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SEDEX (SEDimentary EXhalative) deposits are important resources of Zn and Pb. In addition to Zn @ Ni-Cu-PGE-Cr , . .
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.g . . g y . S u I p h U I" ISOtO pes . 1 Emgmmerm'r ; ; ; 5 . . . . k t d b t I t d t d t I t d d ! Brine-anoxic mixing layer SO, =H,S . . . . e y J p yp ! g y’ g g p ’ p
with Ba. Py1 is framboid; Py2 occurs as stratiform e Early diagenetic framboidal Pyl (-23 to -28%), : B. Thick ankerite veins crosscutting ankerite, and barytocalcite. Isseminate o laminated an ' e Yo Framboidal py1 formed either in the euxinic water column or « Sulphurisotope data indicate two different sources of sulphur: bacterially reduced seawater sulphate (BSR) for methods, (ed.) W.D. Goodfellow; Geological Association of Canada, Mineral Deposits Division, Special
accumulation and euhedral crystals within Ba2. euhedral Py2 (8 to 26%s), and barite (24 to 34%o) o *  altered mudstone. C. Discrete CO, rich inclusions in quartz polyframboidal aggregates. They are R ; in the uppermost sulphidic sediment porewaters. Its isotopic early framboidal pyrites (negative 5*'S values), and thermochemically reduced sulphate (TSR) for later pyrite Publication no. 5, p. 553-579.
Hydrothermal Py (Py3) overprints earlier Py and Ba. droth it p 3’ 36 18 6%, Sohal t ot ! . ankerite veins crosscutting unaltered  ® Salinity in quartz-2: 3.4-5.7 wt.% NaCl; n=5 . RN the earliest to form. s Hs>50. ! value is consistent with derivation of sulphide from overgrowths. Sphalerite, and galena have positive S values.
¢ Hydrothermal pyrite Fys = 510 10.09%o. Sphaléerité (not \% e | . | _ _ mudstone. e >275°C of fluid entering vent complexes. it Ordovician and Silur ® Banded i 2 P Sie unfractionated seawater sulphate (Fig. 6). « Zn,Pb,Mn,As,Ag, Sb and Tlwere delivered in the mineralising fluid. Goodfellow, W.D.and J |.R.,1984.0 t ti d ventilation defined by 634S lar trend
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