GEOLOGICAL SURVEY OF CANADA OPEN FILE 8030

Seismic Attenuation in the Anahim Volcanic Belt and Adjacent Regions of British Columbia

A.M. Farahbod and J.F. Cassidy

GEOLOGICAL SURVEY OF CANADA OPEN FILE 8030

Seismic Attenuation in the Anahim Volcanic Belt and Adjacent Regions of British Columbia

A.M. Farahbod and J.F. Cassidy

2016

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to:

- exercise due diligence in ensuring the accuracy of the materials reproduced;
- indicate the complete title of the materials reproduced, and the name of the author organization; and
- indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada
(NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at nrcan.copyrightdroitdauteur.rncan@canada.ca.
doi:10.4095/298894
This publication is available for free download through GEOSCAN (http://geoscan.nrcan.gc.ca/).

Recommended citation

Farahbod, A.M. and Cassidy, J.F., 2016. Seismic Attenuation in the Anahim Volcanic Belt and Adjacent Regions of British Columbia; Geological Survey of Canada, Open File 8030, 50 p. doi:10.4095/298894

Table of Contents

Abstract 4
Introduction 5
Geology and Tectonic Setting 8
Seismicity 9
Data 9
The Coda Q Method and Data Selection 10
Coda Q for earthquakes in the Interior of BC 13
Summary and Conclusions 21
Acknowledgements 22
References 22
Appendix 1 - Earthquake Source Locations 24
Appendix 2 - Frequency-Magnitude of selected earthquakes per station 34
Appendix 3 - Maps of earthquakes within 100 km of each seismic station 35
Appendix 4 - Coda Q estimates and Frequency Dependence at different seismographic stations 47

Abstract

In this study we investigated coda-wave attenuation $\left(\mathrm{Q}_{\mathrm{c}}\right)$ in the interior of British Columbia, with a focus on the Anahim Volcanic Belt (AVB) and specifically the Nazko Cone region using the single scattering approximation on records from short period and broadband stations of the regional Canadian National Seismic Network (CNSN) and POLARIS Network. Our dataset is comprised of 380 earthquakes recorded between 1999 and 2012 with magnitudes ranging from 1.6 to 3.9, depths from 0 to 36 km and epicentral distances of 15 to 100 km . This gives a total of 423 high signal to noise $(\mathrm{S} / \mathrm{N})$ traces ($\mathrm{S} / \mathrm{N} \geq 5.0$) useful for Q_{c} calculation (with a range of ellipse parameter, a_{2}, of 30 to 110) across the region. Coda windows were selected to start at $t_{c}=2 t_{S}$ (two times the travel time of the direct S wave), and were filtered at center frequencies of $2,4,8,12$ and 16 Hz . Although the dataset is relatively small, with substantial uncertainties, a consistent pattern emerges. We find that in the interior of BC , the lowest Q_{0} values (e.g., Q_{0} of 39) are in the vicinity of Nazko Cone, near the 2007 earthquake swarm. This sequence of more than 1000 earthquakes occurred at depths of $25-31 \mathrm{~km}$ and was interpreted as a magma injection at the base of the crust. Further, we find that all stations within the AVB show lower Q_{0} values compared to other stations in the BC interior. Averaging all data in the AVB with a_{2} of $30-50 \mathrm{~km}$ (UBRB, MCMB1, SULB, THMB) yields a low average Q_{0} of 53 , compared to an average Q_{0} of 67 at other stations in the BC interior, and an average Q_{0} of 70 for stations in the Cascadia subduction zone. Our results showing low Q_{0} throughout the AVB (and the lowest Q_{0} at Nazko Cone) provides additional support for the interpretation of magma injection into the lower crust during the Nazko earthquake sequence, fracturing of the crust, and high seismic attenuation.

Introduction

The central interior of British Columbia is a seismically quiescent area of the province. In more than 40 years of earthquake monitoring, few earthquakes have been detected or located in the vicinity of the Nechako basin [Cassidy et al., 2001]. As a result, seismic attenuation has never been studied in detail in the interior of British Columbia. However, a dense temporary POLARIS seismic array was operated in this region from 2006-2009 to map crustal structure (Cassidy et al., 2010), and in 2007 an earthquake swarm of more than 1000 events occurred near Nazko Cone in the AVB (Cassidy et al., 2011) (Figure 1).

This swarm represents the first significant recorded seismicity in the region. Most of the located events are microearthquakes $\left(\mathrm{M}_{\mathrm{L}}<2.5\right)$ and the largest had a magnitude of 3.9. In this study we use these new recordings from both permanent Canadian National Seismograph Network (CNSN) and temporary POLARIS seismic stations to evaluate, for the first time, coda Q attenuation through the interior of BC, including the AVB, and the southern Coast Mountains. We use the single scattering method (Sato, 1977) and determine the attenuation and frequency dependency for different travel paths in the study area. This study is complementary to similar studies in the more seismically active southwest corner of British Columbia (Farahbod et al., 2016; Zelt et al., 1999). We compare our results from the interior of British Columbia - focusing on the AVB and Nechako Basin, but extending from Whistler and Lillooet in the south to Fort St. James in the north (Figure 2) - with the coastal region, and discuss the implications of our new seismic attenuation results.

Figure 1: Map of the study area including the Anahim volcanic belt (AVB) which lies within the ellipse. The 2007 Nazko earthquake swarm is indicated by the orange circles, the 1942 earthquake swarm near Bella Coola is indicated by the yellow star. Seismographic stations which used in this study are indicated by the green triangles. The ages of volcanic centers of the Rainbow, Ilgachuz, and Itcha decrease from about 13 Ma for the Dike Swarms at the western end of the belt to 8 Ma for the Rainbow range, 5 Ma for the Ilgachuz range, 2.5 Ma for the Itcha range, and $0.01-0.34 \mathrm{Ma}$ for the Nazko cone.

Figure 2: Map showing distribution of events (orange circles) and stations (stars) used in this study. All waveform data were collected from the Canadian National Seismic Network (CNSN) and POLARIS network. Note that the only permanent CNSN stations in this map area are FSB, LLLB, and WSLR.

Geology and tectonic setting

Our study area of south-central British Columbia focuses on the Nechako Basin region of the AVB, but also includes a region extending from near Whistler (WSLR) and Lillooet (LLLB) in the south to Fort St. James (FSB) in the north (Figure 2).

The AVB comprises a broad, east-northeasterly trending zone of alkaline to peralkaline intrusive and extrusive rocks that extends across the Coast Mountains and Interior Plateau (Figure 1). The western part of the belt is defined by dike swarms and subvolcanic plutons that are exposed in the vicinity of Bella Bella on the central British Columbia coast (Souther 1986). Three composite shield and dome complexes, the Rainbow, Ilgachuz, and Itcha ranges, form the central part of the belt (Souther and Clague 1987; Kuehn, 2014). The gently sloping flanks of these shield volcanoes merge with flat-lying basalt flows of the Chilcotin Group (Souther and Clague 1987). Nazko cone (Figure 1), located about 75 km west of Quesnel in central British Columbia, is believed to be the youngest and most easterly eruptive centre in the AVB (Figure 1).

Chilcotin basalts issued from numerous vents along a northwest-trending axis and are thought to be products of Late Miocene and Pliocene back-arc volcanism associated with subduction of the Juan de Fuca plate (Bevier 1983a, 1983b). The AVB has been interpreted as the trace of a hotspot (Bevier et al. 1979), a model consistent with an observed decrease in the age of volcanism from 10-14 Ma in the west to about 4 Ma in the Itcha Range, the most easterly of the shield complexes (Souther 1986). Nazko cone is 80 km east-northeast of the Itcha Range, along the projected trend of the AVB. It is near the eastern margin of the area underlain by Chilcotin Group basalt, but its location and postglacial age suggest a closer affiliation with the AVB than with any other known Neogene or Quaternary tectonic feature (Souther and Clague 1987).

The southwest portion of the Coast Belt examined in this study consists mainly of granitic rocks of late Middle Jurassic to mid-Cretaceous age (Monger and Journeay, 1994). The Intermontane Belt is a region of complex geology comprising volcanic, sedimentary, and granitic rocks ranging in age from Paleozoic to early Cenozoic age (Monger and Price, 2002).

Seismicity

The Nechako basin area, the focus of this study, is one of the most seismically quiescent areas of British Columbia. Very few earthquakes have occurred here since 1965 when local monitoring began with a seismic station at Fort St. James ($\sim 180 \mathrm{~km}$ to the north of Nazko). Given the seismic station distribution (Milne et al., 1978), the magnitude completeness for this general area varies from about M 3 in 1970 to about M 1-2 in 2009 during the operating period of the POLARIS temporary seismic array (Cassidy et al., 2011). Seismicity in the area is generally concentrated within the Coast Mountains (from just north of Vancouver and extending to the northwest - as shown in Figure 2) and in the vicinity of the Rocky Mountains, to the east. Within the AVB, a previous earthquake swarm occurred near Bella Coola (about 200 km to the west of the Nazko sequence). This swarm (Figure 1) consisted of more than 40 felt earthquakes that occurred near Bella Coola between September 1940 and August 1943 (Milne, 1956).

Data

Digital records of local earthquakes were collected from the interior British Columbia (with a focus on the AVB and the site of the 2007-2008 Nazko events) from the Geological Survey of Canada (GSC). Three hundred and eighty earthquakes were selected from the Canadian catalogue for this study (Figure 2). They were all recorded between November 1999 and December 2011 by at least three seismic stations, had their epicenters located in the interior British Columbia region ($\sim 49^{\circ}-55^{\circ} \mathrm{N}$, $\sim 120.5^{\circ}-126.5^{\circ} \mathrm{W}$), epicentral distances between $\sim 15 \mathrm{~km}$ and $\sim 100 \mathrm{~km}$, local magnitudes $\left(\mathrm{M}_{\mathrm{L}}\right)$ ranging from 1.6 to 3.9 and focal depths reaching up to 36 km (Appendix 1). All records were from vertical short period and broadband seismometers and sampled at the rate of either 100 or 40 samples per second. We utilized data from 10 POLARIS seismic stations in the Nechako Basin (ALRB, CLSB, FLLB, FPLB, MCMB1, RAMB, SULB, TALB, THMB and UBRB - see Cassidy et al., 2010) and three CNSN stations in the neighboring regions (FSB, LLLB and WSLR). Frequency-magnitude distribution of selected earthquakes for each station is provided in Appendix 2. Maps of event-station configurations are provided for (a) reported and (b) selected earthquakes in a radius of 100 km around each seismic station (Appendix 3, Figures A3-12). In one case (FLLB) there were no located earthquakes near the station (Figure A3-4a).

The coda Q method and data selection

In this study, we determine the Q factor for the interior of British Columbia using the single backscattering method, which explains the decay of earthquake coda under the assumption of weak isotropic scattering from homogeneously distributed heterogeneities [Aki, 1969; Aki and Chouet, 1975; Sato 1977]. The coda waves are assumed to comprise S-to-S backscattered waves, which do not produce secondary scattering when encountering another scatterer and the measured coda $\mathrm{Q},\left(\mathrm{Q}_{\mathrm{C}}\right)$ depends on both intrinsic and scattering attenuation [Aki and Chouet, 1975; Wu and Aki, 1988]. The coda wave amplitude at frequency f, and lapse time t (time from the event origin) is described by

$$
\begin{equation*}
A(f, t)=S(f) t^{-v} e^{-\pi t / Q c} \tag{1}
\end{equation*}
$$

where $S(f)$ is the source factor which is related to the earthquake's source spectrum and includes station site, backscattering, and source effects [Wu and Aki, 1988]. The geometrical spreading parameter v is $1,0.5$ and 0.75 for body-wave scattering (this study), surface wave scattering, and diffusion, respectively [Aki and Chouet, 1975]. Equation (1) assumes that the source and receiver are at the same point, a good approximation only for signals at a lapse time, t, greater than 2 times the travel time of the direct S wave, t_{S} [Rautian and Khalturin, 1978; Sato, 1977]. Equation (1) for bodywave can be written as

$$
\begin{equation*}
\ln (\mathrm{A}(\mathrm{f}, \mathrm{t}) \mathrm{t})=\ln (\mathrm{S}(\mathrm{f}))-\pi \mathrm{ft} / \mathrm{Q}_{\mathrm{C}} \tag{2}
\end{equation*}
$$

so that, Q_{C} can be obtained by linear regression of $\ln (\mathrm{A}(\mathrm{f}, \mathrm{t}) \mathrm{t})$ on t over a coda time window at a constant frequency f. In practice, $A(f, t)$ is obtained by bandpass-filtering the coda signal over a narrow passband centered on frequency f and fitting a time decay envelope to the filtered signal [Rautian and Khalturin, 1978]. When many decay curves are available for the same region, all data can be inverted simultaneously to obtain one Q value [Aki and Chouet, 1975; Havskov et al., 1989]. Obtaining one Q value for each decay curve and averaging Q^{-1} values gives the same result [Kwamme, 1985]. This latter method has the additional advantages of faster computation and the ability to check the fit to equation (2) to eliminate bad results [Havskov et al., 1989].

Assuming that the coda window starts at $t_{1}=2 t_{s}$, the end time t_{2} controls the maximum size of the volume sampled by the backscattered waves [Zelt et al., 1999]. The sampling volume is one-half of a three-dimensional ellipsoid, with the source and receiver as focal points, semimajor axis $\mathrm{a}_{1}=\mathrm{vst}_{\mathrm{s}} / 2$ and semiminor axis $a_{2}=\left(a_{1}{ }^{2}-R^{2} / 4\right)^{1 / 2}$, where v_{S} is the average S-wave velocity $(3.5 \mathrm{~km} / \mathrm{sec})$ and R is the station-event separation [Pauli, 1984]. For similar a_{1} and a_{2}, the sampled volume is nearly a sphere and the maximum depth sampled is approximately given by $\mathrm{z}_{\max }=\mathrm{a}_{2}+\mathrm{d} / 2$, where d is the event depth [Havskov et al., 1989; Zelt et al., 1999].

Practically, to make meaningful comparisons of Q_{C} from different regions, it is important to make estimates of the volumes sampled by different stations. The average sampling volume can be determined by setting $t=\left(t_{1}+t_{2}\right) / 2$ in the equation for a_{1} [Havskov et al., 1989]. Therefore, by varying t_{2}, it is possible to ensure that the volumes being sampled by each event-station combination are approximately the same [Zelt et al., 1999].

For calculating coda Q , we used waveform data from 13 short period and broadband vertical component seismograph stations of the Geological Survey of Canada and the POLARIS network (Figure 2) with flat frequency responses from 1 to 16 Hz .

For each event-station combination, we picked P-wave and S-wave arrivals (e.g., Figure 3) and relocated earthquakes considering a velocity model used for standard earthquake locations in this region. Then we calculated Q_{C} at five frequencies between 2 and 16 Hz using equation (2). The frequency dependence of Q_{C} can be expressed as $\mathrm{Q}_{\mathrm{C}}=\mathrm{Q}_{0} \mathrm{f}^{\alpha}$ [Rautian and Khalturin, 1978]; $\mathrm{Q}_{0}\left(\mathrm{Q}_{\mathrm{C}}\right.$ at 1 $\mathrm{Hz})$ and α are obtained by linear regression of $\log \left(\mathrm{Q}_{\mathrm{C}}\right)$ on $\log (\mathrm{f})$. For each station, Q_{C} is determined by averaging the calculated values from all events (see Appendix 4).

THMB 2007/10/10 17:50:42 H=22 Mw=3.9 TP=7.8 TC=27.7 WIN=15.0 ST=2.0

Figure 3: Data processing example for an earthquake recorded on October 10, 2007 in Nazko region. The first step is a visual inspection of available waveforms (top-left) and the selection of the closest stations to the event with the highest S / N ratio (top-right). In the bottom panel, the top trace is the original unfiltered waveform where the 3 vertical lines indicate (from left) origin time, start and end of coda window. Above the seismogram is first the station code, origin time, depth(h), magnitude (ML), P-wave travel time (TP, sec), start of coda window from the origin (TC, sec), window length (WIN, sec) and start of coda window in terms of S-wave travel time (t coda>ST*S- travel time). The amplitude decay corresponding to estimation parameters (f: frequency, C: correlation coefficient and S / N : signal to noise ratio) is shown by the yellow curve in the five filtered segment.

In general, Q increases with lapse time which likely is a result of including a greater volume of less complex upper mantle material in the sampling volume [Pauli, 1984; Zelt et al., 1999]. Therefore, in order to reduce sampling size and to ensure that approximately equivalent volumes are sampled at each station used to calculate Q , we fixed a_{2} and average of maximum lapse time to specific values. These values are selected based on the location distribution of earthquakes around the stations.

In total, the dataset comprises 380 earthquakes recorded between 1999 and 2012 with magnitudes ranging from 1.6 to 3.9 , depths from 0 to 36 km and distances from the seismograph station of 15 to 100 km . This gives a total of 423 high signal to noise traces ($\mathrm{S} / \mathrm{N} \geq 5.0$) useful for Q_{C} calculation; however the number of traces actually used for analysis depends on sampling size. The coda window length used in this study is 15 sec except for epicentral distances less than 30 km which is 10 sec .

We used the computer program SEISAN [Havskov and Ottemöller, 2008] to calculate coda Q. The program calculates Q for a series of events and stations at five frequencies ($2,4,8,12$ and 16 Hz). On completion, the average values are calculated and a Q versus f curve is fit to the calculated values [Havskov and Ottemöller, 2008]. The program also plots the individual events and filtered coda windows (e.g., Figure 3).

Coda \mathbf{Q} for earthquakes in the interior of $\mathbf{B C}$

In order to make a regional comparison of Q over the study area, it is necessary to use the shortest possible event-station paths. This, rules out simply selecting all the data with the highest signal-tonoise ratio. In this study, we calculated coda Q at different stations by using different sets of ellipse parameter $\mathrm{a}_{2}(30-110 \mathrm{~km})$ and lapse time (17-70 sec) with maximum sampling depth between 44 km and 120 km . An average of all data in the Nazko region with a_{2} between 30 km and 50 km gives a relationship of $\mathrm{Q}_{\mathrm{C}}=61 \mathrm{f}^{0.99}$ for frequencies in the 2- to $16-\mathrm{Hz}$ range (Figure 4).

Figure 4: Q_{0} and α values for all calculated Q values (top) and \log-log plots showing variation of Q_{C} with frequency ($2-16 \mathrm{~Hz}$) and sampling volume size ($\mathrm{a}_{2}=30-50 \mathrm{~km}$; average lapse times of 17-32 sec) at five stations in the Nazko region (bottom).
Q_{0} values (coda Q at 1 Hz) generally allow a quantitative comparison from station to station and with other studies [e.g., Farahbod et al., 2016; Zelt et al., 1999; Havskov et al., 1989]. Therefore, we calculated the Q_{0} values for each station for the smallest possible sampling volumes (Figures 5-8). Table 1 provides the Q_{0} estimate (as well as time lag) for each station with five or more events (note that due to poor S / N and lack of data, there is not even a single Q estimate for stations FPLB and RAMB). It is noteworthy that all stations examined in this study exhibit low Q_{0} values ($39-109$). Uncertainty in these Q_{0} values ranges from 4 to 18 (as indicated on the maps by dotted circles with a diameter proportional to the error).

The lowest Q_{0} values (highest attenuation) determined in this study (MCMB1 with a Q_{0} of 39 , and UBRB with a Q_{0} of 54) are the stations that are closest to the Nazko Cone in the AVB. This is noteworthy, as the Nazko Cone is the youngest and most easterly volcanic cone in the AVB (Souther et al., 1987) and is nearest to the 2007 earthquake swarm (Figure 2) that was interpreted as injection of magma into the lowermost crust (Cassidy et al., 2011). Averaging all data in the AVB having a_{2} between 30 km and 50 km and average lapse times between 17 s and 33 s (UBRB, MCMB1, SULB, THMB) yields a low average Q_{0} of 53 .

As can be seen in Table 1, all stations within the AVB show lower Q_{0} values compared to other stations (at similar a_{2} parameters) in the BC interior. For example, for a_{2} of $30-35 \mathrm{~km}$, the average Q_{0} value for stations within the AVB is 46.5 compared to 57 for the station outside of the AVB. For a_{2} of $45-55 \mathrm{~km}$, the average Q_{0} within the AVB is 59 compared to 71 outside the AVB , and for a_{2} of $75-85$, the average Q 0 value for the station within the AVB is 79 compared to 97 for the stations outside the AVB.

Table 1. Average Q_{0} and estimated uncertainties for different sampling volumes (a_{2} parameter). Boldface denotes stations within the AVB. The numbers in brackets indicate the number of events used to compute Q_{0} at each station.

Station	$\begin{aligned} & \mathbf{Q}_{0} \pm \text { error } \\ & \mathbf{a}_{2}=30-35 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \pm \text { error } \\ & \mathbf{a}_{2}=45-55 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{0} \pm \text { error } \\ & \mathrm{a}_{2}=75-85 \mathrm{~km} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Q} 0 \pm \text { error } \\ & \mathrm{a}_{2}=95-110 \mathrm{~km} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{a}_{\mathbf{2}} \\ & (\mathbf{k m}) \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\mathrm{c}} \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \mathbf{Z}_{\text {max }} \\ & (\mathbf{k m}) \end{aligned}$
UBRB	54 ± 17 (13)				30	17	44
MCMB1	39 ± 13 (6)				33	20	47
THMB		63 ± 12 (15)			45	28	59
SULB		55 ± 9 (9)			50	33	66
ALRB			79 ± 4 (9)		75	47	88
CLSB	57 ± 11 (5)				32	50	59
CLSB				78 ± 16 (12)	95	60	111
FSB		69 ± 15 (5)			55	35	59
LLLB		74 ± 18 (5)			53	34	69
TALB			109 ± 13 (11)		86	55	98
FLLB				91 ± 21 (3)	110	70	120
WSLR			85 ± 12 (6)		80	49	90

17

Figure 5: Q_{0} variations throughout the interior of BC for sampling volumes with ellipse parameter a_{2} between 30 and 33 km and lapse time between 17 and 20 seconds (top) and \log-log plots showing variation of Q_{C} with frequency (bottom). Only stations with five or more events are shown. Numbers below station code are average Q_{0} / number of events. Estimated errors in Q_{0} values are indicated by dotted circles with diameter proportional to relative error (see Appendix 4).

Figure 6: Q_{0} variations throughout the interior of BC for sampling volumes with ellipse parameter a_{2} between 45 and 55 km and lapse time between 28 and 35 seconds (top) and log-log plots showing variation of Q_{C} with frequency (bottom). Only stations with five or more events are shown. Numbers below station code are average Q_{0} / number of events. Estimated errors in Q_{0} values are indicated by dotted circles with diameter proportional to relative error (see Appendix 4).

Figure 7: Q_{0} variations throughout the interior of BC for sampling volumes with ellipse parameter a_{2} between 75 and 80 km and lapse time between 47 and 49 seconds (top) and log-log plots showing variation of Q_{C} with frequency (bottom). Only stations with five or more events are shown. Numbers below station code are average Q_{0} / number of events. Estimated errors in Q_{0} values are indicated by dotted circles with diameter proportional to relative error (see Appendix 4).

Figure 8: Q_{0} variations throughout the interior of BC for sampling volumes with ellipse parameter a_{2} between 86 and 95 km and lapse time between 55 and 60 seconds (top) and log-log plots showing variation of Q_{C} with frequency (bottom). Only stations with five or more events are shown. Numbers below station code are average Q_{0} / number of events. Estimated errors in Q_{0} values are indicated by dotted circles with diameter proportional to relative error (see Appendix 4).

Comparing our AVB results to Q_{0} values across the northern Cascadia subduction zone (Farahbod et al., 2016) reveals a similar pattern. For all a_{2} values, Q_{0} is lower for stations within the AVB compared to those in the Cascadia subduction zone. For example, for a_{2} of $30-35 \mathrm{~km}$, the average Q_{0} value for stations within the AVB is 46.5 compared to 69 for stations (a_{2} of 40) in Cascadia. For a_{2} of $45-55 \mathrm{~km}$, the average Q_{0} within the AVB is 59 compared to 70 in Cascadia, and for a_{2} of $75-85$, the average Q_{0} value for the station within the AVB is 79 compared to 83 for stations in Cascadia.

Summary and conclusions

We investigated coda-wave attenuation in the interior of British Columbia, with a focus on the AVB (and especially the Nazko Cone region), using the single scattering approximation on records from short period and broadband stations of the regional Canadian National Seismic Network (CNSN) and POLARIS Network. In the Nazko region, the method was applied to more than 400 records of an unusual sequence of earthquakes mostly located at a depth between 25 and 31 km and within a radius of about 5 km . Coda windows were selected to start at $\mathrm{t}_{\mathrm{C}}=2 \mathrm{t}_{\mathrm{s}}$ and were filtered at center frequencies of $2,4,8,12$ and 16 Hz .

Despite this relatively small data set with significant uncertainties, some consistent patterns are observed. At all BC interior stations, low Q_{0} values are obtained (<109) consistent with tectonically active regions (e.g., see Farrokhi et al., 2015). We find that in the interior of BC , the lowest Q_{0} values (e.g., Q_{0} of 39) are in the vicinity of Nazko Cone, near the 2007 earthquake swarm. These low Q_{0} values are consistent with fractured rock (high attenuation) from magma intrusions. Further, we find that all stations within the AVB show lower Q_{0} values compared to other stations in the BC interior. Considering all data in the AVB with a_{2} of $30-50 \mathrm{~km}$ (UBRB, MCMB1, SULB, THMB) yields a low average Q_{0} of 53, compared to an average Q_{0} of 67 at other stations in the $B C$ interior, and an average Q_{0} of 70 for stations in the Cascadia subduction zone (Farahbod et al., 2016).

Acknowledgements

We gratefully acknowledge the sources of seismic data used in this study: the Nechako POLARIS array (funded by Geoscience British Columbia, Natural Resources Canada, and the British Columbia Ministry of Energy, Mines, and Petroleum Resources); and the Canadian National Seismograph Network (operated by the Canadian Hazards Information Service). We are grateful to Allison Bent for her thorough review and helpful comments that improved this manuscript.

References

Aki, K. (1969), Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res., 74, 615-631.

Aki, K. and B. Chouet (1975), Origin of coda waves: source, attenuation, and scattering effects, J. Geophys. Res., 80, 3322-3342.

Bevier, M. L. (1983a), Regional stratigraphy and age of Chilcotin Group basalts, south-central British Columbia, Can. J. Earth Sci., 20, 515-524.

Bevier, M. L. (1983b), Implications of chemical and isotopic composition for petrogenesis of Chilcotin Group basalts, British Columbia, J. Petrology, 24, 207-226.

Bevier, M . L., Armstrong, R. L., and Souther, J. G. (1979), Miocene peralkaline volcanism in westcentral British Columbia-its temporal and plate-tectonic setting, Geology, 7, 389-392.

Cassidy, J.F., Rogers, G.C., Mulder, T., Bird, A., and J. Ristau, (2001). Seismicity of the Central and Southern Canadian Cordillera, in, Cook, F. and P. Erdmer (compilers), 2001, Slave Northern Cordillera Lithospheric Evolution (SNORCLE) Transect and Cordilleran Tectonics Workshop Meeting (February 22 25), Pacific Geoscience Centre, Lithoprobe Report No. 79, p. 3034.

Cassidy, J.F., Balfour, N., Hickson, C., Kao, H., White, R., Caplan-Auerbach, J., Mazzotti, S., Rogers, G.C., Bird, A., Al-Khoubbi, I., Esteban, L., and Kelman, M. (2011). The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim Volcanic Belt, Bull. Seism. Soc. Am., 101, 1732-1741, doi: 10.1785/0120100013.

Cassidy, J.F. Kim, H., Idowu, O., Kao, H., Dosso, S., Frederiksen, A., Mercier, J.-P., Bostock, M., Frassetto, A., and Zandt, G. (2010), Passive Source Seismic Studies of the Sediments, Crust, and Mantle Beneath the Nechako Basin, in Geoscience BC Summary of Activities 2009, Geoscience BC, Report 2010-1, 235-244.

Farahbod, A.M., Calvert, A.J., Cassidy, J.F., and Brillon, C. (2016), Coda Q in the northern Cascadia subduction zone, Bull. Seism. Soc. Am., (submitted).

Farrokhi, M., Hamzehloo, H., Rahimi, H., and Allamehzadeh, M. (2015), Estimation of Coda-Wave attenuation in the Central and Eastern Alborz, Iran, Bull. Seism. Soc. Am., 105, 1756-1767, doi: 10.1785/0120140149.

Havskov, J., S. Malone, D. McClurg and R. Crosson (1989), Coda Q for the state of Washington, Bull. Seism. Soc. Am., 79, 1024-1038.

Havskov, J. and L. Ottemöller (2008), SEISAN: THE EARTHQUAKE ANALYSIS SOFTWARE, version 8.2.1, Department of Earth Sciences, University of Bergen.

Kuehn, C. (2014), A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia, Ph.D. Thesis, University of Calgary, 343 pp.

Kwamme, L.B. (1985), Attenuation of seismic energy from local events in Norwegian areas, M. Sc. Thesis, University of Bergen, Norway.

Milne, W. G. (1956), Seismic activity in Canada west of the 113° meridian, 1841-1951, Publications of the Dominion Observatory, Ottawa, 18, 119-145.

Milne, W. G., Rogers, G. C., Riddihough, R. P., McMechan, G. A. and Hyndman, R. D. (1978), Seismicity of Western Canada, Can. J. Earth Sci., 7, 1-11.

Monger, J.W.H., and Journeay, J.M. (1994), Basement geology and tectonic evolution of the Vancouver region. In Geology and Geological Hazards of the Vancouver Region, southwestern British Columbia, Edited by J.W.H. Monger, Geological Survey of Canada, Bulletin 481, pp. 3-25.

Monger, J.W.H., and Price, R.A., 2002, The Canadian Cordillera: Geology and tectonic evolution: Canadian Society of Exploration Geophysicists Recorder, 27, p. 17-36.

Pauli, J.J. (1984), Attenuation of coda waves in New England, Bull. Seism. Soc. Am., 74, 1149-1166.
Rautian, T.G., and V.I. Khalturin (1978), The use of the coda for determination of the earthquake source spectrum, Bull. Seism. Soc. Am., 68, 923-948.

Sato, H. (1977), Energy propagation including scattering effects: single isotropic scattering approximation, J. Phys. Earth, 25, 27-41.

Souther, J. G. (1986), The western Anahim Belt: root zone of a peralkaline magma system, Can. J. Earth Sci., 23, 895 -908.

Souther, J. G. and Clague J. J. (1987), Nazko cone: a Quaternary volcano in the eastern Anahim Belt, Can. J. Earth Sci., 24, 2477-2485.

Wu, R. S., and K. Aki (1988), Multiple scattering and energy transfer of seismic waves: separation of scattering effect from intrinsic attenuation. II. Application of the theory to Hindu Kush region, PAGEOPH, 128, 49-80.

Zelt, B.C., N.T. Dotzev, R.M. Ellis and G.C. Rogers (1999), Coda Q in Southwestern British Columbia, Canada, Bull. Seism. Soc. Am., 89, 1083-1093.
_, (2011) Earthquake Canada, GSC, Search Earthquake database, http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php

Appendix 1

Earthquake parameters (note that " g " for depth indicates fixed (assigned) depth by analyst)

No.	Date yyyy/mm/dd	Origin Time Lat. hh:mm:ss (N)	Long. (E)	$\begin{aligned} & \text { Depth } \\ & (k m) \end{aligned}$	Mag.
1	1999/11/15	07:43:45 51.01	-122.50	0.0g	1.6ML
2	2000/02/05	13:40:39 50.38	-120.63	1.0 g	1.7ML
3	2000/09/11	05:07:41 50.78	-121.91	5.8	2.1 ML
4	2000/09/27	23:29:01 50.77	-121.67	1.0 g	1.8ML
5	2000/10/23	21:21:00 50.50	-121.52	10.0 g	1.6ML
6	2001/02/10	03:24:20 54.31	-123.45	10.0 g	3.0ML
7	2001/05/22	08:16:24 50.37	-121.56	10.0 g	1.9ML
8	2001/06/19	02:59:50 50.96	-121.18	1.0 g	1.7ML
9	2001/07/08	22:12:22 50.36	-121.53	1.0 g	1.6ML
10	2001/12/19	03:08:38 50.17	-121.62	3.7	2.0ML
11	2001/12/22	23:26:04 50.70	-122.88	5.0 g	1.8ML
12	2002/08/30	08:44:42 54.62	-123.58	10.0 g	2.5ML
13	2002/11/03	22:40:16 50.63	-120.80	1.0 g	1.9ML
14	2002/11/04	03:34:44 50.67	-120.78	1.0 g	1.6ML
15	2003/10/08	18:42:40 54.38	-123.45	5.0 g	2.9ML
16	2003/12/02	15:16:38 54.44	-123.44	1.0 g	1.7ML
17	2004/02/28	06:35:29 49.72	-123.40	1.0	1.9ML
18	2004/04/03	20:18:18 49.62	-123.22	10.3	1.8ML
19	2004/07/01	1 13:23:44 49.77	-122.83	3.3	1.8ML
20	2004/10/06	09:57:08 54.39	-123.44	1.0 g	2.1 ML
21	2005/02/21	$13: 11: 5549.62$	-122.36	5.0 g	1.9ML
22	2005/03/15	16:07:05 50.31	-124.09	1.0	1.6ML
23	2005/08/18	04:09:47 51.25	-121.96	10.0 g	2.2ML
24	2005/10/08	00:19:53 50.69	-121.84	10.0 g	1.9ML
25	2005/10/15	08:23:34 49.38	-122.32	1.0	1.8ML
26	2005/10/18	19:32:07 49.38	-122.32	1.0	2.5ML
27	2005/11/09	04:43:17 49.37	-122.34	3.4	2.3ML
28	2005/12/26	05:43:54 49.81	-123.77	1.0 g	1.7ML
29	2006/01/10	06:07:01 54.41	-123.45	1.0 g	1.9ML
30	2006/08/12	05:06:07 50.73	-121.86	5.3	1.6ML
31	2006/08/16	13:18:45 50.56	-123.47	1.0	1.8ML
32	2006/08/26	14:08:57 50.69	-121.70	1.4	1.7ML
33	2006/10/24	08:40:12 50.22	-120.77	1.0 g	2.0ML
34	2006/12/15	10:37:49 49.79	-122.67	0.0	1.8ML
35	2006/12/30	17:49:23 49.30	-122.38	3.8	1.7ML

36	$2007 / 03 / 09$	$21: 30: 23$	50.48	-121.67	1.0 g	2.0 ML
37	$2007 / 06 / 09$	$17: 11: 55$	50.50	-124.14	1.0 g	2.2 ML
38	$2007 / 06 / 09$	$19: 38: 08$	50.50	-121.02	1.0 g	1.9 ML
39	$2007 / 06 / 17$	$04: 44: 48$	49.77	-123.60	6.0	1.7 ML
40	$2007 / 07 / 09$	$14: 58: 03$	50.66	-122.64	0.0	2.1 ML
41	$2007 / 10 / 09$	$08: 26: 09$	52.87	-124.04	30.2	1.8 ML
42	$2007 / 10 / 09$	$08: 30: 14$	52.88	-124.05	30.1	1.6 ML
43	$2007 / 10 / 09$	$17: 09: 20$	52.88	-124.03	29.0	1.8 ML
44	$2007 / 10 / 09$	$17: 50: 39$	52.88	-124.05	28.8	2.0 ML
45	$2007 / 10 / 09$	$17: 51: 31$	52.88	-124.08	27.6	2.0 ML
46	$2007 / 10 / 09$	$18: 16: 13$	52.88	-124.05	28.6	2.1 ML
47	$2007 / 10 / 09$	$18: 45: 59$	52.88	-124.04	28.3	1.9 ML
48	$2007 / 10 / 09$	$19: 09: 49$	52.88	-124.03	29.2	1.6 ML
49	$2007 / 10 / 10$	$01: 00: 01$	52.86	-124.14	31.2	1.8 ML
50	$2007 / 10 / 10$	$01: 04: 34$	52.87	-124.13	30.2	1.8 ML
51	$2007 / 10 / 10$	$02: 49: 22$	52.87	-124.02	22.6	1.9 ML
52	$2007 / 10 / 10$	$03: 12: 02$	52.88	-124.07	28.5	1.9 ML
53	$2007 / 10 / 10$	$03: 21: 20$	52.89	-124.06	23.9	1.9 ML
54	$2007 / 10 / 10$	$03: 24: 47$	52.89	-124.07	25.9	2.3 ML
55	$2007 / 10 / 10$	$03: 38: 29$	52.88	-124.08	25.3	2.0 ML
56	$2007 / 10 / 10$	$04: 10: 12$	52.88	-124.05	28.9	1.9 ML
57	$2007 / 10 / 10$	$04: 28: 28$	52.88	-124.04	26.7	1.7 ML
58	$2007 / 10 / 10$	$04: 59: 54$	52.88	-124.07	24.3	2.3 ML
59	$2007 / 10 / 10$	$05: 58: 20$	52.89	-124.05	28.7	1.7 ML
60	$2007 / 10 / 10$	$08: 07: 20$	52.89	-124.06	24.6	1.8 ML
61	$2007 / 10 / 10$	$10: 33: 43$	52.88	-124.06	28.6	1.9 ML
62	$2007 / 10 / 10$	$10: 41: 29$	52.88	-124.02	28.0	1.6 ML
63	$2007 / 10 / 10$	$11: 33: 30$	52.88	-124.06	24.4	2.4 ML
64	$2007 / 10 / 10$	$13: 36: 51$	52.89	-124.02	26.0	1.9 ML
65	$2007 / 10 / 10$	$14: 02: 30$	52.88	-124.08	24.7	2.3 ML
66	$2007 / 10 / 10$	$14: 31: 01$	52.88	-124.03	27.9	1.6 ML
67	$2007 / 10 / 10$	$14: 47: 56$	52.88	-124.08	28.3	1.7 ML
68	$2007 / 10 / 10$	$15: 27: 10$	52.88	-124.06	27.4	1.6 ML
69	$2007 / 10 / 10$	$16: 54: 07$	52.88	-124.02	27.5	1.6 ML
70	$2007 / 10 / 10$	$17: 07: 27$	52.88	-124.05	28.8	1.8 ML
71	$2007 / 10 / 10$	$17: 46: 05$	52.89	-124.06	22.9	2.4 ML
72	$2007 / 10 / 10$	$17: 50: 42$	52.89	-124.07	22.3	3.9 ML
73	$2007 / 10 / 10$	$22: 25: 47$	52.87	-124.15	32.0	1.7 ML
74	$2007 / 10 / 10$	$22: 51: 45$	52.88	-124.07	26.6	1.9 ML
	$2007 / 10 / 11$	$00: 54: 45$	52.88	-124.08	27.6	1.9 ML
	$2007 / 10 / 11$	$00: 59: 56$	52.88	-124.07	28.3	2.8 ML

77	$2007 / 10 / 11$	$04: 07: 50$	52.88	-124.09	27.2	2.6 ML
78	$2007 / 10 / 13$	$08: 12: 16$	52.88	-124.04	28.9	1.6 ML
79	$2007 / 10 / 13$	$09: 28: 03$	52.88	-124.07	24.7	1.6 ML
80	$2007 / 10 / 14$	$08: 34: 46$	52.86	-124.03	31.1	1.6 ML
81	$2007 / 10 / 14$	$09: 57: 16$	52.86	-124.05	24.9	1.6 ML
82	$2007 / 10 / 14$	$10: 33: 35$	50.90	-121.27	1.0 g	2.0 ML
83	$2007 / 10 / 14$	$11: 47: 51$	52.87	-124.06	28.5	2.0 ML
84	$2007 / 10 / 14$	$12: 11: 02$	52.87	-124.07	30.2	1.6 ML
85	$2007 / 10 / 14$	$13: 15: 11$	52.87	-124.07	31.0	1.6 ML
86	$2007 / 10 / 14$	$13: 33: 20$	52.85	-124.16	29.7	1.7 ML
87	$2007 / 10 / 14$	$14: 18: 46$	52.87	-124.03	30.2	1.6 ML
88	$2007 / 10 / 14$	$23: 44: 35$	52.89	-123.99	28.5	1.6 ML
89	$2007 / 10 / 14$	$23: 46: 07$	52.89	-123.99	29.5	1.7 ML
90	$2007 / 10 / 15$	$10: 30: 44$	52.89	-124.06	32.0	1.6 ML
91	$2007 / 10 / 15$	$10: 56: 56$	52.88	-124.05	30.5	1.7 ML
92	$2007 / 10 / 15$	$13: 21: 00$	52.88	-124.05	30.9	1.6 ML
93	$2007 / 10 / 15$	$13: 28: 23$	52.87	-124.05	22.1	1.7 ML
94	$2007 / 10 / 15$	$23: 43: 30$	52.87	-124.07	28.0	1.6 ML
95	$2007 / 10 / 16$	$16: 08: 45$	52.86	-124.03	30.3	1.6 ML
96	$2007 / 10 / 16$	$17: 56: 09$	52.88	-123.95	25.9	1.6 ML
97	$2007 / 10 / 16$	$22: 58: 30$	52.87	-124.04	30.1	1.6 ML
98	$2007 / 10 / 17$	$05: 27: 16$	52.87	-124.03	30.5	1.8 ML
99	$2007 / 10 / 17$	$09: 51: 38$	52.87	-124.08	30.9	1.8 ML
100	$2007 / 10 / 17$	$09: 56: 01$	52.89	-123.92	31.0	1.7 ML
101	$2007 / 10 / 17$	$11: 03: 35$	52.87	-124.06	30.0	1.7 ML
102	$2007 / 10 / 17$	$12: 50: 30$	52.86	-124.12	30.5	1.9 ML
103	$2007 / 10 / 17$	$13: 08: 24$	52.86	-124.12	29.0	1.6 ML
104	$2007 / 10 / 17$	$15: 17: 15$	52.87	-124.11	31.1	1.9 ML
105	$2007 / 10 / 17$	$15: 41: 01$	52.87	-124.09	30.6	1.7 ML
106	$2007 / 10 / 17$	$15: 47: 05$	52.87	-124.07	30.1	1.8 ML
107	$2007 / 10 / 17$	$19: 14: 26$	52.87	-124.09	31.4	1.6 ML
108	$2007 / 10 / 17$	$19: 18: 00$	52.88	-124.01	31.9	1.8 ML
109	$2007 / 10 / 18$	$03: 04: 08$	52.87	-124.06	30.0	1.7 ML
110	$2007 / 10 / 18$	$05: 15: 18$	52.86	-124.00	30.6	1.8 ML
111	$2007 / 10 / 18$	$07: 00: 05$	52.87	-124.06	29.4	1.9 ML
112	$2007 / 10 / 18$	$08: 42: 28$	52.87	-124.06	28.7	1.6 ML
113	$2007 / 10 / 18$	$11: 00: 59$	52.88	-124.05	29.4	1.6 ML
114	$2007 / 10 / 18$	$12: 26: 13$	52.88	-124.04	29.8	1.6 ML
115	$2007 / 10 / 18$	$12: 30: 26$	52.87	-124.05	24.5	1.6 ML
116	$2007 / 10 / 18$	$14: 46: 20$	52.88	-124.05	28.2	1.6 ML
117	$2007 / 10 / 18$	$14: 54: 08$	52.88	-124.04	28.5	1.7 ML

118	$2007 / 10 / 18$	$21: 15: 21$	52.87	-124.08	29.2	1.8 ML
120	$2007 / 10 / 18$	$22: 08: 13$	52.86	-124.00	30.2	1.7 ML
121	$2007 / 10 / 19$	$00: 21: 39$	52.87	-124.05	30.5	1.7 ML
122	$2007 / 10 / 19$	$02: 38: 08$	52.87	-124.07	30.2	1.7 ML
123	$2007 / 10 / 19$	$02: 41: 27$	52.88	-124.05	28.8	1.7 ML
124	$2007 / 10 / 19$	$03: 15: 28$	52.87	-124.06	28.7	1.8 ML
125	$2007 / 10 / 19$	$06: 10: 33$	52.86	-123.98	30.6	1.6 ML
126	$2007 / 10 / 19$	$06: 11: 54$	52.86	-123.96	30.0	1.6 ML
127	$2007 / 10 / 19$	$06: 17: 53$	52.86	-124.05	31.0	1.7 ML
128	$2007 / 10 / 19$	$07: 24: 19$	52.88	-124.03	27.0	1.9 ML
129	$2007 / 10 / 19$	$07: 44: 49$	52.88	-124.06	28.7	1.9 ML
130	$2007 / 10 / 19$	$07: 47: 45$	52.87	-124.02	29.3	1.8 ML
131	$2007 / 10 / 19$	$07: 54: 10$	52.87	-124.05	28.8	1.8 ML
132	$2007 / 10 / 19$	$08: 14: 52$	52.86	-124.04	31.7	1.6 ML
133	$2007 / 10 / 19$	$09: 12: 12$	52.86	-124.04	30.9	1.8 ML
134	$2007 / 10 / 19$	$11: 14: 33$	52.88	-124.03	28.6	1.8 ML
135	$2007 / 10 / 19$	$11: 45: 27$	52.87	-124.04	28.4	1.8 ML
136	$2007 / 10 / 19$	$23: 34: 24$	54.17	-125.57	0.0	2.5 ML
137	$2007 / 10 / 20$	$00: 38: 54$	52.59	-122.28	0.0 g	2.2 ML
138	$2007 / 10 / 20$	$03: 39: 24$	52.88	-124.05	26.7	1.7 ML
139	$2007 / 10 / 20$	$08: 29: 42$	52.87	-124.05	25.8	1.8 ML
140	$2007 / 10 / 20$	$11: 59: 41$	52.88	-123.99	28.8	1.7 ML
141	$2007 / 10 / 20$	$12: 35: 34$	52.87	-124.05	28.4	1.7 ML
142	$2007 / 10 / 20$	$17: 43: 41$	52.88	-124.05	28.8	1.8 ML
143	$2007 / 10 / 20$	$20: 11: 17$	52.88	-124.07	29.3	1.6 ML
144	$2007 / 10 / 20$	$22: 15: 47$	52.86	-124.07	28.3	1.9 ML
145	$2007 / 10 / 20$	$22: 50: 00$	52.87	-124.07	28.3	1.6 ML
146	$2007 / 10 / 21$	$01: 46: 47$	52.87	-124.06	28.2	1.6 ML
147	$2007 / 10 / 21$	$05: 21: 24$	52.88	-124.01	29.2	1.7 ML
148	$2007 / 10 / 21$	$07: 36: 26$	52.87	-124.02	29.5	1.7 ML
149	$2007 / 10 / 21$	$13: 50: 56$	52.88	-124.03	28.4	1.7 ML
150	$2007 / 10 / 21$	$14: 38: 17$	52.87	-124.06	26.5	1.7 ML
151	$2007 / 10 / 21$	$22: 03: 03$	52.87	-124.07	26.1	1.6 ML
152	$2007 / 10 / 21$	$22: 10: 34$	52.86	-124.04	26.3	1.7 ML
153	$2007 / 10 / 22$	$00: 40: 58$	52.87	-124.06	27.4	1.9 ML
154	$2007 / 10 / 22$	$00: 53: 04$	52.87	-124.07	28.0	1.7 ML
155	$2007 / 10 / 22$	$03: 37: 51$	52.88	-124.02	28.3	1.7 ML
156	$2007 / 10 / 22$	$03: 49: 16$	52.88	-124.04	27.1	1.6 ML
157	$2007 / 10 / 22$	$04: 17: 59$	52.88	-124.06	28.7	1.6 ML
158	$2007 / 10 / 22$	$05: 05: 15$	52.87	-124.13	24.0	1.8 ML
159	$2007 / 10 / 22$	$05: 30: 02$	52.87	-124.14	30.1	1.6 ML

160	$2007 / 10 / 22$	$06: 15: 27$	52.87	-124.09	26.8	1.9 ML
161	$2007 / 10 / 22$	$06: 21: 34$	52.87	-124.06	27.5	1.9 ML
162	$2007 / 10 / 22$	$06: 36: 19$	52.87	-124.08	27.3	1.7 ML
163	$2007 / 10 / 22$	$06: 50: 10$	52.87	-124.01	29.4	1.8 ML
164	$2007 / 10 / 22$	$06: 56: 05$	52.88	-124.02	28.1	1.9 ML
165	$2007 / 10 / 22$	$07: 12: 46$	52.88	-124.08	27.9	1.6 ML
166	$2007 / 10 / 22$	$07: 19: 44$	52.89	-124.03	28.3	1.6 ML
167	$2007 / 10 / 22$	$07: 22: 09$	52.88	-124.07	28.5	1.6 ML
168	$2007 / 10 / 22$	$07: 30: 59$	52.87	-124.07	27.4	1.9 ML
169	$2007 / 10 / 22$	$08: 13: 30$	52.88	-124.03	28.0	1.7 ML
170	$2007 / 10 / 22$	$08: 44: 10$	52.88	-124.08	27.7	1.7 ML
171	$2007 / 10 / 22$	$08: 51: 10$	52.87	-123.99	30.6	1.8 ML
172	$2007 / 10 / 22$	$09: 19: 04$	52.88	-124.02	27.5	1.6 ML
173	$2007 / 10 / 22$	$10: 04: 25$	52.88	-124.03	27.8	1.7 ML
174	$2007 / 10 / 22$	$10: 13: 48$	52.89	-124.09	28.5	1.7 ML
175	$2007 / 10 / 22$	$11: 51: 22$	52.88	-124.08	26.8	1.6 ML
176	$2007 / 10 / 22$	$12: 01: 15$	52.88	-124.02	28.4	1.7 ML
177	$2007 / 10 / 22$	$13: 00: 28$	52.88	-124.02	28.3	1.6 ML
178	$2007 / 10 / 22$	$13: 09: 47$	52.88	-124.02	27.9	1.7 ML
179	$2007 / 10 / 22$	$13: 13: 55$	52.87	-124.03	28.7	1.6 ML
180	$2007 / 10 / 22$	$13: 20: 24$	52.88	-124.01	29.5	1.7 ML
181	$2007 / 10 / 22$	$13: 33: 59$	52.88	-124.09	26.0	1.9 ML
182	$2007 / 10 / 22$	$13: 41: 19$	52.88	-124.01	28.4	1.6 ML
183	$2007 / 10 / 22$	$14: 21: 42$	52.88	-124.02	28.6	1.8 ML
184	$2007 / 10 / 22$	$17: 52: 54$	52.88	-124.08	25.6	1.6 ML
185	$2007 / 10 / 23$	$00: 52: 31$	52.87	-124.08	24.8	1.7 ML
186	$2007 / 10 / 23$	$03: 13: 47$	52.87	-124.07	27.2	1.7 ML
187	$2007 / 10 / 23$	$03: 31: 49$	52.88	-124.09	27.7	1.6 ML
188	$2007 / 10 / 23$	$08: 55: 37$	52.87	-124.09	27.3	1.6 ML
189	$2007 / 10 / 23$	$12: 13: 00$	52.88	-124.05	29.2	1.6 ML
190	$2007 / 10 / 23$	$14: 01: 15$	52.89	-124.02	26.4	1.6 ML
191	$2007 / 10 / 23$	$14: 02: 40$	52.88	-124.06	28.2	1.6 ML
192	$2007 / 10 / 23$	$14: 08: 02$	52.88	-124.03	27.2	1.6 ML
193	$2007 / 10 / 23$	$14: 26: 14$	52.88	-124.07	27.6	1.6 ML
194	$2007 / 10 / 23$	$15: 53: 45$	52.88	-124.03	28.3	1.6 ML
195	$2007 / 10 / 23$	$17: 08: 07$	52.88	-124.04	26.9	1.6 ML
196	$2007 / 10 / 23$	$22: 30: 15$	52.90	-123.95	26.0	1.9 ML
197	$2007 / 10 / 23$	$22: 46: 51$	52.88	-124.08	25.8	1.6 ML
198	$2007 / 10 / 24$	$01: 06: 30$	52.85	-124.12	28.8	1.6 ML
199	$2007 / 10 / 24$	$01: 10: 04$	52.87	-124.09	27.5	1.6 ML
200	$2007 / 10 / 24$	$03: 51: 52$	52.87	-124.08	28.1	1.7 ML

201	$2007 / 10 / 24$	$05: 05: 00$	52.86	-124.08	27.2	1.9 ML
202	$2007 / 10 / 24$	$05: 40: 44$	52.87	-124.07	28.0	1.9 ML
203	$2007 / 10 / 24$	$06: 17: 09$	52.86	-124.04	30.7	1.7 ML
204	$2007 / 10 / 24$	$06: 34: 10$	52.89	-124.01	27.8	1.7 ML
205	$2007 / 10 / 24$	$07: 25: 19$	52.88	-124.00	29.7	1.6 ML
206	$2007 / 10 / 24$	$07: 36: 54$	52.86	-124.06	28.5	1.8 ML
207	$2007 / 10 / 24$	$08: 30: 57$	52.92	-124.08	22.3	1.6 ML
208	$2007 / 10 / 24$	$12: 16: 01$	52.88	-124.04	26.2	1.6 ML
209	$2007 / 10 / 24$	$13: 28: 02$	52.89	-124.06	26.6	1.6 ML
210	$2007 / 10 / 24$	$16: 13: 53$	52.87	-124.06	27.5	1.6 ML
211	$2007 / 10 / 25$	$01: 52: 25$	52.87	-124.07	28.9	1.7 ML
212	$2007 / 10 / 25$	$12: 29: 26$	52.89	-123.97	27.6	1.6 ML
213	$2007 / 10 / 26$	$20: 11: 45$	52.87	-124.02	28.5	1.6 ML
214	$2007 / 10 / 26$	$23: 02: 28$	52.88	-124.06	27.2	1.6 ML
215	$2007 / 10 / 27$	$05: 44: 13$	52.89	-124.01	29.6	1.6 ML
216	$2007 / 10 / 27$	$07: 57: 38$	52.87	-124.07	27.9	1.7 ML
217	$2007 / 10 / 27$	$11: 06: 42$	52.87	-124.04	28.8	1.6 ML
218	$2007 / 10 / 27$	$14: 10: 13$	52.87	-124.06	27.4	1.6 ML
219	$2007 / 10 / 27$	$14: 23: 46$	52.87	-124.00	29.8	1.7 ML
220	$2007 / 10 / 27$	$14: 41: 24$	52.87	-124.08	27.9	1.6 ML
221	$2007 / 10 / 27$	$14: 45: 06$	52.88	-124.06	28.6	1.7 ML
222	$2007 / 10 / 27$	$16: 06: 22$	52.88	-124.04	30.7	1.6 ML
223	$2007 / 10 / 27$	$16: 12: 05$	52.88	-124.00	29.7	1.6 ML
224	$2007 / 10 / 27$	$16: 20: 30$	52.87	-124.07	28.1	1.6 ML
225	$2007 / 10 / 27$	$18: 24: 58$	52.88	-124.03	28.0	1.6 ML
226	$2007 / 10 / 27$	$21: 07: 14$	52.88	-124.03	30.2	1.6 ML
227	$2007 / 10 / 28$	$19: 15: 44$	52.88	-124.07	28.4	1.6 ML
228	$2007 / 10 / 28$	$20: 17: 09$	52.87	-124.05	28.9	1.6 ML
229	$2007 / 10 / 30$	$01: 28: 34$	52.85	-124.08	29.5	1.6 ML
230	$2007 / 10 / 30$	$04: 28: 29$	52.88	-124.06	26.8	1.7 ML
231	$2007 / 10 / 30$	$15: 04: 53$	52.87	-123.98	29.4	1.6 ML
232	$2007 / 10 / 30$	$18: 08: 39$	52.86	-123.98	29.0	1.6 ML
233	$2007 / 10 / 30$	$18: 14: 32$	52.86	-124.06	28.8	1.8 ML
234	$2007 / 10 / 31$	$02: 16: 56$	52.87	-124.02	29.8	1.6 ML
235	$2007 / 10 / 31$	$02: 36: 50$	52.88	-123.94	29.7	1.6 ML
236	$2007 / 10 / 31$	$03: 14: 46$	52.87	-123.99	29.5	1.7 ML
237	$2007 / 10 / 31$	$04: 39: 22$	52.87	-124.09	29.8	1.8 ML
238	$2007 / 10 / 31$	$05: 03: 33$	52.87	-123.97	29.3	1.9 ML
239	$2007 / 10 / 31$	$10: 33: 57$	52.86	-124.06	28.8	1.6 ML
240	$2007 / 10 / 31$	$16: 19: 47$	52.88	-124.06	28.1	2.0 ML
241	$2007 / 10 / 31$	$16: 53: 51$	52.86	-124.04	28.1	1.7 ML

242	$2007 / 11 / 01$	$04: 04: 47$	52.87	-124.07	30.0	1.7 ML
243	$2007 / 11 / 01$	$12: 50: 21$	52.86	-124.08	30.6	1.6 ML
244	$2007 / 11 / 02$	$02: 30: 36$	52.87	-124.04	28.8	1.6 ML
245	$2007 / 11 / 02$	$02: 42: 22$	52.87	-124.06	28.4	1.6 ML
246	$2007 / 11 / 02$	$08: 50: 55$	52.86	-124.03	28.8	1.7 ML
247	$2007 / 11 / 02$	$09: 39: 41$	52.86	-124.04	28.4	1.8 ML
248	$2007 / 11 / 02$	$11: 09: 00$	52.88	-124.05	25.7	1.7 ML
249	$2007 / 11 / 02$	$11: 53: 35$	52.86	-124.05	29.2	1.8 ML
250	$2007 / 11 / 02$	$12: 56: 46$	52.86	-124.03	28.0	1.6 ML
251	$2007 / 11 / 02$	$13: 50: 44$	52.86	-124.05	30.2	1.6 ML
252	$2007 / 11 / 02$	$14: 59: 58$	52.87	-124.06	29.5	1.6 ML
253	$2007 / 11 / 02$	$17: 11: 24$	52.86	-124.02	30.1	1.7 ML
254	$2007 / 11 / 03$	$06: 56: 08$	52.00	-126.16	1.0 g	2.5 ML
255	$2007 / 11 / 07$	$09: 48: 40$	52.87	-124.05	29.1	1.7 ML
256	$2007 / 11 / 08$	$19: 47: 06$	52.47	-121.41	1.0 g	1.8 ML
257	$2007 / 11 / 09$	$19: 04: 58$	52.88	-123.99	29.4	1.6 ML
258	$2007 / 11 / 09$	$23: 35: 30$	52.56	-121.66	15.5	2.2 ML
259	$2007 / 11 / 13$	$20: 38: 27$	52.63	-121.09	36.2	2.5 ML
260	$2007 / 11 / 13$	$23: 30: 41$	52.51	-121.70	24.2	2.2 ML
261	$2007 / 11 / 14$	$04: 01: 50$	52.02	-126.11	1.0 g	2.3 ML
262	$2007 / 11 / 14$	$14: 34: 16$	52.04	-126.10	1.0 g	2.1 ML
263	$2007 / 11 / 14$	$19: 58: 23$	52.54	-122.29	14.9	2.0 ML
264	$2007 / 11 / 15$	$19: 21: 11$	52.50	-121.72	1.0 g	2.3 ML
265	$2007 / 11 / 15$	$20: 29: 45$	52.55	-121.63	5.0 g	2.0 ML
266	$2007 / 11 / 16$	$00: 03: 49$	52.57	-122.23	1.0 g	2.1 ML
267	$2007 / 11 / 16$	$06: 59: 27$	52.04	-126.10	1.0 g	2.3 ML
268	$2007 / 11 / 16$	$13: 40: 07$	52.88	-124.03	28.8	1.8 ML
269	$2007 / 11 / 16$	$14: 03: 57$	52.88	-124.04	29.0	1.7 ML
270	$2007 / 11 / 22$	$14: 24: 58$	52.03	-126.17	1.0 g	2.2 ML
271	$2007 / 11 / 23$	$21: 23: 00$	52.53	-122.21	12.7	2.1 ML
272	$2007 / 11 / 27$	$14: 29: 47$	52.87	-124.11	31.4	1.8 ML
273	$2007 / 11 / 30$	$20: 36: 40$	52.57	-121.69	14.8	2.1 ML
274	$2007 / 12 / 04$	$17: 10: 00$	52.87	-124.06	28.6	1.8 ML
275	$2007 / 12 / 09$	$20: 47: 22$	52.53	-121.67	18.2	2.2 ML
276	$2007 / 12 / 11$	$11: 52: 38$	52.86	-124.05	29.3	1.6 ML
277	$2007 / 12 / 19$	$19: 46: 53$	51.25	-124.48	10.0 g	2.2 ML
278	$2007 / 12 / 20$	$23: 43: 08$	52.88	-123.93	29.3	1.6 ML
279	$2007 / 12 / 21$	$02: 27: 50$	52.87	-124.06	28.6	1.8 ML
280	$2007 / 12 / 21$	$06: 42: 07$	52.87	-124.11	27.6	1.6 ML
281	$2007 / 12 / 21$	$21: 01: 17$	52.60	-122.06	16.9	1.9 ML
282	$2007 / 12 / 22$	$00: 17: 59$	52.55	-121.66	11.5	2.2 ML

283	$2007 / 12 / 25$	$03: 05: 56$	49.65	-122.79	1.0 g	1.9 ML
284	$2007 / 12 / 25$	$12: 36: 38$	52.86	-124.15	25.7	1.9 ML
285	$2007 / 12 / 25$	$19: 42: 25$	52.53	-121.67	1.0 g	2.2 ML
286	$2007 / 12 / 27$	$20: 35: 40$	52.55	-121.67	9.4	2.2 ML
287	$2007 / 12 / 28$	$23: 35: 57$	52.50	-122.25	11.4	2.4 ML
288	$2008 / 01 / 21$	$14: 58: 42$	51.26	-124.65	1.0 g	1.7 ML
289	$2008 / 01 / 26$	$00: 25: 11$	52.55	-122.01	13.6	1.7 ML
290	$2008 / 01 / 27$	$21: 12: 34$	52.55	-121.66	14.6	2.0 ML
291	$2008 / 02 / 01$	$23: 50: 39$	52.59	-121.68	1.0 g	2.3 ML
292	$2008 / 02 / 02$	$01: 04: 14$	52.53	-122.21	7.3	2.5 ML
293	$2008 / 02 / 03$	$00: 17: 58$	52.54	-122.19	9.6	2.0 ML
294	$2008 / 02 / 03$	$20: 15: 43$	52.55	-122.13	14.8	1.8 ML
295	$2008 / 02 / 04$	$05: 48: 48$	52.89	-124.08	27.1	1.6 ML
296	$2008 / 02 / 10$	$09: 04: 34$	51.21	-124.67	1.0 g	2.0 ML
297	$2008 / 03 / 11$	$02: 56: 39$	52.87	-124.10	27.6	1.8 ML
298	$2008 / 03 / 11$	$15: 14: 05$	52.88	-124.08	27.8	2.0 ML
299	$2008 / 04 / 08$	$01: 37: 39$	50.49	-124.17	5.0 g	1.6 ML
300	$2008 / 05 / 15$	$13: 45: 53$	52.88	-124.05	28.2	1.6 ML
301	$2008 / 05 / 21$	$12: 18: 58$	50.58	-123.88	10.0 g	1.7 ML
302	$2008 / 06 / 01$	$18: 31: 04$	52.57	-122.22	14.6	2.3 ML
303	$2008 / 06 / 17$	$03: 21: 04$	51.28	-124.86	1.0 g	1.6 ML
304	$2008 / 07 / 22$	$04: 26: 02$	52.01	-126.15	1.0 g	1.9 ML
305	$2008 / 08 / 13$	$16: 40: 50$	51.20	-124.55	10.0 g	1.6 ML
306	$2008 / 09 / 11$	$00: 48: 02$	49.90	-122.66	0.9	2.0 ML
307	$2008 / 10 / 01$	$15: 23: 17$	51.28	-124.84	1.0 g	2.6 ML
308	$2008 / 10 / 16$	$06: 06: 16$	50.26	-121.26	1.0 g	1.9 ML
309	$2008 / 10 / 16$	$09: 50: 36$	50.26	-121.26	1.0 g	1.8 ML
310	$2008 / 10 / 30$	$02: 54: 36$	50.19	-121.00	1.0 g	2.2 ML
311	$2008 / 11 / 21$	$21: 07: 58$	49.49	-122.46	10.6	1.6 ML
312	$2008 / 12 / 23$	$20: 49: 02$	49.90	-123.86	1.0 g	1.9 ML
313	$2008 / 12 / 27$	$07: 45: 09$	49.87	-123.67	4.6	1.6 ML
314	$2009 / 01 / 01$	$13: 17: 34$	49.61	-122.85	1.0	1.6 ML
315	$2009 / 01 / 16$	$02: 16: 09$	51.12	-124.35	9.4	2.3 ML
316	$2009 / 02 / 08$	$07: 35: 33$	50.46	-121.65	1.9	1.7 ML
317	$2009 / 03 / 03$	$11: 59: 57$	49.53	-123.05	0.0	1.8 ML
318	$2009 / 03 / 16$	$07: 02: 36$	49.99	-123.07	1.0	1.7 ML
319	$2009 / 03 / 16$	$07: 03: 03$	49.99	-123.05	1.0	1.6 ML
320	$2009 / 03 / 30$	$11: 51: 03$	50.02	-123.19	1.0	1.7 ML
321	$2009 / 04 / 05$	$11: 26: 03$	51.88	-125.74	1.0 g	2.2 ML
322	$2009 / 04 / 23$	$10: 19: 13$	50.32	-123.95	3.3	1.7 ML
323	$2009 / 05 / 31$	$16: 08: 44$	52.53	-121.74	0.0	2.3 ML

324	$2009 / 06 / 06$	$06: 15: 49$	52.27	-125.17	1.0 g	2.3 ML
325	$2009 / 07 / 06$	$00: 14: 43$	49.84	-123.66	2.3	2.2 ML
326	$2009 / 07 / 15$	$19: 52: 55$	50.53	-120.99	10.4	1.8 ML
327	$2009 / 09 / 03$	$21: 52: 25$	50.38	-120.65	22.2	2.1 ML
328	$2009 / 09 / 20$	$16: 51: 46$	52.21	-126.20	5.0 g	2.1 ML
329	$2009 / 10 / 01$	$12: 31: 51$	50.40	-123.79	1.0 g	1.7 ML
330	$2009 / 10 / 15$	$23: 13: 23$	49.34	-122.71	1.0 g	1.7 ML
331	$2009 / 11 / 16$	$06: 40: 09$	50.89	-121.29	1.0 g	1.8 ML
332	$2009 / 12 / 27$	$04: 37: 20$	50.20	-123.97	5.0 g	1.7 ML
333	$2010 / 01 / 11$	$11: 13: 21$	50.73	-121.84	5.0 g	2.1 ML
334	$2010 / 01 / 25$	$07: 06: 43$	50.20	-123.91	6.0	1.6 ML
335	$2010 / 02 / 08$	$00: 10: 35$	52.40	-122.31	5.0 g	2.4 ML
336	$2010 / 02 / 20$	$05: 15: 30$	51.40	-124.93	1.0 g	1.6 ML
337	$2010 / 02 / 24$	$19: 38: 15$	49.88	-124.07	1.0	1.6 ML
338	$2010 / 04 / 14$	$22: 41: 49$	50.94	-121.08	5.0 g	1.7 ML
339	$2010 / 04 / 27$	$19: 40: 45$	50.00	-121.50	1.0 g	1.7 ML
340	$2010 / 05 / 12$	$00: 35: 56$	50.00	-121.52	1.0 g	1.6 ML
341	$2010 / 05 / 13$	$23: 35: 48$	50.00	-121.50	0.2	1.6 ML
342	$2010 / 06 / 11$	$12: 48: 35$	50.66	-123.12	5.0	1.9 ML
343	$2010 / 07 / 09$	$07: 32: 30$	51.91	-126.09	1.0 g	2.2 ML
344	$2010 / 07 / 09$	$15: 06: 28$	51.87	-125.98	1.0 g	2.2 ML
345	$2010 / 08 / 25$	$02: 13: 15$	50.07	-123.04	0.1	1.7 ML
346	$2010 / 09 / 01$	$04: 04: 38$	51.37	-124.59	1.0 g	1.8 ML
347	$2010 / 09 / 11$	$00: 04: 30$	50.49	-121.07	10.0 g	1.6 ML
348	$2010 / 09 / 17$	$06: 10: 56$	49.60	-122.26	6.0	1.7 ML
349	$2010 / 09 / 22$	$21: 09: 07$	49.80	-123.60	3.5	1.8 ML
350	$2010 / 10 / 04$	$08: 50: 06$	50.33	-123.94	0.0	1.6 ML
351	$2010 / 10 / 11$	$07: 53: 53$	51.27	-124.97	5.0 g	2.4 ML
352	$2010 / 10 / 11$	$11: 19: 25$	54.50	-123.81	1.0 g	3.5 ML
353	$2010 / 10 / 28$	$19: 03: 00$	49.90	-123.91	1.0 g	1.7 ML
354	$2010 / 11 / 10$	$05: 09: 13$	50.39	-120.55	1.0 g	1.7 ML
355	$2010 / 11 / 11$	$21: 56: 05$	49.73	-123.59	1.0 g	1.8 ML
356	$2010 / 12 / 15$	$07: 11: 02$	50.17	-121.63	1.0 g	1.9 ML
357	$2010 / 12 / 18$	$03: 54: 15$	50.69	-121.88	7.5	1.7 ML
358	$2011 / 01 / 06$	$18: 34: 03$	49.88	-122.55	0.9	1.7 ML
359	$2011 / 02 / 16$	$07: 54: 41$	50.75	-121.85	1.0 g	1.6 ML
360	$2011 / 02 / 24$	$06: 28: 15$	51.31	-124.98	1.0 g	2.4 ML
361	$2011 / 03 / 05$	$06: 48: 53$	51.38	-124.69	0.0	2.5 ML
362	$2011 / 03 / 20$	$11: 32: 28$	50.22	-123.64	1.0 g	1.8 ML
363	$2011 / 03 / 24$	$09: 48: 27$	50.39	-124.10	1.0 g	1.7 ML
364	$2011 / 04 / 27$	$04: 57: 07$	50.38	-120.62	20.0 g	2.5 ML

365	$2011 / 06 / 01$	$11: 44: 03$	51.53	-124.79	1.0 g	1.9 ML
366	$2011 / 06 / 30$	$08: 17: 28$	54.10	-124.43	1.0 g	3.3 ML
367	$2011 / 08 / 12$	$06: 02: 11$	49.54	-122.40	19.5	3.3 ML
368	$2011 / 08 / 26$	$18: 50: 40$	51.39	-125.08	1.0 g	2.4 ML
369	$2011 / 09 / 18$	$16: 33: 21$	49.91	-124.04	0.7	1.7 ML
370	$2011 / 09 / 21$	$13: 18: 10$	49.87	-123.71	1.5	1.8 ML
371	$2011 / 09 / 25$	$20: 59: 08$	49.93	-123.11	1.0 g	1.7 ML
372	$2011 / 09 / 26$	$09: 16: 29$	51.25	-124.86	1.0 g	2.0 ML
373	$2011 / 09 / 28$	$09: 49: 47$	51.23	-124.88	1.0 g	2.4 ML
374	$2011 / 10 / 01$	$17: 17: 55$	51.23	-124.92	1.0 g	2.5 ML
375	$2011 / 10 / 02$	$14: 38: 20$	51.29	-124.98	1.0 g	2.5 ML
376	$2011 / 10 / 19$	$19: 34: 06$	51.98	-125.96	1.0 g	2.4 ML
377	$2011 / 11 / 09$	$08: 09: 52$	50.94	-121.04	1.0 g	1.7 ML
378	$2011 / 11 / 21$	$04: 27: 21$	49.89	-123.72	0.0	1.6 ML
379	$2011 / 11 / 21$	$17: 11: 15$	50.89	-120.85	10.0 g	2.6 ML
380	$2011 / 11 / 25$	$20: 39: 02$	49.89	-123.72	1.4	1.9 ML

Appendix 2

Frequency-Magnitude of selected earthquakes per station

Station	Magnitude		
	$1.6-1.9$	$2.0-2.9$	$3.0-3.9$
ALRB	210	25	-
CLSB	52	22	-
FLLB	-	-	-
FPLB	169	2	-
FSB	2	4	3
LLLB	31	13	-
MCMB1	169	2	-
RAMB	212	34	14
SULB	209	27	2
TALB	213	15	1
THMB	209	2	1
UBRB	169	7	-
WSLR	47		1

Appendix 3

Maps of earthquakes within 100 km of each seismic station

Figure A3-1: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station ALRB between 2007 and 2011.

Figure A3-2: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station CLSB between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M_{1} \bullet M_{2} \bullet M_{3}$

Figure A3-3: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station FPLB between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M 1 \quad M_{2} \bullet M_{3} \ominus M_{4}$

Figure A3-4: Map showing distribution of events in a radius of 100 km around (a) station FLLB (2007-2010) and (b) station FSB (1996-2011).

Figure A3-5: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station LLLB between 1998 and 2011.

Magnitude
$\cdot M<1 \cdot M 1 \bullet M 2 \bullet M 3$

Figure A3-6: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station MCMB1between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M_{1} \bullet M_{2} \bullet M_{3} \ominus M_{4}$

Figure A3-7: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station RAMB between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M 1 \bullet M 2 \bullet M 3 \bigcirc M 4$

Figure A3-8: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station SULB between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M 1 \bullet M_{2} \bullet M_{3} \odot M 4$

Figure A3-9: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station TALB between 2007 and 2011.

Figure A3-10: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station THMB between 2007 and 2011.

Figure A3-11: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station UBRB between 2007 and 2011.

Magnitude
$\cdot M<1 \cdot M 1 \bullet M 2 \bullet M 3 \bigcirc M 4$

Figure A3-12: Map showing (a) distribution of reported events and (b) selected earthquakes in a radius of 100 km around station WSLR between 2003 and 2011.

Appendix 4

Coda Q and Frequency Dependence in the Interior of BC

Table A4-1
Coda \mathbf{Q} estimates and Frequency Dependence at all seismographic stations

Station	Average $Q_{0}, \boldsymbol{\alpha}, Z_{\text {max },} \mathbf{a}_{2}$ and $t_{\text {lapse }}$ values				
	$\mathbf{Q}_{0}+/-$ error (number of events)	$\boldsymbol{\alpha}+/-$ error	$\mathbf{Z}_{\max }(\mathbf{k m})$	$\mathbf{a}_{2}(\mathbf{k m})$	$\mathbf{t}_{\text {lapse }}(\mathbf{S e c})$
	$79+/-4(9)$	$0.90+/-0.01$	88	75	47
CLSB	$57+/-11(5)$	$0.98+/-0.04$	59	32	50
CLSB	$78+/-16(12)$	$0.86+/-0.09$	111	95	60
FLLB	$91+/-21(3)$	$0.69+/-0.18$	120	110	70
FSB	$69+/-15(5)$	$0.96+/-0.10$	59	55	35
LLLB	$74+/-18(5)$	$0.95+/-0.08$	69	53	34
MCMB1	$39+/-13(6)$	$1.23+/-0.24$	47	33	20
SULB	$55+/-9(9)$	$1.05+/-0.01$	66	50	33
TALB	$109+/-13(11)$	$0.79+/-0.08$	98	86	55
THMB	$63+/-12(15)$	$0.95+/-0.05$	59	45	28
UBRB	$54+/-17(13)$	$1.02+/-0.11$	44	30	17
WSLR	$85+/-12(6)$	$0.83+/-0.07$	90	80	49

Figure A4-1: Map of: a) Q_{0} variations and b) frequency dependence in the interior of British Columbia for sampling volumes with ellipse parameter a_{2} between 30 and 95 km (average lapse time between 17 and 60 seconds) and earthquakes in this range, which were used for the calculation. Diameter of circles is proportional to the corresponding a_{2} parameter and lapse time. Green triangles indicate GSC and POLARIS seismic stations. Only stations with five or more events are shown.

Figure A4-2: Map of coda Q variations at: a) 2 Hz and b) 4 Hz in the interior of British Columbia for sampling volumes with ellipse parameter a_{2} between 30 and 95 km (average lapse time between 17 and 60 seconds) and earthquakes in this range, which were used for the calculation. Diameter of circles is proportional to the corresponding a_{2} parameter and lapse time. Green triangles indicate GSC and POLARIS seismic stations. Only stations with five or more events are shown.

Figure A4-3: Map of coda Q variations at: a) 8 Hz , b) 12 Hz and c) 16 Hz in the interior of British Columbia for sampling volumes with ellipse parameter a_{2} between 30 and 95 km (average lapse time between 17 and 60 seconds) and earthquakes in this range, which were used for the calculation. Diameter of circles is proportional to the corresponding a a_{2} parameter and lapse time. Green triangles indicate GSC and POLARIS seismic stations. Only stations with five or more events are shown.

