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Summary 

River flow process usually was affected by a wide variety of factors and it is very difficult to 
make the trend prediction. Various mathematical techniques have been developed to tackle 
the prediction, but these techniques are less accurate compared with physically-based 
models. In this paper I presented the recurrent support vector machine methods to study a 
series of climate variables, such as temperature and precipitation, and then predict the future 
trend of flow river rate based on these climate variables. The Athabasca River data have 
been tested and the flow river rates in 100 years have been predicted. 

Introduction 

River flow rate prediction is an extremely complex problem because the flow process can be 
influenced by a wide variety of factors including the precipitation intensity and distribution, 
temperature, channel characteristics, watershed geology and topography, vegetation cover, 
human activities (e.g. land-use changes) and even, indirectly, the greenhouse gas releases 
[Hu 2001].   

Attempts to make the predictions of river flow rate have been a relentless pursuit by 
hydrologists and water resources engineers. Broadly speaking, two different approaches can 
be used to predict the river flow rate: physically-based models and stochastic models. 
Physically-based models try to represent the physical processes observed in the real world. 
Typically, such models contain representations of surface runoff, subsurface flow, 
evapotranspiration, and channel flow, but the physically-based models can be far more 
complicated. In contrast, the stochastic models based on data are black box systems, using 
mathematical and statistical concepts to link a certain input (for instance precipitation) to the 
model output (for instance flow rate). The stochastic models have the advantages of being 
simple and reasonably accurate and many hydrologists favor the use of stochastic models. 

Various mathematical techniques have been developed to tackle the stochastic models, such 
as regression, neural networks and system identification. Recently, a number of complex 
processes have been modeled with the aid of neural networks for the river flow rate 
prediction. All these techniques are often less accurate compared with physically-based 
models which need the extremely complex relationships between river flow and its 
influencing factors. However, the physical parameters and effort required for calibrating a 
physical model are tremendous such that prediction of river flow using a physical process 
model is not viable in many circumstances. 

To introduce an explicit link between climate variables in forecasting of future water supply, 
we proposed a model based on Support Vector Machines in this work. Firstly, the Support 
Vector Machine recursively predicts the temperature and precipitation for 100 coming years. 
Then, the forecasts of the temperature and precipitation obtained can be used further to 
predict the river flow rate for 100 coming years using the Support Vector Machine. 
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Support Vector Machine for Regression 

The Support Vector Machine (SVM) (Vapnik, 1998) has become widely established as one of 
the main stream approaches to pattern recognition and machine learning. It makes 
predictions in terms of a linear combination of kernel functions centred on a subset of the 
training data, known as support vectors. 

Despite its widespread success, the SVM suffers from some of its weakness, notably the 
absence of probabilistic outputs. The relevance vector machine (Tipping, M. E., 2004) uses 
the same kernel functional form as SVM's, but generates predictive distributions instead of 
point predictions by introducing Bayesian statistics. Under the assumption of a Gaussian 
distribution of the data, a Bayesian-based Support Vector Machine Classification employs the 
same kernel functions and also can make predictions based on the Gaussian likelihood. 

Under the assumption of regression, we are given a set of input variables, ܺ ൌ ሼݔ௜	݅ ൌ
1,…ܰሽ together with corresponding targets, such as river flow rate, ܻ ൌ ሼݕ௜	݅ ൌ 1,…ܰሽ  

The goal is to predict the annual river flow rate target using existing observed data based on 
the regression through supervised learning of the Bayesian-based Support Vector Machine. 

The proposed method makes the predictions based on the following linear combinations of 
the form: 

௝൯ݔ൫ࢅ ൌ ∑ ߱௡ே
௡ୀଵ ,௝ݔ൫ܭ ௡൯ݔ ൅ ߱଴ (1) 

Where ሼ߱௡	݊ ൌ 1,…ܰሽ are the model weights, and ሼܭሺݔ௝,  ௡ሽ denotes the kernel functionsݔ
ሷ݋݄ܿܵ)  et al., 1999). The table 1 provides examples of kernel functions that have been  ݂݌݋݈݇
extensively tested in the machine learning literature (Vapnik, 1998).  

Table 1 
Type of Kernel Function Kernel Function 

Polynomial of degree p ܭሺݑ, ሻݒ ൌ ሺݒ்ݑ ൅ 1ሻ௣ 

Gaussian Radial Basis with width p ܭሺݑ, ሻݒ ൌ ݑሺെሺ݌ݔ݁ െ ݑሻሺݒ െ ଶሻ݌/ሻ்ݒ

To avoid notational clutter we will re-write equation (1) in matrix form: 

ܻ ൌ ܹ∅ (2) 

 where ሼ∅ሽ denotes the design matrix of kernel functions, the vector of targets is given byሼܻሽ, 
and ሼܹሽ indicates the vector containing the unknown weights. 

In the Bayesian-based support vector machine, the likelihood function of the dataset can be 
written as: 
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,ݓ|ݐሺ݌ ଶሻߪ ൌ ሺ2ߪߨଶሻି
ಿ
మ݁݌ݔ ቄെ

ଵ

ଶఙమ
ݐ‖ െܹ∅‖ଶቅ      (3) 

The posterior over the weights is then obtained from Bayes' rule: 

,ݐ|ݓሺ݌ ,ߙ ଶሻߪ ൌ ሺ2ߨሻି
ሺಿశభሻ
మ |∑|ିଵ/ଶ݁݌ݔ ቄെ ଵ

ଶ
ሺሺݓ െ ݓሻ்∑ିଵሺߤ െ  ሻቅ      (4)ߤ

with 
∑ ൌ ሺ∅்ܤ∅ ൅ 	ሻିଵܣ (5) 
ߤ ൌ ݐܤ்∅∑ 	            (6) 

where we defined	ܣ ൌ ݀݅ܽ݃ሺߙ଴, ,ଵߙ … ,  ேሻߙ

By integrating the weights from (4), we obtain the marginal likelihood (Tipping, M. E., 2004): 

,ߙ|ݐሺ݌ ଶሻߪ ൌ ሺ2ߨሻି
ሺಿశభሻ
మ ଵିܤ| ൅ ϕିܣଵ߶்|ିଵ/ଶ݁݌ݔ ቄെ ଵ

ଶ
ଵିܤሺ்ݐ ൅ ϕିܣଵ߶்ሻିଵݐቅ    (7) 

For the regression, we cannot experimentally explore the space of possible ߪ so we instead 
optimise directly via the iterative procedure to obtain the ߙ௜ and then calculate the weights 
using the following procedure. 

1) Calculate ߙ௜ ൌ ௜ߤ/௜ߛ	
ଶ where we defined	ߛ௜ ൌ 1 െ ௜∑௜௜ߙ

2) Compute the variance matrix ∑ ൌ ሺ∅்ܤ∅ ൅ ሻܣ
3) Calculate the residual between original and predicted results.
4) Repeat 1) to 3) until the residual does not be reduced or other convergence criteria

are satisfied.

In practice, during the iteration, ߙ௜ could approach infinity and Eq. (4) become infinitely 
peaked at zero – implying that the corresponding kernel functions can be ‘pruned’. Those ߙ௜ 
will be removed during the iteration. 

Methods for Annual River Flow Rate Prediction 

1) Recurrent Support Vector Machine to Forecast  Annual Temperature and
Precipitation

Support Vector Machines has been gaining popularity in regression and classification due to 
its excellent performance at the time of dealing with sparse inputs and also has been used as 
time series forecasters such as finance stock evolution and river flow rate predictions.  

During river low-flow and high-flow periods the river flow rate is determined by a series of 
significant time series variables, such as the temperature and precipitation. During the annual 
river flow rate study, the annual flow rates (minimum, maximum, total and mean) of each 
year were calculated from the monthly observed dataset and the annual variables were 
estimated from the monthly observed dataset. 
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The temperature or precipitation based on the observed time series variables can be 
expressed as X:  ሼݔ௜, ݅ ൌ 1,…ܰሽ 

SVM Training Dataset 
All the observed variables will be used to build the training dataset. 

܆ ൌ 	

ۉ

ۈ
ۇ

ଵݔ ଶݔ
ଶݔ ଷݔ

	ଷݔ 							ସݔ
ସݔ 	ହݔ

… ௗݔ
… ௗାଵݔ

ଷݔ 					ସݔ
ସݔ ହݔ

ହݔ 							଺ݔ
଺ݔ ଻ݔ

… ௗାଶݔ
… …ௗାଷݔ …							

௧ݔ ௧ାଵݔ
…					 …												
					௧ାଶݔ ௧ାଷݔ

… …
… یேିଵݔ

ۋ
ۊ
	ൌ 	

ۉ

ۈ
ۈ
ۇ

݂ሺ ଵܺሻ
݂ሺܺଶሻ
݂ሺܺଷሻ
݂ሺܺସሻ
…

݂ሺܺ௧ሻی

ۋ
ۋ
ۊ
																(8) 

Y = 

ۉ

ۈۈ
ۇ

ௗାଵݔ
ௗାଶݔ
ௗାଷݔ
ௗାସݔ
…
ேݔ ی

ۋۋ
ۊ
ൌ	

ۉ

ۈۈ
ۇ

ଵݕ
ଶݕ
ଷݕ
ସݕ
…
ی௧ݕ

ۋۋ
ۊ
	 (9) 

Where X is training dataset and Y is target vectors.  The d is the time lag, N is total observed 
samples and t = N-d. ሼ ௜ܺ ൌ ൛ݔଵ,ݔଶ,ݔଷ, … , ݅		ௗൟݔ ൌ 1,…  .ሽ is one of input training samplesݐ

The following linear combinations will be applied to the training dataset to optimize and 
calculate the model weights ሼ߱௡	݊ ൌ 1,…ܰሽ  

൫ࢅ ௝ܺ൯ ൌ ∑ ߱௡ே
௡ୀଵ ൫ܭ ௝ܺ, ܺ௡൯ ൅ ߱଴	   (10)     

When building the training dataset, having a sufficiently large time lag window is important for 
a time series predictor - if the window is too small then the system is being projected onto a 
space of insufficient dimension, in which the system cannot make reliable predictions.  If a 
window is too large, it may also have problems: because all necessary information is 
populated in a subset of the window, the remaining fields will represent noise or 
contamination, in which the system will make wrong time-trend predictions. In Support Vector 
Machine training phase, if the lag time window is reasonable, the predicted values will be 
optimized; otherwise the equation will be ill-posed and cannot find the optimized results. 
Usually we need a series of test to determine whether the time lag window is reasonable or 
not. 

SVM Predictions 
To predict more than one-step ahead value of time series, support vector machine uses the 
predicted values as known data for the next ones. The recurrent SVM model can be 
constructed by first making one-step ahead prediction: 

ܺ௧ାଵ ൌ ൛ݔ௧ାଵ,ݔ௧ାଶ,ݔ௧ାଷ, … ,  ௧ൟ  (11)ݕ

࢚࢟ା૚ ൌ ∑ ߱௡ே
௡ୀଵ ,ሺܺ௧ାଵܭ ܺ௡ሻ ൅ ߱଴  (12) 
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where t denotes the numbers of input dataset and 	ݕ௧ denotes one-step ahead predicted 
value.  

To predict the next value, the same prediction function is used: 

ܺ௧ାଶ ൌ ൛ݔ௧ାଶ,ݔ௧ାଷ,ݔ௧ାସ, … ,  ௧ାଵൟ  (13)ݕ

࢚࢟ା૛ ൌ ∑ ߱௡ே
௡ୀଵ ,ሺܺ௧ାଶܭ ܺ௡ሻ ൅ ߱଴   (14) 

In this equation, the predicted value of ݕ௧ାଵ  is used instead of the true value, which is 
unknown. Then, for the M-steps ahead prediction, ݕ௧ାଶ to ݕ௧ାெare predicted iteratively. When 
the predicted length M is larger than d, there are M-d real data to predict Mth value. When M 
exceeds d, all input variables are predicted values. The main problem of the recurrent 
support vector machine forecasting strategy is that there is a certain amount of error between 
the predicted value ࢚࢟ା૚ and the true value. As the first predicted value is taken as input to 
obtain the second one, this error is propagated through the prediction function. The second 
predicted value has potentially twice more error: the difference between ࢚࢟ା૛and the true 
value plus the propagated error. With an increasing step ahead prediction, this accumulation 
can be important. 

2) Support Vector Machine to Forecast Annual River Flow Rate

The river can be considered a complex, nonlinear system through which input variables, i.e. 
temperature, precipitation and Decadal Pacific Oscillation (DPO), are transformed by our 
support vector machine into output variables, i.e., river flow annual maximum rate, minimum 
rate, average rate and total rate.  

Given a set of input variables, ሼܺܺ ൌ ሼܩ௜	 ௜ܵ , ௜ܲ , ,௜ሽܦ ݅ ൌ 1,…ܰሽ together with corresponding 
targets, such as river annual maximum flow rate and minimum flow rate: 
ሼܻܻ ൌ ሼܨ௜	ܴ௜, ௜ܸ , ,௜ሽܣ ݅ ൌ 1,…ܰሽ  

The input observed variables can be expressed as following: 

XX ൌ	

ۉ

ۈۈ
ۇ

ଵܩ ଵܵ	
ଶܩ ܵଶ	

ଵܲ	 	ଵܦ
ଶܲ ଶܦ

ଷܩ ܵଷ	
ସܩ ܵସ

ଷܲ	 ଷܦ
ସܲ	 …ସܦ …	

ேܩ ܵே
… …	
ேܲ	 یேܦ

ۋۋ
ۊ
	ൌ 	

ۉ

ۈ
ۈ
ۇ

݂ሺ ଵܺሻ
݂ሺܺଶሻ
݂ሺܺଷሻ
݂ሺܺସሻ
…

݂ሺܺேሻی

ۋ
ۋ
ۊ

  (15) 

ሼܩ௜ ൌ ሼ ଵ݃, ݃ଶ, … , ݃ௗሽ, ݅ ൌ 1,…ܰሽ is training vectors of maximum annual temperatures and 
     d is the lag time. 

ሼ ௜ܵ ൌ ሼݏଵ, ,ଶݏ … , ,ௗሽݏ , ݅ ൌ 1,…ܰሽ is training vector of minimum annual temperatures  
ሼ ௜ܲ ൌ ሼ݌ଵ, ,ଶ݌ … , ,ௗሽ݌ , ݅ ൌ 1,…ܰሽ is training vector of annual precipitation  
ሼܦ௜ ൌ ሼ݌ଵ, ,ଶ݌ … , ,ௗሽ݌ , ݅ ൌ 1,…ܰሽ is training vector of annual Decadal Pacific Oscillation (DPO)  

The output observed variables can be expresses as: 
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YY = 

ۉ

ۈۈ
ۇ

ଵܨ ܴଵ
ଶܨ ܴଶ	

ଵܸ	 	ଵܣ
ଶܸ ଶܣ

ଷܨ ܴଷ	
ସܨ ܴସ	

ଷܸ	 ଷܣ
ସܸ	 …ସܣ …	

ேܨ ܴே
… …	
ேܸ	 یேܣ

ۋۋ
ۊ

   (16) 

ሼܨ௜, ݅ ൌ 1,…ܰሽ is training target of maximum annual river flow rate 
ሼܴ௜, ݅ ൌ 1,…ܰሽ is training target of minimum annual river flow rate  
ሼ ௜ܸ , ݅ ൌ 1,…ܰሽ is training target  of total annual river flow rate  
ሼܣ௜, ݅ ൌ 1,…ܰሽ is training target of average annual river flow rate 

The goal is to predict the annual river flow rate target using above existing observed data 
pairs (XX, YY) based on Bayesian regression through supervised learning of the Support 
Vector Machines. 

During the training phase, the proposed method makes the trainings based on the following 
linear combinations of the form using the observed data pairs (XX, YY): 

൫ࢅࢅ ௝ܺ൯ ൌ ∑ ߱௡ே
௡ୀଵ ൫ܭ ௝ܺ, ܺ௡൯ ൅ ߱଴             (17) 

During the prediction phase, the proposed method makes the river flow rate predictions 
based on the same linear combinations as the training phase: 

ሺࢅࢅ ௠ܻሻ ൌ ∑ ߱௡ே
௡ୀଵ ሺܭ ௠ܻ, ܺ௡ሻ ൅ ߱଴                           (18) 

In this equation, the long-term predicted value of ௠ܻ is unknown, which is forecasted 
iteratively using recurrent support vector machine. M is the predicted length and means the 
M-steps ahead prediction.  

The main problem of the support vector machine forecasting strategy is that the recurrent 
predicted variables instead of the true variables which are not known, such as temperature 
and precipitation, are taken as input values to make the predictions of the river flow rate. 
Because there is a certain amount of error between the recurrent predicted value ࢚࢟ା૚ and 
the true value and also the first recurrent predicted value is taken as input to obtain the 
second one, this error is propagated through the prediction function. So the accumulation 
error can be important for the long-term support vector machine. However, the support vector 
machine has been trained with all available observed input variables, such as temperature 
and precipitation, and output targets (such as flow rate), with the purpose of long-term river 
flow rate prediction which seems to be a better approach. 

Methods for Daily Minimum River Flow Rate Prediction 

1) Support Vector Machine to Forecast Daily Minimum Flow Rate

The river can be considered a complex, nonlinear system through which input variables, i.e. 
temperature, precipitation and Decadal Pacific Oscillation (DPO), are transformed by our 
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support vector machine into output variables, i.e., river flow annual maximum rate, minimum 
rate, average rate and total rate. During the daily minimum flow rate study, the daily minimum 
flow rate of each year was calculated from the daily dataset and other annual variables were 
estimated from the monthly dataset or calculated from the daily observed dataset if the 
dataset are available. 

Given a set of input variables, ሼܺܺ ൌ ሼܩ௜	 ௜ܵ , ௜ܲ , ,௜ሽܦ ݅ ൌ 1,…ܰሽ together with corresponding 
targets, such as daily minimum flow rate: ሼܻܻ ൌ ሼܨ௜	ሽ, ݅ ൌ 1,…ܰሽ  

The input observed variables can be expressed as following: 

XX ൌ	

ۉ

ۈۈ
ۇ

ଵܩ ଵܵ	
ଶܩ ܵଶ	

ଵܲ	 	ଵܦ
ଶܲ ଶܦ

ଷܩ ܵଷ	
ସܩ ܵସ

ଷܲ	 ଷܦ
ସܲ	 …ସܦ …	

ேܩ ܵே
… …	
ேܲ	 یேܦ

ۋۋ
ۊ

  (15) 

ሼܩ௜ ൌ ሼ ଵ݃, ݃ଶ, … , ݃ௗሽ, ݅ ൌ 1,…ܰሽ are training vectors of maximum annual temperatures and 
     d is the lag time. 

ሼ ௜ܵ ൌ ሼݏଵ, ,ଶݏ … , ,ௗሽݏ , ݅ ൌ 1,…ܰሽ are training vectors of minimum annual temperatures  
ሼ ௜ܲ ൌ ሼ݌ଵ, ,ଶ݌ … , ,ௗሽ݌ , ݅ ൌ 1,…ܰሽ are training vectors of annual precipitation  
ሼܦ௜ ൌ ሼ݌ଵ, ,ଶ݌ … , ,ௗሽ݌ , ݅ ൌ 1,…ܰሽ are training vectors of annual Decadal Pacific Oscillation 
(DPO)  

The output observed variables can be expresses as: 

YY = 

ۉ

ۈ
ۈ
ۇ

ଵܨ
ଶܨ
ଷܨ
ସܨ
…
یேܨ

ۋ
ۋ
ۊ

   (16) 

ሼܨ௜, ݅ ൌ 1,…ܰሽ is training target of daily minimum river flow rate 

The goal is to predict the daily minimum river flow rate using above existing observed data 
pairs (XX, YY) based on Bayesian regression through supervised learning of the Support 
Vector Machines. 

During the training phase, the proposed method makes the trainings based on the following 
linear combinations of the form using the observed data pairs (XX, YY): 

൫ࢅࢅ ௝ܺ൯ ൌ ∑ ߱௡ே
௡ୀଵ ൫ܭ ௝ܺ, ܺ௡൯ ൅ ߱଴             (17) 

During the prediction phase, the proposed method makes the river flow rate predictions 
based on the same linear combinations as the training phase: 
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ሺࢅࢅ ௠ܻሻ ൌ ∑ ߱௡ே
௡ୀଵ ሺܭ ௠ܻ, ܺ௡ሻ ൅ ߱଴                           (18) 

In this equation, the long-term predicted value of ௠ܻ is unknown, which is forecasted 
iteratively using recurrent support vector machine. M is the predicted length and means the 
M-steps ahead prediction. X is the temperature and precipitation which were obtained 
through the recurrent support vector machine described from section 3. 

The main problem of the support vector machine forecasting strategy is that the recurrent 
predicted variables instead of the true variables which are not known, such as temperature 
and precipitation, are taken as input values to make the predictions of the river flow rate. 
Because there is a certain amount of error between the recurrent predicted value ࢚࢟ା૚ and 
the true value and also the first recurrent predicted value is taken as input to obtain the 
second one, this error is propagated through the prediction function. So the accumulation 
error can be important for the long-term support vector machine. However, the support vector 
machine has been trained with all available observed input variables, such as temperature 
and precipitation, and output targets (such as flow rate), with the purpose of long-term river 
flow rate prediction which seems to be a better approach. 

2) Recurrent Support Vector Machine to Forecast Daily Minimum Flow Rate

If the climate variables, such as temperature and precipitation are not available, we present a 
recurrent support vector machine to forecast the daily minimum flow rate. The daily minimum 
flow rate can be expressed as target input pairs (X, Y)ሼݔ௜, ݅ ൌ 1,…݀;  ௗାଵሽ. The training andݔ
prediction phase are the same as recurrent support vector machine to make the prediction of 
temperature and precipitation. The flow rate time series variables can be expressed: 

܆ ൌ 	

ۉ

ۈ
ۇ

ଵݔ ଶݔ
ଶݔ ଷݔ

	ଷݔ 							ସݔ
ସݔ 	ହݔ

… ௗݔ
… ௗାଵݔ

ଷݔ 					ସݔ
ସݔ ହݔ

ହݔ 							଺ݔ
଺ݔ ଻ݔ

… ௗାଶݔ
… …ௗାଷݔ …							

௧ݔ ௧ାଵݔ
…					 …												
					௧ାଶݔ ௧ାଷݔ

… …
… یேିଵݔ

ۋ
ۊ
																(19) 

Y = 

ۉ

ۈۈ
ۇ

ௗାଵݔ
ௗାଶݔ
ௗାଷݔ
ௗାସݔ
…
ேݔ ی

ۋۋ
ۊ
ൌ	

ۉ

ۈۈ
ۇ

ଵݕ
ଶݕ
ଷݕ
ସݕ
…
ی௧ݕ

ۋۋ
ۊ
	          (20) 

Where X is the observed flow rate dataset from 1959 to 2008 and Y is target flow rate 
vectors. The d is the time lag, N is total observed samples and t = N-d. 

The recurrent support vector machine uses the predicted flow rate values as known data for 
the next ones and the predicted model can be constructed by first making one-step ahead 
prediction: 
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ܺ௧ାଵ ൌ ൛ݔ௧ାଵ,ݔ௧ାଶ,ݔ௧ାଷ, … ,  ௧ൟ  (21)ݕ

࢚࢟ା૚ ൌ ∑ ߱௡ே
௡ୀଵ ,ሺܺ௧ାଵܭ ܺ௡ሻ ൅ ߱଴  (22) 

where t denotes the numbers of input dataset and 	ݕ௧ denotes one-step ahead predicted 
value. To predict the next value, the same prediction function is used: 

ܺ௧ାଶ ൌ ൛ݔ௧ାଶ,ݔ௧ାଷ,ݔ௧ାସ, … ,  ௧ାଵൟ  (23)ݕ

࢚࢟ା૛ ൌ ∑ ߱௡ே
௡ୀଵ ,ሺܺ௧ାଶܭ ܺ௡ሻ ൅ ߱଴   (24) 

In this equation, the predicted flow rate value of ݕ௧ାଵ  is used instead of the true value, which 
is unknown. Then, for the M-steps ahead flow rate prediction, ݕ௧ାଶ to ݕ௧ାெare predicted 
iteratively. As the first predicted flow rate value is taken as input to obtain the second flow 
rate one, this error is propagated through the prediction function. The second predicted flow 
rate has potentially twice more error: the difference between ࢚࢟ା૛and the true value plus the 
propagated error. With an increasing step ahead prediction, this accumulation can be 
important.  

Compared with flow rate prediction with climate variables, such as temperature and 
precipitation, the recurrent model is simple and only depends on the flow rate. Although the 
flow rate prediction based on the climate variables has an advantage which can consider the 
climate variables contributions, the recurrent predicted variables instead of the true variables 
which are not known, such as temperature and precipitation, are taken as input values to 
make the predictions of the river flow rate. So the accumulation error of climate variables can 
be important for the long-term support vector machine.  

3) Validation for Daily Minimum Flow Rate Training

During the training phase of flow rate prediction, it is difficult to determine the kernel function 
parameters. The validation phase is one of powerful tool. Because there are limited flow rate 
dataset, we divide the annual flow rate dataset into two parts, one for training and another for 
validation. During our study, the validation dataset from one year to seven years has been 
tested. 
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Where X is the observed flow rate dataset or observed climate variables from 1959 to 2008-v 
and Y is target flow rate vectors. The d is the time lag, N is total observed samples, t = N-d 
and v is validation years. 

The support vector machine makes the river flow rate predictions based on the observed 
pairs (X, Y). The error is the difference between predicated values and validation values. 

௠ሻݕሺࢅ ൌ ∑ ߱௡ே
௡ୀଵ ሺܭ ௠ܻ, ܺ௡ሻ ൅ ߱଴                (27) 

࢘࢕࢘࢘ࢋ ൌ ∑ ௡ሻݕሺࢅ|| െ ௡ሻ௏݋ሺࢅ	
௡ୀଵ ||                (28) 

Because the validation value are true values and are available for comparison with the 
predicted values, so we can update the kernel function parameters so as there are minimum 
errors between the true value and predicted values. The best parameters with minimum 
errors will be applied to support vector machine to make predictions of future trend of flow 
rate. 

The Athabasca River Example 

The Athabasca River stretches from the Columbia Ice Fields near the Alberta-British 
Columbia border to its mouth in Lake Athabasca, at the northeastern corner of Alberta 
(Figure 1). Its length is estimated to be 1400 km, making it the third longest undammed river 
in North America, behind the Yukon and Mackenzie rivers, and slightly longer than the Fraser 
River. Over its length the Athabasca River drops about 800 m, with two-thirds of this drop 
occurring in the first 450 km [Schindler, 2007].  

Figure 1: Bas Map of Athabasca River 
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Alberta’s oil sands are not only the world’s largest capital project but now represent 60 
percent of the world’s investable oil reserves. But in order to produce the oil sands, the 
intensive water requirements, combined with climate change, may threaten the water security 
of two northern territories, 300,000 aboriginal people and Canada’s largest watershed: The 
Mackenzie River Basin (2007, University of Alberta). A 2006 Alberta report (Investing in Our 
Future) noted that “over the long term the Athabasca River may not have sufficient flows to 
meet the mining operations and maintain streams flows”. To address these critical issues, we 
propose the Bayesian-based support vector machine method to make the prediction of future 
trend of the daily minimum flow rate using the historical observations of river flow rate and 
climate time series of temperature and precipitation. 

Long-term flow monitoring records are not available for the study. A short period of records, 
such as river flow rate, temperature and precipitation, from 1959 to 2008, were collected at 
Clean Water, Edson Creek, Slave Lake, White Court and Fort McMurray stations.  At Fort 
McMurray station, the highest daily minimum flow recorded during the above period was 211 
cms in 1997. The lowest recorded flow was 75 cms in 2001. During a succession of dry years 
from 1997 to 2003, flows were less than 100 cms for almost four months in winter.   
The minimum flows have been declined since 1959 (Figure 2). This is of concern whether the 
water flow in future can meet the needs of all the oil sands operations. 

Figure 2: (Top) Daily flow rate of Fort McMurray station from 1959 to 2008. (Middle) the daily 
average and maximum flow rate. (Bottom) the daily minimum flow rate. The lowest recorded 
flow rate was 75 cms in 2001. 

It is well known that the river flow rate prediction is an extremely complex problem and also is 
difficult for long term predictable because the flow process can be influenced by a wide 
variety of factors including the precipitation intensity and distribution, climate warning, 
drought, channel characteristics, watershed geology and topography, vegetation cover, 
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human activities (e.g. land-use changes) and even, indirectly, the greenhouse gas releases 
[Hu 2001].   

To introduce an explicit link between climate variables in forecasting of future water supply of 
the Athabasca River, we proposed a model based on Support Vector Machines in this work. 
Firstly, the Support Vector Machine recursively predicts the temperature and precipitation for 
100 coming years. Then, the forecasts of the temperature and precipitation obtained can be 
used further to predict the river flow rate for 100 coming years using the Support Vector 
Machine. 

Athabasca Annual Average River Flow Rate Prediction 

1) Data Used for Annual River Flow Rate Prediction

In this work, we use the Bayesian-based support vector machine method to make a long-
term prediction for the river flow rate and time trends around Fort McMurray station in the 
Athabasca River. Generally, the river flow rate is affected by different climate change 
scenarios, such as temperature and precipitation. However, long-term flow rate, temperature 
and precipitation are not available for this study and a short period of observed records were 
collected at Fort McMurray, Clean Water, Edson Creek, Slave Lake and White Court stations 
from 1943 to 2007. The following figures show the historical time series of annual river flow, 
temperature changes and precipitation density at several stations located upstream of Fort 
McMurray. During the training phase of annual flow rate prediction, the validation phase is 
not applied, but we will apply the validation phase at daily minimum river flow rate study.  

Figure 3 is Fort McMurray annual temperature time series trend. The upper window is 
monthly temperature display. The red color indicates high temperature and blue is low 
temperature. The Y axis is month and X is year. The middle is annual average of daily 
maximum temperature and bottom is annual sum of the monthly average. 

Figure 4 is Fort McMurray annual minimum temperature time series trend. The upper window 
is monthly temperature display. The red color indicates the high and blue is low. The Y axis is 
month and X is year. The middle is annual average of daily minimum temperature and the 
bottom is annual sum of the monthly average. 

Figure 5 is Fort McMurray annual precipitation time series trend. The upper window is 
monthly precipitation display. The red color indicates high precipitation and blue is low 
precipitation. The Y axis is month and X is year. The middle is annual average precipitation 
and the bottom is annual total precipitation. 

Figure 6, 7, 8, 9 and Figure 10 are Athabasca annual precipitation display, Edson Creek 
annual maximum temperature time trend, Slave Lake annual maximum temperature time 
trend, White Court annual precipitation time trend and DPO time series index trend 
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Figure 3: Fort McMurray annual maximum temperature time series trend 

Figure 4: Fort McMurray annual minimum temperature time series trend 

Figure 5: Fort McMurray annual precipitation time series trend 
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Figure 6: Athabasca annual precipitation time series trend 

Figure 7: Edson Creek annual maximum temperature time series trend 

Figure 8: Slave Lake annual temperature time series trend 
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Figure 9: White Court annual precipitation time series trend 

Figure 10: DPO annual index time series trend 

2) Recurrent SVM Annual Temperature and Precipitation Predictions

The recurrent SVM models are trained using these observed temperature and precipitation 
data and the hyperparameter weights ሼ߱௡	݊ ൌ 1,…ܰሽ were optimised directly via the iterative 
procedure. The M-steps ahead predictions of the observed data are predicted iteratively 
based on the same linear combinations as the training’s. The followings are the recurrent 
SVM long-term prediction results. 

Figure 11 is Fort McMurray annual maximum temperature long-term trend prediction. The lag 
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 3.5. 
These parameters need a series of test to determine based on the experience and 
reasonable trends.  

Figure 12 is Fort McMurray annual minimum temperature long-term trend prediction. The lag 
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 4. 
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Figure 13 is Fort McMurray annual precipitation long-term trend prediction. The lag time is 11 
years and the kernel function of SVM is Gaussian Radial Basis with width 0.73. 

Figure 14 is Athabasca annual precipitation long-term trend prediction. The lag time is 17 
years and the kernel function of SVM is Gaussian Radial Basis with width 1.0. 

Figure 15 is Edson Creek annual maximum temperature long-term trend prediction. The lag 
time is 10 years and the kernel function of SVM is Gaussian Radial Basis with width 3.0. 

Figure 16 is Slave Lake annual maximum temperature long-term trend prediction. The lag 
time is 12 years and the kernel function of SVM is Gaussian Radial Basis with width 6.0. 

Figure 17 is White Court annual precipitation long-term trend prediction. The lag time is 8 
years and the kernel function of SVM is Gaussian Radial Basis with width 0.485. 

Figure 18 is DPO annual long-term trend prediction. The lag time is 11 years and the kernel 
function of SVM is Gaussian Radial Basis with width 20. 

Figure 11: Fort McMurray annual maximum temperature long-term trend prediction. The left 
part (red line) is the observed records and the right part (blue) is the predicted annual 
maximum temperature values 
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Figure 12: Fort McMurray annual minimum temperature long-term trend prediction. The left 
part (red line) is the observed records and the right part (blue) is the predicted annual 
minimum temperature values 

Figure 13: Fort McMurray annual precipitation long-term trend prediction. The left part (red 
line) is the observed annual precipitation records and the right part (blue) is the predicted 
annual precipitation values 

Figure 14: Athabasca annual precipitation long-term trend prediction. The left part (red line) is 
the observed annual precipitation records and the right part (blue) is the predicted annual 
precipitation values 
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Figure 15: Edson Creek annual maximum temperature long-term trend prediction. The left 
part (red line) is the observed annual maximum temperature records and the right part (blue) 
is the predicted annual maximum temperature values 

Figure 16: Slave Lake annual maximum temperature long-term trend prediction. The left part 
(red line) is the observed annual maximum temperature records and the right part (blue) is 
the predicted annual maximum temperature values 

Figure 17: White Court annual precipitation long-term trend prediction. The left part (red line) 
is the observed annual precipitation records and the right part (blue) is the predicted annual 
precipitation values 

Figure 18: Decadal Pacific Oscillation (DPO) annual long-term trend prediction. The left part 
(red line) is the observed annual DPO records and the right part (blue) is annual the 
predicted DPO index values 
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3) Annual River Flow Rate Predictions

For the prediction of future river flow rates, climate variables, such as the temperature and 
precipitation are used. For the Athabasca River, temperature and precipitation data were 
obtained from several stations. These stations located upstream of Fort McMurray, covers an 
area of about thousands square kilometers. In this area, the temperature, precipitation and 
flow rate were recorded continuously from 1920s to 2008. The annual maximum, minimum, 
total and average temperature, precipitation and flow rate can be calculated from these 
records. All these observed records were shown from Figure 3 to Figure 10.  

The support vector machine attempts to establish an empirical (statistical) relationship 
between annual flow rate and climate variables, such as temperature and precipitation from 
the available observed records. The training variables include maximum temperature of Fort 
McMurray station, minimum temperature of Fort McMurray, precipitation of Fort McMurray, 
precipitation of Athabasca, maximum temperature of Edson Creek, maximum temperature of 
Slave Lake and precipitation of White court. All these observed will be integrated into a 
training dataset with the lag time 9 years, which is estimated via a number of tests. The tests 
of varying the window lag length shows that if the lag time is reasonable, the predicted values 
will be optimized; otherwise the equation will be ill-posed and cannot find an optimization 
result.  

The support vector machine makes predictions on long-term river flow rate using the 
recurrent SVM predicted temperature, precipitation and DPO data if available. 

Figure 19 is a long-term annual maximum flow rate predicted trend. The input variables are 
all available observed temperature, precipitation and DPO. The lag time is 9 years. The 
target input is annual flow rate observed at Fort McMurray station. The SVM kernel function 
is Gaussian Radial Basis with degree 3.  

Figure 20 is a long-term annual minimum flow rate predicted trend. The input variables are all 
available observed temperature, precipitation and DPO. The lag time is 9 years. The target 
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is 
Gaussian Radial Basis with degree 3.  

Figure 21 is a long-term annual total flow rate predicted trend. The input variables are all 
available observed temperature, precipitation and DPO. The lag time is 9 years. The target 
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is 
Gaussian Radial Basis with degree 3.  

Figure 22 is a long-term annual average flow rate predicted trend. The input variables are all 
available observed temperature, precipitation and DPO. The lag time is 9 years. The target 
input is annual flow rate observed at Fort McMurray station. The SVM kernel function is 
Gaussian Radial Basis with degree 3.  

Figure 23 is a long-term annual maximum flow rate predicted trend. The input variables are 
all available observed temperature and precipitation. The lag time is 9 years. The target input 
is annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian 
Radial Basis with degree 3.  
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Figure 24 is a long-term annual minimum flow rate predicted trend. The input variables are all 
available observed temperature and precipitation. The lag time is 9 years. The target input is 
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian 
Radial Basis with degree 3.  

Figure 25 is a long-term annual total flow rate predicted trend. The input variables are all 
available observed temperature and precipitation. The lag time is 9 years. The target input is 
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian 
Radial Basis with degree 3.  

Figure 26 is a long-term annual average flow rate predicted trend. The input variables are all 
available observed temperature and precipitation. The lag time is 9 years. The target input is 
annual flow rate observed at Fort McMurray station. The SVM kernel function is Gaussian 
Radial Basis with degree 3.  

Figure 19:  The predicted annual maximum flow rate trend based on temperature, 
precipitation and DPO. The left part (red line) is the observed annual maximum flow rate 
records and the right part (blue) is the predicted annual maximum flow rate 

Figure 20: The predicted annual minimum flow rate trend based on temperature, precipitation 
and DPO. The left part (red line) is the observed annual minimum flow rate records and the 
right part (blue) is the predicted annual minimum flow rate 
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Figure 21: The predicted annual total flow rate trend based on temperature, precipitation and 
DPO. The left part (red line) is the observed annual total flow rate records and the right part 
(blue) is the predicted annual total flow rate 

Figure 22: The predicted annual average flow rate trend based on temperature, precipitation 
and DPO. The left part (red line) is the observed annual average flow rate records and the 
right part (blue) is the predicted annual average flow rate 

Figure 23: The predicted annual maximum flow rate trend based on temperature, and 
precipitation. The left part (red line) is the observed annual maximum flow rate records and 
the right part (blue) is the predicted annual maximum flow rate 
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Figure 24: The predicted annual minimum flow rate trend based on temperature, and 
precipitation. The left part (red line) is the observed annual minimum flow rate records and 
the right part (blue) is the predicted annual minimum flow rate 

Figure 25: The predicted annual total flow rate trend based on temperature, and precipitation. 
The left part (red line) is the observed annual total flow rate records and the right part (blue) 
is the predicted annual total flow rate 

Figure 26: The predicted annual average flow rate trend based on temperature, and 
precipitation. The left part (red line) is the observed annual average flow rate records and the 
right part (blue) is the predicted annual average flow rate 
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Athabasca River Minimum Flow Rate Prediction 

1) Climate Data Used for Daily River Flow Rate Prediction

In this work, we use the Bayesian-based support vector machine method to make a long-
term prediction for the river flow rate and time trends around Fort McMurray station in the 
Athabasca River. Generally, the river flow rate is affected by different climate change 
scenarios, such as temperature and precipitation. However, long-term flow rate, temperature 
and precipitation are not available for this study and a short period of observed records were 
collected at Fort McMurray, Clean Water, Edson Creek, Slave Lake and White Court stations 
from 1959 to 2008. At Fort McMurray station, the highest daily minimum flow recorded during 
the above period was 211 cms in 1997. The lowest recorded flow was 75 cms in 2001. 
During a succession of dry years from 1997 to 2003, flows were less than 100 cms for almost 
four months in winter. The minimum flows have been declined since 1959 (Figure 2). In order 
to make the predictions of flow rate at Fort McMurray station, the following variables at 
several stations located upstream of Fort McMurray have been selected: 

1) Average of daily maximum temperature, daily minimum temperature and precipitation
at Fort McMurray station.

2) Athabasca annual precipitation
3) Edson Creek annual maximum temperature time trend
4) Slave Lake annual maximum temperature time trend
5) White Court annual precipitation time trend
6) DPO time series index trend

Because the above variables are only available from 1959 to 2008, we applied the recurrent 
support vector machine to predict the future trend of these variables from 2009 to 2100. 
Figure 27 is the result of recurrent support vector machine. The left parts are the observed 
dataset and the right parts are the future trends of the prediction of recurrent support vector 
machine. 
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Figure 27: Left: the observed climate variables and Right: the future trends of predictions of 
recurrent support vector machines. 

2) The Future Trends of SVM Daily Prediction of Flow Rate Using Climate Data

For the prediction of future river flow rates, climate variables, such as the temperature and 
precipitation are used. For the Athabasca River, temperature and precipitation data were 
obtained from several stations. These stations located upstream of Fort McMurray, covers an 
area of about thousands square kilometers. In this area, the temperature, precipitation and 
flow rate were recorded continuously from 1920s to 2008. The annual maximum, minimum, 
total and average temperature, precipitation and flow rate can be calculated from these 
records. All these observed records and future trends of the climate variables were shown 
from Figure 28.  

The support vector machine attempts to establish an empirical (statistical) relationship 
between annual flow rate and climate variables, such as temperature and precipitation from 
the available observed records. The training variables include maximum temperature of Fort 
McMurray station, minimum temperature of Fort McMurray, precipitation of Fort McMurray, 
precipitation of Athabasca, maximum temperature of Edson Creek, maximum temperature of 
Slave Lake and precipitation of White court. All these observed will be integrated into a 
training dataset with the lag time 9 years, which is estimated via a number of tests using the 
different validation years and lag window. The test of varying the window lag length shows 
that if the lag time is reasonable, the predicted values will be optimized; otherwise the 
equation will be ill-posed and cannot find an optimization result. After determining the lag 
window, the different validation years (0-7 years) have been tested to achieve the minimum 
error between validation and predicted values through updating the parameters of kernel 
function of support vector machine.  
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Figure 28: Left : the observed flow rate (red), Right: the predicted minimum flow rate using 
climate variables (blue). The star points are validation data (magenta) 

In order to determine the contributions of climate variables, we make a different combination 
of climate variables, such as temperature, precipitation and DPO with different validation 
years. Figure 29 is the future trend of predictions of flow rate with all three temperature, 
precipitation and DPO variables. The left part is observed flow rate; the right is future trend of 
flow rate. The star points with green color are the validation dataset. The top is the future 
trend of the flow rate with zero year (red) and one year validation. The upper middle is the 
future trend of flow rate with two and three-year validation. The lower middle is the future 
trend of flow rate with four and five-year validation. The bottom is the future trend of flow rate 
with six and seven-year validation. 
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Figure 29: Left: Observed flow rate, Right: future trend of predictions of flow rate based on 
two climate variables (Temperature and Precipitation) with the different validations. The 
upper is zero (red) and one year (blue) validation, the bottom is six (red) and seven-year 
(blue) validation 

Figure 30: Left: Observed flow rate, Right: future trend of predictions of flow rate based on 
two climate variables (DPO and Temperature) with the different validations. The upper is 
zero (red) and one year (blue) validation, the bottom is six (red) and seven-year (blue) 
validation 
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Figure 31: Left: Observed flow rate, Right: future trend of predictions of flow rate based on 
two climate variables (DPO and Precipitation) with the different validations. The upper is zero 
(red) and one year (blue) validation, the bottom is six (red) and seven-year (blue) validation 

3) The Future Trends of Recurrent SVM Daily Prediction of Flow Rate

The recurrent flow rate SVM models are trained using these observed flow rate data from 
1959 to 2008 and the hyperparameter weights ሼ߱௡	݊ ൌ 1,…ܰሽ were optimised directly via the 
iterative procedure. The M-steps ahead predictions of the observed flow rate data are 
predicted iteratively based on the same linear combinations as the training’s. In order to best 
make predictions of future trend, the validation was used to achieve the minimum errors 
between the validation data and predicted values and then determine reasonable parameters 
for recurrent support vector machines. The followings are the recurrent SVM long-term 
prediction results. 

Figure 32 is the future trend of recurrent predictions of flow rate. The left part is observed 
flow rate; the right is future trend of flow rate. The star points with green color are the 
validation dataset. The top is the future trend of the flow rate with zero year (red) and one 
year validation. The upper middle is the future trend of flow rate with two and three-year 
validation. The lower middle is the future trend of flow rate with four and five-year validation. 
The bottom is the future trend of flow rate with six and seven-year validation. 
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Figure 32: Left: Observed flow rate, Right: future trend of predictions of flow rate with the 
different validations. The upper is zero (red) and one year (blue) validation, the bottom is six 
(red) and seven-year (blue) validation 

Discussion and Conclusions 

This study employs the Bayesian Support Vector Machine to make predictions of future trend 
of daily river flow rate. In order to have an explicit link between the climate change and river 
flow rate, climate variables, such as temperature, precipitation and decadal pacific oscillation 
index are used as input for prediction of future river flow. The different combined climates 
and different validation tool have been used to better select the lag time and parameters in 
order to achieve the minimum errors between the validation true values and predicted values.  

If the climate variables are not available, the recurrent support vector machine will be applied 
to make the prediction of future trend of flow rate.  

The future river minimum flow rates of the Athabasica River near Fort McMurray stations, of 
the next 60 years are forecasted used the methods developed in this study. The predicted 
future trends of the river flow rate depend on the climate variables. If there are more 
geological experience and knowledge it seems the method can make reasonable prediction 
of future trend flow rate. The proposed Bayesian Support Vector Machine seems to be a 
useful tool for predicting future trends of time series. 

More accurate prediction from Bayesian Support Vector Machine for the river flow rate 
depends on its learning kernel functions, kernel function's width (degree) and training 
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dataset. The validation tool has solved part of issues, but there remain some future problems 
to be solved. An important problem is how to determine the lag window and design a proper 
partition mechanism to build the input-target training pairs. In addition, more studies should 
be done with the selection of the climate variables in order to get the optimized and 
reasonable results.
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