Euth giaizul act nowledinuewn of the axpistonns recenid

THE RELLATION OF THE SURVLYOR TO EAPMHQULKKLS

by

rresented before
 MHE ASSOCIACIOII OF DOMIHIOII LAUD SUTVIYYORS
 February 2nd, 1927

THE RELARIOIT OF SHE SURVLYOR TO EARMHOUAMTE
opo
Ernest A. Hodgson

Heaven sends us friends. We should, however, exercise considerable care in choosing our relations. The career of many a young man has been made or marred by his choice of an uncle, for example. My mission this afternoon is to introduce, to you as surveyors, a certain relation of yours, the science of earthquake study, or seismology. I trust I may be able to present him in such an attractive light that you will be glad to acknoviedge the relationship and that both parties to the introduction may profit therefrom.

In order to discover some of the more interesting points about this relationship, we shall have to go a long way back in history; back and still farther back, long before Eve made a monkey of a man, or Evolution made men of monkeys. History of so distant a time is, of necessity, vague. Authorities differ. Our needs will be met, if we but compile a single connected series of selected hypotheses, which will serve to account for the creation and evolution of the world, according to the facts presented. The dogmatic presentation of these hypotheses is necessary for our purpose. It must not be construed as an assertion of their absolute verity. "Speculation", says Daly, "is neither science or knowledge. Speculation of the happiest kind can do no more than point the way to possible future lnovledge."

Will our speculation result in a knowledge that is practical, or one that is theoretical? Millions of words and gallons of ink have been expended in an endeavour to define the boundary between these two territories, but it has proved an even greater task than that performed by those surveyors, of whom it has been said that they are engaged in placing boundary monuments in "inaccessible positions." and the boundary is less in need of delimitation, for there is complete reciprocity in this case. So then, in presenting those features of the science of seismology which should attract you, as surveyors, I shall not pause to make flesh of one and fowl of another: all the practical interests are scientific, and all the scientific appeals are practical.

A consideration of the world today reveals the fact that it is asymmetrical, or lacking in symmetry, in so far as the surface features are concerned. Te can divide it (by a great circle through San Francisco, Buenos Aires and Canton) into two hemispheres, one largely covered by water, the other by land. If we examine the water hemisphere we find the land encroaching somewhat on its edges. An examination of the land hemisphere reveals great patches of water within it - notably the Atlantic, Arctic Antarctic, and Indian oceans. Considering this land hemisphere still further we are struck by the fact that if we could push the continents together we could fit the wastern coasts of Europe and Africa into the eastern coast of the Americas, and that Australia would fit rather well into the Indian ocean. If we could thus consolidate the land we should be able to withdraw the edges of Asia and of the Americas from the water hemisphere. Our only ocean would then be the Pacific; our only continent a geographical League of Ilations. This would be rather hard on the Atlantic Shipping Interests, but think of the grand opportunity for the railways.

A land herisphere, one rreat continent; and a water hemisphere, one great ocean, may lave been the condition of affairs in the early history of this globe. lie shall not present the theories thich attemnt to account for this lack of symmetry in surface features. (Perhas our moon was formed from the material taken from the abyss of the lacific.) Let us imagine that such a Quaker-like arrangenent of the land and water did exist at one time. Our first question is; how long ago?

Mo answer this we must first obtain an estimate of the age of the earth. We asl: the consensus of opinion of the geologist, the astronomer and the geophysicist. These gentlemen, like most of those who deel in millions, speak with large gestures. A group of them sitting in conference for the settlement of this question are inclined to be generous. One is setisfied if they give him eight million years; another rises to remark that he must have at least ten millions. His request is granted without debate, which nerves a third to say thet the work of his branch could not possibly have been completed in less than a huncred million. Finally, with all the generosity of a municival council striking a tax rate, they decide to make it an even three hundred million - to take care of any unforseen demands.

But, simply becouse they do not seem to care to deal with small change, we must not infer that there is any lack of sense in their budect. Cilanging the similie a little, they are like a man ordering a dinner for which he is to pay in German paper marks - at someone else's expense. Thy male a fuss when an extre pat of butter raises the bill another hundred thousand? the total doesn't mean very much. Then the bill is presented however, the rolative value of the items is as vell determined as tho gh the meal cost a dollar instead of ten million marks or so. In the same way, the estimate of 300 milli 號 years may be out, on the whole, by a year or two - or even more - but the relative lenths of the geologic eras are fairly well determinea.

A smaller time scale will be convenient for present purloses It is now about three o? clock. Let us adopt the scale of ten million years to an hour, and place the oreation of the world at about nine o'clock yesterdey morning. On this reckoning the single continent was differentiated from the single ocean during the early morning hours of today. By about six oiclock the surface began to undergo a series of changes with which we are no. concerned.

Juring the time intervening between ils creation at mine yesterday morning and the time we nov consider at about sunrise today, the interior of the earth was probably sorting itself out into concentric spheres of varying density, the heavier materials lying nearer the centie. The lack of symmetry in its interior was slowly being elininated. Granitic rocks, such as foim the bulk of continental structure today, are the lightest movn. These formed the surface crust of the single continent. This crustal area floated in a substratum of hot lava or basalt of greater density. It floated, partly submerged, as does an iceberg or a solid ice floe.

The former rapid cooling at the earthis surface was greatly checled by the formation of this non-conducting crust. The tidal effects were comparatively severe, lloreover, due to the rotation of the earth and to the asymnetry of the interior a bulge formed
at each of the poles, with mid-latitude depressions separating these polar bulges from an equatorial bulge. All this time the elements were at work. Vinds, chemical action, rains and rivers \&ll worked their will on the face of this young continent; and this erosion had its cumulative effects.

As the mid-latitude depressions began to fill with seaiments from the erosion of the surrounding parts of the ancient land hemisphere, these geosynclines as they are called began to deepen because of the accumulated mass. This exerted a tension on the higher portions of the continental area. Thus began ε crumpling in mid-latitudes north of the equator The crustal material began to pile up and raft together. A thick, and ever thickening band developed along the geosynclines. These bands sank deeper into the basalt. They became gradually warmed: very slowly for the rocks are poor conductors of heat. As they warmed their density becane less and the bands were gradually elevated, floating higher in the basalt and forming mountain ranges.

Iie must not forget that our present continents, the two Anericas, hurore, Asia, Africa, and Australia, were then all in one, occupying about half the area of the globe. The mountain ranges then formed still appear, pert in America (the Anpalachians) part in Lurope and Asia. Daly says, "The mountain mass extended from vest of Arliansas, through Alabama, Ifew England, INewfoundland, Britain and France, Germany, Russia, and all across Asia to China. It was a colossal, probably uninterrupted chain of mountains all the way." These deductions are supported by a study of the formations of each. The fossils show the presence of similar forms at corresponding positions. In structure, composition anc date of formation they are found to correspond. b similar correspondence of mountain chains, in continents now widely separated in the south mid-latitudes, which is explained in the same way as. above, is found between the rock structures of South aitrica and those of Argentina. Feferring again to our time-scale, these mic-latitude mountain chains were undergoing their elevation at about noon today. Let us look back for a moment and see what other vicissitudes were suffered by the continental area during the course of the morning.

A study of the geological features of the world reveals the fact that the continental area suffered repeated slight elevations and depressions. The depressions are marked by the denosition of sediments in former shallow seas. The elevitions are shown by erosion. One of the powerful erosion agents was ice. There have been great ice sheets at various periods in the earthis history and over various sections of the continental area. We consider now only the very ancient ones - that came and went in the early morning hours of our time scale. They scored the rocks over which they slowly made their way. Some of these glaciated surfaces are evidently of the same geolo ical period, though occurring in what are now widely se, arated nleces. Geologists tell us that it was nrobably the same great ice sheet that glaciated the ancient rocks of jouth Africa and of Souvh America, when these were still jart of the same land area - the former "basement comnlex" - the oricinal "continental shield"

Parts of it are to be seen today. One section forms the north-eastern part of Canade anc ureenland - the Canadian shield, as it is called: another forms the fussian shicld, and still others the isiberian, African, Brazilian, Australian, and Antarctic
shields, respectively, The rocks of these shields present the evidences of their early adventures, their depressions below the level of the sea, their elevations into mountains.

If we accept the foregoing explanation of the origin of our mountains we see why sedimentary rocks are found high on their slopes. They were deposited in the crumpling geosynclines, and, aiter countless ages, raised to their present lof wy heichts, carrying with them their evidences of sea deposits in the form of fossils embedied in them. Chis explains the resence of sea shells on high mountains. This wes a first argument against the idea of the "everlasting hills." It was objected to by a certain class of arm-chair philosophers who would limit the revelation of God to the authorized opinions of men. They are against all observacion their recent persecution of lir. icopes of rennessee is characteristic of them. They are ageinst all scopes, including microscopes and telescopes. Alas, ther and we, must finally bow to the verdict of the atethescope.

The ancient continental shield, after ages of vicissitude was to suffer a still more drastic deformation however. The erosion of the continental area had resulted finally in the accumulation of great masses of sediments all about its edges. These would further depress the border bounding sea and land. W.. θ semi-mobile besalt sub-stratun would flow back underneath the shield, tending still more to elevate jt. A horizonval stress would develop across the shield. On our scale of time we reach a point about noon today - say some thirty million years ago in fect.

The horizontal tension became greater then the strength of the forty-mile thiclness of granitic roc ${ }^{\text {- }}$ s could sustain. The continent finally ruptured along a line which is now merked by a ridge throughout the length of the mid-Atlantic. The Americas began to anticipate the advice of Horace Greely - they went west. They let the rest of the world go by; and the rest of the world also began to slide down hill toward the esst. Both sections were slinping into the Pacific ocean, but into opposite sicies of it. We must not think of this "landslide" as having taken place at a rapid rate. It was rather a slow creep, the sort of motion one sees in the progress of a glacier.

The crust was depressed along the nose of these movements. seciments gathered there at incressingly rapid rates. Finelly the floor beneath the ocean broke and the crustal sediments and the ancient basement complex began to pile up like floes on the nose of a flood in a river. as they intereased in thiclmess they sank. All was below the ocean floor et liust.

The process may still be going on. This last surmer a world-wide endeavour wis made to determine whether the continents are still drifting. The crift may be of the order of a meter a. year. If so, we should be able to detect it by the determination of longitudes by wireless, very carefully conducted today, and repeated after the lanse of a few years. Canaia has had a share in the first series of observetions. The representatives from the Dominion Observatory established a station in British Columbia and another at the Observatory itself. The long sries of initial observtions, eztending over several veeks, vere but recently completed.
as the separation increased between the americas and the other continents water poured in from the pacific forming the Atlantic. The floor of this ocean was so thin thet it broke in places and we have, as a result, volcanic islands in mid-atlantic. Presumably, too, basalt flowed u in the depression, and formed, on freezing, the floor of the new-born ocean. These regions are still subjected to earthqualies. A great quale occurred in one group, the Azores, on August 31, 1926, lilling nine persons and injuring about 200. From ten to fifteen per cent of the houses in the town of Horta will have to be demolished.

But think of the great earthquakes there must have been in the van of this great emigration. And reflect on the abyssal deeps which would be formed as the pressure continued. Then considur the fact that earthquakes occur all about the Pacific margin even today and that ocean cepths at places exceed five miles. Remember too, thit in the aleutian Islands, for example, the mountains are still below the sea, and may still be risine.

Careful geodetic measurements made in California, seem to indicete lhat part of the mountains there is being thrust up over the rest at a measureable rate. Cities are now built on part of the moving mass. From time to time the movement is held up by friction. Its rele se is marked by an earthquare. A concerted effort by the seismologists of Uelifornia, in coperation with the United States Coast and Geodetic Survey, the verious Topographical surveys operating in the State of Celifornia, the United States Gologicel survey, and the Celifornia Institute of Technology, has been organized under the direction of a committee of the Carnegie Institution of liashington, to determine the laws of these movements and to learn the best mesns of protecting life and property there. You will see that these conditions are very different from those we have in the seismic region of suevec.

To understand the situation in Quebec ve must consider another geologicel event, which, according to our time scale, oceurred only a small fraction of an hour ego. Ist that time a grear ice sheet covered most of Canada. "e shall confine our attention to that portion of it that lay on Quebec and Hew England. The sheet was very thick - from 3000 to 6000 feet. Mhis great weight on a crust but some forty miles thick and supported by a potentially mobile basalt, caused a downwarping of a considerable area. That the province of quebec and eastern ontario were so downarned can be readily shown. Old sea beaches formed as the ice melted away. These are found at points now 600 feet and more above sea level. You can find sea shells in the sand, just east of the city of hontreal and also behind the city of quebec. An old sea beach is visible near irand liere, over twent miles north of three Rivers.
:ithout going too greatly into details we may say that this downarp ${ }^{\prime} n_{E}$ of the ice has been followed by an upwarping on its removal. Is it still in progress? If se it may be either a slow rise (of which we shall speak presently) or it may be vaking place in a series of jerks - earthquakes. On Eebruary 28, 1925, an earthquake occurred at a point about 90 miles below Quebec, which caused considerable damege at its epicentre and which was seisibly felt (without instruments) as far west as the Mississinpi and as far south as Virginia. A sensitive seismograph in Belgium recordeả the tremors for over five hcurs with a maximum amplitude on the
record of over three inches. If this earthquale were due to the intermittant rising of the area depressed by the ice sheet, we would expect that precise levelling would show traces of it if the worl: were re-done.

The only line of precise levelling treversing the area was that run in 1915 along what wes then the Intercolonial filway from .iviere du Joup to Levis. chis line was re-run in 1925, through the pind cooperation of the Geodetic surve. It is true that the differences found were of the order of the probable errors, wit they were systenatic and showed an up, arping of the east end with respect to the wesi, a finding confirming the other field worl done by the seismologists. This lends weight to the ceduction that the earthquako occurred along a fault crossing the st. wawrence near aiviere Ouelle, anc that the sea-ward side of the fault snapped up, with respect to the land-ward side.

In this area then, precise levels and geodetic triangulation are extrenely important conurols vich should be carricd on with great care and as soon as possible, so that after another earthquake, suspected areas may agein be worked over. This is one phase of the interest of surveyors in this region.

Bofore mentioning any others lot us talee a fow moments to examine the instrumental side of seismology. Ie shall pass over the instruments with the brief ezplanation that these are of two general types, registcring respectively horizontal and vertical comnonente of the fluctuations of the pier on which they are mounted. Using two of the horizontal troe and one of the vertical we obtain an automatic resolution of the comnlox movements of the pier in space, into three records of the comnonent motions in three planes mutually at richt angles. Let us ezamine the possibilities of a study of these undor three conditions; first where the distance about the surface of the earth, from the station to the evicentre of the earthquake (referred to as A) is more than 500 and less than $10,000 \mathrm{~km}$., second where a is over $10,000 \mathrm{~lm}$. and lastly whero is is less than 500 km .

In the first case we cen detormine quite accurctoly the value of and also the time at the origin when the shook occurred. 'This latter is designated by the symbol 0 . For a sharply dofined earthqualre the value of 0 is surprisingly consistent though obtained from the recorus of stations situated in virious directions from the opicentre and at different distancos therefrom. liforovor, records of the sane earthqualre, obtained at widely separeted stations vith similar instruments aro notably alive in charecter and give the seismologist a feeling of confidence in the porformance of his inctrumeits, tile comparativoly homogoneous char cter of the earth, and the general accuracy of his tables. There the initial phase is well marled the azimuth can also be deternined from the three records obtained at one station. The records of the it. Lavence carthquake woio read wit:in a couple of hours after the shook. Before midnight C.II....). boreacest our announcoment that the epicentre was "near the mouth of the Saguonay."

For dietances greater than $10,000 \mathrm{~km}$. the earthquake wevos reaching a station aro interferred with bu tho dense metallic core of the carth. A studr of the records at stations sufficiently removed from the opicentios of large carthruares is yiolding much information as to the conciuions vithin the eerth. Ottrva is
particularly well situated for such work, with respect to the many earthcquakes of the Pacific islands and the last Indies.

For distances within 500 km . or thereabouts another possibility ε ppears. If we can get \sim fairly regulor seruence of well ceftned but not very heavy shocks we can arrange to study the crust of the earth at that "lace by means of the earthaua? e weves reflected at its lower suriace where it meets the basaltic layer. In zuebec we have many such - we know there are at least ten a year. Then the sensitive seismographs are in place we may find there are as many as a hundred. .t present we do not lmow. irom time to time elatively severe shocls occur. The one previous to that of jevruary 28, I 325 . occurred about 11 a.m., october 2 v , 1870. It was quite comparable with the one of two years ago. It was sensibly felt in INew York City. How soon the next will happen no one can say. Ne have plenty of time to stady the conditions, if the interval should again be 55 years or thereabouts. In the section between the is. Lawrence and Saguenay rivers anc adjacent parts we have fairly regular earthnuakes which wo uld collaborate with us in such a study.
for a complete investigetion we would require special vaults, arsanged at the points of a triangle covering the eree to be studied, say one near juebec, one near Chicoutimi, and a third near Riviere du Loup In these we require installations of special tyne seismogra hs, three comnonents in each vault. if drive the recording drums of all nine seismograys by means of synchronous motors, run by the same nower source, and mark the time by impulses from one master cloc\%. ith such a set un we could very soon determine the position of the enicentres within a mile or so. Let us consider one such epicentre as determined and note the work which might profitably be done by the surveyor.

The geJdetic survey could run brench lines of levels into the area and spread their triangulation net over it; the topographical survey could then prepare mens of the area showing the relief. The geological survey could examine the limited region thoroughly. .ie would thus have precise controle. e could study the seismic movements by means of the seismographe and when neat this particular spot was disturbed the surveyor would alone be able to tell us whether it had risen or fallen or the direction of horizontal shift.
Δt preseit no such complete installation hes been made, nor is it in imnediate prospect. But th ough the cooperation of the commercial interests in the province two instruments are being installed in specially constructed vaults. 'The vault sites have been covered by the triangulation nets of the Geodetic Survey. Topographical maps are being nrepared. the vaulte are completea and the inscruments are about to be tested. hon they are installed we shall be able to determine cefinitely the number and relative intensity of the locel tremors, and rather indefinitely the centres affected. e shall, however, be able to measure the seismicity of the vault sites. If ther prove to be the centres or near the centres of slight seismic acuivity, the coo eration of the surveyor will again be required to devermine what the movement has been since the control observetions were made. The investigations will serve to show the possi〕ilities of ε comnlete installation. The conditions in que'rec are not those of California by any means, but if
the seismic centres there are determined, it will be the essence of good judsment to avoid them as sites for comnercial enterprises which form so large a part of the present or potential wealth of the province.

In Quebec then we are studying the problem of a presumably rising area. It has risen in the past for deep sedimentary deposits are there which have been laid down when the sea covered it. Hany of thesc deposits are unstable when wet. In the past serious landslides have occurred in them on April 6, 1908, a landslide on the Lievre liver at Ilotre Dame de la Salette, moved a bank over 1300 feet long and 60 feet high with an average width of 400 feet 1 rom its original position clear across the river. It slid bodily, without warning, into the river, resulting in the death of 33 people, and the aestruction of fifteen houses, fwenty-five outbuildings and six acres of good farm land. Such landslides have been reported since that time, at other points. Serious ones have happened within the pust two or three years, but without loss of life. \& study of these landslides comes within the purview of seismology. They may be set off quite readily, in damp weather, by a most moderute earthquake, and they may result in very serious damage. There evidences of these are noted by the surveyor in his worl, he would be assisting the cause of seismology by reporting them.

One more noint before we leave the east. a commission has been recently appointed by the United States, IJational Fesearch Council, to study the shore line of the United States, bordering the Atlantic. Is this shore rising or falling or stationary? r'hose surveyors who are sent far north in Canada, or by ship to Labrador or Greenland and other northern places would assist greatly by keeping notes of any evidences of elevation or depression of shore lines, ta' ing photographs where possible. Preferably those who are going into these areas might read one or two books déling with shore line movements. also, if any mention is made of earthquake tremors in these nor thern latitudes we should like to lnow about them. An effort is being made to get seismographs into the far north, or near the edge of the retreating ice cap. Denmark has announced her intention of establishing a station t Jan Ifayen island, lying between Greenland, Iceland, and IVorway. Mir. J. J. Shaw of Inglaid has sent one of his seismographs to be set up in Greenland by a Denish scientist. The seismologists of the United States are a itating for the establishment of a seismographic station on on the Aleutian islands. As yet no operating station has been established and reported on its findings. Any information the surveyors happen to run across in their work would be valued by those working on this disputed but important problem. It is not likely to affect us in our generation to any marlred ertent, but if the coast is rising we vould do well to establish harbours where dredging would not be a too important factor in the future. Whether such consideration should apply to the vexed question of the location of a Hudson Bay harbour one cannot say. We don't know whether this region is rising or not. It may not be, but, on the other hand, if our hypotheses are correct, it may be rising rither rapialy.

In conclusion, let us look at the conditions on our Pacific coast. . recall the hypothesis that the continent is drifting toward the Pacific, an area of stress and strain marking its western coast line Deep ocean floors, many earthquakes, and volcanoes mark most of the Pacific shores. There are so many volcanoes that we speak of the Pacific Ring of Fire. That are volcanoes? Have we any in canada?

Briefly, a volceno is a fault or abyeal cract through the crust of the earth, which permits the lava of the basaltic layer to rise within it, and undor certain circumsiances to overflow at the surface or to explode. It has been noted that the continent floats in the basalt, partially submerged, lire n iceberg. e would not then expect the lava to come out unless some definite forces act. Pressures of the drifting continents may furnish such a Iorce but the most probable one is called "Gas fluxing".

Wen the crust formed it prevented the escape of gases from the basalt. Iruch was dissolved in it. Yhen the asalt rises in one of these abyssal faults the pressure at its surface is lessened. Gas is thus released from the basalt. It is very hot, and results in a heating of the top of the column. This expands the column of lava until finally it overflows. Then, the gas being cxhaustod for tho time being, it is unable to rise above the surface and freezes over. If it were not for fresh supplies oi heat from bolow, the b salt would freeze over in the vent forming a plug to ε depth of several huncred feet in ε single day. 'the frozen surface formed Whon the gras had cecsea to be छiven off, prevents the escape of that gas which finilly mikes its way to the vent from below. Tne pressure incre ses because of the gas and the local heat melts the plug. :hen the criticul, oint is reached the weakened plug is blown out, cerrying an onrush of lave with it - tho volc.no is agein in oruption. The cycle rope ts itself many timos.

This continues antil the surply of gas in the magme chamber gives out, the basalt giving up all its dissolved gases. The bot air having been expended, the vjlcano bocomes silent, cold, and dark - like the auditorium after a political meeting.

Although, the nlug freczes to a great depth in the vent of an extinct volcano, the bisalt forming it is porous. If the crater stands full of water for a long time the moisture may penetrate down to the hot leve below. ihen this occurs steam forms and when the prossure is great enough an explosion occurs. In 1888, the extinct volcano of Japan called Bandai-San, was looked upon as a simple mountain. A nriest climbed this 3,000 foot elevation one day and had his meditations rudely interrupted by a tremendous emplosion, caused by the steam formed from the percolated water. A section of the mountain 2000 foet high and some four square miles in erea blew up before his eyes. He lived through his experiences because the exnlosion was due to steam alone. Had it been an explosion of magmetic gases he would have been asphyxiated even had he been fortunato enough to escape the projectiles. Explosions of the same rind occurred in 1924 in Hawaii.
low, have we volcanoes in Canaca? Yes, many of them. But they aro nearly all extinct. Lontroal mountain is an ertinct volcano. Ven our friend the priest of Japan, would accopt the verdict that it isnit loaded. In is not quite the same thing in 3ritish Columbia. The following facts were obtained from the surveyors who worled on the International Bounc ary between Llasla anả British Columbia.
at a point about a hundred and fifty miles due north of rince Rupert, near the head waters of a tributary of tho Unuk river which flows into Behm canal, is an old crater. Li\&ny conturies ago it was in eruption for the lave flowed down two sides, forming canyons on one brach of the Unut anc. filling the chaniel of a second tri-
utary. This lav lay there long onough that large trees grev on it. Then at a much later date - probably of the order of a hundred years ago or less - another eruption tool place. Mhis time the lav flowed only into the tributary whose channel had been filled by the previous flow. The smaller vegetation growing on the old flow was burned at once. The larger trees were killed remaining long enough to leave pot holes in the lave where they stood while they were being burned off below the surface. Then they fell over on the leva bed. and there they are today. The situation is an ideal one for the decay of timber - the climate is moist and warm. 'lhe deduction is inevitable that the last flow was not very long ago - in geologic time at any rate.

This is an interesting and im ortant fact. What was the elansed time between the first and second eruptions? lay we expect another? The cr ter is filled with ico and snow, the clinate is very moist. 'ill the volcano ever blow up as did Bandai-san? What effect will the tremors have (if this ever talres place) on the coast cities.

Had it not been for the obscrvations and reports of the officers of the Boundery Commissions it is doubtful whether we should ever have had an thing like as good an account as wo now possess, for years to come. People do not go up there very often. In 1909 a survey party went up to set a monument on the boundary. learing to be tranped by an impenaing storm they left, closing the season without setting the monument. rhey returned next in 1920. So confident were they that their tools would not be disturbed on the borndar. line, after a lapse of eleven years, that they simply took some cement and went up to the station. Where was the monument as they left it. Their tools were undisturbed. (There isn't a garage mechanic within two hundr miles). This is an added example of the opportunities surveyors have to contribute importani date to scismolo: if wis ure sufficiently interested in its problems for the facts to impress them

So then, I have given you an extended introduction to your new: relation; for seismology is a new relation to surveyors in Canada. I have traced his lineage into the dim and distant past and expatiated at length upon his future. In other countries he may be looked at askance, but in Canada he is not likely to get you into any serious trouble and he is lisely to prove an intersting and profitable relation to claim and to cultivate by means of both systematic and incidental omportunities as these may present themselves.

DOMIIIOLI OBSERVAZOIY
OI工AKA-CANADA
January 29, 1927

