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Executive Summary 

This backgrounder was written to further examine the characteristics of Big Data and the impact 
it has with the geomatics sector. The first chapter of the report discusses key concepts of Big 
Data in detail including its origins, definition, actors and usages. The second chapter of the report 
addresses the geospatial side of Big Data, starting with the contribution of geomatics to Big Data 
and vice-versa. The last chapter concludes with key elements to remember, followed by the 
appendices and references. 

Big data has been an emerging trend in geomatics in recent years with datasets continuing to get 
larger and more complex resulting in new challenges for organizations managing and analyzing 
data. Geospatial information technologies will now play a central role into how successful and 
useful Big Data can become in the geomatics sector. The emergence of Big Data brings a need 
for embedding powerful analytics into organizations that will create additional value from the 
location base information collected. 

Geomatics contributes to the success of Big Data in three main ways: by enriching data 
visualization, integrating unlinked big data and more powerful analytics. Many large companies 
such as Facebook, Amazon and Walmart are already currently using Big Data analytics to link 
user locations with activities, track inventory and other valuable location based information. Big 
Data also benefits from geospatial solutions in various ways from technologies such as digital 
maps produced from satellite imagery, aerial photographs and GPS-based field measurements. 

Big Data (along with Business Intelligence (BI)) concepts are also impacting the geomatics 
community in two main ways, as a facilitator, and as a source of innovation. New innovations 
include new geospatial-specific solutions, new bodies of knowledge, new scientific communities, 
new specialized conferences, and new working groups in standardization bodies (e.g., OGC). Big 
Data is enabling communities to perform new tasks such as combining analytics capabilities with 
the transactional approach of Geographical Information Systems (GIS) to provide new insights in 
spatially-referenced business data. Big data facilitates the geomatics industry with access to 
powerful, scalable storage and processing services hosted at remote locations, which further 
simplifies existing work being done. 

The rapid growth of Big Data brings many challenges as well for the geomatics sector. The five 
main challenges that are currently in need of solutions and strategies include: location privacy, 
embracing the new paradigm in geomatics, geomatics skills, spatial interoperability, and 
geospatial data processing technology. Big Data has also created new opportunities for geomatics 
communities as experts in geomatics know how powerful geospatial data is with regards to 
integration, analytics and visualization. Big Data has already changed the way location based 
data can be managed and explored and with new possibilities arising information technologies 
must be implemented to effectively process and analyze the data. 
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Preamble  

This guide is one in a series of Operational Policy 
documents being developed by GeoConnections. This 
document is intended to inform CGDI stakeholders about 
“Big Data” in terms of technologies, usages, challenges, 
and opportunities, and more specifically how geospatial 
data and Big Data are connected. 
 
The use of the term “Big Data” is widespread. Although 
there is a lot of hype around this concept, it is a major 
trend creating a real revolution that will impact many 
aspects of our society. This backgrounder was written to 
further examine the characteristics of Big Data and the 
impact it has with the geomatics sector. The first chapter 
introduces the Big Data concept, including its origins, 
definition, actors and usages. The second chapter 
introduces the relationship of Big Data and geomatics, 
which includes a discussion of the role of geospatial data in the Big Data ecosystem. In addition, 
risks in terms of legal or policy related concerns, such as privacy, opportunities and the value 
proposition of the geospatial component ‘Big Data’ are addressed. The last chapter concludes 
with key elements to remember, followed by the appendices and references. 

  

1. Key Concepts of Big Data 

1.1 What is Big Data? 

Consensus on a rigorous definition of Big Data has not been reached (Mayer-Schönberger & 
Cukier, 2013), (Franks, 2012), (McKinsey Global Institute, 2011). While definitions vary 
(Wehbe, 2013), there seems to be a common understanding, at least in the scientific community, 
that Big Data simultaneously includes three characteristics. As stated in the definition proposed 
by Gartner: “Big Data are high-volume, high-velocity, and/or high-variety information assets 
that require new forms of processing to enable enhanced decision-making, insight discovery 
and process optimization” (Laney, 2012). Volume, velocity and variety are called the “3 Vs” of 
Big Data and are considered their fundamental characteristics. (see Appendix B).  
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Big Data is exploited by a new generation of technologies designed to extract valuable 
information from very large volumes of a wide variety of data, by enabling high-velocity capture 
and analysis. It is assumed that, as technology advances over time, the size of datasets that 
qualify as Big Data will also increase. The definition can vary by sector, depending on what 
kinds of software tools are commonly available and what sizes of datasets are common in a 
particular industry (McKinsey Global Institute, 2011). 

Harnessing Big Data allows one to complement traditional data with mass-provided data and 
new analytics to produce almost real time predictions regarding a phenomenon without 
necessarily understanding the underlying causes of the behavior of this phenomenon (Mayer-
Schönberger & Cukier, 2013). This transition to a data-centric era allows us to work at new 
scales to extract insights in new ways. 

1.2 The Origins of the Big Data Concept 

The world is witnessing an unprecedented flood of data and data-related technologies. The term 
“Big Data” first appeared in the mid-1990s in the scientific communities (e.g., astronomy and 
genomics) that encountered this data explosion of larger and larger volumes of heterogeneous, 
fast evolving data being produced and available for analysis. From logs of web activities (e.g., 
Amazon, Google) to social networks (e.g., Facebook, Twitter) and smartphone (e.g., Apple, 
Samsung) interactions, data streams from real-time sensors (e.g., Intelligent Transportation 
Systems (ITS) sensors and surveillance cameras), Radio-Frequency Identification (RFID) tags in 
supply chain management, to Earth observation satellites, the sources of data are multiplying 
faster and faster while becoming more and more fine grained, varied and timely. 

By 2007 – 2008, the term Big Data started to become familiar via web blogs, marketing material 
and job postings. 2010 is often considered the Big Data year. This is when the concept became a 
phenomenon recognized by professionals and was finally accepted in Wikipedia after previous 
rejections, and showed up in Google search trends (McBurney, 2012). It made the Gartner Hype 
Cycle for Emerging Technologies in 2011 (Fenn & LeHong, 2011), where it was identified as 
one of the fastest maturing technologies. Since then, it has been widely spread by the 
Information Technology (IT) community, especially by companies selling storage hardware, 
cloud storage and services, data warehousing and analytics solutions. The convergence of two 
interrelated trends made the Big Data phenomenon possible: (1) increased affordability of 
technologies (e.g. flash-based memory, large storage, sensors, smartphones, clouds, open-source 
software), and (2) increased production of data (e.g., social networks, sensor networks, 
crowdsourcing, real-time mobile systems, open-data, new analytics software).  

1.3 The Characteristics of Big Data 

Organizations gather more data than ever, faster and at lower cost. This data can be human-
generated via use of smartphones, social networks or web surfing for example, or can be 
machine-generated, using RFID tags, surveillance cameras, or satellite imagery. This data can be 
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further divided in two categories: Big Data in motion and Big Data at rest (Olofson & Vesset, 
2012). Big Data in motion represents rapidly streaming, high-volume data that must be harnessed 
and synthesized as it arrives. Big Data in motion requires technology that can support real-time 
data analytics. Big Data at rest involves the ability to collect, process, and analyze the data and 
saving it in a state in which meaningful search, mining, discovery, query, and reporting may be 
conducted afterwards. For example, “a retailer analyzes a previous month’s sales data and uses it 
to make strategic decisions about the present month’s business activities. The action takes place 
after the data-creating event has occurred” (Internap, 2013).  

Big Data technologies address bottlenecks faced by traditional business intelligence (BI) 
solutions designed for “normal” data gathered and structured with specific usages in mind. 
Often, uses for Big Data are determined after it is gathered. One could say BI data is “profiled 
and filtered by design” while Big Data is generally “filtered and profiled after the fact”. Data 
profiling is the process of analyzing incoming data to detect problems, clean the data, and filter 
data that may have value in order to use them for Big Data analytics. Big Data analytics is the 
process of examining large amounts of data of a variety of types to uncover hidden patterns, 
unknown correlations and other useful information (TechTarget, 2012). These processes are 
particularly powerful at employing unstructured Big Data on the move.  

1.4 Examples of Big Data 

Big Data touches almost every application domain and more and more initiatives are showcased 
in literature. Examples occur in Big Sciences (e.g., astronomy, genomics, physics) as well as in 
various domains in line with Canada’s priorities (Government of Canada, 2013 and 2013b) such 
as natural resources, infrastructure, health, security and defense. 

In astronomy, the Sloan Digital Sky Survey (SDSS) collected more data in its first weeks of 
operation than had been collected in the entire history of astronomy. The Large Synoptic Survey 
Telescope program will start in 2016 and will acquire in 5 days the same amount of data the 
SDSS did in 10 years (Mayer-Schönberger & Cukier, 2013). In physics, at CERN, the Large 
Hadron Collider stores 200 petabytes per year after filtering 99.999% of the data. Without 
filtering, it would produce 500 exabytes per day, i.e., 200 times higher than all the other sources 
combined in the world (Wikipedia, 2014).  

The “Waterfront Toronto” project includes a platform that integrates multiple data sources (e.g., 
sensors) and creates real-time visualization of information including traffic congestion reports, 
public transit information, and weather. Additional Big Data analytics capabilities within the 
platform will provide deeper insight around wellness, transportation, energy management, water 
conservation and sustainability efforts, as well as public safety and security across the 
community (IBM 2013).  

In health, IBM (2012) reports that Premier, the largest United States healthcare alliance (2,700 
hospitals, 100,000 non-acute care facilities and 400,000 physicians) provides physicians 
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unprecedented access to best practices and can match patient care protocols with clinical 
outcomes to improve patient care. Since 2008, participating hospitals have saved an estimated 
92,000 lives while reducing healthcare spending by 9 billion dollars. In another project, the 
Illinois Department of Healthcare and Family Services used Big Data analytics to detect 
overpayments fraud at a high accuracy level. The Hospital for Sick Children of Toronto also 
integrates large volumes of physiological readings from monitoring equipment that allow 
clinicians to detect life-threatening infections days sooner than the previous techniques that were 
used (Blount, et al, 2010). 

 

1.5 The Players and Technologies of Big Data 

The main players in the world of Big Data are large hardware, software and cloud computing 
providers (e.g., IBM, Oracle, Google, Amazon), social networks (e.g., Facebook, Twitter), 
research laboratories (e.g., NASA) and service companies (e.g., retail, banking, insurance). 
While the latter are highly regulated with regards to privacy, the former are less regulated and 
many offer Big Data analytics services. 

The technology underpinning Big Data uses web-based distributed and scalable applications and 
frameworks that rely heavily on the Hadoop 2.0 ecosystem from the Apache Software 
Foundation. This technological ecosystem provides the required solutions to handle the large and 
high-velocity workloads of Big Data. Several products are developed to improve certain aspects 
of this ecosystem, for example the highly popular YARN (The Apache Software Foundation, 
2013) and REEF (Retainable Evaluator Execution Framework, from Microsoft) solutions (Sears, 
2013). However, not all Big Data technology is open source (Soares, 2013). Providers of 
proprietary solutions such as IBM, SAP, SAS, Oracle, Teradata and others play significant roles 
in the evolution of uses of Big Data. This global ecosystem delivers new possibilities at 
affordable costs while complementing existing BI structures that remain the major asset of 
organizations. 
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2. Big Data and Geomatics 

With the many challenges facing Society at multiple scales, location has emerged as a key factor 
in decision-making (Rajabifard & Coleman, 2012). The next sections present how location 
information technologies contribute to the Big Data phenomenon and, inversely, how Big Data 
technology contributes to geomatics – the science and practice of activities related to location 
information capture and processing; location information analysis and presentation; integrated 
information products and services; and provision of location-based solutions . Then, we discuss 
the challenges and opportunities for the geomatics community with regards to Big Data. 

2.1 The Contribution of Geomatics to Big Data 

Big Data is enriched location information captured from GPS-enabled devices such as 
smartphones, cameras and on-board navigation systems in vehicles, as well as georeferenced 
sensors networks, for example traffic measurement devices, location-aware social networks, 
weather stations, cell phone towers, security surveillance cameras, RFID tagged supply chains, 
and soon Google Glass and other wearable devices such as smart watches. Geomatics contributes 
to the success of Big Data in three of the following ways: 

2.1.1 More Powerful Analytics 

Geospatial, or location-based data includes the position in a given space as well as the shape, 
orientation and size of phenomena. This data allows for querying about the distance, direction, 
height difference, shortest path and other properties. It also allows for analyzing spatial 
relationships (e.g., adjacency, connectivity, inclusion, proximity, exclusion, overlay, etc.) and 
spatial distribution (e.g., concentrated, scattered, grouped, regular, etc.). When time is added to 
space, we can also study the movement of phenomena, including the merging and splitting of 
located objects, the duration and number of presences in a place, the frequency and places where 
two phenomena overlay, the occurrence of spatio-temporal clusters and the spatial trends for 
given periods. In other words, adding spatial and temporal references leads to the creation of new 
analytical possibilities and the discovery of new facts, which can contribute significantly to the 
information derived from Big Data analytics. 

2.1.2 Integration of Unlinked Big Data 

Location reference can serve as an integrator, a comparator, an aggregator. Location-based data 
help to provide integrated local, regional, national and global insights. A large number of Big 
Data sources include a spatial reference (at least a location in 2-dimensional coordinates, e.g., 
latitude-longitude). Using the spatial reference allows for the integration of independent Big 
Data sets having nothing in common besides location, even if they use very different spatial 
referencing methods. Specialists in geomatics can transform them and bring them in a unique 
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spatial reference system, opening the way to meaningful integration of independent datasets. In 
addition, it is possible to use the spatial reference to enrich Big Data sets with traditional 
geospatial data sources such as topography, road networks, census tracks, administrative 
boundaries and other potentially useful data. Since spatial and temporal references remain the 
only potential commonalities between independent systems, independent Big Data that would 
otherwise be unlinkable can be integrated a posteriori. According to (Agrawal, et al., 2012), the 
value of all data explodes when it can be linked with other data. 

2.1.3 Enriched Data Visualization 

Maps – the most common way to present location information - reveal insights that tables and 
statistical charts do not (e.g., clusters across administrative units). Spatial reference provides 
more efficient ways to visualize and analyze Big Data, typically using various types of 2D maps, 
3D perspective views and profiles, or immersive animated 3D navigation in real-life augmented-
reality environments. When integrated with temporal references, a series of maps and videos can 
support the visualization of the evolution of phenomena. These are natural aids to the analytical 
process. In the context of data exploration, maps do more than just make the data visible, they 
are active instruments to support the end-user’s thinking process (MacEachren & Kraak, 2001). 
Consequently, Big Data projects using geovisualization techniques provide more insight to 
decision-makers and facilitate the analysis of geographically distributed phenomena. 

2.1.4 Examples of the Contribution of Geomatics Sciences to Big Data 

Web-based businesses like Facebook, Google and Yahoo! already use Big Data analytics to link 
user location with activities, to predict locations for a particular activity, and to predict activities 
at a given location. Retailers that use location analytics for logistics and tracking of their own 
inventory include Walmart, eBay, Amazon, Costco, Home Depot, and Sears, among others. 
Within governments, transportation, public works, planning, and economic development 
operations at all levels collect large amounts of location-related data through online services, 
taxpayer/customer reports, and vehicle-based sensors. Location-based service providers such as 
TomTom use Big Data analytics to provide more reliable real-time traffic advisory information to 
users of their premium subscription services. Similarly, power utilities use real-time customer 
demand information from the georeferenced sensors inside “smart meters” to balance their 
networks. There are many more examples of the integration of location information and Big 
Data. 

Some of these applications use location data as accessory data that only requires simple spatial 
processing. These Location-Aware Big Data highly benefit from location data but do not require 
a high level of geomatics expertise. In contrast, other usages of Big Data consider geospatial 
information as central, and they go beyond point coordinates by providing information about 
shapes, textures, sizes, directions, connectedness, inclusion, motions, expansions, contractions, 
merging, divisions, etc. They first of all look for geometric and geospatial characteristics of 
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phenomena and the geographic scales monitored can range from a single room to an entire city 
or ecosystem.  

An example of Big Data relying on earth observation information include massive production of 
high-resolution satellite imagery such as the NASA EOSDIS program, which yields 5 terabytes 
of Earth data per day (Baumann, 2013). Another example is the European EarthServer project, 
which provides access to very large volumes of varied multisource, multi-dimensional, spatio-
temporal data aims at providing “Big Earth Data Analytics” (Percivall, 2013). This Big Data 
project also supports a wide variety of data sources, from smartphones to immersive virtual 
reality, Triangulated Irregular Networks (TINs), vector sources, raster sources, image time series, 
point clouds, trajectories, meshes, solids, and more.  

In the field of forestry, Global Forest Watch (GFW) fights against deforestation by providing 
timely information on the state of the world’s forests (World Resource Institute, 2014). GFW 
combines near-real-time satellite data, forest management and company concession maps, 
protected areas maps, mobile technology, crowd-sourced data, and on-the-ground networks and 
seeks to promote transparency in forests around the world.  

Most Big Earth Data are Big Data at rest, but one can expect more real-time high-velocity 
projects in the near future, such as the Tango project from Google, which aims at giving mobile 
devices a human-scale understanding of space and motion, thanks to sensors allowing 
smartphones to make over a quarter million 3D measurements every second, updating their 
position and orientation, and combining data into a real-time 3D model of the world around users 
for various innovative usages (Google, 2014). 

Other examples include the Amazon drone delivery system project (Amazon, 2013), the MIT 
SkyCall project (MIT Senseable City Lab, 2013), ocean and forest monitoring, real-time mobile 
mapping and augmented reality, LIDAR data sets, large 3D point clouds and high-density 
georeferenced sensor networks, to name a few. Such projects can be qualified as Big Earth Data 
(Open Geospatial Consortium, 2013).  

2.2 The Contribution of Big Data to Geomatics 

The Big Data phenomenon contributes to Geomatics in two ways: as a facilitator, and as a source 
of innovation.   

The Big Data technological ecosystem facilitates the storing and processing of geospatial data,  
in particular with the use of “big processing” through cloud computing and analytics. Cloud 
initiatives have provided the geomatics industry with access to powerful, scalable storage and 
processing services hosted at remote locations. From this point of view, it simplifies the work 
already done in geomatics. 

On the other hand, Big Data (along with Business Intelligence (BI)) concepts are impacting the 
geomatics community by leading to new geospatial-specific solutions, new bodies of knowledge, 
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new scientific communities, new specialized conferences, and new working groups in 
standardization bodies (e.g., OGC). In recent years, we have seen communities emerging with 
different but complementary bodies of knowledge and tools. These communities use different 
names depending upon their technological roots and the problems they focus on. For example, 
the Location Intelligence community focuses on combining analytics capabilities with the 
transactional approach of Geographical Information Systems (GIS) to provide new insights in 
spatially-referenced business data. On the other hand, the Geospatial Business Intelligence 
community (or GeoBI) focuses on adapting the BI analytical data structures and operators to 
provide decision-makers with interactive multi-scale spatio-temporal data exploration, especially 
with Spatial OLAP (SOLAP) and spatial dashboards technology. We sometimes see Location 
Analytics for the same objective. Finally, the Geovisualization community focuses on users’ real-
time interactions with visualization tools for large volumes of static as well as dynamic 
geospatial data. The three communities’ innovative tools and methods have been influenced by 
the rise of the Big Data phenomenon. In spite of a high level of overlap and the common 
influence of Big Data (and BI), no consensus has been reached yet on a unifying term for these 
communities. 

Finally, the Big Data technological ecosystem has contributed to the emergence of the concept of 
“Spatially-Enabled Society”, a concept where location, place and other geospatial data are 
commonly available to governments, communities and citizens (Rajabifard & Coleman, 2012). 

2.3 The Challenges of Big Data in Geomatics 

This section addresses the five challenges of Big Data in geomatics: location privacy, embracing 
the new paradigm in geomatics, workforce geomatics skills, spatial interoperability, and spatial 
data processing technology. 

2.3.1 Location Privacy 

Location privacy is the primary challenge for Big Data. The use of spatial referencing in Big 
Data raises new issues rarely discussed in the traditional Big Data literature. Positions, 
trajectories, speeds, breaks, cycles, and other movement data provide hints that are only 
beginning to raise additional concerns. More than any other type of Big Data, geospatial data has 
the potential to break traditional anonymized data and help to reveal the identity of individuals. 
This inherent capability has important implications (de Montjoye, Hidalgo, Verleysen, & 
Blondel, 2013). Because of their unique data integration and analytical capabilities, special care 
must be taken. For example, the usual practice of decoupling Big Data from identifiers (e.g., 
user’s name) is not sufficient since it has been demonstrated that anonymized location data can 
be linked to individuals with 95% success if correlated with other data because our movement 
patterns are predictable (de Montjoye, Hidalgo, Verleysen, & Blondel, 2013).  

The providers of location-based services can gain an intimate overview of one’s habits, even if 
this information was never given to them, by building profiles from repeated movements to the 
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same places, repeated inactivity, and periodical spatial clusters (e.g., where an individual works 
and goes shopping, his favorite hobbies, his religious habits, his participation in political 
activities, his travel preferences, his fast-food and sleeping place habits, his stops at drugstores). 
Big Geospatial Data can also help to infer networks of friends from spatio-temporal analytics 
(e.g., same place at the same time). Similarly, RFID is used in Spatially-aware Big Data projects 
to track people’s movements in stores. Today's geospatial technology can use simple three-axis 
accelerometers (as used in smartphones) to discover the gender, size, weight and gait of 
individuals and successfully identify them (Meyer, 2013). In the Wall Street Journal, Thurm & 
Kane (2010) revealed that half of the top 100 apps for smartphones were disclosing users’ 
locations to third parties without their consent. Big Geospatial Data also raises concerns about 
the privacy of the commercial content of containers, vehicles and cargos as their trajectory can 
be analyzed between warehouses or ports and deductions made. In fact, the strengths of 
geospatial data identified in section 2.1 (i.e., more powerful analytics, integration of unlinked 
Big Data, enriched data visualization) bring their own challenges to privacy. Geospatial data is 
much more powerful than non-geospatial data; consequently, Big Geospatial Data projects must 
be more careful! 

Accordingly, new regulations are proposed, such as the US Location Privacy Protection Act 
(proposed in 2011), and modifications are proposed to existing laws and acts (Soares, 2013; 
Scassa, 2009). The point is to balance privacy issues with the potential gains for society. In fact, 
people want better data privacy but keep giving up their location data without much 
consideration. “We are not going to stop all this data collection, so we need to develop workable 
guidelines for protecting people. Those developing data-centric products also have to start 
thinking responsibly” (Meyer, 2013). 

2.3.2 Embracing the New Paradigm in Geomatics 

The geomatics community must accelerate its move beyond traditional GIS and mapping. The 
move is just beginning towards Geospatial Business Intelligence (GeoBI) in spite of the 
availability of commercial solutions since 2005 and scientific publications since the end of the 
1990s. The GeoBI, Location Intelligence and Geovisualization communities are small in 
comparison with the global geomatics community. There is an opportunity for the geomatics 
community to embrace almost simultaneously the GeoBI and Big Data paradigms since they are 
closely related. 

2.3.3 Workforce Geomatics Skills 

Developers and users of Spatially-aware Big Data projects and of Big Earth Data projects need a 
sound knowledge of the spatial nature of the data because: using non-geospatial methods for 
geospatial data analysis may lead to erroneous results (e.g., distances and clusters not taking 
geographic obstacles into consideration); ignoring spatial reference systems may lead to 
erroneous positions; using data produced by cartographic generalization processes may lead to 
strange results when integrated with more precise location data (e.g., GPS); using 2D map 
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measurements of 3D phenomenon (e.g., roads) can create analysis errors; etc. Big GeoData 
Scientists require skills in geomatics sciences, mathematics, geostatistics, programming, 
geospatial IT ecosystems, data governance, and geospatial data quality. Furthermore, they need a 
different mindset (e.g., creativity, empathy, sense-making) as they have to combine skills and 
talents with disjoint areas of expertise (e.g., with sociology) (Wachowicz, 2013). A geomatics 
engineer can be this kind of person but deeper analytical knowledge is needed (Wachowicz, 
2013). Although some needs are being filled with the University of New Brunswick Cisco 
Geomatics Research Chair in Big Data Analytics, the recent NSERC Industrial Research Chair in 
Geospatial Business Intelligence at Laval University, and the private Research Chair in 
GeoBusiness at Sherbrooke University, insufficient numbers of qualified people are being 
produced. No technology is efficient without highly-qualified personnel. 

2.3.4 Spatial Interoperability between Geospatial Big Data Systems 

Variety in reference systems can be handled by spatial data processing software and 
interoperability standards. However, some differences cannot be controlled totally when 
interoperating with multiple systems: diversity of measuring instruments, imprecision of 
measurement methods and tools, data acquisition specifications evolving over the years, 
independent data update policies, conflicting priorities over data quality, conflicting legal 
restrictions over the use of data, and so on. To efficiently extract meaningful insights from large, 
varied and high-velocity Spatially-aware Big Data and Big Earth Data, we must aim at spatial 
interoperability between such systems and deal with these issues. Standards are evolving in this 
direction to facilitate the discoverability and machine ingestion of geospatial Big Data via 
interoperable services (Open Geospatial Consortium, 2013). Enriched metadata, profiling and 
spatial analytics are also needed. 

2.3.5 Spatial Data Processing Technology 

Due to the explosive growth and diversity of geospatial data, traditional geospatial analysis tools 
(e.g., GIS) are often not adequate for the interactive analysis and geovisualization of the huge 
volumes of varied spatio-temporal high-velocity data. Improved technologies are needed to fully 
benefit from Spatially-aware Big Data and from Big Earth Data. Geographic Knowledge 
Discovery (GKD) offers important directions in the development of a new generation of 
geospatial analysis tools in these data-rich environments (Han & Miller, 2009). The same holds 
for Spatial OLAP, Spatial Dashboards, Geovisualization and Location Intelligence technologies. 
These technologies are maturing, but several challenges remain to meet all 3 Vs of Big Data. 
Spatiotemporal objects and relationships tend to be more complex than the objects and 
relationships in non-geographic databases, thus more CPU-intensive. Geospatial data profiling 
and aggregating technology needs to improve. In addition, spatio-temporal data indexes must 
meet the requirements of Big Data on the move. Consequently, developing scalable tools for 
extracting spatiotemporal rules from collections of diverse geographic data is a major GKD 
challenge (Han & Miller, 2009). To harness the full power of Spatially-aware Big Data and of 
Big Earth Data, we need to meet the challenge of developing new technologies. 
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2.4 Opportunities 

With so many sensors on humans and physical objects (cf. Internet of Things) and so many 
connected phones, tablets, PCs and recently wristwatches producing data, “we are instrumenting 
the universe” (Hoskins, in (Bertolucci, 2013)). Millions of dumb objects are becoming smart 
devices, millions of people are becoming data generators, cities are becoming smart... a data-
centric universe is on the rise. Hoskins explains that “This process of digitizing the world’s 
physical objects may prove to be the defining element of the age of data. All the objects in the 
world are going to become alive and Internet-connected in a way that they were not before”. He 
calls the new era the “age of data ubiquity”. According to him, hardware had its 20- to 30-year 
run, then software had its 20- to 30-year run, and we are now at the beginning of the data era. 
Such a view of the new web is shared by many visionaries. We believe that opportunities for the 
geomatics community exist on both the supply and the demand sides. 

2.4.1 On the Supply Side 

Experts in geomatics know how powerful geospatial data are with regards to integration, 
analytics and visualization. Engineers in geomatics have the knowledge to make the links 
between spatial and temporal reference systems and measurement methods, to consider precision 
issues, and to calculate the impacts of spatio-temporal distortions on Big Data analytical results. 
In fact, each challenge of section 2.3 provides opportunities: developing solutions to protect 
location privacy, training the users and the workforce with more analytics and geomatics skills 
respectively, facilitating the interoperability between Big Geospatial Data ecosystems, and 
developing new technologies. Additional opportunities exist, such as offering new data cleaning 
services, new multisource data integration services, new map-based decision-support analytics 
technologies, new real-time data integration/aggregation services, new expertise on Big 
Geospatial Data quality, etc. Complex governance issues will also require new services, not only 
for the more global Big Earth Data projects that cross borders and which require Big Geospatial 
Data centers, but also for Spatially-aware Big Data. With regard to new outsourcing services, 
cloud computing services for Big Geospatial Data must likely be offered by Canadian companies 
to respect national security rules and laws. In general, downstream services may offer mass 
processing for certain categories of users while more sophisticated users could run ad-hoc 
processing on their platforms (European Space Agency, 2013).  

These opportunities require investments in research and development. The following list is only 
a subset of R&D opportunities which could open new markets and help create start-up 
companies:  

 Develop Big Geospatial Data pre-partitioning techniques to facilitate in-memory processing. 
 Develop spatially-partitioned, pre-aggregating, pre-integrating optimization methods to 

facilitate Big Geospatial Data analytics. 
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 Develop rapid spatial synthesis methods for higher level analytics without requiring perfect 
integration of lower-level spatial data (i.e., to satisfy the velocity criteria, immediately 
provide aggregated value estimates at the expense of perfect data that takes longer to obtain). 

 Develop spatial synthesis methods which are “statistics/semantics-fidelity-oriented” as 
opposed to the traditional “geometry-fidelity/map-readability-centered” map generalization 
methods (Bédard, Rivest, & Proulx, 2007). 

 Discover new interactive visualization methods for high-velocity Big Geospatial Data. 
 Discover new spatio-temporal analytics methods for Big Geospatial Data. 
 Extend spatio-temporal query languages for synthesis/summarization operations. 
 Develop enriched metadata engines and services for Big Geospatial Data projects. 
 Develop spatial extensions to traditional Big Data technologies to allow for storing, 

transforming, visualizing and analyzing basic geospatial data. Examples include: 
o richer nominal locators (cf. using place names with gazetteers);  
o explicit spatial relationships (e.g., city X within county Y within province Z; county A 

adjacent to county B; municipality X crossed by highway 20); 
o historical evolution (e.g., county X divided in Y and Z; municipality A changed from 

county Y to Z in 2008); 
o cross-border semantics harmonization (e.g., definitions of hydrographic features among 

provinces’ topographic datasets in Canada (see Brodeur, 2003 for examples)); 
o expanded quality metadata and build Big Geospatial metadata engine; 
o automatic error detection and correction; and 
o Big Geospatial Data interoperability quality assessment (Sboui, Bédard, Brodeur, & 

Badard, 2009). 

Some geospatial products already work with the Hadoop ecosystem such as SpatialHadoop from 
the University of Minnesota and ESRI's GIS tools for Hadoop. To remain up-to-date with such 
topics and upcoming standards, one can follow the OGC Big Data DWG's open forum, which 
encourages collaboration and ensures liaison to other Big Data working groups inside and 
outside OGC (Baumann, 2013). 

2.4.2 On the Demand Side 

On the demand side, certain domains are adopting Big Data at a faster rate. By combining the 3 
Vs of Big Data with the potential of certain markets with regards to geospatial data, we expect 
the following domains to be the early adopters: 

 Geomarketing; 
 Security; 
 ITS (Intelligent Transportation Systems); 
 Emergency disaster management; 
 E911; 
 Public health (epidemiology); 
 Infrastructure monitoring and maintenance (e.g., pipelines, airports, hospitals); 
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 Supply chain management of commodities (e.g., food, water, oil, minerals); 
 Smart City projects; 
 Environmental monitoring; and 
 Transparency of government and industry activities (i.e., public scrutiny in part due to 

increased availability of geospatial data). 

All these market segments are interested in employing solutions that will help them better 
analyze and make predictions from the spatially-referenced information being received.  

Generally speaking, while industry will succeed by offering new products and services, 
government will succeed by establishing new policies and governance (e.g., privacy, security, 
consumer protection) in addition to offering new services. Regarding post-secondary education, 
institutions will succeed by offering new curricula and research chairs. Considering Canada’s 
recognized strength in higher education in geomatics engineering and geospatial information 
technologies, the Big Geospatial Data challenge is an opportunity in the international market. 
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3. Conclusions 

Society is entering a data-centric era at a rapid pace. The number of devices connected to the 
Internet exceeded the number of people on Earth five years ago and is rapidly increasing. Very 
soon, we will collect more data in a single day than we have collected in our entire history. An 
important part of the Big Data discourse is similar to the discourse of BI. However, Big Data is 
not BI with bigger data. Big Data often comes from outside, typically from the cloud, and the 
main differences are in velocity and variety. These require new capabilities that are being 
addressed by Big Data core technologies as well as Big Data-enabled technologies.  

Location and spatial referencing are ubiquitous components of Big Data projects, either as 
complementary information (cf. Spatially-aware Big Data) or as primary information (cf. Big 
Earth Data). Geospatial information technologies such as GPS, satellite imagery and web 
mapping contribute significantly to such systems. Although the early leaders are the large 
hardware, software, browser, social network, and retail companies, most organizations will want 
to benefit from the analytical power of Big Data. They will do it internally or with the help of 
external services. Considering that most projects use geospatial data, this represents a major 
opportunity for the geomatics industry. 

Central to successful Big Geospatial Data projects are profiling, analytics and governance. 
Although these already exist for normal geospatial data, Big Geospatial Data projects add new 
components to the technological ecosystems already in place. Properly integrating these new 
components into existing geospatial ecosystems is a key ingredient to success. 

Of particular importance is the explicit inclusion of location privacy issues in a project 
governance framework. Privacy is already a concern in our digital age and several solutions have 
been put in place within systems and in legislation. Nevertheless, while the very nature of 
privacy considerations is changing with the use of social networks and web services, Big Data 
geospatial capabilities raise privacy concerns to a new level. “With Big Data comes big 
responsibility” (Ramirez, 2013). 

The difficult part of Big Data is not technological, it is figuring out what to do with the results. 
Big Data relies on the power of large numbers of facts rather than relying on the traditional 
causal or deductive relationships. With Big Data analytics, one must believe numbers even when 
the underlying reasons for these numbers remain unknown. Since it is too easy to mistake 
correlation for causation and to find misleading patterns in the data, knowledge in Big Data 
analytics, geospatial analysis, spatial data quality, and the field of application is required. The 
cultural changes are enormous and this paradigm shift represents a challenge for system 
designers, decision makers and data analysts. Fulfilling the demand for a workforce with the 
necessary skills is also a major challenge for post-secondary geomatics institutions.  
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So far, there has been a slow penetration of Location Intelligence, Geospatial Business 
Intelligence and Geovisualization technologies into the geomatics community. It is still limited to 
early adopters. Similarly, it appears that the major bottleneck for the geomatics community to 
embrace the Big Data market will be to accept going beyond the traditional GIS-DBMS-driven 
“data transaction culture” and going towards the analytical paradigm.  

Technological trends emerge within a given context. Big Data emerged in an era involving the 
proliferation of affordable geospatial technologies, the Semantic Web, the Internet of Things, 
cloud computing, Smart Cities, data governance, and BI and analytics. According to Gartner 
(2013), every new technology begins with a period of excitement where hopes are enormous and 
technological challenges seem solvable. This period of hope is typically followed by a period of 
disillusion where early results deliver less than hoped for because of the complex coexistence 
with infrastructures in place, a high learning curve, deceptive results, etc. Then, expectations 
become more realistic, human resources more knowledgeable, and integration within existing 
technological ecosystems easier. This is when a technology becomes mainstream, the tools and 
resources more mature, and returns on investments (ROI) the most obvious. Although the hype 
about Big Data may be at its peak (LeHong & Fenn, 2013), Big Data is here to stay and 
geospatial information technologies will play a central role into its success and usefulness. Big 
Data is not only an exceptional marketing term, it brings a new attitude about embedding 
powerful analytics into organizations and getting additional value from what the spatially-
referenced data can tell us. Accordingly, Big Geospatial Data offers plenty of new opportunities.  

The winners in the global economy will be those countries with the right analytical brains and 
tools to develop a better understanding of human-related activities, environmental changes, 
health-related phenomena, market evolutions, etc. They will be in a better position to provide 
their citizens with increased security, timely healthcare, environment-friendly transportation, 
well-maintained infrastructures, faster-adjusting economies, and a better quality of life. 
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Appendix A: List of Acronyms 

The following table presents the meaning of acronyms used in this document. 

Table 1: List of Acronyms 

Acronym/abbreviation Meaning 
2D Two-Dimensional 

3D Three-Dimensional 

BA Business Analytics 

BDMS Big Data Management Systems 

BI Business Intelligence 

CDA Confirmatory Data Analysis 

CEP Complex Event Processing 

CPU Central Processing Unit 

DBMS Database Management System 

DWG Data Working Group 

EDA Exploratory Data Analysis 

EOSDIS Earth Observing System Data and Information System 

FTC Federal Trade Commission 

GeoBI Geospatial Business Intelligence 

GFS Google File System 

GFW Global Forest Watch 

GIS Geographic Information System 

GKD Geographic Knowledge Discovery 

GPS Global Positioning System 

HDFS Hadoop Distributed File System 

HEC Hautes Études Commerciales 

ICT Information and Communication Technologies 

ISO International Organization for Standardization 

IT Information Technology 

ITS Intelligent Transportation System 

LIDAR Light Detection and Ranging 

MIT Massachusetts Institute of Technology 
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Acronym/abbreviation Meaning 
NASA National Aeronautics and Space Administration 

NCCS NASA Center for Climate Simulation 

NSERC Natural Sciences and Engineering Research Council of Canada 

OGC Open Geospatial Consortium 

OLAP On-Line Analytical Processing 

OSM OpenStreetMap 

R&D Research and Development 

RAM Random-Access Memory 

RDA Resource Description and Access 

RDF Resource Description Framework 

REEF Retainable Evaluator Execution Framework 

RFID Radio-Frequency Identification 

ROI Return on Investment 

SDSS Sloan Digital Sky Survey 

SOLAP Spatial On-Line Analytical Processing 

SQL Structured Query Language 

TIN Triangulated Irregular Network 

URI Uniform Resource Identifier 

US United States 

W3C World Wide Web Consortium 

XML Extensible Markup Language 
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Appendix B: Big Data Definitions 

This appendix summarizes Big Data characteristics, key operations with Big Data, and 
governance considerations. 

Key Data Characteristics 

The key characteristics, or the 3 “Vs”, of Big Data: “Volume”, “Velocity”, and “Variety” were 
introduced in the previous section. Each is discussed here in more detail. 

Volume 

Volume refers to the amount of data to be handled. It can be measured by the quantity of 
transactions, events, or amount of history, and further amplified by their attributes, dimensions, 
or predictive variables (Minelli, Chambers, & Dhiraj, 2013). In 2020, we will reach 35 zettabytes 
of information (1ZB = 1 billion terrabytes) (Eaton, Deutsch, Deroos, Lapis, & Zikopoulos, 
2012). Current statistics include: 

 Twitter users are sending 400 million tweets per day (estimated to be more than 7 terabytes), 
which represents 146 billion tweets per year and growing (Karel, 2013). 

 Facebook gets more than 10 million photos every hour and Facebook members click a “like” 
button or leave a comment 3 billion times per day (Mayer-Schönberger & Cukier, 2013). 

 In 2012, Google reported over 5 billion searches per day (Karel, 2013), processed more than 
24 petabytes of data per day and had 800 million YouTube users per month (Mayer-
Schönberger & Cukier, 2013). 

 Walmart collects more than 2.5 petabytes of data every hour from its customer transactions 
(McAfee & Brynjolfsson, 2012). 

 The National Aeronautics and Space Agency (NASA) Center for Climate Simulation 
(NCCS) stores 32 petabytes of climate data in its system composed of 35,000 processing 
cores calculating more than 400 trillion floating-point operations per second (Webster, 2012). 

 OpenStreetMap (OSM) has relied on thousands of volunteers since 2004 to build a world-
wide database of road features. The large volume of data gathered in the 10 years since the 
creation of OSM corresponds to the amount of volume gathered by Apple Computer in a 
single day (Apple Computer, 2013). This illustrates the difference between today’s normal 
data (OSM) and today’s Big Data. They are clearly separated by orders of magnitude in the 
volume of data as well as in the timeliness of the data. 

In 2000, only 25% of the world information was digital. In 2007 it was 93% and it is now at 
98%; furthermore, 90% of the world data is less than two years old (Wessler, 2013). 
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Variety 

Variety refers to the number of different sources from which organizations can obtain/collect 
data. Many of these sources are automated (e.g., heat sensors) and are not designed to be user-
friendly, so the data they collect is not necessarily in a format ready for analysis. Some sources 
provide data that is generated with no specific question in mind (e.g., tweets) or are a by-product 
of another activity (e.g., products’ client segmentation from web surfing logs). Contrary to 
traditional sources that were structured by design, many of the new data sources are semi-
structured (e.g., web surfing logs, XML documents) or unstructured (e.g., emails, clickstream 
data, videos), capture everything (that may be of use or not), and may be messy and noisy. 
Approximately 80 percent of the world’s data is unstructured, growing at 15 times the rate of 
structured data (Eaton, Deutsch, Deroos, Lapis, & Zikopoulos, 2012). 

Velocity 

Velocity refers to both the data collection rate and analysis timeframe (Agrawal, et al., 2012). 
Velocity varies from batch integration and loading of data at predetermined intervals to real-time 
streaming of data (Olofson & Vesset, 2012). High velocity has an impact on accessibility (i.e., 
providing users with proper analytics information when, where and how the users want it). For 
example, Google’s analysis of Internet users’ queries about the H1N1 virus allowed for 
publishing detailed information about the worldwide spread of the virus two weeks before the 
traditional reporting method based on physicians’ offices (Mayer-Schönberger & Cukier, 2013). 

The Remaining 5 Vs 

Additional characteristics are highlighted in the literature: “Value”, “Validity”, “Veracity”, 
“Vulnerability” and “Visualization”. Value refers to both the cost of technology and the value 
derived from the use of Big Data. Big Data in motion has value when captured and analyzed in 
real-time while Big Data at rest has value only when it is used. Some authors state that all data 
should be kept since it potentially contains relevant patterns while others mention that much of 
this data is of no value (i.e., noise), and it should be filtered before being stored. Validity refers 
to the technical correctness of the data (e.g., number vs text). Veracity refers to trustworthiness, 
provenance, lineage, and quality (Baumann, OGC Discussion, 2013). As we went from a low 
number of data sources of managed and known quality to millions of sources of unknown quality 
(e.g., blogs), issues of internal quality (e.g., errors, uncertainties) and external quality (e.g., 
usability, fitness-for-use) must be addressed with a fresh perspective, notably, with respect to 
legal issues regarding privacy, traceability of data, liability of providers and integrators, 
copyright, and public protection. Vulnerability refers to the level of protection of the data 
through its lifecycle. In a few application domains such as healthcare and finance, rules and 
regulations are in place to ensure the protection of data at rest as well as during execution of 
application logic or during transmission. Visualization refers to the graphical representation of 
data to communicate information clearly and effectively in spite of the high volume of data, its 
velocity and its variety. Numerous techniques exist (see Friendly, 2009; Few, 2012 and 2013). 
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Key Operations 

Big Data Profiling 

“Data profiling” is the initial phase of data integration projects. It helps to understand available 
data, to identify problems by analyzing content, structure, and relationships within and across 
datasets (e.g., number of missing fields and nulls, percentage of unique values, inconsistencies 
and redundancies). Data profiling tools for Big Data have a similar function to data profiling 
tools for normal data. In fact, data quality/cleaning/cleansing/scrubbing software used in BI and 
other projects is now being extended to support Big Data profiling. Nevertheless, data profiling 
challenges increase when dealing with unstructured and high-velocity Big Data. To compose 
with this higher degree of complexity, multi-phase approaches to Big Data profiling are proposed 
(Chastain & Loshin, 2013), which allow for determining the value of Big Data sources for 
particular purposes before spending resources to fully profile them. 

Big Data Analytics 

“Data analytics” is the process of examining data to uncover hidden patterns, unknown 
correlations, trends, weaknesses, new segmentations, forecast models, predictive behaviors and 
other useful patterns. It includes exploratory data analysis (EDA), where new features in the data 
are discovered, and confirmatory data analysis (CDA), where existing hypotheses are proven true 
or false. Data analytics provide insight into datasets that would simply be too costly, difficult and 
time-consuming to analyze otherwise.  

Big Data Analytics focuses on the extraction of useful insights and predictive analysis in real 
time, from the rapidly increasing volumes of new heterogeneous data. “It is logical to say 
Business Intelligence (BI), Business Analytics, and Big Data are progressive steps up the 
information maturity scale, and they are very closely related” (Zhu, 2013). Gartner predicts that 
by 2015, over 50% of Big Data solutions will use data in motion (i.e., data streams) from 
instrumented devices, applications, events or individuals (Laney, 2013). 

Big Data Governance 

Data governance establishes rules to enforce the proper use of data, privacy, quality control, 
security, etc. Without proper data governance for the whole lifecycle of Big Data, the integration 
of this data is very difficult to do correctly and has a high potential to pose a number of problems 
(Soares, 2013). Effective data governance can enhance the quality, availability and integrity of an 
organization’s data, thus improving the quality of analyses. It directly impacts the four factors 
any organization cares about most: increasing revenue, lowering costs, reducing risks, and 
increasing data confidence, or trust.  
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Appendix C: Big Data Technologies 

This appendix summarizes key IT technologies that have contributed to the emergence of the Big 
Data phenomenon. 

Semantic Web/Linked Data 

The “Semantic Web” is an extension of the World Wide Web that provides a common framework 
allowing data to be shared and reused across applications, enterprises, and community 
boundaries. It includes common formats to integrate data from diverse sources, and a language, 
called Resource Description Framework (RDF), to record how the data relates to real world 
objects and to other data. RDF is a world-wide lingua franca connecting web syntax with formal 
definitions/ontology (i.e., real-life meanings or semantics). It allows users or machines to search 
for data in one database, and then move through a set of databases that are connected by their 
content and semantics to find other, related data. This collection of interrelated datasets on the 
web can be referred to as “Linked Data” (World Wide Web Consortium (W3C), 2013). 

Internet of Things 

The Internet of Things refers to uniquely identifiable objects and their virtual representations in 
an Internet-like structure (Wikipedia, 2013). It is a connection of nodes (i.e., data sources) 
through the web, where every node has its own Uniform Resource Identifier (URI). It is 
estimated that there will be over 50 billion such resources by 2020 (Dasgupta, 2013). Examples 
include utilities with smart meters, and healthcare with the deployment of remote health 
monitoring devices. This creates an unprecedented continuous stream of data. 

Cloud Computing 

Cloud computing is the movement of applications, services, and data from local storage to a 
dispersed set of servers and datacenters (Berry, 2009). Workloads are allocated among a number 
of interconnected computers acting as a single machine. It is dynamically scalable, meaning that 
the system can be expanded as needed, and it acts as a web service. It is a true facilitator for Big 
Data projects. “Private clouds” are exclusive to a specific organization; “Community clouds” are 
restricted to departments or groups of users; “Public clouds” are exposed to everyone. “Hybrid 
clouds” are private clouds that may use supplementary resources from public clouds if needed. 

Smart Cities 

A city is an interconnected system of systems based on three elements: infrastructure, operations, 
and people (IBM Corporation, 2013). A city can be defined as “smart” when these elements 
continuously communicate and interact together. The resulting distributed network of fixed and 
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mobile intelligent sensor nodes, including citizens, wirelessly provides a wide range of real-time 
information about the physical infrastructure, services, and interactions between people for more 
efficient management of the city. Data delivered in real-time to citizens and appropriate 
authorities helps to anticipate problems, to resolve them proactively, and to coordinate resources 
to operate effectively. Smart city, the Internet of Things, and Big Data concepts go together. 

Business Intelligence and Analytics 

Business Intelligence (BI) is an umbrella term describing tools and methods to improve business 
decision-making by using fact-based support systems (Power, 2007). BI transforms large 
volumes of structured raw data into useful insights for strategic, tactical, and operational 
decision-making (Evelson, 2010). BI provides historical, current, and predictive views of 
business operations (Wikipedia, 2011). Over the last 20 years, BI has developed a strong data 
analytics culture, powerful data visualization solutions, as well as proven methods to integrate 
with organizations’ structured database ecosystems. More recently, some authors started using 
the expression “Business Analytics” (BA) to focus on analytical and predictive functions. The BI 
market is hence evolving into two segments: the old, or traditional, BI market and the recent 
“data discovery” market (Hagerty, Sallam, & Richardson, 2012). Nowadays, BI is better tailored 
to meet the requirements of Big Data, such as support for large volumes of streaming data, real-
time analysis and complex visualization. Accordingly, several practitioners see Big Data as the 
normal evolution of BI: they share a lot of commonalities in spite of new challenges that require 
new solutions. “Big Data is the next generation of data warehousing and business analytics.” 
(Minelli, Chambers & Dhiraj, 2013). However, not everyone shares this point of view, especially 
for unstructured Big Data on the move. 

Big Data Core Technologies 

New technologies have emerged to address the exploding volumes of complex and high-velocity 
data. They have been developed specifically to capture the value of Big Data. One such 
technology is Hadoop, which is used to store and process large non-relational datasets via a 
large, scalable distributed model (The Apache Software Foundation, 2013). Hadoop has become 
a major trend, which was inspired by Google’s work on its Google File System (GFS) and the 
MapReduce distributed data processing framework that provides highly parallel data processing 
and analysis capabilities. One of the key characteristics of Hadoop is the redundancy built into 
the environment. Data is redundantly stored in multiple places across the cluster, and the 
programming model is such that failures are expected and are resolved automatically by running 
portions of the programs on various servers in the cluster. Hadoop is an ecosystem of projects 
targeted at simplifying, managing, coordinating, and analyzing large sets of data (Eaton, 
Deutsch, Deroos, Lapis, & Zikopoulos, 2012). Several vendors offer Hadoop distributions. 

The new Big Data-specific technologies touch many aspects of the data management framework. 
Figure 1 presents these layers and will help position the technologies discussed in this section. 
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Figure 1: The Building Blocks of a Data Management Framework (adapted from (Iron Systems, 2013)) 

 
 

Distributed Storage (1) refers to how large volumes of information are stored and retrieved in the 
redundancy-based, failure-safe Big Data ecosystem. Common considerations include the storage 
of data for later access, the online vs. archival temporal extents, the archival vs. deletion 
temporal extents, etc. Management Services (2) refer to various utilities that support the 
operation of the data framework. Data Integration Services (3) are used to combine Big Data (as 
well as normal data) coming from various sources and in various formats. For example, retailers 
can combine, in real-time, selected clickstream data on the web with supply chain management 
RFID data, along with social network posts and "Likes", for the timely distribution of proper 
quantities of products to their stores. Distributed Processing (4) refers to how data is manipulated 
in the data management framework, and how meaningful events are processed. Non-Relational 
Databases (5) refer to the new types of database management systems (DBMS), sometimes 
called Big Data Management Systems (BDMS), that have been developed to address the various 
dimensions of Big Data (e.g., NoSQL, columnar DB, in-memory DB). Metadata Services (6) aim 
at documenting the characteristics, source and nature of data. Metadata is a fundamental, 
although often neglected, piece of Big Data. Scripting/Query/Analysis (7) is a family of tools 
(e.g., programming languages, query languages, analytical hardware-software combinations) 
allowing users and programmers to interact with Big Data.  
 
Big Data core technologies explicitly address the synchronization between the systems that 
collect and host the data and the systems that perform analyses. When using traditional 
technologies, the process of preparing data for analytical purposes can be tedious and slow. The 
Big Data pipeline must be straightforward to meet the requirements of performance and 
automation. For Big Data in motion, analysis techniques that can process streaming data on the 
fly are needed, since it is not desirable to store the data first and analyze it afterward. In some 
cases, the ability to develop partial results in advance (e.g., by pre-aggregating samples of the 
data) so that only a small amount of incremental computation is necessary as new data arrives, 
can provide a good compromise. 
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Big Data Enabled Technologies 

While new products were developed from scratch to meet the Big Data challenges, more 
traditional technologies have improved. Currently, these Big Data-enabled technologies address 
successfully 2 of the 3 key Vs (volume and velocity). They are still improving to efficiently 
support the 3rd V of Big Data (variety). For example, many data integration tools, DBMS and 
Scripting/Query/Analysis tools now provide bridges to Hadoop, some DBMSs better support 
semi-structured data, metadata tools have been extended to support Big Data, etc. From a user 
point of view, there are numerous advantages related to the use of these Big Data-enabled 
technologies: the basic technological concepts are already well understood; there already is 
legacy code available and tested (no need to redo it); the costs for the adapted technologies are 
often lower than the costs of acquiring new specific technologies; the security model is well 
under control; users are already proficient with these; and only minor additional training may be 
required (compared to the full training required on new technologies). It is expected that 
organizations will typically add Big Data technologies into a more global information ecosystem, 
with a selection of software tailored to cover all their traditional needs and their Big Data needs.
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