance at the time of dealing with sparse inputs and also has been used as
time series forecasters such as finance stock evolution and river flow rate predictions.

During river low-flow and high-flow periods the river flow rate is determined by a series of
significant time series variables, such as the temperature and precipitation. During the annual
river flow rate study, the annual flow rates (minimum, maximum, total and mean) of each
year were calculated from the monthly observed dataset and the annual variables were
estimated from the monthly observed dataset.



The temperature or precipitation based on the observed time series variables can be
expressed as X: {x;,i=1,..N}

SVM Training Dataset
All the observed variables will be used to build the training dataset.

X1 Xy X3 X4 - Xg f(X1)
Xy X3 Xg Xg e Xd+1 f(XZ)
X=|%* % Xs X6 e Xae2 | f(X3) (8)
\x4 Xs X6 X7 xd+3/ f(X4)
Xt Xt+1  Xt+2 Xt+3 o XN-1 \f(Xt)/
Xd+1 Y1
Xd+2 Y2
I x !

Xd+4 |_ Va4
\ XN / Yt
Where X is training dataset and Y is target vectors. The d is the time lag, N is total observed
samples and t = N-d. {X; = {xl,xz,xgl ...,xd} i =1,..t}is one of input training samples.

The following linear combinations will be applied to the training dataset to optimize and
calculate the model weights {w, n =1, ... N}

Y(X;) = XN-1 0, K(X, X)) + w, (10)

When building the training dataset, having a sufficiently large time lag window is important for
a time series predictor - if the window is too small then the system is being projected onto a
space of insufficient dimension, in which the system cannot make reliable predictions. If a
window is too large, it may also have problems: because all necessary information is
populated in a subset of the window, the remaining fields will represent noise or
contamination, in which the system will make wrong time-trend predictions. In Support Vector
Machine training phase, if the lag time window is reasonable, the predicted values will be
optimized; otherwise the equation will be ill-posed and cannot find the optimized results.
Usually we need a series of test to determine whether the time lag window is reasonable or

not.

SVM Predictions
To predict more than one-step ahead value of time series, support vector machine uses the
predicted values as known data for the next ones. The recurrent SVM model can be

constructed by first making one-step ahead prediction:

Xiy1 = {xt+1,xt+2,xt+3, ---'}’t} (11)

Ver1 = 2=t Wn KXe41, Xp) + 0o (12)



where t denotes the numbers of input dataset and y, denotes one-step ahead predicted
value.

To predict the next value, the same prediction function is used:

Xiyo = {xt+2,xt+3,xt+4, ---;J’t+1} (13)
Ye+2 = Zrl\llzl Wy K(X¢12,Xn) + 0o (14)

In this equation, the predicted value of y,,; is used instead of the true value, which is
unknown. Then, for the M-steps ahead prediction, y,., to y;,are predicted iteratively. When
the predicted length M is larger than d, there are M-d real data to predict M™ value. When M
exceeds d, all input variables are predicted values. The main problem of the recurrent
support vector machine forecasting strategy is that there is a certain amount of error between
the predicted value y,,; and the true value. As the first predicted value is taken as input to
obtain the second one, this error is propagated through the prediction function. The second
predicted value has potentially twice more error: the difference between y,,,and the true
value plus the propagated error. With an increasing step ahead prediction, this accumulation
can be important.

2) Support Vector Machine to Forecast Annual River Flow Rate

The river can be considered a complex, nonlinear system through which input variables, i.e.
temperature, precipitation and Decadal Pacific Oscillation (DPO), are transformed by our
support vector machine into output variables, i.e., river flow annual maximum rate, minimum
rate, average rate and total rate.

Given a set of input variables, {XX = {G; S;, P;, D;},i = 1, ... N} together with corresponding
targets, such as river annual maximum flow rate and minimum flow rate:
{YY == {Fl Ri’Vi’Ai}'i = 1, N}

The input observed variables can be expressed as following:

G, S, P, D fXy)

G, S, P, D, f(Xz)
xx=|G S5 Ps Dy|=|f&)| g
G, S, P, D, f(X4)

Gy Sy Py Dy f ()

{G; = {91, 92 .94}, = 1,...N} is training vectors of maximum annual temperatures and
d is the lag time.
{S; = {51,852, ..,S4},,1 = 1, ... N} is training vector of minimum annual temperatures
{P; = {p1,p2, - Pa},,i = 1,..N}is training vector of annual precipitation
{D; = {p1,p2 - pa},i = 1,...N} is training vector of annual Decadal Pacific Oscillation (DPO)

The output observed variables can be expresses as:



vvy=| Fs Rs V3 Az | (16)
Fv Ry Vy Ay
{F;,i = 1,...N} is training target of maximum annual river flow rate
{R;,i = 1,...N}is training target of minimum annual river flow rate

{V;,i =1,..N}is training target of total annual river flow rate
{A;,i = 1,...N}is training target of average annual river flow rate

The goal is to predict the annual river flow rate target using above existing observed data
pairs (XX, YY) based on Bayesian regression through supervised learning of the Support
Vector Machines.

During the training phase, the proposed method makes the trainings based on the following
linear combinations of the form using the observed data pairs (XX, YY):

YY(X;) =IN_1 w0, K(X;, X)) + wp (17)

During the prediction phase, the proposed method makes the river flow rate predictions
based on the same linear combinations as the training phase:

YY(Ym) = Zﬁ=1 Wn K(Ym'Xn) + wo (18)

In this equation, the long-term predicted value of Y,, is unknown, which is forecasted
iteratively using recurrent support vector machine. M is the predicted length and means the
M-steps ahead prediction.

The main problem of the support vector machine forecasting strategy is that the recurrent
predicted variables instead of the true variables which are not known, such as temperature
and precipitation, are taken as input values to make the predictions of the river flow rate.
Because there is a certain amount of error between the recurrent predicted value y,,; and
the true value and also the first recurrent predicted value is taken as input to obtain the
second one, this error is propagated through the prediction function. So the accumulation
error can be important for the long-term support vector machine. However, the support vector
machine has been trained with all available observed input variables, such as temperature
and precipitation, and output targets (such as flow rate), with the purpose of long-term river
flow rate prediction which seems to be a better approach.

Methods for Daily Minimum River Flow Rate Prediction
1) Support Vector Machine to Forecast Daily Minimum Flow Rate

The river can be considered a complex, nonlinear system through which input variables, i.e.
temperature, precipitation and Decadal Pacific Oscillation (DPO), are transformed by our
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support vector machine into output variables, i.e., river flow annual maximum rate, minimum
rate, average rate and total rate. During the daily minimum flow rate study, the daily minimum
flow rate of each year was calculated from the daily dataset and other annual variables were
estimated from the monthly dataset or calculated from the daily observed dataset if the
dataset are available.

Given a set of input variables, {XX = {G; S;,P;,D;},i = 1,... N} together with corresponding
targets, such as daily minimum flow rate: {YY = {F; },i = 1, ... N}

The input observed variables can be expressed as following:

XX= |G S3 Ps D3| (15)
\64 Sa Py D4/
Gy Sy Py Dy
{G; = {91, 92, .94}, = 1,...N} are training vectors of maximum annual temperatures and
d is the lag time.
{S; = {s1,52, ...,84},,i = 1,...N} are training vectors of minimum annual temperatures

{P; = {p1,p2 - Pa},i = 1,.. N} are training vectors of annual precipitation

{D; = {py,p5 -.,0a},,i = 1,... N} are training vectors of annual Decadal Pacific Oscillation
(DPO)

The output observed variables can be expresses as:

Fy
{F;,i =1, ...N}is training target of daily minimum river flow rate
The goal is to predict the daily minimum river flow rate using above existing observed data
pairs (XX, YY) based on Bayesian regression through supervised learning of the Support

Vector Machines.

During the training phase, the proposed method makes the trainings based on the following
linear combinations of the form using the observed data pairs (XX, YY):

YY(X;) = XN_1 wn K(Xj, Xp) + wo (17)

During the prediction phase, the proposed method makes the river flow rate predictions
based on the same linear combinations as the training phase:



YY(Ym) = g:l Wp K(meXn) T Wy (18)

In this equation, the long-term predicted value of Y, is unknown, which is forecasted
iteratively using recurrent support vector machine. M is the predicted length and means the
M-steps ahead prediction. X is the temperature and precipitation which were obtained
through the recurrent support vector machine described from section 3.

The main problem of the support vector machine forecasting strategy is that the recurrent
predicted variables instead of the true variables which are not known, such as temperature
and precipitation, are taken as input values to make the predictions of the river flow rate.
Because there is a certain amount of error between the recurrent predicted value y,,; and
the true value and also the first recurrent predicted value is taken as input to obtain the
second one, this error is propagated through the prediction function. So the accumulation
error can be important for the long-term support vector machine. However, the support vector
machine has been trained with all available observed input variables, such as temperature
and precipitation, and output targets (such as flow rate), with the purpose of long-term river
flow rate prediction which seems to be a better approach.

2) Recurrent Support Vector Machine to Forecast Daily Minimum Flow Rate

If the climate variables, such as temperature and precipitation are not available, we present a
recurrent support vector machine to forecast the daily minimum flow rate. The daily minimum
flow rate can be expressed as target input pairs (X, Y){x;,i =1, ...d; x4.1}. The training and
prediction phase are the same as recurrent support vector machine to make the prediction of
temperature and precipitation. The flow rate time series variables can be expressed:

X1 X2 X3 X4 Xd
Xy X3 X4 X5 Xd+1
X = X3 Xy Xsg Xg v Xgao (19)
X4 Xs X X7 Xd+3
Xt Xt+1 Xt42 Xt+3 e XN-1
Xd+1 V1
Xd+2 V2
i Xd+3 j V3
Y = = 2
Xd+4 Va (20)
XN Ve

Where X is the observed flow rate dataset from 1959 to 2008 and Y is target flow rate
vectors. The d is the time lag, N is total observed samples and t = N-d.

The recurrent support vector machine uses the predicted flow rate values as known data for
the next ones and the predicted model can be constructed by first making one-step ahead

prediction:



Xiy1 = {xt+1,xt+2,xt+3, ---'J’t} (21)
Yi+1 = Zg=1 wp K(X¢11, Xn) + 0o (22)

where t denotes the numbers of input dataset and y, denotes one-step ahead predicted
value. To predict the next value, the same prediction function is used:

Xiy2 = {xt+2,xt+3,xt+4, ---JYt+1} (23)

Yevr2 = Zrl\llzl wp K(Xe12,Xn) + 0o (24)

In this equation, the predicted flow rate value of y,,; is used instead of the true value, which
is unknown. Then, for the M-steps ahead flow rate prediction, y;,, to y,,yare predicted
iteratively. As the first predicted flow rate value is taken as input to obtain the second flow
rate one, this error is propagated through the prediction function. The second predicted flow
rate has potentially twice more error: the difference between y,,,and the true value plus the
propagated error. With an increasing step ahead prediction, this accumulation can be
important.

Compared with flow rate prediction with climate variables, such as temperature and
precipitation, the recurrent model is simple and only depends on the flow rate. Although the
flow rate prediction based on the climate variables has an advantage which can consider the
climate variables contributions, the recurrent predicted variables instead of the true variables
which are not known, such as temperature and precipitation, are taken as input values to
make the predictions of the river flow rate. So the accumulation error of climate variables can
be important for the long-term support vector machine.

3) Validation for Daily Minimum Flow Rate Training

During the training phase of flow rate prediction, it is difficult to determine the kernel function
parameters. The validation phase is one of powerful tool. Because there are limited flow rate
dataset, we divide the annual flow rate dataset into two parts, one for training and another for
validation. During our study, the validation dataset from one year to seven years has been
tested.

x1 x2 X3 X4_ XXl xd
Xy X3 Xy X5 e Xga1
X = X3 X4 X5 Xg we Xda2 (25)
X4 Xg Xg X we X443
Xt—v  Xt+1-v  Xt+2-v Xt+3-v v XN-1-v
Xd+1 V1
Xd+2 V2
Xd+3 V3
Y= = 2
Xd+4 Ya (26)
XN-v Yi—v



Where X is the observed flow rate dataset or observed climate variables from 1959 to 2008-v
and Y is target flow rate vectors. The d is the time lag, N is total observed samples, t = N-d
and v is validation years.

The support vector machine makes the river flow rate predictions based on the observed
pairs (X, Y). The error is the difference between predicated values and validation values.

Y(ym) = g:l Wy K(Ym' Xn) + Wy (27)

error = Yy, |[Y(3) — Y(0n)l| (28)

Because the validation value are true values and are available for comparison with the
predicted values, so we can update the kernel function parameters so as there are minimum
errors between the true value and predicted values. The best parameters with minimum
errors will be applied to support vector machine to make predictions of future trend of flow
rate.

The Athabasca River Example

The Athabasca River stretches from the Columbia Ice Fields near the Alberta-British
Columbia border to its mouth in Lake Athabasca, at the northeastern corner of Alberta
(Figure 1). Its length is estimated to be 1400 km, making it the third longest undammed river
in North America, behind the Yukon and Mackenzie rivers, and slightly longer than the Fraser
River. Over its length the Athabasca River drops about 800 m, with two-thirds of this drop
occurring in the first 450 km [Schindler, 2007].

CR Y 4

Clearwater River

i f ) AthabascaRiver
Fort \ :L
Y McMurray) |

Rocky : .
Mountains \

LEGEND 5 , ; ,
Rivers/Creeks/Lakes ‘ : A { |I

. Athabasca River Basin Y S Er=™ 1
Boundaries | i A T ]I

7. J Alberta Boundary R : y 1
® Snow Course Location '\__ o ]
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Figure 1: Bas Map of Athabasca River
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Alberta’s oil sands are not only the world’s largest capital project but now represent 60
percent of the world’s investable oil reserves. But in order to produce the oil sands, the
intensive water requirements, combined with climate change, may threaten the water security
of two northern territories, 300,000 aboriginal people and Canada’s largest watershed: The
Mackenzie River Basin (2007, University of Alberta). A 2006 Alberta report (Investing in Our
Future) noted that “over the long term the Athabasca River may not have sufficient flows to
meet the mining operations and maintain streams flows”. To address these critical issues, we
propose the Bayesian-based support vector machine method to make the prediction of future
trend of the daily minimum flow rate using the historical observations of river flow rate and
climate time series of temperature and precipitation.

Long-term flow monitoring records are not available for the study. A short period of records,
such as river flow rate, temperature and precipitation, from 1959 to 2008, were collected at
Clean Water, Edson Creek, Slave Lake, White Court and Fort McMurray stations. At Fort
McMurray station, the highest daily minimum flow recorded during the above period was 211
cms in 1997. The lowest recorded flow was 75 cms in 2001. During a succession of dry years
from 1997 to 2003, flows were less than 100 cms for almost four months in winter.

The minimum flows have been declined since 1959 (Figure 2). This is of concern whether the
water flow in future can meet the needs of all the oil sands operations.

Aithabascal bIFRM Courragy Dadly

4000 | — Aeverauge ]

I Flaz=<innurm d

2000 |

1000 | ]
200 rAimurUrn ) ) ) ]

19350 1930 2000

ear

1950 1970

Figure 2: (Top) Daily flow rate of Fort McMurray station from 1959 to 2008. (Middle) the daily
average and maximum flow rate. (Bottom) the daily minimum flow rate. The lowest recorded
flow rate was 75 cms in 2001.

It is well known that the river flow rate prediction is an extremely complex problem and also is
difficult for long term predictable because the flow process can be influenced by a wide
variety of factors including the precipitation intensity and distribution, climate warning,
drought, channel characteristics, watershed geology and topography, vegetation cover,
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human activities (e.g. land-use changes) and even, indirectly, the greenhouse gas releases
[Hu 2001].

To introduce an explicit link between climate variables in forecasting of future water supply of
the Athabasca River, we proposed a model based on Support Vector Machines in this work.
Firstly, the Support Vector Machine recursively predicts the temperature and precipitation for
100 coming years. Then, the forecasts of the temperature and precipitation obtained can be
used further to predict the river flow rate for 100 coming years using the Support Vector
Machine.

Athabasca Annual Average River Flow Rate Prediction
1) Data Used for Annual River Flow Rate Prediction

In this work, we use the Bayesian-based support vector machine method to make a long-
term prediction for the river flow rate and time trends around Fort McMurray station in the
Athabasca River. Generally, the river flow rate is affected by different climate change
scenarios, such as temperature and precipitation. However, long-term flow rate, temperature
and precipitation are not available for this study and a short period of observed records were
collected at Fort McMurray, Clean Water, Edson Creek, Slave Lake and White Court stations
from 1943 to 2007. The following figures show the historical time series of annual river flow,
temperature changes and precipitation density at several stations located upstream of Fort
McMurray. During the training phase of annual flow rate prediction, the validation phase is
not applied, but we will apply the validation phase at daily minimum river flow rate study.

Figure 3 is Fort McMurray annual temperature time series trend. The upper window is
monthly temperature display. The red color indicates high temperature and blue is low
temperature. The Y axis is month and X is year. The middle is annual average of daily
maximum temperature and bottom is annual sum of the monthly average.

Figure 4 is Fort McMurray annual minimum temperature time series trend. The upper window
is monthly temperature display. The red color indicates the high and blue is low. The Y axis is
month and X is year. The middle is annual average of daily minimum temperature and the
bottom is annual sum of the monthly average.

Figure 5 is Fort McMurray annual precipitation time series trend. The upper window is
monthly precipitation display. The red color indicates high precipitation and blue is low
precipitation. The Y axis is month and X is year. The middle is annual average precipitation
and the bottom is annual total precipitation.

Figure 6, 7, 8, 9 and Figure 10 are Athabasca annual precipitation display, Edson Creek

annual maximum temperature time trend, Slave Lake annual maximum temperature time
trend, White Court annual precipitation time trend and DPO time series index trend

12
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Figure 3: Fort McMurray annual maximum temperature time series trend
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Figure 4: Fort McMurray annual minimum temperature time series trend
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Figure 6: Athabasca annual precipitation time series trend
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Figure 8: Slave Lake annual temperature time series trend

14



hite Court- FMonthly Precipitation =l=

Time Delay Range
=1
"‘C:..-EE =2 vears I ,.-Fl
__f: Sk EFerniel Degree
é [0.ass0
o
Aserage | L= Can ] rars] =
s0 | EF=lnrl mi= m=ae ) =
so f v | |\Hr=si izt
a0 | Rt = | F =it iz =
rlean I ..fl
SO0 1
St Pdake Fredictiaon
500
Into
400
1950 1350 1 EI?D 1 E=1=]n] 19390 2000 Cloze

Load File .. |

Figure 9: White Court annual precipitation time series trend
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Figure 10: DPO annual index time series trend

2) Recurrent SVM Annual Temperature and Precipitation Predictions

The recurrent SVM models are trained using these observed temperature and precipitation
data and the hyperparameter weights {w,, n = 1, ... N} were optimised directly via the iterative
procedure. The M-steps ahead predictions of the observed data are predicted iteratively
based on the same linear combinations as the training’s. The followings are the recurrent
SVM long-term prediction results.

Figure 11 is Fort McMurray annual maximum temperature long-term trend prediction. The lag
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 3.5.
These parameters need a series of test to determine based on the experience and
reasonable trends.

Figure 12 is Fort McMurray annual minimum temperature long-term trend prediction. The lag
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 4.
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Figure 13 is Fort McMurray annual precipitation long-term trend prediction. The lag time is 11
years and the kernel function of SVM is Gaussian Radial Basis with width 0.73.

Figure 14 is Athabasca annual precipitation long-term trend prediction. The lag time is 17
years and the kernel function of SVM is Gaussian Radial Basis with width 1.0.

Figure 15 is Edson Creek annual maximum temperature long-term trend prediction. The lag
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 3.0.

Figure 16 is Slave Lake annual maximum temperature long-term trend prediction. The lag
time is 12 years and the kernel function of SVM is Gaussian Radial Basis with width 6.0.

Figure 17 is White Court annual precipitation long-term trend prediction. The lag time is 8
years and the kernel function of SVM is Gaussian Radial Basis with width 0.485.

Figure 18 is DPO annual long-term trend prediction. The lag time is 11 years and the kernel
function of SVM is Gaussian Radial Basis with width 20.
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Figure 11: Fort McMurray annual maximum temperature long-term trend prediction. The left
part (red line) is the observed records and the right part (blue) is the predicted annual
maximum temperature values
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Figure 12: Fort McMurray annual minimum temperature long-term trend prediction. The left
part (red line) is the observed records and the right part (blue) is the predicted annual

minimum temperature values
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Figure 13: Fort McMurray annual precipitation long-term trend prediction. The left part (red
line) is the observed annual precipitation records and the right part (blue) is the predicted
annual precipitation values

00

[=1mlm]

Foo

=00

Freciitation

S00

400

b m ]

T T T
Fredicted Frecipitation

Measured Frecipitation

1
1940

1
1950

1
189S0

1
2000

1 N 1 1 1
20z=20 =040 2050 2050 2100

WEar

Figure 14: Athabasca annual precipitation long-term trend prediction. The left part (red line) is
the observed annual precipitation records and the right part (blue) is the predicted annual
precipitation values
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Figure 15: Edson Creek annual maximum temperature long-term trend prediction. The left
part (red line) is the observed annual maximum temperature records and the right part (blue)
is the predicted annual maximum temperature values
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Figure 16: Slave Lake annual maximum temperature long-term trend prediction. The left part
(red line) is the observed annual maximum temperature records and the right part (blue) is
the predicted annual maximum temperature values
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Figure 17: White Court annual precipitation long-term trend prediction. The left part (red line)
is the observed annual precipitation records and the right part (blue) is the predicted annual
precipitation values
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Figure 18: Decadal Pacific Oscillation (DPO) annual long-term trend prediction. The left part
(red line) is the observed annual DPO records and the right part (blue) is annual the
predicted DPO index values
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3) Annual River Flow Rate Predictions

For the prediction of future river flow rates, climate variables, such as the temperature and
precipitation are used. For the Athabasca River, temperature and precipitation data were
obtained from several stations. These stations located upstream of Fort McMurray, covers an
area of about thousands square kilometers. In this area, the temperature, precipitation and
flow rate were recorded continuously from 1920s to 2008. The annual maximum, minimum,
total and average temperature, precipitation and flow rate can be calculated from these
records. All these observed records were shown from Figure 3 to Figure 10.

The support vector machine attempts to establish an empirical (statistical) relationship
between annual flow rate and climate variables, such as temperature and precipitation from
the available observed records. The training variables include maximum temperature of Fort
McMurray station, minimum temperature of Fort McMurray, precipitation of Fort McMurray,
precipitation of Athabasca, maximum temperature of Edson Creek, maximum temperature of
Slave Lake and precipitation of White court. All these observed will be integrated into a
training dataset with the lag time 9 years, which is estimated via a number of tests. The tests
of varying the window lag length shows that if the lag time is reasonable, the predicted values
will be optimized; otherwise the equation will be ill-posed and cannot find an optimization
result.

The support vector machine makes predictions on long-term river flow rate using the
recurrent SVM predicted temperature, precipitation and DPO data if available.

Figure 19 is a long-term annual maximum flow rate predicted trend. The input variables are
all available observed temperature, precipitation and DPO. The lag time is 9 years. The
target input is annual flow rate observed at Fort McMurray station. The SVM kernel function
is Gaussian Radial Basis with degree 3.

Figure 20 is a long-term annual minimum flow rate predicted trend. The input variables are all
available observed temperature, precipitation and DPO. The lag time is 9 years. The target
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is
Gaussian Radial Basis with degree 3.

Figure 21 is a long-term annual total flow rate predicted trend. The input variables are all
available observed temperature, precipitation and DPO. The lag time is 9 years. The target
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is
Gaussian Radial Basis with degree 3.

Figure 22 is a long-term annual average flow rate predicted trend. The input variables are all
available observed temperature, precipitation and DPO. The lag time is 9 years. The target
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is
Gaussian Radial Basis with degree 3.

Figure 23 is a long-term annual maximum flow rate predicted trend. The input variables are
all available observed temperature and precipitation. The lag time is 9 years. The target input
is annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian
Radial Basis with degree 3.
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Figure 24 is a long-term annual minimum flow rate predicted trend. The input variables are all
available observed temperature and precipitation. The lag time is 9 years. The target input is
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian
Radial Basis with degree 3.

Figure 25 is a long-term annual total flow rate predicted trend. The input variables are all
available observed temperature and precipitation. The lag time is 9 years. The target input is
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian
Radial Basis with degree 3.

Figure 26 is a long-term annual average flow rate predicted trend. The input variables are all
available observed temperature and precipitation. The lag time is 9 years. The target input is
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian
Radial Basis with degree 3.
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Figure 19: The predicted annual maximum flow rate trend based on temperature,
precipitation and DPO. The left part (red line) is the observed annual maximum flow rate
records and the right part (blue) is the predicted annual maximum flow rate
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Figure 20: The predicted annual minimum flow rate trend based on temperature, precipitation
and DPO. The left part (red line) is the observed annual minimum flow rate records and the
right part (blue) is the predicted annual minimum flow rate
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Figure 21: The predicted annual total flow rate trend based on temperature, precipitation and
DPO. The left part (red line) is the observed annual total flow rate records and the right part
(blue) is the predicted annual total flow rate
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Figure 22: The predicted annual average flow rate trend based on temperature, precipitation
and DPO. The left part (red line) is the observed annual average flow rate records and the
right part (blue) is the predicted annual average flow rate
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Figure 23: The predicted annual maximum flow rate trend based on temperature, and
precipitation. The left part (red line) is the observed annual maximum flow rate records and
the right part (blue) is the predicted annual maximum flow rate
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Figure 24: The predicted annual minimum flow rate trend based on temperature, and
precipitation. The left part (red line) is the observed annual minimum flow rate records and
the right part (blue) is the predicted annual minimum flow rate
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Figure 25: The predicted annual total flow rate trend based on temperature, and precipitation.
The left part (red line) is the observed annual total flow rate records and the right part (blue)
is the predicted annual total flow rate
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Figure 26: The predicted annual average flow rate trend based on temperature, and
precipitation. The left part (red line) is the observed annual average flow rate records and the
right part (blue) is the predicted annual average flow rate
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Athabasca River Minimum Flow Rate Prediction
1) Climate Data Used for Daily River Flow Rate Prediction

In this work, we use the Bayesian-based support vector machine method to make a long-
term prediction for the river flow rate and time trends around Fort McMurray station in the
Athabasca River. Generally, the river flow rate is affected by different climate change
scenarios, such as temperature and precipitation. However, long-term flow rate, temperature
and precipitation are not available for this study and a short period of observed records were
collected at Fort McMurray, Clean Water, Edson Creek, Slave Lake and White Court stations
from 1959 to 2008. At Fort McMurray station, the highest daily minimum flow recorded during
the above period was 211 cms in 1997. The lowest recorded flow was 75 cms in 2001.
During a succession of dry years from 1997 to 2003, flows were less than 100 cms for almost
four months in winter. The minimum flows have been declined since 1959 (Figure 2). In order
to make the predictions of flow rate at Fort McMurray station, the following variables at
several stations located upstream of Fort McMurray have been selected:

1) Average of daily maximum temperature, daily minimum temperature and precipitation
at Fort McMurray station.

2) Athabasca annual precipitation

3) Edson Creek annual maximum temperature time trend

4) Slave Lake annual maximum temperature time trend

5) White Court annual precipitation time trend

6) DPO time series index trend

Because the above variables are only available from 1959 to 2008, we applied the recurrent
support vector machine to predict the future trend of these variables from 2009 to 2100.
Figure 27 is the result of recurrent support vector machine. The left parts are the observed
dataset and the right parts are the future trends of the prediction of recurrent support vector
machine.
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Figure 27: Left: the observed climate variables and Right: the future trends of predictions of
recurrent support vector machines.

2) The Future Trends of SVM Daily Prediction of Flow Rate Using Climate Data

For the prediction of future river flow rates, climate variables, such as the temperature and
precipitation are used. For the Athabasca River, temperature and precipitation data were
obtained from several stations. These stations located upstream of Fort McMurray, covers an
area of about thousands square kilometers. In this area, the temperature, precipitation and
flow rate were recorded continuously from 1920s to 2008. The annual maximum, minimum,
total and average temperature, precipitation and flow rate can be calculated from these
records. All these observed records and future trends of the climate variables were shown

from Figure 28.

The support vector machine attempts to establish an empirical (statistical) relationship
between annual flow rate and climate variables, such as temperature and precipitation from
the available observed records. The training variables include maximum temperature of Fort
McMurray station, minimum temperature of Fort McMurray, precipitation of Fort McMurray,
precipitation of Athabasca, maximum temperature of Edson Creek, maximum temperature of
Slave Lake and precipitation of White court. All these observed will be integrated into a
training dataset with the lag time 9 years, which is estimated via a number of tests using the
different validation years and lag window. The test of varying the window lag length shows
that if the lag time is reasonable, the predicted values will be optimized; otherwise the
equation will be ill-posed and cannot find an optimization result. After determining the lag
window, the different validation years (0-7 years) have been tested to achieve the minimum
error between validation and predicted values through updating the parameters of kernel
function of support vector machine.

24



datasAthatbasca- River-at- Fi- Mo FMurray-daily <1=s [2 4 .00]

300 [

Predicted Minumum Flow Rate

Observed MMinumum Flow Rate

* walication data
250 | E

200 | E

Miwurmurn Flose Rate

150 |

100 | E

1950 1950 2000 2020 2040 20&0 2080 2100
ear

Figure 28: Left : the observed flow rate (red), Right: the predicted minimum flow rate using
climate variables (blue). The star points are validation data (magenta)

In order to determine the contributions of climate variables, we make a different combination
of climate variables, such as temperature, precipitation and DPO with different validation
years. Figure 29 is the future trend of predictions of flow rate with all three temperature,
precipitation and DPO variables. The left part is observed flow rate; the right is future trend of
flow rate. The star points with green color are the validation dataset. The top is the future
trend of the flow rate with zero year (red) and one year validation. The upper middle is the
future trend of flow rate with two and three-year validation. The lower middle is the future
trend of flow rate with four and five-year validation. The bottom is the future trend of flow rate
with six and seven-year validation.
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Figure 29: Left: Observed flow rate, Right: future trend of predictions of flow rate based on
two climate variables (Temperature and Precipitation) with the different validations. The
upper is zero (red) and one year (blue) validation, the bottom is six (red) and seven-year
(blue) validation
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Figure 30: Left: Observed flow rate, Right: future trend of predictions of flow rate based on
two climate variables (DPO and Temperature) with the different validations. The upper is
zero (red) and one year (blue) validation, the bottom is six (red) and seven-year (blue)
validation
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Figure 31: Left: Observed flow rate, Right: future trend of predictions of flow rate based on
two climate variables (DPO and Precipitation) with the different validations. The upper is zero
(red) and one year (blue) validation, the bottom is six (red) and seven-year (blue) validation

3) The Future Trends of Recurrent SVM Daily Prediction of Flow Rate

The recurrent flow rate SVM models are trained using these observed flow rate data from
1959 to 2008 and the hyperparameter weights {w, n = 1, ... N} were optimised directly via the
iterative procedure. The M-steps ahead predictions of the observed flow rate data are
predicted iteratively based on the same linear combinations as the training’s. In order to best
make predictions of future trend, the validation was used to achieve the minimum errors
between the validation data and predicted values and then determine reasonable parameters
for recurrent support vector machines. The followings are the recurrent SVM long-term
prediction results.

Figure 32 is the future trend of recurrent predictions of flow rate. The left part is observed
flow rate; the right is future trend of flow rate. The star points with green color are the
validation dataset. The top is the future trend of the flow rate with zero year (red) and one
year validation. The upper middle is the future trend of flow rate with two and three-year
validation. The lower middle is the future trend of flow rate with four and five-year validation.
The bottom is the future trend of flow rate with six and seven-year validation.
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Figure 32: Left: Observed flow rate, Right: future trend of predictions of flow rate with the
different validations. The upper is zero (red) and one year (blue) validation, the bottom is six
(red) and seven-year (blue) validation

Discussion and Conclusions

This study employs the Bayesian Support Vector Machine to make predictions of future trend
of daily river flow rate. In order to have an explicit link between the climate change and river
flow rate, climate variables, such as temperature, precipitation and decadal pacific oscillation
index are used as input for prediction of future river flow. The different combined climates
and different validation tool have been used to better select the lag time and parameters in
order to achieve the minimum errors between the validation true values and predicted values.

If the climate variables are not available, the recurrent support vector machine will be applied
to make the prediction of future trend of flow rate.

The future river minimum flow rates of the Athabasica River near Fort McMurray stations, of
the next 60 years are forecasted used the methods developed in this study. The predicted
future trends of the river flow rate depend on the climate variables. If there are more
geological experience and knowledge it seems the method can make reasonable prediction
of future trend flow rate. The proposed Bayesian Support Vector Machine seems to be a
useful tool for predicting future trends of time series.

More accurate prediction from Bayesian Support Vector Machine for the river flow rate
depends on its learning kernel functions, kernel function's width (degree) and training
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dataset. The validation tool has solved part of issues, but there remain some future problems
to be solved. An important problem is how to determine the lag window and design a proper
partition mechanism to build the input-target training pairs. In addition, more studies should
be done with the selection of the climate variables in order to get the optimized and
reasonable results.
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