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Introduction

Assay data was extracted from 
scanned drill logs (Figure 6a), 
entered into a database (Figure 
6b) and linear referenced to 3D 
drillholes (Figure 6c) from 
Sullivan mine survey records. 

1

Metal values are assigned to 3D grid cells (blocking)(Figure 9a). 
The grid is then used as a metal property container for 
geostatistical analysis. 

The grid (Figure 9b) is built to mimic local geological trends using 
available stratigraphic and structural data. The new coordinate 
system in the grid is UVW instead of XYZ. 

Semi-variograms (Figure 8a)are used to analyse spatial 
trends in the data within a geographical range (Figure 
8b). When spacial trends are understood, an 
interpolation model can be created to fill in unkowns 
between data points. 
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Geospatial Analysis

Geological impacts on semi-variogram patterns are prominent in the raw XYZ semi-
variograms (Figure 11 a). Oscillations and/or drop-offs of point pair variability along the sills 
make variogram interpretations difficult and are probably controlled by the ore bands. 
Repeat metal concentrations and internal layering between ore and waste portions vertically 
cause variability to wax and wane along the sill. Alternatively, oscillations and discontinuities 
could be due to local folding and faulting. These patterns are smoothed out when 
geostatistical analysis is done with respect to the GEOGRID (UVW) (Figure 11 b and c) 
instead of raw (XYZ) Cartesian space. 

Figure 11 Variogram analysis. a) Vertical semi-variogram for Log transformed Pb from 
the entire Sullivan data b) GEOGRID (UVW)  based horizontal, north trending 
semi-variogram for log transformed Zn c) GEOGRID (UVW) based semi-
variogram for log transformed Pb indicating smoother short (0.05) and long 
(0.3) ranges. Short range used for kriging metal zonation models 

The Sullivan orebody is hosted by the Aldridge Formation of the Mesoproterozoic Belt-Purcell Basin which 
2outcrops over an area of about 200,000 km  in Montana, Idaho and Washington of the U.S.A. and southeastern 

British Columbia in Canada (Lydon, 2007).  The Belt-Purcell is an intracratonic rift basin and it consists of an early 
synrift fill sequence of deep water marine turbidites and intercalated tholeiitic sills, and a later rift sag sequence 
consisting of shallow marine to lagoonal and fluviatile siltites, argillites, and carbonates.  The syn-rift turbidite-sill 
sequence is named the Aldridge Formation in Canada and the Prichard Formation in the U.S.A. and is up to 12 km 
thick (Hoy et al., 2000). The Sullivan orebody is located on the east side of the Purcell Mountains, British 
Columbia and can be found in the upper part of the rift-fill succession (Figure 1).

Figure 3 Generalized west-east geological cross-section at 
11600N showing the distribution of the hanging wall 
sulphide zones (after Hamilton et al., 1982). The inset 
illustrates the complex nature of the “HU” sulphide zone 
along the transition zone (from Conly et al., 2000).

Figure 4 Bedded Ore stratigraphy 
from the eastern ore 
zone of the Sullivan 
Horizon (after Lydon, 
2007) 

The metals Pb and Zn show a naturally skewed distribution(Figure 10 a and c). To 
emphasize the ore process we stretch these skewed data values with a log-
transform before doing Inverse Distance Weighted (IDW) or Ordinary Kriging 
interpolation (Figure 10 b and d). After a metal property model is calculated, a 
back log transform is done to represent the natural ranges of our modelled 
results.  Fe shows a non-skewed range of values, so we interpolate the values 
directly.  

Metal zonation patterns clearly corroborate previous studies that delineate the 3 main ore facies: Vent Complex, 
Transition, and Bedded Ores (Lydon et al., 2000; Montsion, 2014). Locally, the metal rich zones have abundance contours 
(Pb and Zn), which cross-cut the mine Band stratigraphy giving support for an in situ replacement process (as opposed to 
an exhalative only process), however the major concentration of ore is constrained to the Main Ore Band (Figure 14). T
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Figure 1 Location of the Sullivan mine in 
south-eastern British Columbia 
with geological map of the 
Purcell anticlinorium. Overlay of 
SEDEX ore system elements 
(Sullivan and satellite massive 
sulphide deposits, tourmalinite 
alteration, sedimentary 
fragmental rocks and inferred 
syn-sedimentary faults, from 
Lydon et a.,l 2000).

Figure 2 Folded bedded sulphide ore from the 
Sullivan deposit.  (Sample courtesy of 
Paul Ransom)

The Sullivan orebody and its host rocks have been affected by at least two phases of tectonic and 
metamorphic activity (Figure 2). The first occurred during the “East Kootenay Orogeny” (1340 Ma) and the second 
deformation event was related to a final stage of rifting and magmatism (Lydon et al., 2000).   The most significant 
deformation event occurred in the Cordilleran Laramide (150-110 Ma) orogeny. Local deformation effects include 
localized contorted folding,  and tight north-south shallow plunging upright folds with slightly overturned to the 
east short limbs and irregular ore piercement structures  as well as some low angle thrusting that can repeat mine 
stratigraphy.

There are two ore zone (east and west), which are separated by a structurally complex transition zone (Figure 
3) (deKemp et al., 2015; Montsion et al. 2015).  The western zone has been termed the 'vent complex' and is 
theorized to contain vents where metal enriched hydrothermal fluids emerged from the subsurface. Roughly 70% 
of the ore is contained within this zone.  The eastern zone contains the bedded ores known as the 'Main Band', 'A 
Band', 'B Band', 'C Band' and 'D Band' (Figure 4) (Goodfellow and Lydon, 2007). 

Many thanks to Teck (Cominco) for on site access to the Sullivan mine property and use of historical data. Thanks to Richard Laframboise (Geological Survey of Canada) who collaborated in the development of the ArcGIS Drill Core Loader software. 
GoCad/SKUA software support was generously provided through the GoCad Research Consortia through Paradigm® and Mira Geoscience Ltd. * Data presented in this poster are also available from Montsion et al. 2015

With improving technology, geologists are better at modelling and interpreting complex geological structures 
at depth.  Previously, the mining industry interpreted geological bodies using close-spaced two dimensional 
sections to visualize trends in the third dimension. With the emergence of three dimensional (3D) imaging and 
modelling of the subsurface, the majority of modern mine records have been updated to include multi-
dimensional digital models. 

The Sullivan orebody, a lead and zinc SEDimentary EXhalative (SEDEX) deposit near Kimberley, British 
Columbia, was almost fully developed before the digital age. 3D modelling has been limited to small areas of active 
mining in the southeastern part of the deposit.  This poster presents a new model which includes the entire mine 
site and represents metal concentrations of lead (Pb) and zinc (Zn) of the Sullivan orebody. This model is derived 
from horizon gridding and three dimensional kriging estimation techniques.  Estimated metal zonation patterns 
are compared with a stratigraphic and structural 3D models of mine stratigraphy.  For a more rigorous quantitative 
presentation see Montsion et al. (2015) and deKemp et al. (2015). 

This study complements the larger regional 3D reconstruction project conducted throughout the Purcell 
Anticlinorium, which produced a 3D model of the Lower-Middle Aldridge Contact (LMC) and a 3D database of 
stratigraphic Middle-Aldridge markers (deKemp et al., 2015; Schetselaar et al., 2015; de Kemp and Schetselaar 
2015).

Geological Setting

SEDEX Processes

Methods

3

4

5

Figure 6a Drill logs Figure 6b Database

After linear referencing assay points to drill holes, points are 
symbolised to show areas of high metal concentration (Figure 12).  
Both metals (Pb and Zn) showed significant accumulation in the 

western half of the deposit and 
minor bedded accumulation in the 
eastern half. This finding supports 
the established ore geometry of 
the western Vent Complex and 
eastern Bedded Ore (Lydon, 
2000; Goodfellow and Lydon, 
2007; Lydon 2007). 

Figure 12 Pb assay value distribution in 
Sullivan mine a) Northwest view 
superimposed on 11600 N cross-
section from Freeze (1966) b)Top 
view c) Southern view d) Eastern 
view 

Interpolation Results

Figure13 a) Variogram indicates strong bedding controlled metal anisotropy for Pb and Zn 

within  the Bedded zone, as well as a subtle  trend in metal content b) Plan view 160°
of Sullivan orebody with delineation of Bedded Ores, Transition Zone and Vent Zone. 
Kriged Pb Assay values at the top of the Main Band show 160°/340° trend

The interpolation results from Pb, Zn and Ag show many similarities with a strong north-south to  trend for high concentration zones, especially for the bedded ores .160-340°  (Figure 13)

Figure 14 Close up east-west vertical cross-sectional views of Sullivan stratigraphy (a) and kriged Pb-Zn ratio (b) indicates strong 
continuity with contours transecting the Main Band. Additionally, linear concentration zones to the east are unsupported 
anomalies from the interpolation. (c) Inverse distance weighting interpolated Zn values. (d) Ore beds dipping to the 
northeast below surface topography. (e) Sequence and colour scheme of the Bedded Ore zone.

SEDEX deposits form by the discharge of 
metalliferous hydrothermal fluids at and 
immediately below the sea floor of a sedimentary 
basin (Carne and Cathro, 1982).  There has been 
some recent debate about how the Sullivan and 
other SEDEX deposits formed.  Currently, there are 
two depositional models up for debate.
 The first ore depositional model (Figure 5) 
postulates that once vented to the sea floor, 
hydrothermal fluids reacted with bacteriogenic H S 2

rich, anoxic, bottom water and formed a 
metalliferous precipitate, thereby chemically 
trapping the metals.  The precipitate fell out of 
suspension and was deposited as laminated 
sediments and lenses along the basin floor, giving a 
stratiform appearance (Goodfellow and Lydon, 
2007).  
 The second ore deposition model postulates that there was interaction between the hydrothermal fluid and 
sulphides in the shallow subsurface, regardless of whether the sulphides was bacteriogenic H S, hydrothermal H S, 2 2

or pre-existing sulphide minerals.  The sulphides were precipitated in pore spaces of the shallow sediments, 
thereby mimicking the porosity architecture of the sediments, or by replacement of pre-existing sedimentary or 
early diagenetic sulphides.  In both ore depositional models, the resultant sulphidic rock would show sedimentary 
textures.
 Depending on where the precipitating reaction takes place, both models of ore deposition may contribute to a 
single deposit (Ridley, 2013). Both mechanisms of ore deposition probably contributed to development of the rich 
Sullivan orebody; however the second one, the more replacement driven process may have been the dominate 
one.
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Assay data along drillholes are 
resampled at 1 m intervals along 
drillholes. (Figure 7). 
Each point is given 3D 
coordinates (XYZ)
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Kriging interpolation was used to visualize ore metal concentrations. Kriging algorithms use weights to linearly combine neighbouring data points to estimate unknown values. The 
weights are given by a computed variogram model and search parameters. To model the Sullivan's assay metal concentrations, an ordinary kriging method was selected. Ordinary kriging 
assumes that the interpolated property and its average will vary spatially. 

Ÿ Metal zonation patterns in Figure 12 clearly corroborate previous studies that delineate the 3 main ore facies (Vent, Transition and Bedded Ore zones).

Ÿ Locally, the metal rich zones in Figure 14 have abundance contours which can transect through ore stratigraphy, supporting a replacement ore deposition model which occurred mostly in the vent and transition zone. 

o  o
Ÿ The interpolation results in Figure 13 show many similarities with a strong north-south to 160  – 340  trend for high concentration zones, especially for the bedded ores.

 o
Ÿ The elongate 160  trend indicated in Figure 13 by variogram analysis also matches reasonably well with several proposed syn-sedimentary graben systems from previous studies (Hagen, 1983; Höy et al., 2000; Turner et al., 2000), such as the 

Sullivan-Stemwinder-North Star trend, Sullivan west graben, the Clair trend, and the Star and Lew trends (Moyie Block). 

Ÿ  The variograms in Figure 13 show both local and regional trends which are strongest for Pb and to a lesser extent for the other metals (Zn and Ag). There is a short ~ 75 metre at a 160 degree trend and a much longer regional trend in the same 
direction, up to at least ~ 650 metres.

Ÿ   Sullivan region, the Mine stratigraphy and geological information (lithofacies, structures, assays, and alteration) can be compared to information from regional exploration holes, since they now have a common 3D spatial framework. This could 
prove useful for future work in delimiting the extent of the depocentre or sub-basin hosting the Sullivan deposit, and providing leads for exploration throughout the Purcell Basin. 

Conclusions

c)

When the volume is interpolated, using 
variogram analysis of  assay data points 
(Figure 13a), metal concentration trends 
show similar geometry to mine 
stratigraphy (Figure 13b) (McClay, 1983, 
Paakki et al., 1995).

d) e)

Figure 10 a)  Histogram of Pb untransformed b) Histograpm of Pb with log-
transformation c) Histograpm of Zn untransformed d) Histogram of Zn 
log-transformed.   NPb= 109,626  NZn= 109,757 
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