GEOLOGICAL SURVEY OF CANADA

OPEN FILE 1334

MAGRAV2: An Interactive Magnetics
and Gravity Modelling Program for
IBM-Compatible Microcomputers

John Broome

OPEN FILE

133

GEOLOGICAL SURVEY,
OTTAWA

August 1986 $30.00

This document was produced
by scanning the original publication.

Ce document est le produit d'une
numeérisation par balayage
de la publication originale.

MAGRAV2: An Interactive Magnetics and Gravity

Modelling Program for Microcomputers *

John Broome

Lithospheric Geophysics Section
Lithosphere and Canadian Shield Division

Geological Survey of Canada

© Crown copyright reserved

sellis
narrow black

ABSTRACT

MAGRAV2 is an interactive program for modelling magnetic and
gravity data that runs on IBM personal computers (IBM-PC), or

compatibles. The program allows forward and inverse 2.5
dimensional modelling of gravity and magnetic anomalies from up
to 10 bodies. Bodies are defined by their vertical cross-section

and their strike extent.

The program is written for a microcomputer equipped with a
high-resolution colour monitor in addition to a standard text
monitor. The high-resolution colour monitor is used to display
measured and calculated anomalies as well as the colour-coded
body cross-sections while the text monitor displays only text
information. Program control from either a graphics tablet or the
keyboard is possible.

The software is written in Microsoft FORTRAN 77 with one
8088/8086 assembler subroutine for sound generation. Colour
graphics are handled by the Multi-Halo graphics subroutine
library. Multi-Halo is device-intelligent, allowing this software
to be adapted to numerous different graphics peripherals. Other
software for this workstation configuration to allow display and
enhancement of geophysical imagery will also be made available in
the future.

TABLE OF CONTENTS

INTRODUCTION ittt e eeooeoettonnsssonsssssessssssassses)d
HARDWARE REQUIREMENTS ..ttt ittt it tonesoeancnssosoesas 6
2.1 Mode 1 requirementsueoiveioeioarottrsanioeneas 6
2.2 Mode 2 requirementscieeci ittt onairennen 7
2.3 Mode 3 requirements e et e e e e 8
COMPILING AND LINKING MAGRAVZc.000 TR 8

3.1 Software requirements for compiling and linking ...8

3.2 The Multi-Halo graphics librarycc0cievseess g
SETTING UP TO RUN THE PROGRAM ittt enntneranesns 10
4.1 Files used by MAGRAVZ ittt iteteeenoosonnonooncsos 10

4.2 Setting up with a 1.2 Mbyte floppy or hard disc ...1l1
4.3 Setting up with two 360 kbyte floppy discs 11

4.4 Optional use of a RAM disc to improve performance .11

USING MAGRAVZ ..t ittt itneeosasosecsasnssanssanssssssssns 11
5.1 Program'options and help e e et 11
5.2 Testing the program s s e e e e 12
5.3 Using the digitizereceee.. et et e 12
MODELLING YOUR OWN DATA P S 13
6.1 Entering observed datacciiiiv ittt iaranones 14
6.2 Entering bodiesiiiicitittaiaroentorocncerensans 14
6.3 Entering body parameterscc0ieit ittt 16
6.4 Calculating and displaying the anomaly 17
OPTIMIZING THE MODEL ...ttt it ittt it e enosnnsonssnsons 17
7.1 Manual optimizationeiiieeerinoeononsionncens 18
7.2 Automatic optimizationii it entinecnsan 18

8.0 OTHER PROGRAM FUNCTIONS ...itveeereanan “ e B
8.1 Recoveryece.e. e e e e s e e e b e e et e 19
BiZ ZOOmM ittt it i ioaonsonnnsancansas e 19
8.3 Saving the modelc¢citieviennon 18
8.4 Simultaneous gravity and magnetic-modelling 19

9.0 CONVERTING MAGRAV2 FOR VERTICAL GRADIENT MODELLING20

10.0 MODIFICATIONS AND IMPROVEMENTSiiievnunenns el 20

11,0 DISCLAIMERttt eeneeanntonmetoansnans . RPN .20

12.0 REFERENCES et et e e . .o .21

APPENDICES

A: Files supplied on the disc

B: Subroutine description

C: Source file listings

D: Compiling and linking procedure

E: Program modification notes

F: Profile file format

G: Vertical gradient modelling subroutine

1.0) INTRODUCTION

Magnetic and gravity data are often interpreted in a two

stage process. The first stage involves qualitative analysis of
the data displayed in map form, such as colour intensity maps,
shaded relief images or contour maps. Anomaly trends are

correlated to known geology and areas of interest are isolated.
The second stage involves quantitative analysis such as forward
and inverse modelling of data extracted from areas of interest.
Forward magnetic modelling involves defining bodies with
specified magnetic properties and calculating the theoretical
anomaly that would be produced by the body. This <calculated
anomaly is compared to the measured anomaly and adjustments are
made to the body shapes and magnetic parameters until a
reasonable match is obtained between the measured and calculated
anomalies.

Modelling <c¢an be done in 2, 2.5 or 3 dimensions. Two-
dimensional modelling involves defining bodies in cross-section
and assumes that the bodies have infinite strike extent. In 2.5
dimensional modelling, the bodies are still defined in cross-
section but strike extent is variable. Anomalies from both 2 and
2.5 dimensional modelling are displayed in profile form. In
three-dimensional modelling, where the geometry of the bodies is
variable in three dimensions, the measured and calculated
ancmalies are displayed in map form. Early computer modelling
efforts involved calculation of two-dimensional model anomalies
by batch job submission to mainframe computers, analysis of the
results, and resubmission of thejob with modified model
parameters. This process was repeated until a satisfactory match
was obtained between the measured and calculated anomalies. This
batch type modelling gradually evolved to 2.5 and 3 dimensions.

The next major improvement was the development of
interactive two-dimensional modelling programs for mainframe
computers that wutilized monochromatic graphics displays. One

example of this type of program is MAGRAV (Haworth et
al.,1980)(Wells,1979) which was written in FORTRAN 4 for CYBER
mainframe computers and Tektronix storage-tube terminals at the

Atlantic Geoscience Centre. The original MAGRAV used the two-
dimensional modelling algorithms published by Talwani and
Heirtzler (1964). This program was subsequently improved at the

Geological survey of Canada (GSC) by P. McGrath (McGrath et
al.,1983), who added inverse modelling capability and F. Lindia
who added the end corrections to the two~dimensional magnetic
modelling algorithms (Shuey et al.,1973) to make them 2.5-
dimensional.

This program, MAGRAV2, is a new version of MAGRAV rewritten
in Microsoft FORTRAN 77 to runm on IBM personal computers or
compatibles., MAGRAV2 incorporates the improvements made to the

original MAGRAV by McGrath and Lindia as well as additional
improvements added by the author.

(&)]

To fully utilize MAGRAVZ additional hardware must be added

to the basic microcomputer to improve its graphics and
computational performance, as well as it’s storage capacity.
MAGRAV2 wuses a high-resolution <colour monitor to generate

detailed colour graphics and an optional graphics tablet for
cursor positioning and program control.

This open file includes a 360 kbyte IBM~format floppy disc

containing source code, test model, and batch files to simplify
compilation and linking of the program. After a discussion of the
hardware required to use the program, the procedure to create

an executable file and usage of the program will be described.

2.0) HARDWARE REQUIREMENTS

The hardware configuration described here was carefully
selected to create a functional inexpensive geophysical
workstation. Other software will be released in the future which
requires this particular equipment configuration; therefore, this
configuration is recommended to assure that your workstation will
be compatible with this software. MAGRAVZ2 was written to operate
most effectively on the complete system; however, provisions have
been made for users who do not have all the equipment recommended
for a complete workstation.

MAGRAV2 has three modes of operation to suit different
hardware configurations

Mode 1) Text display only

Mode 2) Colour graphics display with keyboard control

Mode 3) Colour graphics display with graphics tablet
control.

Table 1 summarizes the hardware requirements to run MAGRAV2
in the different modes. Essential components for each mode are
identified with an "E", recommended components with an "R" and
optional components with an "0". Recommended components are those
that are not essential for the particular MAGRAVZ mode but are
essential for future software releases designed for the
workstation.

2.1) MODE 1 REQUIREMENTS

MAGRAV2 operating in mode 1 will operate on any IBM-PC or
compatible with 256 kbytes of memory and 2 floppy disc drives.
The addition of an 8087 numeric processor chip is strongly
recommended because it accelerates anomaly computation
by a factor of approximately ten. Without an 8087 chip, a typical
anomaly calculation for one body requires approximately 20

seconds for a 50 point profile; much too long for an interactive
environment. With the 8087 chip the delay for anomaly calculation
is less than 2 seconds. Although not essential, a hard disc unit

e . T o s o W = . —_— ——— — _—— — — — T A T S = - ——— " — ———

IBM-PC or compatiblevitivierintoeisnsssansnsses E E E
~IBM-PC/XT or AT is optlonal
-Running MS-DOS or PC-DOS

256 kbyte memory e ettt e e evese.. E E E
-640 kbyte recommended
2 ~ 360 kbyte floppy discs ... e «... E E E
-only 1 floppy disc is required 1f
a hard disc or 1.2 Mbyte floppy disc
is available,.
Serial port (for digitizer tablet)....... .. R R E
Parallel port (for printer)cveeeeeoeeeeneere. O 0 0
8087 numeric processor chipi e eeceeeeess R R R
-Strongly recommended!
Text monitor and display boardccvevveeee.. E E E
High resolution colour graphics board R E E
~Supplied software is designed for:
the Number Nine Computer Corp.,
"Revolution" board, 512 x 512 x 8 bit,
interlaced
High resolution RGB Colour monitorccevcv... R E E
Graphics tablet ittt eenenescnsseensss R R E
-The software is setup for a
Houston Instruments Hipad digitizer
Model DT-11
Printeriiii ittt eitiocnnens e e e e e s e e e 0 0 0
-a standard prlnter is useful for
program listings and model dumps
Hard disc ..ottt neeroeneetaseesnonnansnas P ¢ 0 0
-optional but recommended for ease
of compilation,linking and program
operation
TABLE 1 : Hardware required for different modes of operation. "E"
indicates essential, "R" indicates recommended as this device is
essential for other workstation software, and "O" indicates
optional.

is recommended to simplify program compilation and linking and to
speed program operation. In Mode 1, all information, including
observed and calculated anomaly profiles, are typed out
in numerical form rather than being presented graphically as 1in
modes 2 and 3. Program operation is controlled by 38 different
command options which are explained by an on-line help function.
Although all program functions are available in mode 1, the
absence of graphic display of anomaly profiles and body cross-
sections makes the modelling process slower and more difficult.

2.2) MODE 2 REQUIREMENTS

Mode 2 operation requires the addition of a high-resolution
colour monitor and driver board to display anomaly profiles and
body cross-sections. The program is controlled by the keybecard
using the same 38 different command options used for mode 1. Body
cross—-sections and anomaly profiles are drawn colour—-coded for
easy recognition. The graphic display resolution of the standard
IBM colour graphics adapter is inadequate for this application.
Therefore, a high resolution graphics board was added to the
computer. The particular graphics board used in this system 1is
the Number Nine Computer Corp.’s Revolution board. This board
produces an interlaced 512 by 512 pixel display with 2586
simultaneously displavable colours out of a palette of over 16
million colours. MAGRAVZ itself does not require 256 colours but
other software designed for this workstation requires this
capability. Other <colour graphics boards can be used with the
program because all of the graphics are controlled by the device-
intelligent Multi-halo graphics 1library. Considerations for
adapting the program for different hardware are outlined in
Appendix E.

2.3) MODE 3 REQUIREMENTS

Mode 3 operation requires the addition of a digitizer tablet
to the computer. This particular system uses a Houston
Instruments Hipad digitizer (model DT-11). In mode 3, program
option selection and body point movement are controlled from the
graphics tablet using the graphics tablet cursor. Program control
from the graphics tablet is achieved by placing a template over
the graphics tablet that identifies areas on the graphics tablet

corresponding to different program options. As in modes 1 and 2
the text monitor is used to display prompts, informative listings
and error messages. Mode 3 operation is the most interactive

modelling environment and the recommended mode of operation.

3.0) COMPILING AND LINEING MAGRAVZ

3.1) SOFTWARE REQUIREMENTS FOR COMPILING AND LINEKING

Before MAGRAV2Z can be used , an executable file must be
generated by compiling the FORTRAN source code files and linking

them with the FORTRAN, Halo, and MAGRAVZ libraries. To produce an
executable MAGRAVZ file, two commercial software products are
required

1) The Microsoft FORTRAN 77 compiler (version 3.20 or higher
Required for all modes)

2% The Multi~Halo graphics subroutine library with
Microsoft FORTRAN 77 support (version 2.26 was used
For graphics in modes 2 and 3)

The Microsoft FORTRAN 77 compiler is required for all modes
of operation to compile the five FORTRAN source code files. The
source code is broken into five files because there is too much
code to be compiled as one module by the compiler. The batch file
"mfcomp.bat” can be used to compile the five files as outlined in
Appendix D. The contents of the five source code files;
"magrav2.for", "msl.for", "ms2.for", "ms3.for", and "ms4.for" are
listed 1in Appendix C. All of the subroutines are required for
mode 3 of operation; however, operation in modes 1 and 2 does not
require all the subroutines. A brief description of the purpose
of each subroutine, which modes of operation required, and the
source code file in which it is found are included in Appendix
B.

To generate an executable file for a system with no
digitizer tablet, files not required for modes 1 and 2 can be
edited out of the source files. Calls to the deleted subroutines
must also be deleted from the main program and other subroutines,
or error messages will occur during linking.

Subroutine SOUND is an 8088/8086 assembler routine, found in
"magrav2.1ib" which is used to generate sound to accompany
program prompts and error messages. It is not essential to
program operation and can be left out if all calls are edited out
of the FORTRAN source code.

3.2) THE MULTI-HALO GRAPHICS LIBRARY

The Multi-Halo graphics subroutine library is used to
produce the graphic display used in modes 2 and 3 of operation.
Multi-halo 1is a device—intelligent system for handling graphics
on microcomputers produced by Media Cybernetics of Silver Spring,
Maryland. Device intelligence allows software to be used with
different hardware with minimal changes. Device driver files are
provided for many common microcomputer graphics boards, printers
and positioning devices such as digitizers and mice. These
drivers are installed at run time to allow software to be used in
different hardware environments. Modifications that may be
required for different graphics boards and digitizers are
discussed in Appendix E. Mode 1 operation does not use any Multi-
Halo subroutines, so an executable MAGRAV2Z file can be generated
for mode 1 operation, by commenting out any Multi-halo
subroutine calls in the FORTRAN source code files before
compiling and linking.

The object files produced during compilation and assembly
must be linked to each other and to the FORTRAN and Multi-halo
libraries to produce the executable MAGRAVZ file. The batch file
"mlink.bat” <can be used to link the files as described in
Appendix D.

4.0) SETTING UP TO RUN THE PROGRAM

4.1) FILES USED BY MAGRAV2

Once a "magrav2.exe" file has been produced you are ready to
model. A number of files are required by MAGRAVZ and the program

generates others. A list of these files and their purpose
follows
1 Magrav2.exe
MAGRAV2 executable file you generate by compiling and
linking the FORTRAN source code files provided.
2 Halo.dev
Device driver file used by the halo graphics. For the
512x484x8 number nine graphics board, this file is Halo
file "halonine.dev"” renamed "halo.dev. This file and
others are provided with the Halo graphics package.
"Halo.dev"” must be located on the default drive.
3 Logo.pic
This file is optional . It is a Halo format image file

produced by the Halo "gwrite" command. If the file is
found on the default drive, the stored image will be
displayed on the colour monitor when MAGRAVZ is executed.
You can generate your own "logo.pic" file if you have
the Dr. Halo’ image editing program.

49 Models file .
The models file is generated by the MAGRAVZ and

contains models stored by using the "write"”
option in MAGRAVZ. You may name this file whatever yvou
wish., This file allows the user to save models and
read them back 1later for further modelling or
inspection. Sample models files "mtest.mod" and
"gtest.mod” are provided.

51 Recovery file

This is a scratch file generated on the default drive by
MAGRAVZ containing information used by the "recover”
option to allow modelling steps to be undone. This file
is named "magrav.rec" in the program and takes up approximately
200 kb of disc space.
€ Init.bat
This file is used to initialize the serial port on the
IBM-PC for the Houston instruments Hipad digitizer
for use with the program.”"Init" must be run before MAGRAVZ.
T Halohipi.com
This file contains the device driver file for the
Houston instruments digitizer tablet. It is provided
with the Halo graphics package and used by "init.bat™.

10

4.2) SETTING UP WITH A 1.2 MBYTE FLOPPY OR HARD DISC

If a hard disc or a 1.2 Mbyte floppy disc is included in
the system, then files "magravZ2.exe”, "init.bat", "halohipi.com",
"halo.dev" and the models file can all be placed on one drive.

4.3) SETTING UP WITH TWO 360 KBYTE FLOPPY DISCS

If two 360 kbyte floppy discs are available all the files
used by MAGRAV2 will not fit on one drive. In this case, files
"halo.dev", and the models file should be placed on the default
drive and a disc <containing ‘"magrav2.exe"™, "init.bat", and
"halohipi.com" should be placed in the other disc drive.

4.4) OPTIONAL USE OF A RAM DISC TO IMPROVE PERFORMANCE

After each significant model change, MAGRAVZ writes a block
of data to file "magrav.rec" for use by option "reco” for undoing
changes. If this write is to a floppy disc, program operation can
be slowed <considerably. If 640 kbytes or more memory 1is
available, the program can be speeded up by ’installing’ a 360
kbyte RAM disc in memory and making it the default drive. Files
"halo.dev"” and the models file should be placed on the default

drive and MAGRAVZ should be executed from another drive.
"Magrav.rec" will now be created on the RAM disc and writes to
"magrav.rec" will be performed much more quickly. A commercial

software package such as "Superdrive™ by AST research or the MS-
DOS 3.1 configuration option "vdisc.sys" can be used to create
the RAM disc.

4.4) INITIALIZING THE DIGITIZER

If MAGRAVZ is to -operate with digitizer tablet control (mode
3), the system must first be initialized for the appropriate
digitizer by running batch file "init.bat". This sets up the
serial communications port on the computer for the particular
locator device used. "Init.bat"” executes Halo file "halohipi.com"
to 1initialize the port for the Houston Instruments Hipad
digitizer.

5.0) USING MAGRAV2

MAGRAVZ is started by entering the command "magrav2". The
program will first ask for the name of the models file. A test
models file, "mtest.mod"”, provided on the disc, should be on the
default drive; so enter "mtest.mod". The program will then ask if
graphics are to be enabled. To use the program in mode 1 enter

" " "

"n" and for modes 2 and 3 enter "y". The program will then prompt
you with "Enter option:".

5.1) PROGRAM OPTIONS AND HELP

11

MAGRAVZ is controlled by 38 four character program command
options. Any of the options can be called at any time; however, a

logical sequence must be called. Obviously, the option which
moves a body cannot be used if no bodies have been defined. If an
attempt is made to select an option that cannot be used, a
message will be generated to identify the error. The correct
starting order of option calls is given by option "help" together
with a menu of the possibilities. Within "help", information
describing each of the options can be obtained by entering the 4-
character name. Pressing the "return” key, returns you to the
main program. Two sequences of option calls can be used to get

started, depending on whether the model is being generated for
the first time or an existing model is to be read in from the
models file. ’

5.2) TESTING THE PROGRAM

The models file is used to store model information so the
user does not have to enter the observed and body data each time
he wants to work on the model. To test the program, read in the
model from models file "mtest.mod”. To read in a model one must
first determine the names of models stored in the models file.
Option "tpnam" will list the names of the models stored in the
models file. Model "test"” should be listed. Set the current model
name to "test" using option "name" and then use option "read" to
read model "test"” into the program. Since "test™ is a magnetics
model, the program will switch from the default gravity mode to
magnetics mode. Model "test"™ <contains a 50 point measured
magnetic data profile, magnetic field parameters, and 4 source
bodies with their magnetic properties. To calculate the anomaly
due to the bodies call option "anom”. The program will type
"Calculating anomaly for body n" where n is 1 to 4 as the
anomalies for each of the bodies is calculated and then the

"Enter option:’ prompt will return. The calculated anomaly can
now be printed out with option "tano". The body point coordinates
and magnetic parameters can be printed out with option "tbod”. If

graphics are enabled (mode 2) the observed and calculated data
can be plotted on the graphics monitor along with the cross-
sections of the 4 bodies using option "draw".

5.3) USING THE DIGITIZER

If a digitizer tablet is included in the system, mode 3 of

operation <can be used. Mode 3 of operation allows most program
options - to be selected from a Houston Instruments digitizer
tablet. The template, shown in figure 1, is placed over the

working surface of the digitizer which identifies areas which
correspond to different program options. If a Houston instruments
digitizer is used, ensure that the digitizer tablet is placed in
stream mode. To enter mode 3 of operation, graphics must be
enabled and option "tabl"” called. Program options can now be
selected by placing the digitizer cursor over the appropriate
command square on the digitizer and pressing the cursor button.
Additional instruction are then printed on the text monitor. The

12

MAGRAV2

MOVE MOVE
ENTER | MOVE ENTER POINT eomy | RECOVER TEXT ¥ anomaLy] oraw | Reoraw
BODY BODY PARAM ‘MODE

AUTO MANUAL

T
DELETE 8oDY DELETE || INSERT oetimse | oo | scae
BoDY | ANOMALY POINT POINT CONTRAST]
< g
TYP
TYPE £ TYPE TYPE MAGN QRAV DIFF OFFSET 8ET MANUAL
soov PARAM omse ANOM ON/OFF zooM SCALE
Figure 1 : Program control from the digitizer tablet (mode 3) is

obtained by placing the digitizer cursor over the template square

representing the
This template is
digitizer and 1is
the black border

13

desired option and pressing the cursor button.
designed for use with a Houston Instruments
shown reduced in size.

The width and height of

on the template should be 25.4 cm.

digitizer tablet provides a much easier and faster method for
changing body points than using the keyboard.

6.0) MODELLING YOUR OWN DATA

To model your own data, execute MAGRAVZ and then select the
name of the models file you wish to use. If the program does not
find the file you have selected it will ask you if you wish to
create a new models file with that name . If you respond "n" the
program will again prompt you for the models file name. After the
models file is selected and the graphics mode is set, the first
option selected should be "grav" or "magn"” depending on the type
of modelling to be done. If magnetics mode is selected, the
program will ask for the orientation of the profile data,
declination and dip of the geomagnetic field in the profile area,
and whether a depth offset is desired for body points. The depth
offset is useful for aeromagnetic data modelling since it can be
set equal to the survey flight elevation to allow body point
depths to indicate the depth below the earth’s surface. If
gravity mode 1is selected, the program will ask for the depth
offset only. The next step is to enter the observed data values.

6.1) ENTERING OBSERVED DATA

The observed data is entered using option "eobs". The
program will first ask whether data is to be read from a file or
entered manually from the keyboard. Data entry from a file is

provided as a link between the modelling program and digital
sources of profile data such as field magnetometers with internal
storage or airborne profile data. The format for profile files is
described in Appendix F.

If manual entry is selected, the program will ask for the
"x" profile offset. The "x" profile offset is a constant added to
observed data positions which is useful when profiles longer
than the current maximum of 100 points are to be modeled. The
long profile can be modelled in two or more sections with the "x"
offset set so that the "x" coordinate of the last point of the
first section equals that of the first point of the next section.
The program next asks for the observed data sampling interval and
the number of profile readings to be entered. The current maximum
profile length of 100 points could be increased by simply re-

dimensioning the appropriate arrays in the program. The
appropriate number of profile point numbers and data values are
now entered. If graphics are enabled, the observed data will be

automatically scaled and plotted in green on the colour monitor.
6.2) ENTERING BODIES

Once the observed data has been entered, the next step is to
define the body cross-sections by entering body points. At this
stage, an understanding of potential field interpretation and the
geology of the area becomes important. Potential field

14

T(x,y,z)
TR (x)

X
: ~T
A
: /7N
\([4 «\
(X):// ¢\
1:0,24); A

\
w40y, 22)

/
/

/7
(x5,0,25)

7 Y (Xz,y, 22)

Figure 2 . This diagram shows the geometry used by MAGRAVZ to
define bodies. The screen display shows only the x-z plane
through points (x1,0,21) and (x2,0,22). The half-strike length
distance, or strike extent, used by the 2.5 dimensional modelling
algorithm is equal to y.

15

interpretation is complicated because of the ambiguity problem
which results in an infinite number of combinations of body
geometries and magnetic properties that will produce an anomaly
which matches an observed anomaly. Geological constraints such as
the measured magnetic susceptibilities on the profile and
knowledge of the structure and contact locations between zones
with contrasting susceptibility assist in obtaining a model
which is realistic. Body points can be entered from the keyboard
using option "ebod" (modes 1,2,3) or more easily from the
digitizer tablet (mode 3). Up to 20 points can be entered per
body and points must be entered in clockwise order or anomalies
will not be calculated correctly. Bodies will be plotted, in
colour, on the graphics monitor if graphics are enabled. Figure 2
shows how bodies are defined and displayed by the program. Up to
10 bodies can be created. Each body has a unique number and
colour. The body colour is identified in the print-out produced
by option "tbod".

As you enter body points they are compared to existing body
points. If the position of the new point is very close to an
existing point, the new point position is set equal to the old.
The separation between points must be greater than the size of
the small box in the lower left corner of the screen for the new
point position to be retained. The next step in defining your
model is to enter the body parameters.

6.3) ENTERING BODY PARAMETERS

Body parameters are entered using option "epar" or by
selecting enter parameter on the digitizer tablet(mode 3). The
first parameter the program will ask for is the body strike
extent. The strike extent is wused by the 2.5 dimensional
algorithms to calculate the anomalies. The strike extent entered
is the distance from the central cross-section of the body to
each end of the body. The length of the body is therefore, twice
the strike extent with the anomaly calculated over the center

cross—section. Next, the program will ask for the minimum,actual
and maximum magnetization or density <contrast depending on
whether you are in gravity or magnetics mode. The minimum and
maximum values are limits used by the automatic contrast setting
option, "cont", to constrain the contrasts to a limited range.
This range would be set from measurements of density or
susceptibility of rock samples along the profile or by looking up
representative ranges for rock types identified along the
profile.

The magnetic susceptibility of a rock is a measurement of
the degree to which the rock can be magnetized. Since rock
magnetic susceptibility is the usual rock property measured in
the field, the relationship between magnetic susceptibility and
magnetization is important for use of the progranm. The
magnetization 1is the magnetic moment per unit volume and is
related to magnetic susceptibility as follows

k = M/ H where in cgs units;

16

Magnetic susceptibility (dimensionless)

intensity of induced magnetization (emu/cc)

intensity of the geomagnetic field (oersted)
(1 oersted = 100000 gamma)

M

Magnetization is expressed in cgs units of 0.00001 emu/cc
in the program. Conversion of susceptibility from cgs to SI units
is achieved by multiplying by 12.57.

I1f you are in magnetics mode the program will also ask for
the declination and dip of the body magnetization. For most
magnetic modelling, magnetization is induced by the geomagnetic
field and is therefore in the same direction as the geomagnetic
field. If remanent magnetization is present, the direction
entered should be the direction of the vector sum of the remanent
and induced magnetization vectors. The actual magnetization value
entered in the program will be the amplitude of the vector sum.

6.4) CALCULATING AND DISPLAYING THE ANOMALY

Once body points,body parameters, and observed data have
been entered, the model anomaly may be calculated wusing option
"anom". The program will ask you to enter the body number for

which the anomaly is to be plotted. Entering a specific body
number will result in the anomaly from that body being plotted
colour «coded to the body cross—-section plot. Entering "0" will
result in the composite anomaly from all defined bodies being
plotted in white. The anomaly can also be listed using option
"tano", or if graphics are enabled, drawn on the colour monitor
using option "draw" or "sket". If changes to body points or
parameters are made, the anomalies will be automatically
recalculated when options "draw" or "sket" are called and the
composite anomaly will be plotted in white.

The observed and calculated anomalies are automatically
scaled to fill the plot window on the graphics screen the first

time it is drawn. If the observed data contains a constant
background it <can be removed for plotting purposes by calling
option "offs". Offset and model changes may require rescaling of

the anomaly plot window. This rescaling can be done automatically
with option "asca" or manually with option "msca".The zero level
in the anomaly window is indicated by a gray line. When option
"asca" is called, both old and new plot limits are printed on the
text screen.

7.0) OPTIMIZING THE MODEL

Once the body and anomaly data have been entered into the
program, other options may be called to modify different model
parameters. The model can be changed both manually and
automatically by the program. When optimizing the model, care
must be taken to ensure that the model remains relevant to the
known geoclogical constraints. Ambiguities inherent in magnetic

17

interpretation result in an infinite number of models that will
fit the observed anomaly. Manual optimization of the model is
recommended in the early stages of developing the model since the
interpreter can keep the model within reasonable geological
constraints. Automatic methods are useful when the model 1is
thought to be <close to being correct, to make the final
adjustments.

7.1) MANUAL OPTIMIZATION

After the initial model has been created, adjustments to
model parameters are almost always required to improve the match
between the observed data and calculated anomaly. Manual changes
to body cross-sections can be made from the keyboard with

options: "mpoi”, "dpoi", and "ipoi" or from the digitizer tablet
in mode (3). Manual changes to magnetization or density contrasts
can be made with optioen "epar"”. Information on the other options

that can be used for changing the model can be obtained using the
"help" option.

7.2) AUTOMATIC OPTIMIZATION

The program also allows the user to automatically move body
points using option "maut"” and optimize body density or
magnetization parameters using option "cont". Both automatic
optimization methods generate a best least-squares fit between
the calculated and observed data. The automatic optimizations
work properly only if the model produces a calculated anomaly
reasonably close to the observed data. If the body point or body
contrast is poorly constrained, the automatic point movement may
produce unreasonable results due to the mathematical accuracy
limitations of the program.

Option "cont" will vary the density or magnetization
contrasts of the body within the minimum and maximum limits
entered in option "epar". This allows realistic limits to be
placed on body parameters to conform to the known geology. If
option "cont” is used for optimizing a magnetic model where the
body magnetization has been set to a different direction to
account for remanent magnetization, the model will be optimized
by changing the magnitude of the resultant magnetization vector.
As explained previously, the resultant is the vector sum of an
induced component determined by the susceptibility of the body
and a fixed remanent component. Since the remanent component is
fixed, the induced component should be optimized to fit the model
rather than the resultant which indicates the total
magnetization. For this reason, automatic contrast optimization
is not recommended where a remanent magnetization component 1is
included in the model.

18

8.0) OTHER PROGRAM FUNCTIONS

8.1) RECOVERY

During the optimization process, changes are often made
which are undesirable. Option "reco" allows the user to undo the
last 20 changes of the program. After each significant change to

the model the model is saved in file "magrav.rec" and each call
to option "reco"” undoes one change.

8.2) ZOOM

The screen resolution can be a limitation to the modelling
process for complex or very detailed models. For this reason a
zoom function has been implemented which allows a portion of the
screen display to be blown up to fill the screen. The area to be
zoomed can be defined wusing option "zoom" or using the set
zoom command on the digitizer tablet. Once the zoom area has
been defined, the wuser can switch back and forth between full
profile display by calling option "draw" and zoom area display by
calling option "sket". All digitizer command options work in both
the ‘"sket" and "draw" display modes. Using "zoom" to look at a
extremely small area will take some time and may cause the
program to fail.

Zooming out to increase the display beyond the ends of the
profile can also be accomplished using option "msca" to set the
zoom area manually from the keyboard. This is a useful feature
which allows bodies to be extended beyond the profile ends to
eliminate edge effects.

8.3) SAVING THE MODEL

If model changes are made, the revised model must be written
to the models file, before exiting from the program, using option

"writ"; otherwise, changes will be lost. The model name can be
left wunchanged, in which <case the previous model will Dbe
overwritten, or the model name can be changed to create a new

model in the models file. A maximum of 20 models can be stored in
a models file.

8.4) SIMULTANEOQOUS GRAVITY AND MAGNETIC MODELLING
MAGRAVZ allows simultaneous modelling of both gravity and

magnetics for a given model. To use this feature enter either a
gravity or magnetic model as described and then call either

option "grav" or "magn" to change to the other mode. After the
modelling mode is set, enter observed data and body parameters
for that mode. Once both gravity and magnetic observed data and

body parameters have been entered, the current modelling mode can
be switched back and forth by calling options "magn" and "grav".
Modelling of both gravity and magnetic data allows the model to
be constrained more completely than using one mode alone.

19

9.0) CONVERTING MAGRAV2 FOR VERTICAL GRADIENT MODELLING

MAGRAVZ can be easily modified for vertical gradient
modelling by making some changes to subroutine MAG. The
modifications wuse the depth offset to calculate the magnetic
anomaly at two different heights one meter apart. The difference

between these anomalies 1is an approximation to the vertical
gradient of the field. The observed vertical gradient data should
be entered 1in units of gammas/metre to match the calculated
anomaly. Appendix G contains a modified version of subroutine MAG
called MAGVG. This method of calculating the vertical gradient
doubles the amount of computation required therefore anomaly
calculation takes twice as long.

10.0) MODIFICATIONS AND DISTRIBUTION

Many individuals have expressed interest in MAGRAVZ and
other programs used by this microcomputer based workstation . By
releasing this program into the public domain, is is hoped that
the program will receive widespread use. This use will probably
lead to modifications, improvements and corrections to errors
that may exist in the program. The author would appreciate if a
description of any significant modifications or corrections to
the program could be sent to me so that they can be incorporated
in later versions of the progranm. Please distribute only
unmodified versions of the program.

Crown Copyright reserved.

11.0) DISCLAIMER

This program is provided on an "as is" basis. Neither The
Geological Survey of <Canada nor any of its staff members are

liable for any errors in the program or any problems associated
with use of the progranm.

20

12.0 REFERENCES

Haworth,R,T. and Wells,I.

1980; ’Interactive computer graphics method for the combined
interpretation of gravity and magnetic data’; Marine
Geophysical Researches, No. 4, p. 277-290, D. Reidel
Publishing Co.

McGrath,P.H., Henderson,J.B., and Lindia,F.M.
1983: ’Interpretation of a gravity profile over a contact 2zone
between an Archean granodiorite and the Yellowknife
Supergroup using an interactive computer program with

partial automatic optimization’; in Current Research,
Part B, Geological Survey of Canada., Paper 83-1B,
p. 189-194.

Shuey,R.T. and Pasquale,A.S.
1973; ’'End corrections in magnetic profile interpretation’;
Geophysics, v. 38, no. 3, p. 507-512.

Talwani,N., and Heirtzler,J.R.

1964, *Computation of magnetic anomalies caused by two-
dimensional bodies of arbitrary shape’; in G.A. Parks
ed.), Computers in the Mineral Industry, School of Earth
Sciences, Stanford University.

Wells,I.)
1979; °’MAGRAV users guide: A computer program to create two-
dimensional gravity and/or magnetic models’,; Bedford
Institute of Oceanography Computing Services Technical
Services Memorandum No. 85, Geological Survey of Canada.

21

APPENDIX A

Files supplied on the disc
~Microsoft FORTRAN source files:

magrav2. for
msl.for
msZ2.for
ms3. for
ms4.for
magrav.cmn

o) IR0 I A I U

-Assembler routines file:
7 . sound.asm
-Libraries:
8 magrav2.1lib
-Batch files:
g mfcomp.bat
10 mlink.bat

-Models file:
11 mtest.mod
12 gtest.mod

APPENDIX B

Subroutine description

1) Name..modes requiring it.... location of the source code
2) What it does.

3) Other routine calls

(Argument descriptions are given in the source code)

NOTE: Subroutine <calls not found in this list are calls to
the"Halo" graphics subroutine library.

In alphabetical order

ASCALE M: 2,3 MS2.FOR
This subroutine automatically scales the anomaly plots
to fit the screen window.

CALCAN M: 1,2,3 MS3.FOR

This subroutine calls the appropriate gravity or magnetic
anomaly «calculation subroutine to calculate the anomalies from
any bodies with new or changed parameters or point positions.

CHECK M: 3 MS3.FOR

This subroutine compares body point positions to existing
body points. If the new point position is within the distance
specified in variables "xdis" and "zdis" from an existing point a
flag is set. This check removes the need for absolutely accurate
cursor positioning.

DEGCOS M: 1,2,3 MS1.FOR

This function calculates the cosine of an angle input in
degrees.

DEGSIN M: 1,2,3 MS1.FOR

This function calculates the sine of an angle input in
"degree”.

DELE M: 1,2,3 MS2.FOR

This subroutine prompts the user, in text mode, for body
numbers and point numbers for point deletion.

DELETE M: 1,2,3 MS3.FOR

This subroutine deletes points in bodies.

DELTAG M: 1,2,3 MS1.FOR
This function is used by subroutine "GRAVC" when calculating
gravity anomalies.

DFS001 M: 1,2,3 MS1.FOR

This subroutine is used to optimize point positions and
gravity or magnetic contrast values. A more detailed description
of the program and parameters is given in the source listing.

DFS002 M: 1,2,3 MS1.FOR

This subroutine is used by DFS001 to find the best fit of
the <calculated gravity or magnetic anomaly for a particular
degree of freedom. A more detailed description of the subroutine
and parameters is given in the source listing.

EOBSE M: 1,2,3 MS2.FOR

This subroutine prompts the user to enter observed data
offset, sample spacing, number of readings in the profile, and
observed data values from the keyboard

GRAVC M: 1,2,3 MS3.FOR

This subroutine calculates the gravity anomaly for one
body.

GRINIT : M: 2,3 MS2.FOR
This subroutine initializes the Halo graphics, loads the

graphics device driver, and sets the colours for the screen

display.

HELP M: 1,2,3 MSZ2.FOR
This subroutine prints out informative text messages

describing the different command options.

INSE M: 1,2,3 MS2.FOR
This subroutine prompts the user (in text mode) for the
body number, point number, and point coordinates for a point to

be inserted an existing body.

INSERT M: 1,2,3 MS3.FOR

This subroutine inserts new body points

MAG M: 1,2,3 MS3.FOR

This subroutine calculates the magnetic anomaly for one
specified body.

ro

PARAM M: 1,2,3 MS3.FOR

This subroutine prompts the user to enter body
gravity/magnetic parameters from the keyboard.

POIN M: 1,2,38 MS2.FOR
This subroutine prompts the user (in text mode) for beody

numbers, point numbers and new point coordinates for point

movement.

READF M: 1,2,3 MS2.FOR

This subroutine is used to read a model from the models file
with the current name.

REAN M: 1,2,3 MS3.FOR
This sUbroutine clears arrays "calc" and "ianom" to zero for
initialization purposes.

RECO M: 1,2,3 MS2.FOR

This subroutine is used to read the most recent record from
the recovery file into the common block. This allows the user to
go back to previous steps by "undoing" changes.

ROBSE M: 1,2,3 MS2.FOR
This subroutine allows the user to read observed profile
data from an ASCII file.

SAV M: 1,2,3 MS2.FOR

This subroutine 1is used to write the common block to the
recovery file after every significant change so that previous
steps can be recovered with option "RECO".

SOUND M: 1,2,3 (not essential) SOUND. ASM

This 8086/8088 assembler subroutine makes sounds of
different frequency and duration to accompany error messages and
prompts. This subroutine can be removed without affecting the
utility of the. program.

TSCA M: 1,2,3 MS3.FOR

This subroutine types plot scaling parameters, and other
informative information about the current program status.

TYPANO M: 1,2,3 MS3.FOR

This subroutine types the composite or individual calculated
anomalies on the text monitor.

TYPAR M: 1,2,3 MS3.FOR
This subroutine types the gravity or magnetic contrast
parameters for all bodies on the text monitor.

TYPBOD M: 1,2,3 MS3.FOR
This subroutine types body points and parameters for
selected bodies or all bodies.

TYPOBS M: 1,2,3 MS2.FOR
This subroutine is used to print outi the observed data on
the text monitor in text mode.

WHAT M: 1,2,3 MS2.FOR

This subroutine is used to interpret text mode commands. A
character string read in from the keyboard is compared to a set
of commands and an value used in computed "go to" statements 1is
returned.

WRITEF M: 1,2,3 MS2.FOR

This subroutine is used to write a model with the current
name to the models file.

D000 O0O000000000000000GO00D0000000O000060000000000000O00O0

APPENDIX C

-

INTERACTIVE GRAVITY AND MAGNETICS MODELLING
Revision 1.1 ; edited June 19 / 86

*% NOTE: Source code for this program is in 5 files
magrav2.for, msl.for, ms2.for, ms3.for, ms4.for
File: magrav.cmn is included in all source files.

Libraries for compilation :
Microsoft fortran libraries, Halo graphics library(2.26)
and assembler object file :sound.

3% 3k 3k 3k 2k 3 2k 3k K 5k % 3k 3k 3k K %k K 3K 3K ok 3K K K 3K 5K 3k X K 3K 5k k3K 3 3k 3K ok K 3k K K ok 3 3k 3k 2K K %k 3 3k ok 3k K ok Xk K KOk K K K KOk K kX

This program is an improved version of MAGRAV, the history of
which follows:

Author: I. Wells, Computing Services ,Bedford institute of
Oceanography(BIO). for Dr. Haworth, Atlantic Geoscience Centre.

Reference :

Wells, I.(1979) MAGRAV - A computer program to create two
dimensional gravity and/or magnetic models,
Computer Science Centre OPEN FILE 597.

Magnetics modified by Franca M Lindia, August 1982.
Modifications based on 2.5-D magnetic equations of
Shuey and Pasquale (1973).

Gravity equations modified by Peter McGrath, December 1982,
for 2.5 D bodies. See Rasmussen and Pederson (1979)
Geophys. Prosp., 27, 749-760.

Other minor modifications to the program were also made.

Modified by Peter McGrath, December 1982, to permit
automatic adjustment of body magnetization (density)
contrasts and point movement using a non-linear

least squares algorithm published by Powell (1965) in
The Computer Journal, 7,p 303.

Rewritten in Microsoft FORTRAN 77 for use on an IBM-PC with
a raster graphics -display driven by the HALO graphic system
by : John Broome, Lithospheric Geophysics Section,
Lithosphere and Canadian Shield Division, Geological Survey
of Canada, June 1986.

OO0 00O00000000000000O000000000000000000000000000000000000

Input : Input from keyboard or control from digitizer pad.
Recovery file : "magrav.rec" used to allow you to go back
to a previous step.
Models file : Contains named model data so you can terminate
a modeling session and then continue later.

ANOMAX(NTYPES): Maximum of anomaly window for plotting observed
and calculated anomalies.

ANOMIN(NTYPES): Minimum of anomaly window for plotting observed
and calculated anomalies.

BDEC(MAXBOD): Magnetization declination of each body. (mag only)

BDIP(MAXBOD): Magnetization dip for each body. (Mag only)

BDY(MAXBOD): Half-strike length of each body in km.

CALC(MAXBOD,MAXOBS): Anomaly calculated for each body,
at each observed point,CALC(MAXBOD+1,MAXOBS) stores the
combined anomaly from all bodies.

DEC: Declination of field. (Mag only)

0 - 360. Degrees clockwise from North.

DIFMAX(NTYPES): Maximum of anomaly plotting window for difference
plots.

DIFMIN(NTYPES): Minimum of anomaly plotting window for difference
plots.

DIP: Dip of the field. (Mag only)
0 - 360. Degrees
E(22): Array used by DFS001
F(MAX0OBS): Array used by DFS00l to store the calculated anomaly
values.
IANOM(MAXBOD): 0 Anomaly has not been calculated for this body
-1 Anomaly has been calculated for this body
and is stored in calc
IB(4): Used by subroutine AMOVE to store body numbers for cases
where a point is found in more than 1 body.
IBR: Used in automatic optimization, set=1 for point movement
set=0 for contrast optimization.
IDIFF: -1 for observed and calculated plot
1 for difference between observed and calculated
IRECOV(NBACK): set to "1" if that rec. no. has been saved
ISCOPE: 1 All graphics in effect
2 All graphics suppressed, for text-only terminals
ISCR: Logical unit number for recovery file
ITYPE: 1 for gravity mode modelling.
2 for magnetics mode modelling.
IX{LNGIX): character array containing current model names
JF: Digitizer tablet button status(4=pushed)
JX: " " X coordinate
J z : " ” z ”
KALK: Set=1 if anything changes that requires anomaly recalculation
KOMMNT(8): 8Al10 comments about model
LNGIX: Max number of models that can be stored
MAXBOD: Maximum allowable number of bodies
MAXCAL: Maximum allowable number of bodies + 1.

0O00OD0O000O00ON0O0O00O0D00O0000000000000000000000000000000CO0O0O00G2O0

0

MAXNPT: Maximum allowable number of points per body
MAXOBS: Maximum allowable number of observations
MODE: Set=1 - for full profile plotting(draw mode)
Set=2 - for plotting of only the "zoomed"” window
MODEL: Unit number of model file
NAME: Name of current model entered with "name" option
NBACK; Current record number in recovery file.
NBODS: Number of bodies in current model
NFIELD(NTYPES): number of profile points for each modelling mode
NMOD: Current number of defined models in models file.
NP(4): Used by subroutine AMOVE to store point numbers in cases
where a point to be moved occurs in more than 1 body.
NPTS(MAXBOD): Number of points currently in each body
NTYPES: Number of model types this program will handle. (Mag,Grav)
OBS(MAXOBS,NTYPES): Observed values for each mode and profile pt.
OFFSET(NTYPES): Offset added to observed for plotting only
PI: Pi constant
RHOMAG(MAXBOD,ITYPE) Density(ITYPE=1), or Magnetization(ITYPE=2)
contrast for each body.
RMMAX (MAXBOD,NTYPES): Maximum value allowed for body contrast.
RMMIN(MAXBOD,NTYPES): Minimum value allowed for body contrast.
SKXMAX: Current right side sketch mode plotting limit
SKXMIN: Current left side sketch mode plotting limit.
SKZMAX: Current maximum depth for sketch mode plotting.
SKZMIN: Current minimum depth for sketch mode plotting.
SPACE(NTYPES): Spacing between field points
W(1275): Scratch work array used by DFS001, etc.
X{MAXNPT,MAXBOD): X Coordinates for each point in each body.
XC: Current X cursor position scaled to the current window.
XDIS: Distance in scaled units in X direction for resolution
on pinpointing for cursor input of bodies
XLEN(NTYPES): Length of profil in Km.
XLPL: Current right X plotting window limit
XMAX: Position in km of the last profile point.
XOFFS{NTYPES): X Offset of first profile reading in km.
XPOS(MAXNPT): X coordinate of each observed reading on profil
XTON: X to N angle. Orientation of X axis. (Mag only)
measured clockwise from North in degrees.
XUPL: Current left plotting window limit
XX(11): Array used by DFS00l to store variables being modified
for the best fit.
Z(MAXNPT,MAXBOD): Z Coordinates of each body point
Note - (0,0) is not an acceptible body point
ZC: Current Z cursor position scaled to the current window.
ZCON(ITYPE): A constant added to Z coord of all bodies
ZDIS: Allowable distance between the cursor and body point
positions in the Z direction.
ZLPL: Current bottom plotting window limit
ZMAX: Maximum distance from surface(0.) to bottom of screen
ZUPL: Current top plotting window limit

3k Kk 3k ok 3k kK ok ok ok sk ok ok ok ok ok ok ok 3k ok Kk 3k K ok ok ok 3K K ok K ok 3k 3K 3k Sk ok ok kK 3k oK ok K Kk kK ok 5k K0k k0K ok kKo ok Kok

program magrav2

integer*2 digini
characterx1l0 iblank
characterx20 fil,mfil
character*x4 ians
logicalx2 fex

c
$include: ’magrav.cmn’
$nofloatcalls
c
data iblank/’ r/
write(%,299)
299 format (1ho,’ MAGRAV2Z 1.1°,/,
+lh ’, ———————————— ’,//,
+1lh ,’ Gravity and magnetics modelling program’,/,)
c
C m e e e e

¢ Open and initialize models and recovery files
c

Ingix = 20

iscr = 9

model = 1

nmod = 0

do 200 i = 1 , lngix

ix(i) = 0

200 continue

225 write(*,310)
310 format(1lhO,’Enter name of models file : ’,\)
call sound(20,200)
read(*,’(a)’) mfil
inquire(file=mfil,exist=fex)
if(fex.eqv..false.) then
write(*,*)’File ’,mfil,’ not found.’
write(*,’(a\)’)’ Open a new model file(y/n): °’
call sound (20,200)
read(*,’(a)’) ans
if(ans.eq.’n’.or.ans.eq.’N’) go to 225
open(model,file=mfil,status="new’,access=’direct’,
+ form=*unformatted’,recl = 3120)
write(*, %)’ New models file *,mfil,’ opened’
else
open(model,file=mfil,status="0ld’,access="direct’,
+ form=‘unformatted’,recl=3120)
320 nmodpl = nmod + 1
read(model, rec=nmodpl,end=330) moddat
nmod = nmod + 1
if(nmod.gt.lngix)go to 330
ix(nmod) = name
go to 320
330 write(*,%) nmod,’ models read from file ’,mfil
endif

open(iscr,file="magrav.rec’,status="new’,access="direct’,

+form=’unformatted’,recl=8320)

220

255
250
c

c

idiff -1
iscope = 2
nback 0
itype -9999
kalk =1
nbods
maxnpt
maxbod
maxobs
maxcal
ntypes
zmax =
skxmax
skxmin
skzmin
skzmin
xlpl
xupl
zlpl
zupl
Xton
xdis
zdis
mode
dec = 0
dip = 90.

)

)

0

19

10

100

maxbod + 1
2

1.

OO0

HOOOOOOoOOC N H i | o togu

(LT L I) A T S T I 1}

.001

zcon(l) =
= zcon(1l)

zcon (2

do 250 j =
offset(j)
xoffs(j)
xlen(j) =
anomax(Jj)
anomin(j)
difmin(j)
difmax(j)
nfield(j)
space(j) =
do 255 i =
obs(j,1)
continue
continue

1 types

n
0.

=0

100.
-100.
-50.
50.

0

W n o n o

1.
1, maxobs
= 0.

call rean

do 260 i = 1 , maxbod
npts(i) = 0
rhomag(i,l)
rhomag(i,2)
rmmin(i, 1)
rmmin(i,2)
romax (i, 1)
rmmax (i, 2)
bdec(i) = 0.

o
o

SCOoOOO

bdip(i) = 0.
bdy(i) = 100000

260 continue
c
do 270 i =1, 8
kommnt{(i) = iblank
270 continue
name = iblank
c
call grinit (iscope)
c
write(x,’(/a/)’)’ Select option "HELP" to start’
go to 400
c

c Branch to chosen option from value returned by "what"

350 call sav

400 write(*,’(/a\)’)’ Enter option : °’
call sound(20,200)
call what(iwhat)
if(iwhat.le.0) then

4389 write(*,%) ’pardon 7’
goto 400
endif
c

if(itype.1lt.0) then
if(iwhat.eq.25.0r.iwhat.eq.26.0r.iwhat.eq.8)goto 500
if(iwhat.eq.35.0r.iwhat.eq.30.0r.iwhat.eq.19)goto 500
if(iwhat.eq.15.0r.iwhat.eq.16.0r.iwhat.eq.27)goto 500
write(*,%)’The modelling mode must be selected with’
write(*,x)’options "GRAV"ity or "MAGN"etics, or a '’
write(x, %)’ model must be "READ" in before this option’
write(*,%x)’can be called.’
go to 400

endif

500 goto(1000, 2000, 3000, 4000, 5000, 8000, 7000, 8000,

+ 9000, 10000, 11000, 12000, 13000, 14000, 15000,
+ 1000, 17000, 18000, 19000, 20000, 21000, 22000,
+ 23000, 24000, 25000, 26000, 27000, 28000, 289000,
+ 30000, 31000, 32000, 33000, 34000, 35000, 36000,
+ 37000, 38000)
+ iwhat

c

c <EOBS> Enter or read in observed data

e

1000 if(itype.eq.l) write(*,%*) ’You are in GRAVITY MODE’
if(itype.eq.2) write(*,%*) ’You are in MAGNETICS MODE’
1014 write(*,’(a\)’)’ Is ths the correct mode (y/n) : °’
read(*,’(a)’,err=99000) ians
if(ians.eq.’y’.or.ians.eq.’Y’) then
write(*,x)’ 1 - Read observed data from a profile file’
write(*,%)’ 2 - Enter observed data manually’
write(x,”(/a\)’)’ Select type of data input(l or 2): °’

C

read{(*,%,err=99000) intype
if(intype.lt.l.or.intype.gt.2) go to 99000
if(intype.eq.1l)then
call robse(ierr)
if(ierr.eq.0) then
go to 350
else
go to 400
endif
else
call eobse
go to 350
endif
else
if(itype.eq.l)write(*,%x)’Select option "MAGN"etics’
if(itype.eq.2)write(%,%)’Select option "GRAV"ity’
go to 400
endif

¢ <EBOD> Input Body

2150

2173

2175

do 2005 ibod=1,maxbod
if(npts(ibod).eq.0) go to 2010
continue
write(%,*)’ERROR,the maximum number of bodies(10) already’
write(*,*)’To enter a new one, one must be deleted.’
call sound(15,6000)
go to 400

write(*,%)’ Body’,ibod,’ will be created.’
write(x,’(a\)’)’ Enter no. of points in body(1-19) : °’
read(%,%,err=99000) npt
if(npt.gt.maxnpt.or.npt.le.2) then
write(*,*)’No. of points must be from 3 to
go to 2011
endif
npt = npt + 1
npts(ibod) = npt
nptl = npt - 1
write(x,x)’Enter ’,nptl,’ X and Z body point coord. pairs(km);’
write(Xx,*)’Note: points must be entered in clockwise order’
do 2173 i=1, nptl
write(x,2150) i
format(lh ,’Point ’,i3,’ X,Y : °’,\)
read(*, *¥,err=2175) x{(i,ibod),z(i,ibod)
continue
x{npt,ibod) = x(1l,ibod)
z{(npt,ibod) = z(1l,ibod)
nbods = nbods + 1
kalk = 1
if(iscope.eq.1l) call plbod(ibod,-1)
goto 350
write(%,*)’Input ERROR, body’,ibod,’ deleted’
npts(ibod) = 0
go to 400

b

,maxnpt

C .
c {MPOI> Move point

C —mmmm—————
3000 call poin

goto 350
c
¢ <EPAR> Enter body parameters
¢ —mmm—m e ————————

4000 write(x,’(/a\)’)’ Enter body number for parameter change

read(*,x,err=99000) ibod
if(npts(ibod).eq.0) then

write(x,*x)’ERROR, body’,ibod,’ not defined’

go to 400
else
call param(ibod)
go to 350
endif
c
¢ (CONT> Optimize contrast

goto 350
c
¢ <DRAW> Draw graphics (full view)

6000 if(nfield(itype).eq.0) go to 98000
mode 1

xlpl = xpos(l,itype)

xupl = xpos(nfield(itype),itype)
zlpl = zmax

zupl = 0

if (iscope.eq.l) then
call planom (0,0)
if(idiff.1t.0) call plobs
call plbod (0,127)
else
write(*,’(/a/)’)’ Graphics off, Call
endif
goto 400
c

"GRAP" to change’

c <SKET> Sketch mode (Draw area sﬁecified by zoom limits)

7000 if(skxmin.eq.skxmax) then
write(x,’(/a/)’)’ Zoom not specified,

go to 400

endif ’
if(nfield(itype).eq.0) go to 98000
mode = 2

x1lpl = skxmin

xupl = skxmax

zlpl = skzmax

zupl = skzmin

if(iscope.eq.1) then
call planom (0,0)
if(idiff.1t.0)call plobs

call option "ZOOM"’

call plbod (0,127)
else
write(x,’(/a/)’)’ Graphics off, call "GRAP" to change’
endif
goto 400
c
¢ <READ> Read model

itype = 1
iret = 0
call readf(iret)
if(iret.eq.-1) then

write(x, %) ’Model ’, name, ’ read’

if(nfield(itype).eq.0) then

if(itype.eq.1l) then
write(x,%)’No gravity data, changed to magnetics’

itype = 2
else
write(%*,*)’No magnetic data, changed to gravity’
itype = 1
endif
endif
kalk = 1
do 8005 ipt=1 , nfield(itype)
8005 xpos{(ipt,itype) = xoffs(itype) + (ipt-1)xspace(itype)
call sav

else
write(x,%)’WARNING!,model ’,name,’ NOT read’
if(iret.eq.0)write(*,%)’Model ’,name,’ not found’
endif
else
write(*,%)’ No model name specified, call option "TNAM"’
write(*,%)’ to list available models.’
endif
go to 400
c
c (WRIT> Write model

call writef(iret)
if(iret.eq.-1) then

write(x, x) ’'Model *, name, ’ written’
else
write(*,*) 'WARNING!,model ’,name,’NOT written’
endif
else

write(*,*)’ WARNING!,model not written,’
write(%,x) ’ No model name specified, call option "NAME"’®

endif

goto 400
c
¢ <ANOM> Calculates Anomalies
C ———————————————————

10000 if(nbods.eq.0) then

write(*,*)’No bodies defined,select option "EBOD"®
go to 400
endif
if(nfield(itype).eq.0) go to 98000
write(*,%x)*Enter body no. for anomaly calculation,’
write(*x,’(a\)’)? or "0" for total anomaly : °’
read(*,%*,err=998000) ibod
if(ibod.1lt.0.0or.ibod.gt.nbods) then
write(x,*x)’ERROR,body no. can be from 0-’,nbods
go to 10000
endif
if(iscope.eq.1l) then
if(ibod.eq.0) then
call planom(0,0)

else
call planom(ibod,-1)
endif
if(idiff.1t.0) call plobs
else

if(kalk.eq.1l) call calcan
write(x, %) ’ Anomaly calculated’
endif
go to 400
c
¢ <TANO> Prints anomaly

read(*,%,err=11000) ibod
if(ibod.ge.0.and.ibod.le.maxcal) then
call typano(ibod)
else
write(*,%)’ERROR!,invalid body no., retry’
go to 11000

endif
goto 400
c
¢ <TOBS> Print out observations
C ——m— e ————
12000 call typobs
goto 400
c
¢ <ECOM> Input comments
C mmmmmm———————

13000 write(x, x) ’Enter comments (up to 80 char) :’
read(*,13010,err=99000) kommnt
13010 format(8al0)

goto 400
c
¢ {TCOM> Output comments
C ——mm e

14000 write(*, 14010) kommnt
14010 format(lh, 8al0)
go to 400
c
¢ <NAME> Input Model Name

10

15000 write(*,’(/a\)’)’ Enter model name (10 char. max.) : °
read(x,15010,err=15025) name

15010 format(al0)
write(*x, 15020) name

15020 format(lx, al0)

go to 400

15025 write(*,x) ’ Input ERROR , retry’
goto 15000

¢

¢ (TNAM> List models in file

c ———————————————————

16000 iret =1
call readf(iret)
write(x,*)’To read in a model call option "NAME" to’
write(x,%)’identify the model, followed by "READ".'®

goto 400

c

¢ <INSE> Insert point

€ ~——m—mmmm————

17000 call inse
goto 350

c

c <DPOI> Delete point

€ ———m—mmmee——

18000 call dele
goto 350

c

¢ <END > Exit program

6 e

19000 write(*,%)’ Did you "write" your final model to disc ?°
write(x,’(a\)’)’ "Y" to END : °
call sound(20,200)
read(*,’(a)’,err=99000) ians
if(ians.eq.’n’.or.ians.eq.’N’) go to 400
write(x,’(/a/)’) *® Magrav terminated’

stop
c

c <TABL> To graphics tablet control

if(iscope.eq.l) then

call grap
else
write(*,*)’Graphics suppressed,call "GRAP" to enable’
endif
goto 400
C .
c <RECO> Recover previous step
€ ——— e

21000 call reco
if(iscope.eq.l) then
call planom (0,0)
call plobs
call plbod (0,127)

11

endif

goto 400
c
¢ <DUMP> Dump current data
C —mmmm e ———————

22000 call tsca
if(itype.eq.2) then
write(*,’(/a)’)’ MAGNETIC DUMP’
write(x,’(a)’)’ = - i
write(*,22010) dip,dec,xton
22010 format(1hO, *Main field dip :’,f6.1,/,
+* Main field declination :’,f6.1,/,
+’ Profile +ve X to North angle:’,f6.1,/)

else
write(x,’(/a)’)’ GRAVITY DUMP’
write(x,’(a)’)’ = ------mm-—eo ’
endif

call typbod(0)
call typobs
ibod = 0
call typano(ibod)
goto 400
c
c {MAUT> Move point automatically

23000 write(*,%)’Select the body containing the point to °
write(x,’(a\)’)’ be moved automatically : °’
read(*,%,err=99000) ibod
if(npts(ibod).eq.0) then

write(*,*x)’ERROR,body’,ibod,’ not defined’
call sound(15,6000)
go to 400
endif
call typbod{(ibod)
write(x,’(a\)’)’ Select point to be moved automatically: °’
read(X,%,err=99000) npt
if(npt.lt.l.or.npt.gt.npts(ibod)) then
write(x,*)’ERROR,point not defined’
call sound(15,6000)
go to 400
endif
write(%,%)’Processing’
call amove(x(npt,ibod), z(npt ibod),0.0,0.0,2)
if(iscope.eq.l) then
call plbod (ibod,~-1)
call planom (0,-1)
endif
go to 350
c
¢ (TPAR> Type out body parameters

24000 call typar
goto 400
C

¢ (MAGN> Change to magnetics mode and enter parameters

12

25050

c

if(itype.gt.0) then

write(x,’(a\)’)’ Change the magnetic mode parameters(y/n)

read(*,’(a)’) ians
if(ians.eq.’n’.or.ians.eq.’N’) go to 25050
endif
write(*,%x)’Enter the angle from geographic North to the '’
write(*,’(a\)’)® positive X (or profile) direction (cw)
read(*,*,err=99000) xton
xton = amod(xton,360.)
if(xton.1t.0.) xton = xton + 360.
write(*,’(a\)’)’ Enter magnetic field declination : °’
read(*,*,err=99000) dec
dec = amod(dec, 360.)
if(dec.1t.0.) dec = dec + 360.
write(*,’(a\)’)’ Enter magnetic field dip : °
read(*,%,err=89000) dip
dip = amod(dip,360.)
if(dip.1t.0.) dip = dip + 360.

write(x,’(a\)’)’ Enter depth offset added to body points(km)

read(*,x,err=99000) zcon(2)
if(zcon(2).le.0.) zcon(2) = .001
itype = 2

call rean

goto 350

¢ {GRAV> Change to gravity mode and enter "zcon"

26000 write(*,%*)’Modeling mode set to GRAVITY’

26050

C

if(itype.gt.0) then
write(¥*,’(a\)’)’ Change gravity mode parameter(y/n) : °
read(%x,’(a)’) ians
if(ians.eq.’n’.or.ians.eq.’N’) go to 26050
endif
write(x,’(a\)’)’ Enter depth offset added to bodies(km) /;
read(*,%,err=99000) zcon(l)
if(zcon(l).le.0.) zcon(l) = .001
itype = 1
call rean
goto 350

¢ <(MENU> Menu of Commands

(o]

goto 400

c <ZOOM> Set limits for "sketch"

Cc ———-

28000 if(iscope.ne.l) then

write(*,%x)’Graphics suppressed, call option "GRAP"’
write(*,x)’ to turn graphics on ’
go to 400

endif

write{(*,’(/a\)’)’ Enter minimum X for zoom (km) : °’

13

b

read(%,*,err=99000) skxmin
write(*,’(a\)’)’ Enter maximum X for zoom (km) : °’
read(%,%,err=99000) skxmax '
write(*,’(a\)’)’ Enter minimum Z for zoom (km) : °’
28011 read(*,x,err=99000) skzmin
if(skzmin.1lt.0) then
write(*,*)’ ERROR!, minimum Z must be greater than 0’
call sound(15,6000)
go to 28011
endif
write(*,’(a\)’)’ Enter maximum Z for zoom (km) : °’
read(*,%,err=99000) skzmax
if(skxmin.ge.skxmax) then
write(*,%x)’ ERROR!, invalid X zoom coordinates,retry’
call sound(15,6000)
go to 28000
endif
if(skzmin.ge.skzmax) then
write(%,%x)’ ERROR!,invalid Z zoom coordinates,retry’
call sound(15,6000)

go to 28000
endif
mode = 1
write(*,%)’ Call option "SKET" to plot selected area.’
goto 350
c
¢ (MSCA> Manually set scaling
6 ————
29000 call mscale
goto 400

¢ <GRAP> Turn graphics on/off

€ e
30000 call grinit (iscope)
go to 400
c
¢ <TBOD> Prints out body points
C mmmme——————
31000 write(*,’(/a\)’)’ Enter body number to print("0" = all):
read(*,%,err=99000) ibod
if(ibod.ge.0.and.ibod.le.maxbod) then
call typbod(ibod) :
go to 400
endif
write(*,*) ’ERROR', body number must be from 0-10’
goto 31000
c
c (TSCA> Prints out scaling parameters
€ ~—mmmmmmn
32000 call tsca
goto 400
c
c <OFFS> Recalculate offset
C e

14

s

33000 if(iscope.eq.l) then
if(nfield(itype).gt.0) then

write(%,%)’01ld offset = ’,offset(itype)
sum = 0.
do 33050 i = 1, nfield(itype)
sum = sum + calc(maxcal,i) - obs(itype,i)
33050 continue
offset(itype) = sum/nfield(itype)
write(x,%)’New offset = ’,offset(itype)
if(iscope.eq.l.and.idiff.eq.0)call plobs
else
write(*,*)’Cannot calculate offset, no observed data’
endif
else
write(*,x)’"OFFS"™ is applicable only in graphics mode’
endif
goto 400

c
¢ <DIFF> Difference plotting on/off
6 —
34000 idiff = -idiff
if(idiff.gt.0) then
write{(x,%)’'Difference mode now ON’
if(iscope.eq.l) then
call planom(0,0)
endif
else
write(x,%)’Difference mode now OFF’
if(iscope.eq.1l) then
call planom(0,0)

call plobs
endif
endif
goto 400
c
¢ {HELP> Help text
C ———mm—m——m

35000 write(*,35010)
35010 format(lh ,

+* Magrav is a 2.5 dimensional magnetics and gravity modeling’

+/,’ program. Three modes of operation are possible :°’,
+/," 1) Text mode with no graphics’,

+/,° 2) Graphics enabled with keyboard control’,

+/,° 3) Graphics enabled with graphics tablet control’,

+/,’ To start modelling the following options are called’,
+/,’ in order : MAGN or GRAV,EOBS,EBOD,EPAR,ANOM.’,/)
35020 call menu
write(x,%)’ Additional help is available for each option’
write(x,’(a\)’)’ Enter HELP option(<CR> to return) : °’
call what(iwhat)
if(iwhat.eq.-1) go to 400
if(iwhat.eq.0) then
write(x,%x)’ This option not recognized, try again’
go to 35020
endif

15

call help(iwhat)
go to 35020

go to 400
c
¢ {MBOD> Move body
c ————————————————

36000 write(x,’(a\)’)’ Enter number of body to be moved : °’
read(%, %,err=99000) ibod
if(npts(ibod).eq.0) then
write(*,x)’ERROR,body’,ibod,’ not defined’
call sound(15,6000)
go to 400
endif
call typbod(ibod) i
write(x*,’(a\)’)’ Enter X shift for body(km) : °
read(x, %,err=99000) xshift
write(x,’(a\)’)’ Enter Z shift for body(km) : °
read(%, *%,err=99000) zshift
do 36010 j = 1 , npts(ibod)
x(j,ibod) = x(j,ibod) + xshift
z(j,ibod) = z(j,ibod) + zshift
36010 continue
if(iscope.eq.1l) call plbod (0,127)

ianom{ibod) = 0
kalk = 1
go to 350
c
c <DBOD> Delete body
C —m

37000 write(*,’(a\)’)’ Enter number of body to be deleted
read(*,%,err=99000) ibod
if(ibod.1t.l.0or.ibod.gt.maxbod) then
write(*,%)’ERROR!,body no. must be from 1 to’,maxbod
call sound(15,6000)
go to 400

endif

if(npts(ibod).eq.0) then
write(%,%)’ERROR,body’,ibod,’ not defined’
call sound(15,6000)
go to 400

endif

call typbod(ibod)

npts(ibod) = 0

nbods = nbods - 1

kalk = 1

write(%,%) ’'Body’,ibod,’ deleted’

if(iscope.eq.l) then
call plbod(0,127)
call planom(0,-1)

endif

go to 350

c
¢ <{ASCL> Automatic scaling for anomaly plot

16

call ascale
call planom(0,0)
if{idiff.1t.0)call plobs

else

write(x,%)’"ASCA" is applicable only in graphics mode’
endif
go to 400

c

¢ Incorrect order branch

€ mmmm e —————

98000 write(*,x)’*ERROR, Before this option can be called '’
write(x,x)’ either an model must be "READ" in or’
write(*,%)’ observed data be read in or entered’
write(*,*)’ manually using option "EQBS"’
call sound(15,6000)
go to 400

c

¢ input error branch

C —m e ———

99000 write(x,’(/a/)’)’ Input ERROR , retry ;’
go to 400
end

17

c

¢ MAGRAV2 SUBROUTINE BLOCK : MS1

¢ Edited last : Apr. 27 /1986 ; J. Broome

c

$nofloatcalls

CRAK KK KK KKK KKK KKK KKKKKKKKKKKKK KRR KKK KK kR kR kK kkkkXkkXkxX
¢ purpose -to calculate the sine of degree in degrees

function degsin(degree)

data pi/3.1415926535/

radian = (pi/180.) % degree
degsin = sin(radian)
return
end
CREERRK KKK KKK KKK K KKK KR KRR KKKk kR kkKkkkkkkkkk

c
¢ purpose to calculate the cosine of degree

function degcos(degree)

data pi/3.1415926535/

radian = (pi/180.) %* degree
degcos = cos(radian)

return

end

CRERKKERKK KK KKK KKK KK KK KK KK KKK K KKK KKK KKKKKKKKKKKKKKKK KKK KK KK KKKk
c

¢ reference: thomas enmark(1981) a versatile interactive

¢ computer program for computation and automatic

¢ optimization of gravity models; geoexploration,19,47-66.

function deltag(xl,x,zl,z,y)

Xp = x1 - x

zp = zl1 - z

a0 = sqrt{xp*xp + zp¥*zp)
al = 1./a0

zn = xp*al

fi = atan2(zp,xp)

cof = cos(fi)

sif = sin(fi)

u = cof*x + sifxz

ul = cofxxl + sifxzl

w = -sif%x + cofxz

r = sqrt(uku + wkXw)

rl sqrt(ulxul + wkxw)

ak (xxz1 - zxxl)/(alxal)
rr sqrt(r*r + yxy)

rrl = sqrt(rlxrl + yxy)
ratiol = (y + rr)/(y + rrl)

18

rlogl = alog(rlxratiol/r)

ratio2 = y/rrl

a = ratio2 % ul/w

ratio3 = y/rr

b = ratio3 ¥ u/w

atl = atan(a)

at2 = atan(b)

rlog2 = alog((ul + rrl)/(u + rr))
deltag = ak * {(zp*rlogl + xp*(atl-at2)) + znXrlogl2xy
return

end

€ 30K 3K ok 3K 3K Sk ok 3Ok 3K K 3k 3k 3K K Kk 3 K K 5K K 3k ok 3K 3k K 3k ok 3K 3 3k ok 3k 3K 3 3ok 3k 3K K 3k ok oK 3k 3k 3K ok 3K 3K 3K 3Kk 3k Sk ok ok ok K KK KK KRR K OORXOF

OO0O0O000000000000000060000000O000~0

0O0000000000¢006

subroutine dfs001

This program minimizes the sum of the squares of non linear functic
The method used has been developed and described by M.J.D.Powell
in *The Computer Journal’ Vol.7,No.4,Jan.1965, Page 303.
The method finds X(1)..........X(N) such that SM is a minimum
where SM(X(1)..........X{(N)) = SUM
over K of (F(K,X(1).veveoveeee o X(N))%*%x2)
where K runs from 1 to M with M greater than N

The parameter names are as follows

number of observations of the function F
number of independant variables

M
N

F() is array of size greater than M, on leaving DFS001 this will
contain the values of F(I,X(1)......X(N)) I =1 to M

X() is an array of size greater than n which contains the values o:
the variables X(1) to X{(N). On entering DFS00l1 they are the initial
approximations to the minimum. On leaving DFS001 these will be the
best values obtained.

E() is an array of size equal to 2%N. The first N values are the
fractional accuracies of the parameters required.

I.E. E(I) = 0.0100 requests an accuracy of 1 in X(I).

The rest of the array E(N) to E(2%N) is used as working space.
Note: E(I) is effectively used as a mesh on the first iteration
to form the first derivative of the function F and must therefore

be reasonably small escale is a number whose value limits

the movement of the variable in any one iteration

to an amount equal to ESCALEXE(I)

IWRITE is an integer which controls the amount of information
printed by the routine. there will be a writeout every IWRITE
iterations. The writeout consists of the iteration number, number
of function evaluations, the values of the variables, the value

of the sum of the squares, and the individual function values.

If IWRITE is negative, there will be a writeout after every IWRITE

19

O00O0O0DO000O00000000000

100

110
120

iterations but without the function values.
If IWRITE is zero, there will be no printed output.

MAXITC is an integer which will return control to
the calling rout after maxitc iterations.

On leaving DFS001, the first Nx*N elements of array W() will contai
the variance-covariance matrix elements V(I,J) stored in order
V(1,1),v(1,2).....V(1,N),V(2,1).....ccve.. . V(N,N).

W{() is a working array whose size must be equal to or greater than

"N + ((M + (3%N/2))*N + 1))

The program calls two other routines DFS002 and CALFUN
which must calculate the function values F for the passed values
of the parameters X(1)......X(N).

Subroutine DFS002 is supplied intact and finds the minimum of a
function in one dimension

subroutine dfs001 (m,n,f,x,e,escale,iwrite,maxitc,w,ierr)
dimension f(1), x(1), e(l), w(l)

in this section we initialize some integer constants for the
location of information within the array w

do 100 i = 1, n
if(x(i).eq.0.) then
write(*, %) ’%x Cannot use zero estimate for parameter ’, i
ierr = 1
return
endif
continue
mplusn = m + n
kst = n + mplusn
nplus = n + 1
kinv = nplus x (mplusn + 1)
kstore = kinv - mplusn - 1
nn = n + n
maxfun = (2%n) + 2 + (B*maxitc)
invar = 1

the integer invar is normally set to 1 ,after last iteration it
is set to 2 and the variance.co-variance matrix is calculated

stores the fractional accuracy requested and then calculates the
absolute values of the errors.

do 110 1lm = 1, n
1ln = 11lm + n

e(lln) = e(11m)

e(llm) = e(lln) % x(1llm)
continue
k = nn

20

130

140

150

1860

180

130

this region calculates the first derivatives of the function in
the co-ordinate directions and normalizes them such that sum over
k of (derivative(i)**2) is unity for all values of i

iamp = 1
call calfun (m,n,iamp)

stores the initial function values

do 130 i = 1, m

k =k +1

w(k) = f(i)
continue
iinv = 2

k = kst

i=1

x(i) = x(i) + e(i)
call calfun (m,n,iamp)

calculates the function values for f(x + h) where h = absolute
accuracy requested.

x(i) = x(i) - e(i)
do 150 j = 1, n
k =k +1

continue
sum = 0.0
kk = nn

calculates values of the derivatives in the coordinate directions
sums the individual derivatives

do 160 j = 1, m
kk = kk + 1
£(j) = £(j) - w(kk)
sum = sum + f(j) *x f£(j)
continue

this error condition usually occurs because of a coding error in
the subroutine calfun.

if(sum.le.0) then
if(iwrite.ne.0) then
write (%,180) i
format(’ DFS001: E(’,i3,’) unreasonably small’)
endif
ierr = i
do 190 j = 1, m
nn = nn + 1
f(j) = w(nn)
continue
return

21

endif

c in statement 210 we cancel scaling for calculation of co-variance
c matrix ,normally we go directly to statement 220
200 if(invar.ne.l) then
sum = e(i) ¥ e(i)

endif
220 sum = 1.0 / sqrt(sum)

J=k-n+ i
c calculates the components of the direction vectors d(i)

w(k) = f(j) * sum
kk = nn + j

c calculates elements of the normal matrix
do 240 ii = 1, i

kk = kk + mplusn
w(ii) = w(ii) + w(kk) x w(k)

240 continue

230 continue
iless = 1 - 1
igamax = n + i - 1
incinv = n - iless
incinp = incinv + 1

c inverts the one by one matrix w(l)

if(iless.gt.0) go to 310
w{kinv) = 1.0/w(1l)

260 if(iinv.eq.l) goto 970
i=3i+1
if(i-n.le.0) goto 140
iinv = 1
c
c this region is passed through only on iteration 0 and sets up the
c
c writeing control parameters
c
ff = 0.0
kl = nn
c
c evaluates the sum of the squares of the functions
c

do 270 i =1, m
kl = k1 + 1
f(i) = w(kl)
ff = £ff + £(i) x f(i)

22

270

oOoo0oo0o0o0o0

310

320

340

330

360

continue
if(invar.eq.2) goto 1140

icont =1

iss = 1

mc = n + 1

ipp = iabs(iwrite) % (iabs(iwrite)-1)
ite = 0

ips =1

ipec = 0

goto 970

this next region performs the matrix inversion of the normal
equation matrix by partitioning. the fully inverted matrix is
obtained by repeated passes through this region.

‘an outline of the inversion of a matrix by partitioning is given

in elementary matrix algebra by f.e.hohn p.109

in this routine b = 1l/c¢ and bb = -b/c
if(invar.eq.1l) then
b = 1.0
else
b = w(i)
endif
do 320 j = nplus, igamax
w(j) = 0.0
continue
kk = kinv
do 330 ii = 1, iless
iip = ii + n

w(iip) = w(iip) + w(kk) % w(ii)
Jl = ii + 1)
if(jl-iless.le.0) then
do 340 jj = jl, iless
kk = kk + 1
Jip = jj + n
w(iip) = w(iip) + w(kk) *x w(jj)
w(jjp) = w(jjp) + w(kk) * w(ii)
continue
endif
b =Db - w(ii) * w(iip)
kk = kk + incinp

continue
b =1.0/b
kk = kinv

calculates and stores the elements of the inverted matrix

do 350 ii = nplus, igamax
bb = -b % w(ii)
do 360 jj = ii, igamax
w(kk) = w(kk) - bb *x w(jj)

kk = kk + 1
continue
w(kk) = bb

23

350

420

440
430

(]

460

kk = kk + incinv
continue
w(kk) = b
goto 260

now start an iteration , exact details of the method are found in
the paper by powell

ite = itec + 1
if(maxitc-itc.1lt.0) then

if(iwrite.eq.0) goto 1060

write (%, %) ’The maximum number of allowed iterations °*
‘have been performed’

goto 1060
endif
k = n
kk = kst

initially we calculate the vector p
where p(i) = sum over k {(gamma(k,i)*f(k))

do 430 i = 1, n
k = k + 1
w(k) = 0.0
kk = kk + n
w(i) = 0.0
do 440 j = 1, m

kk = kk + 1
w(i) = w(i) + w(kk)*f(j)
continue

continue

now calculate the movement component q(i) from the inverse deriv-
ative matrix and the vector p in the direction d(i)

dm = 0.0

k = kinv

do 450 ii = 1, n
iip = ii + n
w(iip) = w(iip) + w(k) % w(ii)
Jl = ii + 1

now select the direction to be replaced by delta after thls iter-—
ation. the direction being replaced is stored in kl
the value of abs(p(kl).q(kl))is stored in dm

if(jl-n.le.0) then
do 460 jj = jl, n
Jjjp = jj + n

k =k +1
w(iip) = w(iip) + w(k) * w(Jjj)
w(jjp) = w(jjp) + w(k) * w(ii)
continue
k =k + 1
endif

24

450

465

(9]

480

[¢]

470

430

if(dm-abs(w(ii)*w(iip)).1lt.0.) then

dm = abs(w(ii) * w(iip))
kl = ii
endif

continue
calculates the absolute error requested
do 465 1lm =1 , n

1ln = 11m + n
e(llm) = e(lln) % x(1llm)

‘continue

calculate the direction and distance to the minimum, a component

is delta(i) = q(i)*d(i) where d(i) is an n component vector
ii = n + mplusn % kil
change = 0.0
do 470 i = 1, n
Jl = n + i
w{i) = 0.0
do 480 j = nplus, nn

= jl + mplusn

w(i) = w(i) + w(j) ¥ w(jl)
continue

ii = ii + 1

w(ii) = w(jl)

w(jl) = x(i)

select change to be max(delta(i)/e(i)) i.e. co-ordinate direction
whose distance from the minimum is farthest with respect to the
requested accuracy.

if(abs(e(i)*change)-abs(w(i)).le.0.) then
change = abs(w(i)/e(i))
endif
continue

do 490 i =1 , m
ii = ii + 1
Jl = j1 + 1
w(ii) = w(jl)
w(jl) = f(i)
continue

fc = ff
acc = 0.10/change
it
xC
x1
is
itmax = 6
relac =

.0
.0

WO oW

o nn

25

xstep = —-aminl(0.5000,escale/change)

c Selects a grid value of either 0.500 or escale/change to be a

c minimum. i.e. in DFS002 we search in one dimension along delta

c for the minimum value of sm in steps of xstep. therefor if escale

c is small we will move only small distances in direction of delta-

c if escale is greater than 0.05 % change, then we move just half

c way to the computed minimum in one step.

c The condition of change being less than 1.0d0 is accepted as the

c minimum. in this next part we enter and return from DFS002 in

c order to determine the value of lambda such that (su(x(i) + lamdax

c delta(i)) is a minimum DFS002 assumes that sm approaches the min-

c imum in the form of a quadratic and calculates on this assumption

c to perform its task DFS001 asks for a minimum of three evalua-

c tions of the function. if it has not found the minimum in this

c number, then the value of xstep is changed. a maximum of just six -

c function evaluations is allowed before going on with the calcula-

c tion. the function evaluations are stored and used to evaluate

c the function derivatives in the direction delta.
if(change-1.0.1e.0.0) icont = 2

590 call dfs002 (it,xc,fc,itmax,acc,relac,xstep)

fc contains intermediate values of the sum of squares

xc contains the value of lambda

oo0o0o0

x]1 contains intermediate values of lambda
goto (600,780,780,780), it

600 m¢ = mc + 1

if(mc-maxfun.gt.0) then

if(iwrite.ne.0) then
write(*, %x) ’DFS001 :’, maxfun, ’ calls of calfun’

endif
iss = 2
goto 780

endif

c calculates the function values for x + lamda(a)*delta and
c x + lamda(b)xdelta and also evaluates sm for these parameter values

630 x1 = xc - x1

do 640 j = 1, n

x(J) = x(J) + x1 ¥ w(j)

640 continue

x1l = xc

iamp = 0

call calfun{m,n,iamp)

fe = 0.0

c calculates the new sum of squares of the function.

do 650 j = 1, m

26

650

670

680

690

720
730

740

750

760

770

780

fc = fc + £(J) *x £(Jj)
continue

if(is.le.2) goto 690
k = n
if(fe-ff) 670, 590, 680

sets fmin to the lowest and fsec to the second lowest sum of
squares of the function.

is = 2
fmin = fc
fsec = ff
goto 750
is = 1
fmin = ff
fsec = fc
goto 750

if(fe-fsec.ge.0.0) goto 590
if(is.ne.2) then

k = n
else

k = kstore
endif

if(fc~fmin) 740, 590, 730
fsec = fc

goto 750

is = 3 - is

fsec = fmin
fmin = fc

stores intermediate values of the parameters.

do 760 j = 1, n
k= k + 1

wik) = x(J)
continue

stores the intermediate function values for the lowest and second
lowest sums of squares.

do 770 j =1, m
k = k + 1
w(k) = f(j)

continue

at this point we return to DFS002

goto 590
k = kstore

C KK KK KK K KKK 3K KK K 3K KOk 3 30K K KK 3K K kK 3Kk ok 3K 3k Kk KKK K K KKk kKKK kokokok ko

27

C

800

o]

810

820

830

this is an alternate exit for this application
if(itc.eq.maxitc) return
we arrive at this point when DFS002 has finished

kk = n
if(is.eq.0) then
k = n
kk = kstore
endif
sum = 0.0
dm 0.0
JJ kstore

n

we store the new values of x(i), f(i) and the approximate new
derivatives.

do 810 j = 1, n

k =k +1

kk kk + 1

JJ Jij + 1

x(Jj) = w(k)

w(jj) = w(k) - w(kk)
continue

again calculate a scaling factor,this time for the new derivative
calculates dm as sum over k of u(k,delta)xf(k,new(x{(i)))

doe 820 j = 1, m

k =k +1

kk kk + 1

JJ Ji + 1

£{(j) = w(k)

w(jj) = w(k) - w(kk)

sum = sum + w(jJj) * w(jj)

dm = dm + f(j) * w(JjJj)
continue

if(iss.eq.2) goto 1060
J = kinv
kk = nplus - kl

repositions elements in the normal equation matrix and in the
inverted matrix.

do 830 i = 1, kil
k = j + k1l - i

J = k + kk
w(i) = w(k)
w(k) = w(j-1)

continue

if(kl-n.1t.0) then
kl = k1 + 1

28

k = k + 1
J=J + nplus - i
w(i) = w(k)
w(k) = w(j-1)
840 continue

w(jj) = w(k)
b = 1.0/w(kl-1)
w{kl-1) = w(n)
else
b = 1.0/w(n)
endif
880 k = kinv
do 890 i
bb = b
do 900
w(k) (
k =k +1
900 continue
k =k +1
890 continue
if{fmin-ff.ge.0.) then
change = 0.0
else
ff = fmin
change = abs(xc) * change
endif
930 x1 = -dm/fmin
dum = sum + dm * x1
if(dum.le.0.) then
write(x,*x)’ERROR in DFS001l, dum.le.O’
ierr =1
return
endif
sum = 1.0/sqrt{(dum)
k = kstore

iless
- bb * w(j)

S 3 N

c calculates the components of the new vector direction.

do 940 i = 1, n

k =k +1

w(k) = sum * w(k)

w(i) = 0.0
940 continue
c calculates the new and corrected derivatives of the function in
c the direction of delta

do 950 i = 1, m
k = k + 1
w(k) = sum x (w(k) + x1%f(i))
kk = nn + i
c replaces elements in the matrix i.e. changes the kl direction for

960
950

970

980
990

1000

1010
1020

1030
1040

1060
1070

1090
1110

1120

1130

1140

1160

do 960 j = 1, n
kk = kk + mplusn
w(j) = w(j) + w(kk) x w(k)
continue
continue

go back for new matrix inversion

goto 310
ipc = ipc - iabs(iwrite)

the following instruction controls the output of information

if(ipc.ge.0.0) goto 1040

if(iwrite.eq.0) goto 1030

write(x, 990) itec, mc, ff

format(//,5x,’iteration’,i4,i9,' calls of calfun’,5x,’f=’',1pe20.

+8)

write(%,1000) (x(i),i = 1,n)
format(5x,’parameters’,/, (1p5e20.8))
if(iwrite.ge.0) then
write (x,1020) (f(i),i = 1,m)
format (5x,’Functions’,/,(1p5e¢20.8))
endif
ipec = ipp
if(ips.eq.2) goto 1120
if(icont.eq.l) goto 420
if(change-1..gt.0.0) goto 1130
if(iwrite) 1070, 1120, 1090
write(x, %) °'DFS001 final values of variables’
goto 1110
write (%, x) ’DFS00]1 final values of functions and variables’
ips = 2
goto 980
invar = 2
goto 120
icont =1
goto 420

the statements below store the variance co-variance matrix in the
array w

jjvar = kinv - 1
ff = ff/(m-n)
do 1150 jvar = 1, n

do 1160 ivar = jvar, n
jjvar = jjvar + 1
jkvar = (jvar-1l) ¥ n + ivar
w(jkvar) = w(jjvar) x ff
continue
if(jvar-1l.gt.0) then
lvar = jvar - 1
mvar = 0
lkvar = lvar ¥ n

do 1170 kvar = 1, 1lvar

30

jkvar = lkvar + kvar
jnvar = (kvar-1) ¥ n + jvar - mvar + kinv - 1
w({jkvar) = w(jnvar) *x ff
mvar = mvar + Kvar
1170 continue
endif
1150 continue
jvar = n ¥ n
return
end

3K 3k 3 oKk ok ok ok koK koo ok sk koK sk sk Kk ok kK sk Kok koK kK ok koK Rk ok ok ks kR kok Kok sk kK k ok ok koK kXK k ok ok kK k xk
subroutine DFS002

this subroutine finds the minimum of a function in one
dimension. the method used has been described by m.j.d. powell in
’the computer journal’,vol.7,number 2, july 1964,p.155.

the method assumes that the function approaches the minimum
quadratically. on first entry it has a value of the function at
one point. it then calculates two additional points in the direc-
tion requested (returning to the calling routine to do so). the
method then predicts the minimum of the gquadratic that passes
through the three data points. if the minimum is bracketed by the
three data points then minimum predicted is used. if it is not
then further steps are taken along the direction requested. a
total number of steps maxfun is allowed.

itest is a control integer which must be set to 2 or 3 on initial
entry into the routine and to 1 on subsequent entries during the
same search.

x contains the distance being moved on intermediate returns to
the calling routine and the distance to the minimum on the final
return f is used to transmit the function values.

maxfun is the total number of function evaluations allowed , if
maxfun is exceeded then routine returns with the nearest value to
the minimum in x

absacc is the absolute accuracy required for the minimum

OO0 O0O0OOO0O00000000000000000000¢060

c relacc is the relative accuracy required for the minimum

2 xstep is the stepping or increment distance in the direction of

c the minimum
subroutine.dfs002 {itest,x,f,maxfun,absacc,relacc,xstep)
if(itest.eq.1l) goto 7

c for the first entry into DFS002 itest is set equal to 2 or 3 which

31

[3R]

o0 o000

2] 0o ~m

G

10

0

11

sets up the initial conditions for the computation. itest = 3
stores the initial function value and increments x. itest = 2
causes a return to the calling routine requesting a first value

of the function.

after setting the intial conditions itest is reset to 1 until the
minimum has been obtained.itest = 2 is a sucessful calculation
itest = 3 is also a sucessful completion ,while itest = 4 is a
return that indicates that maxfun has been exceeded.

is = 6 - itest

itest = 1

iinc 1

Xinc Xstep + xstep
m¢c = is - 3

if(me) 9, 9, 6

increments function call counter ,if less than maxfun return to
calling routine for new function evaluation ,

mc = mc + 1

if(maxfun-mc.ge.0) return

itest = 4

x = db

f = fb

if{(fb-fc.gt.0.0) then
x = dc¢ .
f =7

endif

return) 4

goto (17,15,10,8), is

is = 3

we come to this point after calculating the first function

value for the itest = 2 initial option ,from the next statement (4)
on itest = 3 and itest = 2 are identical.

stores intial function and position values

de
fe

X
f

increments position

X = X + xstep

goto 2

if(fe-f) 12, 11, 13

comes to this point after evaluating second function, goes to 10

if first + second function values are identical, goes to 11 if new
one is less and to 9 if new one is larger

X = X + xinc

in this section nothing is stored as new and old function values

32 .

oOn0o0o0

14

15

16

0

000

19
20

are identical , but x is increment and a new function values is
requested , is remains unchanged so we come back to label 7 again

xinc = xinc + xinc
goto 2
db = x

in this section the new function value is larger than the initial
one ,again larger one is put into fb , it then changes the sign of
xinc and then increments again along x the same amount as for
section 11.

fb = f
Xinec = -xinc
goto 14
db = dec

in this section the new function value is less than the initial
one. it stores the higher in fb and the lower in fc. x is incre-
mented again in the same direction

IS is changed to 2 so next entry brings calculation to label 6

fb = fe¢

dec = x

fc = f

X = dec + dc - db
is = 2

goto 2

da = db

arrives in this section having obtained the third function value
the largest of the first two is stored in fa and the smallest in
fb with the third in fc

db = dec
fa = fb
fb = fc
de = x
fc = £
goto 27

comes to this section when minimum was within the three function
values but not close enough to one end. all the next does is
decide which function values to take and in what order so as to
minimize rounding errors

if(fb-fc.1t.0) go to 21
if{(f-fb.ge.0.0) goto 16

fa = fb

da = db

fb = f

db = x

goto 27
if{(fa-fc.gt.0.0) then

xinc = fa

33

fa = fec
fc = xinec
xinc = da
da = dc¢
dc = xinc
endif
23 xinc = dc¢

if((d-db)*(d-dec).1t.0.0) goto 16
24 if(f-fa.1t.0.0) then
fc = fb
dc = db
goto 20
endif
26 fa
da

f
X

Inon

[¢]

tests to see if the third is smallest. if so, goto 29 and cal-
culate second derivative

(¢]

if third function is equal to or larger than the smallest,come to
this point and set xinc to twice xstep and sets integer iinc to 2,
this integer controls later computations . still calculates the
second derivative ,provided that the function values fb and fc are
not equal. if they are we goto label 45 where we recalculate with
a new x value equal to the mid point of fb and fc which gives a
new function value

0000000

N
~3

if(fb-fc.le.0.0) then
iinc = 2
xinc = de¢
if(fb-fc.eq.0.) goto 40
endif
29 if{((da-db).eq.0) goto 3
if({da-dc).eq.0) goto 3
d = (fa-fb)/(da-db) - (fa-fc)/(da-dc)

c tests sign of second derivative if negative there is a minimum

c at the calculated value of d , if positive we have found a maximum
c and goto label 33 to restore calculation for a minimum

c having calculated a minimum now test for it occuring near enough

c to the last function evaluation . if it is within either the

c absolute or relative accuracy then terminate with itest = 2

c if not we goto label 36.

if(d¥(db-dc).le.0.0) goto 36
30 d = 0.50 % (db + dec-(fb-fc)/d)
if(abs(d-x)-abs(absacc).le.0.0.0r.
+ abs{d-x)-abs(d¥relacc).le.0.0) then

itest = 2
goto 4
endif
33 is =1
c set x to predicted value of minimum ,if this is within the range

34

0000

34

386
37
38

40
41

examined previously go back with is

value.
value.

x = d

ifz(da—dc)*(dc—d)) 2,

is = 2

if(iinc.eq.2) goto 38

1 and calculate new function

if outside previous range we recalculate the third function
if less then 4%increment use predicted value for x. if
greater then use 4Xincrement

41, 34

if(abs(xinc)-~-abs(dec-d)) 37,

if(iinc.eq.2) goto 39

is = 2
x = dc
goto 11

2,

2

if(abs{xinc~x)-abs(x-dc).gt.0.0) goto 2

x = 0.50 % (xinc + dc)

if((xinc—x)*(x-dc)) 41, 41,

x = 0.50 x (db + de¢)
if((db-x)*(x-dc).gt.0.0) goto 2

itest
goto 4
end

3

35

2

c

¢ MAGRAVZ2 SUBROUTINE BLOCK : MS2

¢ Edited last : June 19 /1986 ; J. Broome

c

$nofloatcalls

€ % K KK X K K Kk K K K KK kK ok K K K 3K K kK K K %k 3k 3K 3K K K 3k Kk K K 3K ok kK kK K kK K K ok kK ok Kok ok koK ok Kk ok ok ok sk ok ok ok sk ok ok
SUBROUTINE WHAT (IWHAT)

c
¢ purpose : To interpret text mode commands and return a
c value in "iwhat" that tells the program what to do
c
¢ parameters : iwhat - "1-38" for legitimate commands
c "0" for unrecognized commands
c "-1" for null response
c
$include: 'magrav.cmn’
character ians%*4, lckomms(38)%4, uckomms(38)%x4
c
data lckomms/’eobs’,’ebod’,’mpoi’,’epar’,’cont’, draw’,’sket’,
+ 'read’,’writ’,’anom’,’tano’,’tobs’,’ecom’,
+ ‘tcom’,’name’,’tnam’, 'inse’,’dpoi’,’end’,’tabl’,
+ ‘reco’, ’dump’, 'maut’, ’tpar’, 'magn’,’grav’, *menu’,
+ ‘zoom’,’msca’,’grap’,’tbod’,’tsca’,’offs’,’diff’, ’help’,
+ ’mbod’, ’dbod’, *asca’/
c
data uckomms/’EOBS’,’EBOD’, 'MPOI’,’EPAR’,’CONT’,’DRAW’,’SKET’,
+ "READ®, WRIT®, ’ANOM’, *TANO’,’TOBS®,’ECOM’,
+ *TCOM’, NAME’, *TNAM®,’INSE’,’DPOI’,’ END’,’TABRL’,
+ "RECO’, 'DUMP’, *MAUT®, *TPAR’, "MAGN’,’GRAV’, 'MENU',
+ *ZOOM®,*MSCA’,’GRAP’,’TBOD’, ’TSCA’,’OFFS’, ’DIFF’, HELP’,
+ *MBOD’, 'DBOD’,*ASCA’/
c
data nkomms/38/
c

read(*,150,err=200) ians
150 format(a4)

if(ians.eq.’ ’) then
iwhat = -1
return

endif

do 170 iwhat = 1, nkomms
if{lckomms(iwhat).eq.ians) return
if(uckomms(iwhat).eq.ians) return

170 continue

200 iwhat = 0

' return
end

c

33Kk Kok Kk Kk ok Kk kK ok K Sk ok ok kK kKoK ok sk ok Kk ok k kK Kk kK Kk kK Rk ok kR ok Kok kk sk koK kok koK kkokokkokkkk kX
SUBROUTINE POIN

c

¢ purpose : To allow body point positions to be changed in text mode

c

c

$include: 'magrav.cmn’

36

100 write(*,’(/a)’)’ Enter the body number for the point’
write(x,’(a\)*')’ to be moved : °’
read(*,x,err=400) ibod
if(ibod.gt.nbods.or.ibod.le.0) then

write(*,*)’ERROR!,body no. ',ibod,’ not defined’
call sound(15,6000)
goto 100

endif

call typbod(ibod)
200 write(*,’(a\)’)’ Enter no. of point to be changed : °’
read(*,%,err=400) npt
if(npt.ge.npts(ibod).or.npt.le.0) then
write(*,*)’ERROR!,point ’,npt,’ not defined’
go to 200

endif

write(*,1000) npt,x(npt,ibod),z(npt,ibod)

1000 format{(lh ,*Point ',i3,’,X and Z (km) : *,2f10.2)
write(x,’(a\)’)’ Enter new X and Z position (km)
read(*,%,err=400) x(npt,ibod),z(npt,ibod)
if(z(npt,ibod).1t.0) then

write(*,%*)*Z cannot be less than 0, Z set to 0°
z(npt,ibod) = 0

endif
ianom(ibod) = 0
kalk = 1

if(npt.eq.1) then
c If first point changes change last point

npt = npts(ibod)
x{npt,ibod) = x(1l,ibod)
z(npt,ibod) z(1l,ibod)

endif

if(iscope.eq.1l) then
call plbod(ibod,~-1)

endif
return
c
400 write(*,%x) > Input ERROR! °’
return
end
c

3 3k 3k 3k K kK ok 3Kk sk ok ok Kok ok ko k ko sk ko akok ok ok ok ok ke sk kok sk sk ok ok sk sk sk ok ok ok sk kok ok sk ok K k ok 3Kk ok ok ok okok Kok koK kK kK
SUBROUTINE INSE

purpose : To allow points to be inserted into bodies in text
mode

0000

$include: ’magrav.cmn’
C
100 write(x,’(/a\)’)’ Enter body no. for inserted point : °’
read(%*,*x,err=400) ibod
if(ibod.1lt.l.or.ibod.gt.nbods) then
write(%,*)’ERROR!,body no. ’,ibod,’ not defined’
call sound(15,6000)

37

return
endif
call typbod(ibod)

200 write(*,x)’Enter the number of the o0ld point after which’
write(*,’(a\)’)’ the new point is to be inserted : °’
read(*,%,err=400) npt
if(npt.lt.npts(ibod)) then

write(*,’(a\)’)’ Enter X and Z coordinates(km) :@ °’
read(x,¥,err=400) xxx,22z
call insert(xxx,zz,ibod,npt,iret)
if(iret.ne.-1) then
write(*,%)’ERROR!,inserting point in body’
call sound(15,6000)
else
write(*,%x)’Point inserted in body’,ibod
endif
return
else
write(%,%)’ERROR',0ld point no. exceeds number in body’
call sound(15,6000)
go to 200
endif

400 write(*,%)’Input ERROR’
go to 100
return
end

c

X % 3k Xk sk ok ok 3k K ok 3k K Kok koK K K K K 3k ok XKk Kok K K K K 3Kk 3k oK 2K 3K K 3K K 3k 3K ok X 3K K sk 3Kk K ok 3k ok K K 3k K0k K K Kk Kk ok oKk Kk Kok
SUBROUTINE DELE

c

¢ purpose : To delete a point from a body in text mode
c

$include: ’magrav.cmn’

c

100 write(%,’(/a\)’)’ Enter body number for point deletion : °’
read(X,%,err=400) ibod
if(ibod.gt.nbods.or.ibod.1t.1) then
write(*,%x)’ERROR!,body no. ’',ibod,’ not defined’
return

endif

call typbod(ibod)

200 write(*,’{(a\)’)’ Enter number of point to be deleted : °’
read(x,%,err=400) npt
if(npt.lt.l.or.npt.ge.npts(ibod)) then

write(x,%)’ERROR!,point ’,npt,’ not found’
call sound(15,6000)
return
endif
xxx = x(npt,ibod)
zz = z{npt,ibod)
call delete(ibod,npt,iret)
if(iret.eq.-1) then
write(%,%)’point ’,npt,’ deleted’
else
write(%, %) WARNING!,point ’,npt,’ not deleted’

38

400

endif
return

write(*,%)’Input ERROR’
return
end

C
% 3k 3K 3k 3 3k 3K K K 3k Ok koK ok ok K ok 3K 3K S 3k 3k ok 3K K k3K 3k 3K 5k K XK K KK 3K 3K Kk 3k ok kK 3k ok ok 3k kK K Ok 3k Ok 0k K ok Kk Kk ok ok ok ok k kK ok

c
c
c
c
$

SUBROUTINE RECO

purpose : To read the common block into the program to recover

300

400

c

to the previous step.

include: 'magrav.cmn’

if(nback.eq.0) then
write(x,*)’Recovery impossible,nothing in recovery file’
call sound(15,6000)

return
endif
nrec = 1

if(nrec.ge.nback) then
nrec=nback+20-nrec
nback=nrec
else
nback = nback - nrec
endif
if(irecov(nback).eq.0) then
write(*,%x)’Recovery impossible,nothing in recovery file’
call sound(15,6000)

return
endif
read(iscr,rec=nback,err=300) modrec
write(x, x) 'Model ’, name, ’ recovered’
return

write(x,*) ’WARNING',model not recovered,iostat= ’,kerr
return

write(%,*)’Input ERROR’
return
end

3K 3K 3K oK 3Kk K 3K Ok 3K Kk K K ok K ok 3k 3k koK K 3k ok 3k KKK K K KKK K K K KKK ok ok KKK K K K K kK Kk Kk KK kK K HOR KRk kKX

C

purp

iret

SUBROUTINE - WRITEF(IRET)

ose : to write model data to lun "model” for later
recovery

o.k

eof

parity

disallowed duplicate name or parity error on write

N O

include: "magrav.cmn’

39

c check for duplicate names

c
do 100 imod = 1 , nmod
if(name.eq.ix(imod)) then
write(*,’(/a\)’)’ Model already exists,overwrite?, (y/n):
read(*,710) ians
710 format(al)
if(ians.ne.’y’.and.ians.ne.’Y’) then
iret = 2
return
endif
c Rewrite existing model in place
go to 1060
endif
100 continue

¢ ¥Add current model to end of models file

c

1000 continue
nmod=nmod+1
if(nmod.le.lngix) then

imod = nmod
ix(imod) = name
else

write(*,x)’Models file full, overwrite existing model’

write(*,%x)’ or create a new models file.’

nmod = lngix
iret = 2
return

endif

1060 do 1050 ibod=1,nbod

1050 ianom(ibod) = 0
write(model,rec=imod,err=1100,iostat=ierr) moddat
iret = -1
return

c
1100 iret=2
write(*,%)’ERROR writing model,iostat= ’,ierr
return
end
c

3k 3k ok 3k Sk e kok 3k ok k3K kK 3K ok ok 3k 3k K 3k 3Kk K K K ok 3K K Kk K k0K KKk KK K Ok kKoK koK Kok ROk kKK kK kK Kok kok ok kX

SUBROUTINE READF(IRET)

purpose : To read model data from models file and to
check for the existance of models by name
operation is determined by iret299

input : iret = 0 search for and find file in name
1l list existing model names

output : iret = -1 o0.k
0 not found
1 parity error

0DOO0OO0O0O00000000

$include:’magrav.cmn’

40

if(iret.eq.0) goto 3000

¢ for input iret=1 list model names
2000 if(nmod.eq.0) then

write(*,%)’No models defined’
iret=-1
return
endif
write(x,’(/a/)’)’ Current model names
write(*,2060)(Jj,ix(Jj),Jj=1,nmod)

2060 format(lh,3x,i4,5x,al0)

C
c

iret = -1
return

read appropriate file

3000 if(nback.ne.0) call sav

first check to make sure there is such a file

do 3100,imod=1,nmod

3100 if(ix(imod).eq.name) goto 3200

iret = 0
return

3200 read(model,rec=imod,err=3220,iostat=ierr) moddat

goto 3240

c
3220 iret= 1

WO noonao

[oRN]

C
(o4

write(*,*) ERROR reading model,iostat= *,ierr
return

check over the models and fix up
any open bodies
(I hope this is never needed!)

240 do 3300 ibod = 1, nbods

if(npts(ibod).le.0) goto 3290
npt = npts{ibod)

if a body is not closed, close it

if(x(l,ibod).ne.x(npt,ibod).or.z(1,ibod).ne.z(npt,ibod)) then
if(npt.eq.maxnpt) npt = npt - 1
npt = npt + 1
npts(ibod) = npt

ianom(ibod) = 0

x{npt,ibod) = x(1,ibod)

z{npt,ibod) = z(1l,ibod)

write(x, %) ’Body :’, ibod, ’ closed’

endif

if any body has duplicate consecutive points,

41

c delete one of them
c
3250 nptl = npts(ibed) - 1
do 3270 kount = 1, nptl
if(x(kount,ibod).eq.x(kount+1l,ibod)) then
if(z(kount,ibod).eq.z(kount+l,ibod)) then
call delete(ibod,kount,iret)
if(iret.ne.0) then
write(*, %) ’Body : ’, ibod, ' Point : ’, kount,
+ * duplicate and deleted’
goto 3250
endif
‘endif
endif
3270 continue

if(npts(ibod).le.2) then

npts(ibod) = 0

write(x,%)’Body ’,ibod,’ deleted, (less than 3 points)’
endif

¢ reset all body co-ords to (0,0), if body being deleted

(o4
3290 if(npts(ibod).le.0) then
do 3295 kount = 1, nptl
x{kount,ibod) =
z(kount,ibod) =
3295 continue
endif
3300 continue
call rean
iret = -1
kalk = 1
return
end

0.
0.

C
% 3K 3K %k 3k 3k ok 3k ok ok ok K ok ok 3k 3k skok ok sk k ok 3Kk K 3k ok 5k 3k K 5k 3Kk 5k Xk ok 3k K K ok ok 3k ok ok ok 2k ok 3Kk sk K ok Ok ok K Ok koK Ok ok Kok ok
SUBROUTINE SAV

purpose : To save the current model in case of system crash
or user error

include: ’magrav.cmn’

0OeLnN00o0

if(nback.eq.0) then
do 10 k =1, 20

10 irecov(k) = 0

endif

nback= nback+l

if(nback.gt.20) nback = nback - 20

write(iscr,rec=nback,err=100,icostat=ierr) modrec

irecov(nback) =1

return

100 write(%,%)'ERROR!,writing to scratch file,iostat= ’,ierr

42

return
end

C KOk KOk ok KOk %k 3k K ok K ok 3K K 3k 3k X K 3k 3K 3k ok ok 3k ok 3K ok ok 5K ok Kk ok 3Kk 5k koK ok Kk ok Kk ok Kk Kok ko Kok koK ok ok
SUBROUTINE TYPOBS

c
¢ Purpose : To print out the observed data
c

$include: ’magrav.cmn’

c

if(itype.eq.1l) then

write(x,’(/a/)’)’ GRAVITY observations’
else

write(*,’(/a/)’)’ MAGNETIC observations’
endif
write(x,1000) offset(itype)

1000 format(’ Value added to data for plotting = *,f7.2)
write(x,’(/a/)’)’ Point, Position(km), Data value : °’
nf = nfield{(itype)
do 200 i = 1, nf

write(*,1010) i,xpos(i,itype),obs(itype,i)

1010 format(i4,2x%,f10.2,2x,f10.2)
200 continue

return

end
o]

C© kKK kK K k3K K Kk ok 3k 3K 3k SOk ok kK K 30K 3K 30K K K0k KK 30K koK 3k Kk Kk Sk ok Kk kK ok sk Kok Kok ok kKR K Kok koK ok
SUBROUTINE ASCALE

Purpose : to automatically scale anomaly data to fill the
screen.

include: 'magrav.cnn’

DHLOoOOD0n

anmin 999999.9
anmax -999999.9
do 10 ipt = 1 , nfield(itype)
obsoff = obs(itype,ipt) + offset(itype)
anmin aminl(anmin, obsoff)
anmin aminl (anmin,calc(maxcal,ipt))
anmax amax]l (anmax, obsoff)
anmax amax]l (anmax,calc(maxcal,ipt))
10 continue
danom = (anmax-anmin)*0.10
anomax(itype) = anmax + danom
anomin(itype) = anmin - danom
write(%,1000) anomin(itype),anomax(itype)
1000 format(lh ’Anomaly plot scale minimum and maximum :’,

i

+21f10.2)
c
return
end
C

C Kk koK kKoK koK koK 3Kk ok ks koK kokok Kk sk K Kok kKoK sk skok ok ok skok ok sk k koK sk ok sk ok kK K K KKK K KK kK
SUBROUTINE HELP(IWHAT)

43

O00000

[

purpose : To print out descriptive text about each text mode
option
parameters : iwhat - input parameter indicating which option

write(*,x%x)’ ’
if(iwhat.lt.l.or.iwhat.gt.39) return
goto(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,

+ 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,

+ 38) iwhat

write(%,%)’EOBS (Enter OBServed)’

write(x,x)’ This option allows you to enter the measured’
write(x,x)’ gravity or magnetic data. Values can be entered’
write(x,x)’ manually from the keyboard of from a "prefil™’
write(*,%x)’ file.’

return

write(*,%)’EBOD (Enter BODy)’

write(x,x)’ This option allows you to enter source body’
write(x, %)’ points. Up to a maximum of 10 bodies with a’
write(*,%)’ maximum of 19 points are possible. Body numbers’
write(*,x)°’ are selected automatically and EPAR is used to ’
write(x,x%x)’ enter magnetic or gravity characteristics.’
write(x,x)’ Point must be entered in clockwise order !’
return

write(*,x)’MPOI (Move POInt)’

write(x, %)’ The X and Z coordinates of body points can be’
write(x,x)’ moved using this option. The point to be moved’
write(x,x)’ is specified by body number and point number.’
return

write(x, %)’ ’EPAR (Enter PARameters)’

write(x,x)’ Body strike extent,density, and magnetization’
write(*,x)’ can be entered. For density and magnetization,'’
write(*,x)’ a minimum and maximum value specify the range °’
write(*,x)’ for automatic contrast setting with CONT.’
write(x,x)’ Declination and dip are specified to allow’
write(x, %)’ remanent magnetization to be accounted for. With’
write(x,x)’ no remanent magnetization they are set the same’
write(x,x)’ as the field values.’

return

write(*,%)’CONT (CONTrast)’

write(x,x}’ This option automatically varies the density’
write(x,%)’ . or maghetization to improve the least squares’
write(x,x%)’ fit of the calculated anomaly to the measured one.’
return

write(*,%)’DRAW (DRAW)’

write(*,x)’ In graphics mode, this option draws the full’
write(x,%x)’ length of both profiles and the bodies on the’
write(x,x)’ graphics monitor.’

return

write(x, %)’ ’SKET {SKETch)*®

write(*,x)’ In graphics mode, this option draws a subarea’
write(x,x%x)’ of the body display defined using ZOOM.’

return

44

10

11

12

13

14

15

16

17

18

19

write(*,%)’READ (READ model)’

write(x,x)’ This option reads a model from the models’
write(x,x)’ file with the current name.’

return

write(*, %)’ WRIT (WRITe model)’

write(x,x)’ This option writes the current model to the’
write(x,%x)’ models file with the current name.’

return

write (%, %)’ ANOM (ANOMaly)’

write(x,x)’ Calculate the anomaly and plot it if you are’
write(%, %)’ in graphics mode. If body=0 is selected the ’
write(x,x)’ total anomaly is plotted, otherwise a colour-’
write(x,x)’ coded anomaly for the specified body is plotted.’
return

write(*, *x)’TANO (Type ANOmaly)’

write(*,x)’ Print out the combined anomaly on the text °’
write(x,x)’ monitor.’

return

write(*,%)’TOBS (Type OBServed)’

write(x,x)’ Print out the observed magnetic or gravity data’
write(*, %)’ on the text monitor.’

return

write(*,%)’ECOM (Enter COMments)’

write(x, %)’ . This option allows you to enter a 80 character’
write(%, %)’ text string to describe the model. The string is’
write(*,x%)’ stored with the model on disc.’

return

write(*,¥)’TCOM (Type COMmments)’

write(x,x)’ This option prints out the text comment stored’
write(x, %)’ with the model.’

return

write(x, x)’NAME {NAME)’

write(x,x)’ This option prompts you to enter a model name’
write(x,x)’ of up to 10 characters.’

return

write(x,x)’TNAM (Type NAmes)’

write(x,x%x)’ This option prints out the names of models °*
write(x, %)’ in the models file.’

return

write(x,%x)’INSE (INSErt peint)’

write(x,x)’ This option allows you to insert a point in a °’
write(x,x)’ body after a specified point number.’

return

write(x,%x)’DPOI (Delete point)’

write(x,x%x)’ This option allws you to delete a specified point’
write(%, %)’ in a specified body.’

return

write(x,%)’END (END program)’

write(*,x)’ Type end to exit from the program. You must call’
write(x, %)’ WRIT before END to save your new model or any’
write(x,x*x)’ changes to your old model or they will be lost.’
return

write(%,%x)’TABL (TABLet)’

write(x,%)* This option transfers program control to the’
write(*x,x)’ graphics tablet. Program options can then be °’

21

24

26

29

30

write(*,x%x)’ selected by placing the cursor over the desired’

46

write(x,x)’ option and pressing the cursor button. Body’
write(x,x)’ points can be identified and moved with cursor’
write(x, %)’ as well. The small box in the lower left corner’
write(x,x)’ indicates the cursor positioning tolerance’
return

write (%, *)’RECO . (RECOver)’ :

write(*,x)’ This option allows you to go back to previous
write(x, %)’ steps in the modelling precedure. Each call of °’
write(x,x)’ RECOver undoces one change. You may recover a’
write(*,x)’ maximum of 20 changes.’

return

write(*, *)’DUMP (DUMP model to screen)’

write(*,x%x)’ This option prints out all bodies,anomalies,’
write(x,x%x)’ parameters and scaling information on the text’
write(x,x)’ monitor’

return

write (%, %)’ ’MAUT (Move point AUTomatically)’

write(*, %)’ This option allows you to automatically move a’
write(x,x)’ point to improve the least squares fit of the’
write(x,x)’ calculated to the observed profile. The anomaly’
write(*,x%)’ for the body the point is in will be calculated’
write(x,x)’ a number of times while moving the point to °’
write(*,x%x)’ calculate the best position. If the point position’
write(x,x)’ is not well constrained, The result may not be '’
write(x,x)’ satisfactory due to roundoff errors.’

return

write(%, %)’ TPAR (Type PARameters)’

write(*,x)’ This option prints out all body density or’
write(x, %)’ magnetization parameters on the text monitor.’
return

write(x,x)’MAGN (MAGNetics mode)’

write(x,x)’ This option puts the program in a magnetic’®
write(x,x%x)’ modelling mode. The option of setting the magnetic’
write(x,x)?’ field parameters if offered.’

return

write(*,%x)’GRAV (GRAVity mode)’

write(x,x)’ This option puts the program in a gravity’
write(*,%x)’. modelling mode.’

return

write(%,x)’MENU (MENU)’

write(x,x)’ This option prints out the possible options’
write(*,x)’ on the text monitor.’

return

write(*,*)’Z0OOM (ZOOM)’

write(x,x)’ This option allows you to set the plotting’
write(*,x)’ limits for the SKET mode.’

return

write(x, x)’MSCA (Manual SCAle)’
~write(*,x)’ This option allows you to manually set the °’
write(x,x%x)’ profile scale parameters,the crossection depth’
write(x,x)’ and the SKET plotting limits.’

return

write(%, x)’GRAP (GRAPhics mode)’®

write(x*, %)’ This option enables or disables the graphics’

31

32

33

34

36

37

38

00

000000000

write(x,%x)’ display. If no graphics monitor is available’

write(x,x)’ graphics should be disabled. Graphics enabled’
write(*,x%x)’ corresponds to MODE 2 of operation. Observed’
write(*,x%x)’ profiles are plotted in green and calculated’
write(*,x)’ profiles in white.’

return

write(*,%)’TBOD (Type BODies)’

write(*,x%x)’ This option types out parameters and point’
write(*,%)’ positions for a selected body.’

return

write(*,%x)’TSCA (Type SCAle)’

write(*,x)’ This option prints out scaling parameters’
write(x, %)’ on the text monitor.’

return

write(*,%)’OFFS (OFFSet)’

write(*, %)’ This option automatically calculates the optimum’
write(x,x)’ least-squares offset for the observed data for’
write(*, %)’ plotting.’

return

write(*,%)’DIFF (DIFFerence plot)’

write(*,%)’ This option switches a automatically scaled plot’
write(*,*)’ of the difference betweem the observed and °’
write(x,x%x)’ calculated anomalies on and off.’

return

write(*,x)’HELP (HELP)’

write(*, %)’ " This option gives a brief description of each’
write(*,x%x)’ option. You are in HELP now.’

return

write(*,%)’MBOD (Move BODy)'’

write(x,x)’ This option allows you to move all points in a’
write(*,x)’ specified body a specified X and Z distance.’
return

write(*,%)’DBOD (Delete BODy)’

write(x, %)’ This option allows you to completely remove a’
write(*x,x%x)’ specified body.’

return

write(*,%)’ASCA (Automatic SCAling)’

write(*,x)’ This option allows automatic scaling of the °’
write(*,%)’ anomalies for plotting.’

return

end

33k K %k 3k Sk kK K K ok ok Xk 3k ok 3k ok K ok K K 3K K ok 3K ok 3k 3K K 3k K 5K 3K ok K K Sk sk Sk 3k ok K ok ok KK K K Kk KoKk ok Kk ok
SUBROUTINE GRINIT (ISCOPE)

purpose : To initialize the "Halo" graphics functions
of the program; read and display a "Halo"
format image file on the screen and initialize
the drawing colours

parameters : iscope - set
set

1, for graphics initialized
2, for graphics not initialized

characterx20 fil, ans
integer*2 digini,idum

47

logical*2 fex

"halo.dev" is a device driver file provided by halo for
your specific graphics board.

000

if(iscope.eq.1) then
write(%,%)’Graphics already initialized’
return
endif
write(*,’(/a\)’)’ Do you want graphics enabled (y/n) : °’
call sound(20,200)
read(%,’(a)’) ans
if (ans.eq.’n’.or.ans.eq.’N’) then
iscope = 2
return
endif
fil = ’halo.dev’
inquire(file=fil,exist=fex)
if(fex.eqv..false.) then
write(X, %) ERROR,Graphics device driver file "halo.dev"’
write(*,%)’ must be present on the default drive!’
write(*,%*)’ Graphics initialization aborted.’
call sound (15,6000)
iscope = 2
return
endif
fil = ’"halo.dev™’
call setdev(fil)
call ingerr(ifun,ierr)
if(ierr.ne.0) then
write(x,*)’ERROR reading "halo.dev"” file’
write(*,%)’ Graphics not initialized!’
iscope = 2
return
endif
call initgr (0)
call inqerr{(ifun,ierr)
if(ierr.ne.0) then
write(*,*)’ERROR initializing graphics,’
iscope = 2
call sound(15,6000)
return
endif
c
¢ "setcpa" sets the colours used for bodies etc.
c
call setcpa(0,0,0,0)
call setcpa(l,255,0,0)
call setcpa(2,255,255,0)
call setcpa(3,0,255,255)
call setcpa(4,255,0,255)
call setcpa(5,255,127,0)
call setcpa(6,0,0,255)
call setcpa(7,255,128,128)
call setcpa(8,128,128,255)

48

0000

call setcpa(9,128,255,128)
call setcpa(l10,160,160,160)
call setcpa(ll,255,255,255)
call setcpa(l12,0,255,0)

call setcpa(13,200,128,128)
call setcpa(l27,40,40,40)
call setcpa(254,120,120,120)
call setcpa(255,255,255,255)
call setcol (0)

call clr

"logo.pic" is a "Halo" image file displayed at the start
of the session.

fil = ’*"logo.pic"’

call gread (fil)

call setiee (1)

idum = digini(idum)

write(x,’(/a)’)’ Graphics system initialized for’
write(*,’(a/)’)’ Graphics Card matching chosen HALO.DEV file’
iscope =1 ’

return

end

C Kk Kk kokok 3k ok ok ok K ok koK koK ok koK sk ok ook XK koK K K KOk ok ok sk sk Kok K ok ok koK Ok Ok k kKoK ok ok ok ok kR ok k ok ko

0

1000

00

DL 0000

10

SUBROUTINE MENU

purpose : To print out a list of the available text options

write(x*,1000)

format (1h0,’ Current Menu of Options’,/,
+? e '/,

+? ANOM ASCA CONT DBOD DIFF DPOI DRAW DUMP EBOD ECOM’,/,
+? END EOBS EPAR GRAP GRAV HELP INSE MAGN MAUT MENU’,/,
+’ MBOD MPOI MSCA NAME OFFS READ RECO SKET TABL TANO?’,/,
+> TBOD TCOM TOBS TNAM TPAR TSCA WRIT ZOOM’,/)

return

end

% 3k 3k 3k Ok %k 3k Kk 3k 3k ok okok 3k 3k ok kK ok 3k ok 3k ok ok 3K 3k K ok K 3k ok ok 3k ok K ok 3Kk K kK 5k 0K 5k K ok 3K K K K Sk kK Ok X Kk K Kok

SUBROUTINE EOBSE

purpose : To allow the user to enter observed anomaly data

from the keyboard.

include: ’magrav.cnn’

write(x,’(a\)’)’ Enter X profile offset (km) : °
read{(*,%,err=900) xoffs(itype)
write(*,’(a\)’)’ Enter profile sampling interval (km) : '’
read(X, %X,err=900) space(itype)
if(space(itype).le.0) then

write(x,*)’ERROR!,sampling interval must be > 0°

call sound (15,6000)

49

20

30

100

900

000

o000 nn

go to 10
endif
write(*,’(a\)’)’ Enter No. of values in profile : ’
read(*,%,err=900) nfield(itype)
if(nfield(itype).gt.maxobs.or.nfield(itype).le.0) then
write(x,x)’ERROR!,no. of values must be less than’,maxobs
call sound (15,6000)
go to 20
endif
do 30 ipt=1 , nfield(itype)
xpos{(ipt,itype) = xoffs(itype) + (ipt-l)*space(itype)
xlen(itype) = space(itype) * (nfield(itype)-1)
write(*,%)’Profile X length = ’,xlen(itype),’ km.’
write(*,%)’Enter reading no. and measured anomaly value’
write(*,%)’ (enter 0,0 to quit)’
write(*,’(a\)’)’ no.,value : °’
read(*,%,err=100) Jj,ans
if(j.eq.0) go to 200
if(j.le.nfield(itype)) then
obs(itype,j) = ans
go to 100
endif
write(*,%)’ERROR!, ’,Jj,’ exceeds maximum of ’,nfield(itype)
go to 100

if(iscope.eq.l.and.idiff.1t.0) then
call ascale
x1pl = xpos(l,itype)
xupl = xpos(nfield(itype),itype)
call plobs
if(nbods.gt.0) call plbod(0,127)
endif
return

write(*,*x)’ERROR!, Input error.’
call sound (15,6000)

return :

end

% % 3 3k KOk K 5k ok 3 K K K ok KK K K K Xk K oK ok 3K K 3k K 3k K K 5k 5k 3K 0K 3K 0K 3K K 3k K ok ok ok 3k 3K K K ok 3k kK k ok ok Rk kokok

SUBROUTINE ROBSE(IERR)

purpose : To read observed anomaly data from a profile file.
parameters : ierr - set to "1" for errors reading from file

file format : record 1 - nfield(itype)

record 2 - space(itype)
record 3 to nfield+2 -obs(itype,ipt)
(A1l data free formatted)

character*50 pfile

$include: 'magrav,cmn’

[y

50

write(%,’(/a\)’)’ Enter profile file filespec : °’
call sound{(20,200)

read(*,’(a)’) pfile
open(10,file=pfile,status='o0ld’,form="formatted’)

read(10,%,err=999) nfield(itype)
read{(10,%,err=999) space(itype)
do 100 ipt = 1 , nfield(itype)
read(10,%,err=999) obs(itype,ipt)
100 continue ‘
write(*,1000) nfield(itype),space(itype)
1000 format(lh ,’No. of profile values read in : ’,id,/
+’ Profile value sampling interval (km): ’,f10.5)
150 write(%x,’(a\)’)’ Enter X profile offset (km) : °’
call sound(20,200)
read(x, *,err=900) xoffs(itype)

do 200 ipt=1, nfield(itype)

200 xpos(ipt,itype) = xoffs(itype) + (ipt-1l)x*space(itype)
xlen(itype) = space(itype)x*x(nfield(itype)-1)
write(x,%x)}’Profile X length = ’,xlen(itype),’ km.’
if(iscope.eq.l.and.idiff.1t.0) then

call ascale
x1lpl = xpos(l,itype)
xupl = xpos(nfield(itype),itype)
call plobs
endif
ierr = 0
return

c

900 write(x,%)’Input ERROR!, retry.’
call sound(15,6000)
go to 150

c
999 write(*,%)’ERROR!,reading profile file’
call sound(15,6000)
ierr = 1
return
end

51

c

¢ MAGRAVZ SUBROUTINE BLOCK : MS3

¢ Edited last : June 20 / 1986 ; J. Broome

c

$nofloatcalls

3K Sk 3K K K KK KK K Kok 3K K 3k sk sk ok K K K 3K K K K 3K K K K K 3K K 3K K K K K K K KK KOk oK kK kK R kK ok kR ks k ok ok ok kK ok ok Kok Kk k kK
SUBROUTINE REAN

c

¢ purpose : To zero arrays "calc" and "ianom"

$include:’magrav.cmn’

do 100 i=1, maxcal
do 110 j = 1, maxobs
cale(i,j) = 0.
110 continue
100 continue
do 200 i =
ianom(i)
200 continue
kalk = 1
return
end

1, maxbod
=0

C
%k 3k 3k 5k 3 3K K 3k 3k 3 sk 3k 3K 3k 5k ok 3 ok 3K ok ok sk 3k ok 3k ok 3k 3k 3K 3k 3K 3K ok K ok K K K %k sk ok K K ok ok ok ok KKk ok sk kKoK ok Sk k koK Kok ok ok
SUBROUTINE TYPBOD (IBOD)

¢

¢ purpose : To type body coordinates and parameters
c

¢ parameters : ibod = "0" to print all bodies

c body number

c

$include: ’magrav,cmn’

characterx10 color(10)

data color/’ red’,’ vellow’,’ turquoise’,
+ i purple’,’ orange’,’ blue’,
+ i pink®,’light blue’,’ green’,
+ ’ gray’/

if(nbods.eq.0) then
write(*,%)’No bodies defined!’

return

endif

c

if(ibod.eq.0) then
ibegin = 1
iend = maxbod

else
ibegin = ibod
iend = ibod

if(npts(ibod).eq.0) then
write(x,*)’Body ’,ibod,’ not defined.’
return

endif

52

endif

do 100 i = ibegin, iend
if(npts(i).ne.0) then
write(x,’(/a,i3)’)’ BODY :’°,i
write(*,%x)’colour = ’,color(i)
write(*, %) 'Half-strike length :’, bdy(i)
if(itype.eq.l)
+ write(*, 270) rmmin(i,l), rhomag(i,l), rmmax(i,1l)
270 format(5x,’Min.,Actual, and Max. Density :’,/,3f10.2)
if(itype.eq.2)
+ write(x, 280) rmmin(i,2), rhomag(i,2),
+ rmmax(i,2)
280 format(5x,’Min.,Actual, and Max. Magnetization :°,/,
+ 3f10-%; . .
write(%,290) bdec(i),bdip(i)
280 format(5x,'Declination="',f5.1," ,Dip=",f5.1)
nptl = npts(i) - 1
write(*,%)’Point no., X, z’
do 110 j = 1, nptl
write(x,?(i5,2f10.2)’) j, x(j,i), z(j,1i)
110 continue
endif
100 continue
write(*, %) * °
return
end

%k 3 3 s 3K 3k K ok Ok 3Kk ok K sk ok Xk K ok sk ok Kk Kook Ok ek kK ok 3K K0k 3k ok Sk koK Kk Ok kK 3k K K 3K K Kk 3K oK Ok Xk K kK ok ok ok kK
SUBROUTINE TYPAR

¢
¢ Purpose : to print out magnetization or density parameters
c for each body.

$include: 'magrav.cmn’

c gravity
if(itype.ne.2) then
write(x, %x)’Body minimum actual maximum °*
write(%,x)°’ density density density’
do 100 i = 1, maxbod
if(npts(i).gt.0) then
write(x, 150) i, rmmin(i,1), rhomag(i,l), rmmax(i,1l)

150 format(id4,3f10.2)
endif
100 continue
return
endif

¢ magnetics

2000 write(*,2100)

2100 format(’ Body minimum actual maximum dec. dip.’,/,
+’ magnetization’)

53

do 200 i = 1, maxbod
if{npts(i).gt.0) then
write(x, 151) i, rmmin(i,2), rhomag(i,2),

+ rmmax(i,2), bdec(i), bdip(i)
151 format (i4,3f10.2,2f6.1)
endif '
200 continue
return
end

33K 3k 3k oK 3k 0k ok ok kK ok 3k ok Kk Kok 3k K K K KK K K kK K K K R KK K K KK K Kk KRk kK ok koK ok Rk koK sk k kX
SUBROUTINE TYPANO (JBOD)

c

¢ purpose : To print out anomaly values for body "ibod"

$include: ’magrav.cnn’

ibod = jbod

if(jbod.eq.0)ibod = maxcal

if(ibod.lt.maxcal) write(*, %) 'Anomaly Body :’, ibod

if(ibod.eq.maxcal) write(*, %) ’Total Anomaly’

nf = nfield(itype)

do 500 i = 1, nf

if(calc(ibod,i).le.~.00001.0r.calc(ibod,i).ge..00001) then

write(x,400) i,xpos(i,itype),calc(ibod,i)

400 format(i3,1x,f10.2,1x,£f10.2)
endif
500 continue
return
end

€ K 3K KKK KKK K oK 3k ok Sk Kok K oK ok 3k Kook Xk 3k ok ok ok 3k K ok k ok ok K0k ok koK ok okokokokok kokokok ok kokok k ok ok k
SUBROUTINE CALCAN

c
¢ purpose : To calculate the gravity or magnetic anomalies

c for any bodies that have had their parameters or
¢ points changed. (ianom(ibod) set to "0")

$include: "magrav.cmn’

do 100 i = 1, maxobs
calc(maxcal,i) = 0.
100 continue

do 200 ibod = 1, maxbod
if(npts(ibod).gt.0) then
if(ianom(ibod).ge.0) then
if(itype.eqg.2) call mag{(ibod)
if(itype.eq.1l) call gravc(ibod)
endif
nf = nfield(itype)
do 210 i = 1, nf
calc(maxcal,i) = calc(maxcal,i) + calc(ibod,i)
210 continue -
endif

200 continue
kalk = 0
return
end

€ % K 2k k0K 2k K ok ok koK 3k Ok Xk ok ok ok ok sk ok 3k 3k ok ok 3k ok 3K ok 3k ok ok K 3K 3k 3k 3K 0K R K 3K K K K 3K ok 3K 3K Kok kK Kok Kok Kok okok ok
SUBROUTINE CHECK (NUMBER,XXX,ZZ,IDUPBD,IDUPPT,IRET)

iduppt - point number body "idupbd”
0 for duplicated point
-1 for unique point

iret

c
¢ purpose : This subroutine checks points to see if they are in
c approximately the same place as existing points. If so

c the body number and body point number are returned. If

c not "iret" is set to -1 and the routine is exited.

c .

¢ parameters : number - The "number”th duplicate point

c is checked for.

c XXX - X coordinate of point to be checked

c 2z - Z coordinate of point to be checked

c idupbd - body number for "number"th duplicate

c point

c

c

c

c

$include: ’magrav.cmn’

numdup = 0
do 100 idupbd = 1, maxbod
npt = npts(idupbd)
if(npt.gt.0) then
do 90 iduppt = 1, npt
if(abs(xxx-x(iduppt,idupbd)).gt.xdis) goto 90
if(abs{(zz-z(iduppt,idupbd)).gt.zdis) goto 90

c duplicate point
numdup = numdup + 1
if(numdup.lt.number) goto 90
iret = 0
xxx = %x(iduppt,idupbd)
zz = z{(iduppt,idupbd)

return

90 continue
endif
100 continue

¢ unique point

iret = -1
idupbd = 0
iduppt = 0
return

end

€ KK 3k 3K 3k 3k 3k ok 3k ok K 3K K K 3k 3Kk K Ok 3k K ok ok K K ok ok K K Sk 33Kk ok ok 3Kk ok ok ok Kk K ok K ok ok ok ok ok kR KoK KOk KOk K
SUBROUTINE INSERT (XXX,ZZ,IBOD,NPT,IRET)
c

55

Cc purpose To insert a new point with coordinates (xxx,zz) after
c point "npt" in body "ibod".

c

¢ parameters: xXxx ~ X coordinate of new point

c zz -~ Z coordinate of new point

c ibod ~ number of body to insert point into

c npt - point in body after which point is to
c be inserted.

c iret - "-1" if point inserted

c "0" if point not inserted

c

d¢

$include: ’magrav.cnn’

100

iret = 0
if(ibod.1t.1) return
if(npt.gt.npts(ibod)) return
if{npts(ibod).ge.maxnpt) then
write(x,*)’ERROR,maximum number of points in body’
call sound(15,6000)
return
endif
iend = npts(ibod)
npt = npt + 1
npts(ibod) = npts(ibod) + 1
if(npt.ne.npts(ibod)) then
1 = npts(ibod)
do 100 i = npt, iend

x(1l,ibod) = x(1-1,ibod)
z(l,ibod) = z(1l-1,ibod)
1 =1-1
continue
endif
ianom(ibod) = 0
x(npt,ibod) = xxx
z(npt,ibod) = zz
iret = -1
set last point = first just to be sure
x(iend+1,ibod) = x(1,ibod)
z(iend+1,ibod) = z(1,ibod)
kalk = 1
if(iscope.eq.1l) call plbod(ibod,-1)
return
end

€ %k X 3 3k 3k 3k ok Kok ok K 5k 3k Ok K ok K 3k K ok K 3K ok Sk ok ok ok Kk K kK koK ok ok Kok ok 0k 3k K K ok K0k Kk KOk KOk Ok XKk

SUBROUTINE DELETE (IBOD,NPT,IRET)

c

c purpose : To delete point "npt" from body "ibod"

c

¢ parameters : ibod - body point is to be deleted from
c npt - number of point to be deleted

c iret - "0" if point is not deleted

56

c "-1" if point is deleted
c
$include: ’magrav.cmn’

iret = 0

if(npts(ibod).eq.0) then
write(*,%)’ERROR, body’,ibod,’ not defined’
call sound(15,6000)
return

endif

if(npt.1lt.l.or.npt.gt.npts(ibod)) then
write(%,x)’ ERROR,point not defined’
call sound(15,6000)

endif

iend = npts(ibod) - 1

npts{(ibod) = iend

if(npt.lt.iend) then
do 100 i = npt, iend

ii =i + 1
x(i,ibod) = x(ii,ibod)
z(i,ibod) = 2(ii,ibod)
100 continue
endif
ianom(ibod) = 0
¥(iend,ibod) = x(1,ibod)
z(iend,ibod)} = z(1l,ibod)
iret = -1
kalk = 1
if(iscope.eq.1l) call plbod(ibod,-1)
return-
end

€ KK 3K K Kok ok sk ok ke sk 3k ok 3k ok ok K ok ok 3k 3k 3k 3k 3k K ok ek Sk ok kK ok ok ok 0k Sk ko ok ok ok Xk Sk Kok sk Kok sk Kok kkok kX
SUBROUTINE MAG(IBOD)

purpose : To calculate the magnetic anomaly for body "ibod"

sources bio computer note 66-1-c april 1966
program mag written for pdp-11 by d.heffler,agec,bio 19
cdc3150 fortran program mag2new,agc,bio,197...

modified for 2.5 dimensional bodies by Franca Lindia
using equations published by Shuey and Pasquale(19873)
in the journal "Geophysics".

O000000000

$include: ’magrav.cmn’

complex zi,zil,zi2,yi,fnl,fn2,fn,yrlc,qpx,qpz,qaxsm,qzsm,czero
complex rsum,x2lzi

write(%x,*x)’Calculating mag. an. for body’,ibod
nf = nfield(itype)

if(rhomag(ibod,2).eq.0.) return

cdipd = degcos{(dip)

sdipd = degsin(dip)

57

sdd = degcos(xton-dec)

cdip = degcos(bdip(ibod))

sdip = degsin(bdip(ibod))

sd = degcos(xton-bdec(ibod))
cdy = degcos(90.-(xton-bdec(ibod)))
sdt = degsin(xton-dec)

cdipsd = cdipx*xsd

cdpedy = cdipxcdy

rhobod = rhomag(ibod,2) x 2.0

v = bdy(ibod)

ysq = yX*2 g

vd = 1.0/ysq

vi = cmplx(0.,yd)

npt = npts(ibod)
czero = cmplx(0.,0.)

¢ check each field point

do 3100 k = 1, nf

gxXsm = czero
gzsm = czero
rsum = Czero

xl = x(1l,ibod) - xpos(k,itype)
zl = z(1l,ibod) + zcon(2)
if{(zl.le.0.) goto 9999 .
rl = sqrt{ x1%x%2 + z1x*2 + ysq)
zil = cmplx(0.,z1)
do 3000 j = 2, npt
x2 = x(j,ibod) - xpos(k,itype)
22 = z{(j,ibod) + zcon(2)
if(z2.1le.0.) goto 9999

if 2 points the same check the point after

v}

if(xl.eq.x2.and.zl.eq.z2) goto 3000

221 = z2 - z1

x21 = x2 - x1

zi = cmplx(0.,221)
x21lzi = %21 + zi

zi2 = cmplx(0.,22)
r2 = sqrt{ x2%%2 + z2%x%2 + ysq)
fnl = x21zi/(x1+zil) x (1.0 + rl/y)

+ + yix (x1*z21 - z1l*x21)
fn2 = x21zi / (x2+2i2) x (1.0 + r2/y)
+ + yi¥x(x2%z21 - z2%x21)
¢ top and bottom of log >0. since "zcon” not = 0

if(fnl.eq.czero) goto 9999
if(fn2.eq.czero) goto 9999
fn = fn2/fnl

yrlc = clog(fn)

qpx = zi/x21zi % yrlec
aqpz = -x21/x21zi % yrlc
gxsm = gxsm + qQpX

58

qQzsm = qzsm + qpz

rsum = rsum + yrlc
x1 = x2
zl = z2
zil = 2i2
rl = r2
3000 continue

qtot = real{qxsm)

pxtot = aimag(qxsm)
pztot = aimag(qzsm)
rytot = aimag(rsum)
h = cdipsd¥pxtot + sdip*qtot

v = cdipsd*xqtot - sdipx*pztot
hy = cdpcdy*rytot
cale(ibod,k) = (vxsdipd + (h*sdd - hy%sdt)*cdipd) * rhobod
3100 continue
ianom(ibod) = -1
return

C error

9999 continue
write(x, %) ’'Body :’, ibod, ’ Point :’, k
write(x, x) *> Cannot be calculated with present algorithm
write{(¥, %) ’® Value out of range °’
write(x, %) ’ Anomaly set to zero’
write(%, %) * Use "GRAV" or "MAGN" command’
;> to set a larger Z constant’
do 10000 k = 1, nf
calc(ibod,k) = 0.0
10000 continue
ianom(ibod) = 0
return
end

© 3K K % K %K %k 3K 3k ok ok K ok K K 3k K K 3k 5k 3K K 3k K K 3k K ok K 3k K 3K XK K K Sk 3k K K K K 3k K 3k K K 5k K K K K Kk Kok ok ok Kk Kk kK ko
SUBROUTINE GRAVC(IBOD)
¢ purpose—-to calculate the gravitational anomaly for body ibod

$include: ’magrav.cmn’

write(*,%)’Calculating anomaly for body ’,ibod
nptl = npts{(ibod) - 1
nf = nfield(itype)
do 100 k = 1, nf
calc(ibod,k) = 0.

100 continue
if(rhomag(ibod,1).eq.0.) return
v = bdy(ibod)
do 1000 k = 1, nf

sum = 0.

dist = xpos(k,itype)

xj = %(1l,ibod) - dist

zj = z{1l,ibod) + zcon(1l)
if(zj.le.0.) goto 9999

59

do 200 j = 1, nptl
xjl = x(j+1l,ibod) - dist
zjl = z(j+1,ibod) + zcon(1l)
if(zjl.le.0.) goto 9999
sum = sum + deltag(xjl,xj,zjl,zj,y)

xj = xjl
zj = 2jl
200 continue

calc(ibod,k) = 13.346 % sum ¥ rhomag(ibod,1l)
1000 continue
ianom(ibod) = -1
return

9999 continue

c if(iscope.eq.l) call bell
c if(iscope.eq.l) call anmode
write(*, %) ’Body : ’, ibod, * Point : ', k, ’ is negative’

do 10000 k = 1, nf
calc(ibod, k) = 0.
10000 continue
ianom(ibod) = 0
return
end
c
© X 3K Xk kK sk ok K ok X kok 3K ok kK kK ok sk ok kK kK ok koK Sk sk ok ok K sk K ok Kok Kk Sk kK ok 3k 3k kK Ok Kk ok ok ok Kok koK ok X
SUBROUTINE PARAM (IBOD)

c

¢ purpose : To allow body magnetization parameters and strike
c extent to be entered.

c

¢ parameters : ibod - body number for parameter change

$include: magrav.cmn’

write(*,*x)’Current body strike extent (km) = ’,bdy(ibod)
10 write(x,’(a\)’)’ Enter new strike extent (km) ’
read(%, ¥,err=900) bdy(ibod)
if(bdy(ibod).le.0) then
write(*,%x)’ERROR!,strike extent must be greater than 0’
call sound(15,6000)
go to 10
endif
if(itype.eq.l) then
write(x,1010) rmmin(ibod,itype),rhomag(ibod,itype),
+rmmax(ibod,itype)

. 1010 format(lh ,’Minimum,body, and maximum density contrasts =',/,
+ 3f10.2)
write(%,’(a\)’)’ Enter minimum density contrast(g/cc): ’
else

write(x,1020) rmmin(ibod,itype),rhomag(ibod,itype),
+rmmax(ibod, itype)

1020 format(lh ,’Minimum,body, and maximum magnetizations =’,/,
+3f10.2)
write(*,’(a\)’)’ Enter minimum magnetization (X10-5 emu): °’
endif

60

call sound(20,200)
read(*,%,err=900) rmmin(ibod, itype)

if(itype.eq.1l) then

write(%,’(a\)’)’ Enter body density contrast(g/cc):
else

write(*,’(a\)’)’ Enter body magnetization (X 10-5 emu)
endif
call sound(20,200)
read(*,%,err=900) rhomag(ibod,itype)

if(itype.eq.1l) then

write(*,’(a\)’')’ Emter maximum density contrast(g/cc):
else

write(*,’(a\)’)’ Enter maximum magnetization (X10-5 emu}:
endif
call sound(20,200)
read(*,%,err=900) rmmax(ibod,itype)

if (itype.eq.2) then
write(x,1030)dec,dip
1030 format(lh ,’Field declination = ’,f8.1,/
+,’ Field dip = *,f8.1)
write(*,’(a\)’)’ Enter body magnetization declination
call sound{(20,200)
read(x, *x,err=900) bdec(ibod)
write(x,’(a\)’)’ Enter body magnetization dip
call sound(20,200)
read(Xx,*,err=900) bdip(ibod)
endif

’

kalk = 1
ianom(ibod) = 0
return

¢
900 write(*,%)’Input ERROR’
call sound(15,6000)
return
end

€ % XKk 3K X K % 5k K 3k K K 3 ok % 3k 3k X 3K 5k 3k 3k 5k 3k K 3k 3k 5k 3 K 3 K 3K 30K 5K X K K X K K X X K Xk K Xk X
SUBROUTINE TSCA

c

¢ purpose : To type out scaling parameters ,etc.

$include: ’magrav.cmn’

write(x, x) ’*Model : ’, name
if(itype.eq.l) write(%, %) ’Gravity’
if(itype.eq.2) write(*, %) ’Magnetics’
write(x, 46) kommnt
46 format(’ Comments ’/,1x,8al0)

write(*x,%¥)’X length of profil(km
write(*,%x)’'Crossection depth (km
write(x,%)*X profile offset (km)

Yy =’,xlen(itype)
) =’,zmax
=’ ,xpos(l,itype)

61

,space(itype)

,nfield(itype)
,anomin(itype)
,anomax(itype)

write(*,%x)’Sampling interval(km)
write(*,%)’No. of readings

write(x,%)’Anomaly scale minimum
write(*,%)’Anomaly scale maximum

?
2
b
b
]
s
3
3

write(x,x)’Difference scale min. ydifmin(itype)

write(x,%)’Difference scale max. ,difmax(itype)
,offset(itype)

write(*, x) 'Number of bodies ,nbods

write(%,%)’0Observed offset =
d

if(itype.eq.2) write(x, 210) dec, dip, xton, 2zcon{(itype)
210 format(8x, ' dec = ',f8.2,8x%x,’ dip = *,f8.2/
+* X to n angle : ’,f8.2/8x,’ Z constant : ’,f8.4)
if{iscope.eq.2) write(*,%*)’ Graphics suppressed’
if(mode.eq.2) write(x, %) *Sketch mode’
if(mode.eq.1l) write(*, %) °’Draw mode’
write(x, 227) skxmin, skxmax, skzmin, skzmax
227 format(’ Sketch limits X:',2f10.2,/13x, ' Z:?,2110.2)

H
write(*, %) ’Maximum number of points per body = *, maxnpt
write(%, %) ’Maximum number of bodies = *, maxbod
write(x, %) ’'Maximum profile length = ’, maxobs
return
end

% sk 3k ok ok Kk Sk ok ok ok ok ok ok ok ok ok 3k ok 3Kk 3k 3k 3Kk 3K 3k 3k 3K K K 0K 3 3k 3k 3k ok ok 3k ok Sk ok 3k ok ok ok 3k 3k K ok 3k Kok ok ok ok ok KOk Ok koK ok kK
SUBROUTINE AMPL

c

¢ purpose : To automatically adjust the density or magnetization
c contrasts of the bodies to improve the fit of the

c calculated profile to the measured data.

$include: ’magrav.cnn’
data iwrite/0/, maxit/1l/

ibr 0
esc l.e4d4
if(itype.eq.1l) esc = 100.
nf = nfield(itype)
if(nf.eq.0) then
write(%,*x)’ERROR, no. observed data °’
call sound(15,6000)
return
endif
if(itype.eq.1l) then
write(x,%)’01d density contrasts for each body
else
write(x,*)’01d magnetization contrasts for each body :’
endif
do 50 j=1 , maxbod
if(npts(j).ne.0)write(*,’(i5,3%x,f10.2)’)j,rhomag(j,itype)
50 continue
call calcan
nc = 0
do 100 i = 1, maxbod
if (npts{(i).eq.0) go to 100
if(abs(rhomag(i,itype)).ge.l.e-10) then

62

110

100

200

300

410
400

500

do 110 j = 1, nf
cale(i,j) = calc(i,j)/rhomag(i,itype)

continue
nc = nc + 1
xx(nc) = rhomag(i,itype)
e(nc) = .001
endif
continue

if (nc.eq.0) then
write(*,%)*ERROR, no bodies defined’
call sound(15,6000)
kalk = 1
return
endif
ierr = 0
call dfs001(nf,nc,f,xx,e,esc,iwrite,maxit,w,ierr)
if(ierr.ne.0) then
write(%,%)’ERROR,in DFS00l{err=’,ierr,’)’
call sound(15,6000)
kalk = 1
return
endif
nc = 0
do 200 i = 1, maxbod
if(npts{(i).eq.0) go to 200
if(abs(rhomag(i,itype)).ge.l.e~10) then

nc = nc + 1
rhomag(i,itype) = xx(nc)
endif
‘" continue
do 300 i = 1, nf
calc(maxcal,i) = 0.
continue

do 400 i = 1, maxbod
if(npts(i).eq.0) go to 400
de 410 j = 1, nf
calc(i,j) = calc(i,j)*rhomag(i,itype)
calc(maxcal,j) = calc(maxcal,j) + calc(i,j)
continue
continue
kalk = 0
if(itype.eq.l) then
write(*,%)’New density contrasts for each body
else
write(*,%)’New magnetization contrasts for each body
endif
do 500 j = 1 , maxbod
if(npts(j).ne.0)write(%x,’(i5,3x,f10.2)*)j,rhomag(j,itype)
continue
return
end

KEKKEKK KK I KKK KKK KKK KE KKK KRKKK KKK R KRR KK KK KKK KKK KK KKRKR R KX KRR KRR R kK Rkkk kX%

C

SUBROUTINE CALFUN (M,N,IAMP)

63

¢ purpose : This program is called by subroutine "DFS001" to

c calculate the values in array "f" .Array "f" contains the
c difference between the calculated and observed profiles.
c

¢ parameters : m - number of points in the profile

c n - number of independent variables ;

c (one point is 2 variables ,x and z)

c iamp - "1" for point position movement

c "0" for contrast optimization

c

. ¢
$include: ’magrav.cmn’

100

220

300

400

do 100 i =1, m

calc(maxcal,i) = 0.
continue
if(ibr.ne.l) then

nc = 0

do 200 i = 1, maxbod
if(npts(i).eq.0) go to 200
if(abs(rhomag(i,itype)).ge.l.e-10) then
nc = nc + 1
if(iamp.ne.l) then
if(xx(ne).lt.rmmin(i,itype)) xx(nc)
if(xx(nec).gt.rmmax(i,itype)) xx{(nc)

rmmin(i,itype)
rmmax(i,itype)

endif-
do 220 j = 1, m
calc{maxcal,j) = calc(maxcal,j) + calc(i,j) ¥ xx(nc)
continue
endif
continue

else
do 300 i =1, 2

if(ib(i).ne.0) then
x(np(i),ib (1)) = =xx(1)
z(np(i),ib(i)) = abs(xx(2))
ianom(ib(i)) = 0

endif
continue
do 400 i = 3, 4
if(ib(i).ne.0) then
x(np(i),ib(i))
z(np(i),ib(i))
ianom(ib(i)) =
endif
continue
do 500 ibod = 1, maxbod
if(npts{ibod).eq.0) go to 500
if(npts(ibod).gt.0) then
if{(ianom(ibod).ge.0) then
if(itype.eq.2) call mag(ibod)
if(itype.eq.l) call grave(ibod)
ianom(ibod) = -1
endif
nf = nfield(itype)

xx(3)
abs (xx(4))

[= BN TRNT]

64

520

500

600

do 520 i = 1, nf
calc(maxcal,i) = calc(maxcal,i) + calc(ibod,i)
continue
endif
continue
endif
do 600 i = 1, m .
f(i) = obs(itype,i)—-calc(maxcal,i) + offset(itype)
continue
return

end,

3 2% 3 kK 3k K ok 3k 3k sk 3k ok ok ok ok ok K 3k Kk K0k Kk Sk Kk KK Kk KK K K K KK K kK 3k oKk Kk K ok Kk ok ok Kk K ok ok sk k ok ok ok ok

SUBROUTINE AMOVE (X1,X2,X3,X4,NPC)

c
¢ purpose : To set up varaibles and arrays for subroutine "DFS0O01"

c so that points can be moved automatically to achieve a best
c fit of the calculated anomaly with the observed anomaly.

c

¢ parameters : xl -~ first independent variable,"x" for point #1

C Xz -— Second ” 7" ’"z" " " #1

c X3 —_ third " ” ’"x" " " #2

C X4 — fourth " " "‘z" " " #2

c npc - number of independent variables, 2 for 1 point
c

$include: ’magrav.cnn’

100

200

data esc/100./, iwrite/0/, maxit/1l/

do 100 i = 1, maxbod

xx(i) = 0.
continue
xx{1l) = x1
xx(2) = x2
xx(3) = x3
x2x(4) = x4
ibr = 1

if(nfield(itype).eq.0) then
write(x,%)*ERROR,no observed data defined!’
call sound(15,6000)
return
endif
nl = 0
n2 = 0
do 200 i =1, 4
ib(i) =
np(i) =
continue
do 300 number = 1, 2
call check(number,xx(1),xx(2),ibod,npt,iret)
if(iret.eq.0) then
ib(number) ibod
np(number) npt
nl =1

0
0

65

endif
if{npc.ne.2) then
call check(number,xx(3),xx(4),ibod,npt,iret)
if(iret.eq.0) then
ib(number + 2) = ibod
np{number + 2) = npt
nZ2 =1
endif
endif
300 continue
ntot = nl + n2
if(ntot.eq.0) return
n3 = ntot % 2
do 400 i = 1, n3
e(i) = .001
400 continue
ierr = 0
call dfs001l(nfield(itype),n3,f,xx,e,esc,iwrite,maxit,w,ierr)
if(ierr.ne.0) return
xposf = xpos(nfield(itype),itype)
if(xx(l).gt.xposf) xx(l) = xposf

if(xx(1).1t.0.)xx(1) = 0.
if(xx(2).1t.0.)xx(2) = 0.
if(xx(2).gt.zmax)xx(2) = zmax

if(n3.ne.2) then
if(xx(3).gt.xposf) xx(3) = xposf

if(xx(3).1t.0.) xx(3) = 0.
if(xx(4).1t.0.) xx(4) = 0.
if(xx(4).gt.zmax) xx(4) = zmax
endif
k = -2
do 500 1 =1, 2
il =1 +1 -1
i2 = i1 + 1
k = k + 2
do 520 j = 1, 2
1 =k +
ibl = ib(1)
npl = np(1l)
if(ibl.ne.0) then
x(npl,ibl) = xx(il)
z(npl,ibl) = xx(i2)
ianom(ibl) = 0
if(npl.eq.1l) then
x(npts{(ibl),ibl) = x(1,ibl)
z{npts(ibl),ibl) = z(1l,ibl)
endif
call plbod(ibl,-1)
endif
520 continue
500 continue
kalk = 1
call planom(0,-1)
return

end

66

c
¢ MAGRAVZ2 SUBROUTINE BLOCK : MS4
c Edited : June 10 , 1986 ; J. Broome

C

$nofloatcalls
¢k sk koK ok 3k 3K K 3K K Xk 3K ok XK ok 3K ok 3K 3k 3k 3k 5K 3k 3k X 3k ok ok 3k ok 3K ok K 3k ok kK 3K ok K sk kK ok Kok KK koK K XK KK K X Kk X X

SUBROUTINE PLOBS

c
¢ Purpose : To plot observed data on the screen
c
$include: ’magrav.cmn’ .
c
call inidis (1,-1)
call setcol (12)
C
if (idiff.eq.l) return
do 100 ipt=1 , nfield(itype)
100 w(ipt) = obs(itype,ipt) + offset(itype)
c
call movabs (xpos(l,itype),w(1l))
call polyla(xpos(l,itype),w(l),nfield(itype))
c
return
end
c
C 0Kk sk ok Kk 3k ok ok 3k 3K K K K O 3K K K K 3k K K K K K K 3k K kK K ok ok koK K ok Kk ok ok ok kok Kk ckokok Kk ok ok ok sk kk ok k
SUBROUTINE PLBOD (IBOD,ICLR)
c
¢ Purpose : To plot bodies on the screen
c
¢ parameters : ibod - body number to be plotted
c "0" to plot all bodies
c iclr - clear window to specified colour(0-255)
c "-1" if window is not to be cleared
c
$include: *magrav.cmn’
C

[
(=

if{mode.eq.l.and.zmax.1t.0) then
write(*,*)’Profile length = ’,xlen(itype),’ km.’
write(*,’(a\)’)’ Enter depth of cross-section plot(km): °’
call sound(20,200)
read(*,X,err=10) zmax

zupl = 0.0
- zlpl = zmax
endif
call inidis (2,iclr)
ist’' = ibod
iend = ibod
if{ibod.eq.0) then
ist = 1
iend = maxbod
endif

do 100 kbod = ist , iend
if(npts(kbod).eq.0) go to 100

67

110
100

c

call movabs (x{1l,kbod),z(1l,kbod))
call polyfa(x(l,kbod),z(1l,kbod),npts(kbod),kbod)
do 110 ipt = 1 , npts(kbod)
call setcol(255)
call ptabs{(x(ipt,kbod),z{(ipt,kbod))
continue
continue

return
end

C KKK KOKR K K KK KK kK KOk Kk K Ok kKK K K K 3k 3k Kok ok K ok Kok Kok sk kKKK Rk K koK ok ok kR koK ok Rk X X

[ag

c

c

SUBROUTINE PLANOM (JBOD, ICLR)

¢ Purpose : To plot the calculated anomaly for body "ibod"

¢ parameters : jbod - body number to be plotted("0" for all)

C
C
C

iclr - colour to clear background to(0-255)
"-1" if window is not to be cleared

$include: *magrav.cmn’

C

o}

if (kalk.eq.l) call calcan
ibod = jbod

if {(jbod.eq.0) ibod = maxcal
call inidis (1,iclr)

¢ plot zero line

C

C

if (idiff.gt.0) then

dum = difmax(itype) * difmin(itype)
else

dum = anomax(itype) * anomin(itwype)
endif

if(dum.1t.0) then
call setcol (127)
call movabs (x1lpl,0)
call 1lnabs (xupl,0)
endif

¢ plot calculated anomaly

c

100

dmin 999999.

dmax = -999999.

do 100 ipt=1 , nfield(itype)

if(idiff.gt.0) then
w({ipt)=calc(ibod,ipt)—-obs(itype,ipt)-offset(itype)

it

dmin = aminl(dmin,w(ipt))

dmax = amaxl(dmax,w(ipt))
else

w(ipt) = calc(ibod,ipt)
endif

continue

68

if(idiff.eq.1) then
ddif = (dmax-dmin)*0.10
difmin(itype) dmin - ddif
difmax(itype) dmax + ddif
call inidis (1,-1)
call setcol (13)

else
call setcol(ibod)

endif ¢

call movabs (xpos(1l,itype),w(l))

call polyla (xpos{(l,itype),w(l),nfield(itype))
return

end

C© KKk Kk 3k K 3k K ok ok 3k 3k 3k K ok ok sk koK ok 5k 3k 3k ok 3k ok %k 3k Kk sk 3k K ok ok K 3K Kk k ok Kk KKKk Kok Kok Kk koo

SUBROUTINE INIDIS (IWIN,ICLR)

¢
¢ Purpose : To set the current viewport and world coordinates
c
¢ Parameters: iwin - "1" for anom./obse. window
c "2" for body window
c ‘iclr = "-1" don’t clear window
¢ "0-255" set window to specified colour
c
$include: ’magrav.cmn’
c
¢ Set anomaly/observed window
c
if (iwin.eq.1) then
call setvie (0.0, 0.0, 1.0, .400, -1, iclr)
C .
if (idiff.gt.0) then
plmin = difmin(itype)
plmax = difmax(itype)
else
plmin = anomin(itype)
plmax = anomax(itype)
endif
c
call setwor(xlpl,plmin,xupl,plmax)
endif
c
¢ Set body window
c
if (iwin.eq.2) then
call setvie (0.0, .400, 1.0, 1.0, -1, iclr)
¢

call setwor (xlpl,zlpl,xupl,zupl)
xdis = (xupl-x1pl)/125.0

zdis = (zlpl-zupl)/70.0

x1 = xlpl + xdis

zl = zlpl - zdis

69

x2 = x1 + xdis

z2 = z1 - zdis

call setcol (254)

call box (xl1,z1,x2,22)

endif
return
end
c
C KKK KK Kk Kk ok KKk ok 3k K K K K KK KKk ok K sk koK ok ok sk kK ok ok sk kok Kk ok kR kKK kk k ok ok kkckkkkkkk
SUBROUTINE CURPOS (IRL)
c
¢ Purpose : Plots cursor on screen and returns world
c coordinates of the cursor when the button is pushed
c
¢ parameters : irl - set to "1" for rubberband line
c
$include: *magrav.cmn’
C

dx = (xupl-xl1lpl)/10000.0

dz = (zupl-zlpl)/7000.0

cursx = dx x 100.0

cursz = dz *x (-150.0)

call inithe (cursz,cursx,255)

10 call digit
if(jz.gt.3000.and. jz.1t.10000) then
xc = Jxxdx + x1lpl
zc = (jz-3000)xdz + zlpl
if(irl.eq.1l) then
call setcol (128)
call rlnabs (xc,zc)
else
call movhca (xc,zc)
endif
if (jf.ne.4) go to 10
call sound (10,70)
return
else
go to 10
endif
end
c
© KKK KK K KK kK K K K K Sk K 3k K 3k ok oK K K K 3k K K 3K K 3k 3 ok K K 3K 3Kk ok 3K 3k 3K K oK sk ok oK K K K kK K KK K KOk Kk X
SUBROUTINE DIGIT -

c .

¢ purpose : To call assembly language subroutine "digpos"

c to read the digitizer cursor position and button204i
c status from the serial port.

c

c

$include: ’magrav.cnn’

call readlo (jx,Jjz,Jjf)
if(jf.gt.127) jf = jf-128
Jjz = 10000-jz

70

return
end

% 3K K %k % X 3K K X 3k X K Ok kK K 3k K ok %k ok 3k Kk 3k 3K ok 3k 3k 3k ok 2k K Sk ok ok ok ok ok ok 3k ok ok ok KOk ok Kok ok ok ok Kok kKoK Ok ok

00

SUBROUTINE GRAP

Purpose : To interpret digitizer pad commands and branch to
the desired action 4

include: ’magrav.cmn’

0OHO0O0O00

character*30 pdriv,ans

xpos(l,itype)
xpos(nfield(itype),itype)
zmax
0
1

av

xlpl
xupl
zlpl
zupl
mode
call

L/ 2 T T I T I { I T

call setloc (1,1)

call inqgerr(ifun,kerr)

if(kerr.ne.0) then
write(*,%)’ERROR, digitizer not initialized’
write(*,%)’ run "init.bat"” before MAGRAVZ2.'’
call sound(15,6000)
return

endif

call setlat (4)

go to 31000
5 call sav
10 call sound(10,1000)
write(x,’(/a/)’)’ Select option on digitizer pad ...’
20 call digit
if(jf.ne.4) go to 20
call sound (10,70)
izcom = jz/1000 + 1
ixcom = jx/1000 + 1
if(izcom.gt.3) go to 90000
if(ixcom.gt.10) go to 90000

c
go to (10000,20000,30000) izcom
C »
¢ bottom row of commands
c

10000 go to(10100,10200,10300,10400,10500,10600,10700,10800,
+10900,11000) ixcom
¢
¢ Type body
C —————————
10100 write(*,’(/a)’)’ Select point in body to type.’
call idbody(ibod,npt)

71

if(ibod.gt.0)call typbod{(ibod)

go to 10
c
¢ Type parameters
6 m—m———m————— e
10200 call typar
go to 10
c
¢ Type observed
6 mmme
10300 call typobs
go to 10
c
¢ Type anomaly
€ ~——mmm
10400 write(*,’(/a)’)’ Enter body whose anomaly is to be printed’
write(*,’(a\)’)’> ("0" for combined anomaly) : °
read{(*, *x,err=99000) ibod
if(ibod.ne.0) then
if(npts(ibod).eq.0) then
write(X, %)’ ERROR,body’,ibod,’ NOT defined’
call sound(15,6000)
go to 10
endif
endif
call typano(ibod)
go to 10
c

¢ Set mode to magnetics

10500 if(itype.ne.2) then
call rean
itype = 2
kalk = 1
write(x,%)’You are now in MAGNETICS mode.’
go to 31000
else
write(*,%)’You are already in MAGNETICS mode.’
call sound(15,6000)

go to 10
endif
c
¢ Set mode to gravity
C ——mmm e

10600 if(itype.ne.l) then

call rean
itype = 1
kalk = 1
write(*,*)’You are now in GRAVITY mode.’
go to 31000

else
write(*,%x)’You are already in GRAVITY mode.’
call sound(15,6000)
go to 10

endif

72

c
¢ Diff plot on/off

10700 idiff = -idiff
if(idiff.gt.0) then
write(*,%x)’Difference mode now ON.’
call planom (0,0)
else
write(*,%)’Difference mode now OFF.’
call planom (0,0)

call plobs
endif
go to 10

c
¢ Recalculate offset and plot observed
L e

10800 write(*,%)’01ld offset = ’,offset(itype)
sum = 0
do 10810 ipt=1, nfield(itype)
sum = sum + calc(maxcal,ipt) - obs(itype,ipt)

10810 continue
offset(itype) = sum/nfield(itype)
write(*,%)’New offset = ’,offset(itype)
if(idiff.1t.0) then

call plobs
else
call planom (0,-1)
endif
go to 10
c
c Set Zoom
C —mm————

10800 if (mode.eq.2) then

write(%,*)’You must be in draw mode to "SET ZOOM"™’
write(%,*x)’ Call option "DRAW™’
call sound(15,6000)
go to 10

endif

call inidis(2,-1)

write(%,%x)’Enter L.L. zoom corner, then U.R.’

call curpos(0)

call delay(10)

call delhcu

xll = xc

zll = zc

dx = (xupl-x1pl)/10000.0

dz = (zupl-z1lpl)/7000.0

dz5 = -50 % dz

10910 call digit

if(jz.gt.3000.and. jz.1t.10000) then
xur = Jjx*dx + xlpl
zur = (jz-3000)%dz + zlpl
if(xur.le.xll.or.zur.ge.zll) go to 10910
if{xur.gt.xupl) xur=xupl
call setcol(128)

73

if(zur.1lt.dz5) zur = zupl
call rbox(xll,zll,xur,zur)
if (jf.ne.4) then

go to 10810

else
call sound (10,70)
skxmin = x1l1
skxmax = xur
skzmin = zur
skzmax = z11l

call delbox
go to 20300

endif
else
go to 10810
endif
c
¢ Manual scale set
C
11000 call mscale
mode = 1
go to 20900
c

c Middle row of commands

c

20000 goto(20100,20200,20300,20400,20500,20600,20700,20800,20900,
+21000) ixcom

c

c Delete body

20100 write(k,*)’ Select a point in the body to delete’
call idbody (ibod,npt)
if(ibod.gt.0) then
npts(iboed) = 0
kalk = 1
nbods = nbods - 1
write(*,x)’Body’,ibod,’ deleted’
call plbod (0,127)
call planom(0,-1)

go to 5
else
go to 10
endif
c
¢ Plot selected anomaly
e

20200 write(x,%)’Select a unique point in the body whose anomaly’
write(%,*)’ vyou wish to see’
call idbody (ibod,npt)
if(ibod.gt.0) call planom{(ibod,-1)
go to 10 .
c
20300 go to 90000
c

¢ Delete point

74

20410

C

call idbody(ibod,npt)
if(ibod.1t.0) then
write(%, %) WARNING,no body points deleted.’
go to 10
endif
call delete (ibod,npt,iret)
if(iret.eq.-1) then
call plbod(ibod,-1)
kount = kount + 1
write(%*,%)’Point’,npt,’ deleted from body’,ibod
if(npts{ibod).1t.3) then
write(*,%)*Body’,ibod,’ deleted(less than 3 points)’
npts{(ibod) = 0
endif
go to 5
else
write(*%,x%x)’Point found in body’,ibod,’® NOT deleted.’
go to 10
endif

¢ Insert point

20500

20510
20511

20520
20522

20530

20540

write(*,%*)’Select point on one side of new point,’
write(*,%)’ then select the new point position,’
write(%,%)’ then select the other adjacent point.’
call idbody(ibod,npt)

if(ibod.1t.0) go to 10

xone = XcC

zone = zcC

call sound(10,1000)

call curpos (0)

call delay(1l0)

Xnew = Xc

znew = zcC

call idbody(ibod,npt)

if(ibod.1t.0) go to 10

xtwo = xc

ztwo = zc

call check(l,xnew,znew, idupbd, iduppt,iret)

call delhcu

nchang = 0
kount = 0

numb = 0

numb = numb + 1

call check(numb,xone,zone,ibod,npt,iret)
if (iret) 20560,20520,20560

num2 = 0

num2 = num2 + 1

call check(num2,xtwo,ztwo,ibod2,npt2,iret)
if (iret) 20511,20540,20511
if(npt2.ne.(npt + 1)) go to 20522

if (ibod.ne.ibod?2) then

write(%*,%)’ERROR,2 points entered from different bodies’

75

20560

c

call sound(15,6000)
goe to 10
endif

call insert(xnew,znew,ibod,npt,iret)
if (iret.eq.-1) then

call setcol(255)

call plbod (ibod,-1)

write(*,%)’Point inserted in body’,ibod

nchang = nchang + 1
else
write{(%,*)’Point not inserted’
call sound{(15,6000)
endif
if(kount.eq.0) then
kount 1
saver Xxone
xone = xtwo
Xtwo = saver
saver = zone
zone = ztwo
ztwo = saver
go to 20510
endif
if{nchang.eq.0) then
write(%,x)’ERROR, point not inserted’
call sound{(15,6000)
go to 10
endif
go to 5

¢ Print screen

[

call setprn (pdriv)

call
call
call
go to

000

chkerr
gprint
chkerr
10

c
20700 go to 90000
c

c Optimize contrast and calculate and plot anomaly

& m o
20800 call ampl

go to 10
c
c Sketch mode (draw area specified by zoom coordinated)
Cmmmmm— e
20900 if(mode.ne.2) then

if(skxmin.eq.skxmax) then

write(x,’(/a/)’)’ Zoom not specified,

go to 10
endif

mode = 2

76

¢call option

HZOOM" 3

xlpl = skxmin

xupl = skxmax

zlpl = skzmax

zupl = skzmin

call planom (0,0)
call plobs

call plbod (0,127)

else

write(x,’(/a/)’)’ You are already in "SKETCH" mode’
call sound(15,6000)

endif
go to 10
C
¢ Auto scaling
€ ———m——mmmm e

21000 call ascale
call planom (0,0)
‘if(idiff.1t.0) call plobs
go to 10

(e}

¢ top row of commands

c

30000 goto(30100,30200,30300,30400,30500,30600,30700,30800,30900,
+31000) ixcom

c

¢ Enter body

30100 call inidis(2,-1)
call setcol (255)
do 30105 ibod = 1 , maxbod
if(npts(ibod).eq.0) go to 30108
30105 continue
write(%,*)’ERROR,the maximum number of bodies already’

write(x, %)’ exists (10), delete a body to continue.’
call sound(15,6000)
go to 10

30108 write(*,%*)’Enter body points, in clockwise order,’
write(*,%)’ closing the body to finish.’

irl = 0

c

30110 call curpos (irl)
numb = 1

call delay(10)
30120 call check(numb,xc,zc,idupbd, iduppt,iret)
if (iret.eq.0.and.npts(ibod).gt.1l) then
if(idupbd.eq.ibod.and.iduppt.eq.1l) go to 30180

numb = numb + 1
go to 30120
endif
irl =1

if (npts(ibod).ge.maxnpt) then
write(*,%x)’Max. no. of points entered, body closed.’
call sound(15,6000) ’
go to 30180

77

endif
npts(ibod) = npts{ibod) + 1
if(npts(ibod).eq.l) then
call movabs(xc, zc)
call delhcu
else
call delln
call setcol (255)
call lnabs (xc,zc)
endif
x{npts(ibod), ibod)
z{npts(ibod),ibod)
go to 30110

XcC
A

c

30180 npts(ibod) = npts{ibod) + 1
call delln
call setcaol (255)
call lnabs(xc,zc)
x(npts(ibod), ibod) =
z(npts(ibod), ibod) =
call plbod (ibod,-1)
nbods = nbods + 1
write(*,%*)’Body’,ibod,’ created with’,npts(ibod),’ points.’
write(*,%)’Call option "EPAR" to define contrast for body’

x(1l,ibod)
z(1l,ibod)

kalk = 1
ianom(ibod) = 0
go to 5

c

¢ Move body

C mm——m—————

30200 write(Xx,*)’Select a point in the body to be moved and °’
write(*,%)’ move it to its new location.’
call idbody(ibod,npt)
xold = xc¢
zold = zc
call movabs (xold,zold)
call curpos (1)
call delln
call check{(l,xc,zc,ibod2,npt2,iret)

dx = xo0ld - xc

dz = zold - zc

do 30250 ipt = 1 , npts(ibod)
x(ipt,ibod) = x(ipt,ibod) - dx
z(ipt,ibod) = z(ipt,ibod) - dz

30250 continue
call plbod (0,127)

ianom(ibod) = 0
kalk = 1
go to 5
c
¢ Change parameters
C mm e
30300 write(*,'(/a)’)’ Select a point in the body whose parameters’
write(x, %)’ are to be changed’

call idbody (ibod,npt)

78

if(ibod.gt.0) then
call param (ibod)
go to 5

else
go to 10

endif
C
¢ Automatic point movement
@
30400 write(%,%)’Select point to be moved automatically’
call idbody(ibod,npt)
if(ibod.gt.0) then
write(*,%)’ Processing
call amove(xc,zc,0.0,0.0,2)
go to 5

else
go to 10

endif

c
¢ Manual point movement

30500 write(*,%)’Select point to be moved, then new position.’
call idbody(ibod,npt)
if(ibod.gt.0) then
call movabs(xc,zc)
call curpos(1l)
call check(l,xc,zc,ibod2,npt2,iret)
x{npt,ibod) = xc
z{npt,ibod) = ze¢
if(npt.eq.1) then
x(npts{ibod), ibod)
z{npts{(ibod),ibod)
endif
call delln
call plbod(ibod,-1)
kalk = 1
ianom(ibod) = 0
go to 5
else
go to 10
endif

XcC
zZC

c
¢ Recover

30600 call reco
go to 31000
c
¢ Return to text mode

20700 return
c
¢ Calculate anomaly with existing contrast and plot

go to 10

79

c
¢ Draw mode (full view)

C mmmmm— e —————————
30900 if(mode.ne.l) then
mode = 1
xlpl = xpos(l,itype)
xupl = xpos{nfield(itype),itype)
zlpl = zmax
zupl = 0
call planom (0,0)
call plobs
call plbod (0,127)
else
write(*,’(/a/)’)’ You are in already in "DRAW" mode’
call sound(15,6000)
endif
go to 10
c

¢ Redraw entire display

C —————————————————————

31000 call planom(0,0)
if(idiff.1t.0) call plobs
call plbod (0,127)

go to 10
c
G e e e e e
c
90000 write(x,%)’Command not recognized , try again ;°’
go to 10
c
99000 write(%,*)’Input ERROR !’
go to 10
c
end
c .
C XK K KK KK 3K K K KK K KOk KK K Kk K KKk KK Kk KKK kKK koK R kK kR Rk Rk Rk kKK kokkkkkkkkXkxk
c
SUBROUTINE CHKERR
c
¢ purpose : To check "halo" error status and print out
c the function producing the error and the error
c type.
c
¢ parameters : ifun - "halo" function where error occurred
c ierr - error type(see "halo” manual)
c
call ingerr (ifun,ierr)
if(ierr.ne.0) then
write(%,%)’ERROR:’,ierr,’, in "Halo" function : ’,ifun
call sound(15,6000)
endif
return
end
c
c

80

C© 0k ok ok ok ok koK Kok 3k kok ok ok ok ok sk ok 3k ok ok ok sk ok ok ok 3k 3K ok ok K K 3k 3k 3k 3k K ok 3k ok 3ok ok ok ok Kok K ok kK ok ok ko ok ok ok
SUBROUTINE DELAY(N)

c
¢ Purpose : to add a delay to the program to eliminate
c duplicate point entry from the graphics pad
c
nl00 = nx%x100
do 10 j =1 , nl0Q
k= j
10 continue
c
return
end
c
C Kk K KK 3 K KK XK KK K K K K 3 K K 3k 3k 3K K oK 3k 3 K 5K oK ok K oK oK K KK 3K ok K K oK 3K K K 3K 3K K K K KK KK K K K KKk K
SUBROUTINE IDBODY (IBOD,NPT)
c
¢ purpose : To allow bodies to be identified using the cursor
¢ on the digitizer pad.
c
¢ parameters : ibod - body number of point selected
c "-1" if point not defined
c npt - point number in body
c
$include:’magrav.cmn’

o

call sound(10,1000)

call inidis(2,-1)

call curpos (0)

call delay(1l0)

call check(l,xc,zc,ibod,npt,iret)

call delhcu

if(iret.eq.-1) then
write(*,*)’ERROR,point not found in any body?®
call sound (15,6000)
ibod = -1

endif

return

end

€ Kokkkokok ok ok ok ok 3K ok 5k K 3K 3k 3k K 3K Sk 3k 3k K ok sk ok ok ok 3k 3K sk ok 3k ok koK 3k sk ok koK ko ok ok sk koK 3Kk KOk KKK KOk kKoK
SUBROUTINE MSCALE

c

¢ purpose : To allow manual setting of plot scaling parameters
c

$include: ’magrav.cmn’

c

write(*,%)’Current anomaly minimum :’,anomin(itype)
write(*,’(a\)’)’ Enter new anomaly minimum :@ °’

call sound(20,200)

read(*,%,err=400) anomin(itype)

write(%,*)’Current anomaly maximum :’,anomax(itype)
write(x,”{a\)*)’ Enter new anomaly minimum i

call sound(20,200)

read(%,%,err=400) anomax(itype)

81

1000

400

if(anomax(itype).le.anomin(itype)) then

write(*,x)’ERROR,anomaly min. is larger then max.’
write(X ki FERQRygyomaly &

return
endif

write(*,%)’Current .,.,csection depth(km) : ', zlpl

write(*,’(a\)’)’ Enter new SKETCH crossection depth
call sound(20,200)
read(x,%,err=400) skzmax .
write(x,’(a\)’)’ Modify the X SKETCH limits (y/n)
call sound(20,200)
read(*,’{(a)’,err=400) ans
if(ans.eq.’y’.or.ans.eq.’Y’) then
write(%,1000) skxmin,skxmax
format(lh ,’Current X min and max ',2f9.2)
write(*,’(a\)’)’ Enter new SKETCH X min. : °’
call sound(20,200)
read(*,*,err=400) skxmin
write(*,’{(a\)’)’ Enter new SKETCH X max. : '’
call sound(20,200)
read(*,%,err=400) skxmax
endif '
return

write(*,%x)’Input ERROR’
call sound(15,6000)
return

end

[

¢ Magrav.cmn - Common block for program MAGRAV2

[
C

Edit

+ + + +

++ + + 4+

ed May 10, 1986 , by J. Broome

characterx10 name, kommnt,ix
integer*2 moddat(1525),modrec(4125)
equivalence (name,moddat(l)), (name,modrec(1l))

common/prog/ iscope,model,iscr,itype,ibr,maxnpt,
maxbod,maxobs,maxcal,irecov(20),nback,ix(20),1lngix,nmod,
idiff,mode,ntypes,xx(11),f(100),e(22),np(4),ib(4),
jf,jx,Jjz,xc,zc,xupl,xlpl,zupl,zlpl,
w(l275)

common/mod/ name,bdip(l0),nfield(2),anomax(2),anomin(2),
kommnt (8),zmax,space(2),xlen(2),kalk,xoffs(2),
xton,dec,dip,zcon(2),x(20,10),2(2010),npts(10),
rmmin(10,2),rhomag(10,2),rmmax(10,2),bdec(10),bdy(10),
obs(2,100),ianom(10),skxmin,skxmax,skzmin,skzmax,
offset(2),nbods,difmin(2),difmax(2),xdis, 2dis,
calec(11,100),xpos(100,2)

83

APPENDIX D

In order to generate an executable "magrav2.exe" file from
the source code provided, you need the following software
products:

1) A Microsoft FORTRAN 77 Compiler (Version 3.20 or higher)

3) The Multi-Halo Graphics subroutine library with
Microsoft FORTRAN support (Version 2.26 or higher)

4) MS-DOS (PC-DOS) operating system.(Version 2.00 or
higher)

The following steps will produce an executable MAGRAV2. The
batch files provided are set up for a hard disc where all files
are in the same directory. '

1) Compile the 5 FORTRAN source files
a) magrav2.for
b) msl.for
c) ms2.for
d) ms3.for
e) msd.for

The FORTRAN source code for magrav2 is divided into 5 files
because the Microsoft compiler is unable to compile all the code
in one run. The batch file "mfcomp.bat" can be used to compile
the source code files. The files "magrav.cmn" and compiler files
"forl.exe" and "pasZ2.exe" must also be on the default drive. To
compile "magrav2.for", enter : ’'mfcomp magrav2 <cr>®
When you have run "mfcomp.bat” on all of the source code files
yvou will have 5 object files

. : a) magravZ2.obj
b) msl.obj
c) ms2.0bj
d) ms3.0bj
e) ms4.obj

2) Link the object files and libraries to produce "magrav2.exe"

The batch file "mlink.bat" provided to link all the files
and libraries together is written for a hard disc drive where all
the files are stored on the same drive. If you do not have a hard
disc, the libraries can be stored on different discs which are
inserted in the drive when requested by the linker program. An
alternative is to edit "mlink.bat" "to indicate the correct
locations of the files.

The following files are used during linking and should all
be in the same directory.

a) magrav2.obj

b) msl.obj

c) ms2.0bj

d) ms3.0bj

e) msd.obj

f) magrav2.lib

g) fortran.lib

h) 8087.1ib (math.lib if no 8087)
i) halodvxx.obj (Halo file)
Jj) halof.lib (Halo file)

k) link.exe

To run the magrav2 linker simply type : ’mlink <cr>’

Alternate linking :

b) If you want the program to run on computers both with and
without 8087 math processor chips, record 4 of "mlink.bat" should
read .

LINK MAGRAV2+HALODVXX+MS1+MS2+MS3+MS4,MAGRAV2,NUL, FORTRAN+
MATH+MAGRAVZ2+HALOF

APPENDIX E

Program modification notes

Changing the program for use with different hardware should
be relatively easy. Most changes will be necessary because
different graphics boards and digitizers are being wused. Halo
supplies device drivers for most popular graphics boards and
digitizers which minimizes the modifications; however, some
changes may be necessary due to the different capabilities of the
equipment. Some of the possible trouble areas are outlined here
but others probably exist that have not been considered.

1) Within subroutine GRINIT, the different colours are
initialized wusing Halo subroutine '"setcpa". The subroutine
parameters are; colour index, red intensity, green intensity, and
blue intensity. "Setcpa" is a board specific Halo function that

is not wused for boards with 1less than 256 simultaneously
displayable colours. A different colour setting subroutine call
may be required here.

The rubberband lines and boxes used for point movement and
setting the 2zoom area depend upon "XOR"ing the lines and boxes
onto the screen so that they can be non-destructively removed(See
explanation in the Halo manual). The background colour for the
body window is set to colour number 127 so that when rubberband
lines are drawn in colour 128 the binary XOR of 127 and 128
results in 255 which is defined as white in GRINIT. This causes
the rubberband lines and boxes to appear in white on the screen.
If a board with different colour setting routines and palette
size 1is used, the correct colour number relationship must be
maintained to ensure that the rubberband function will work
correctly.

2) The software supplied is designed for use with a Houston
Instruments Hipad digitizer. Use of a different digitizer will
probably require redesign of the digitizer control template.
Subroutines DIGIT, CURPOS,and GRAP may require modification to
maintain correct cursor position and program control as well,
Program option control 1is achieved in subroutine GRAP by
calculating variables "izcom" and "ixcom" which are wused in
computed "go to" statements to branch to different program
options, Different digitizers may require different scaling
factors for <calculating "izcom" and "ixcom" form digitizer
coordinates "jx" and "jz".

3 If a mouse 1is to be used for positioning in mode 3 of
operation, subroutine GRAP will need extensive modification to
allow program control. Since mice are not absolute positioning
devices program control must be obtained through the use of pop
up menus,,

4) The program is currently set up for a two monitor system.
If you try to wuse it on a single monitor system, the text

intended to be written on the text monitor will scroll the
graphic display off the screen. The program could be modified for

a single monitor system by making it redraw the graphic display
after every text message.

3+

APPENDIX F

The profile file format

The profile file is an ASCII file formatted as follows

Record (1)
- The number of reading on the profile(integer)

Record (2)
- The profile sample spacing in km {(real)

Record (3) to (number of readings on the profile + 2)
- observed data values, entered 1 per line (real)

All data are free formatted; therefore, readings entered in
integer form will automatically be converted to real.

APPENDIX G

Vertical gradient modelling subroutine MAG for <converting
MAGRAV2 for modelling vertical gradient data. To use add the code
in CAPITALS to subroutine MAG.

€ KK KK K K 3K K K K K K K 5k K K ok 3k K K K 3k 5k 5 3Kk K 3k 3K ok 2K ok ok 3 3k 3k ok sk 3k ok 3k K 5k X 3 3k 3k 3k ok 3k K 2k 3Kk 3k ok 3k ok Kok Xk K X
SUBROUTINE MAG(IBOD)

purpose : To calculate the vertical gradient anomaly for body "ibod"

sources bio computer note 66-1~c april 1966
program mag written for pdp-1l1 by d.heffler;agc,bio 19
cdc3150 fortran program mag2new,agc,bio,197...

¢
¢
c
c
c
c
c
¢ modified for 2.5 dimensional bodies by Franca lindia
¢ using equations published by Shuey and Pasquale(1973)
¢ in the journal "Geophysics".

c

c

c

c

c

$

Modified by John Broome June,1986 to calculate vertical
gradient anomalies(MODIFICATIONS IN CAPITAL LETTERS). The
vertical gradient anomaly is given in gammas/metre.

include: magrav.cmn’

complex zi,zil,zi2,yi,fnl,fn2,fn,yrlc,qpx,qpz,qxsm,qzsm,czero
complex rsum,x2lzi

write(%,%)’Calculating mag. an. for body’,ibod
nf = nfield(itype)

if(rhomag{(ibod,2).eq.0.) return

cdipd = degcos(dip)

sdipd degsin(dip)

sdd = degcos{(xton-dec)

cdip = degcos(bdip(ibod))

sdip = degsin(bdip(ibod))

sd = degcos{xton~bdec(ibod))

cdy = degcos(90.-(xton-bdec(ibod)))
sdt = degsin(xton—-dec)

cdipsd cdip*sd

cdpcedy = cdip*cdy

rhobod = rhomag(ibod,2) x 2.0
y = bdy(ibod) .

vysq = yXxx2

vd = 1.0/ysq

yi = cmplx(0.,yd)

npt = npts(ibod)

czero = cmplx(0.,0.)

¢ check each field point
c - . .
NPASS = 0

c

do 3100 k = 1, nf

C
C ADD 1 METRE TO Z CONSTANT FOR SECOND PASS
3150 NPASS = NPASS + 1

IF(NPASS.EQ.2) ZCON(2) = ZCON(Z) + .001
C

axsm = czero

qzsm = czero

rsum = czero

x1 = x(1,ibod) - xpos(k,itype)
zl = z(1,ibod) + zcon(2)
if(zl.le.0.) goto 9999
rl = sqrt(x1%%2 + z1%*2 + ysq)
zil = cmplx(0.,21)
do 3000 j = 2, npt
X2 = x(j,ibod) - xpos(k,itype)
z2 = z(j,ibod) + zcon(2)
if(z2.1le.0.) goto 9999

¢ 1if 2 points the same check the point after

if(xl.eq.x2.and.zl.eq.2z2) goto 3000
z21 z2 - zl

x21 x2 - x1

zi = emplx(0.,221)

x21zi = x21 + zi

zi2 = cmplx(0.,22)

r2 = sqrt(x2%x2 + z2%%2 + ysq)
fnl = x21zi/(x1+2zil) % (1.0 + rl/y)

+ + yi¥x (x1%z221 - z1xx21)
fn2 = x21zi / (x2+2i2) *x (1.0 + r2/y)
+ + yi*(x2%z21 - z2%x21)
¢ top and bottom of log >0. since "zcon" not = 0

if(fnl.eq.czero) goto 9999
if(fn2.eq.czero) goto 9999
fn = fn2/fnl

yrlc = clog(fn)

gpx = zi/x21lzi % yrlc
gqpz = -x21/x21zi % yrlc
gqxsm = gxsm + gpXx
qzsm = qQzsm + qQpz
rsum = rsum + yrlc
x1 = x2
zl = 22
zil = zi2
rl = r2
3000 continue
qtot = real(qgxsm)
pxtot = aimag(qxsm)
pztot = aimag(qzsm)
rytot = aimag(rsum)

h = cdipsd¥pxtot + sdipkqtot
v = cdipsd*qtot - sdip*pztot

IF

QOO0

3100

9999

10000

write(x, x)

hy = cdpcdy*rytot
calc(ibod,k) = (v¥sdipd + (h*sdd - hy*sdt)*cdipd) * rhobod

NPASS = 1, THEN CALCULATE THE ANOMALY 1 M HIGHER
IF NPASS = 2, THEN CALCULATE THE DIFFERENCE BETWEEN THE TWO

VALUES SEPARATED BY 1 METER FOR THE VERTICAL GRADIENT
IN GAMMAS/METRE

IF(NPASS.EQ.1) THEN
CALTMP = CALC(IBOD,K)
GO TO 3150
ELSE
CALC(IBOD,K) = CALTMP - CALC(IBOD,K)
ZCON (2) = ZCON{(Z2) - 0.001
NPASS = 0
ENDIF

continue

ianom(ibod) = -1

return
error

continue

write(*, %) ’Body :’, ibod, ’ Point :’, k

write(x, %) * Cannot be calculated with present algorithm’

s

write(%, x) Value out of range
Anomaly set to zero’
Use "GRAV" or "MAGN" command’
,> to set a larger Z constant’
do 10000 k = 1, nf

calc{(ibod,k) = 0.0
continue
ianom(ibod) = 0
return
end

write(x, x)

L)

* Energy, Mines and Energie, Mines et
Resources Canada Ressources Canada

