CHAPTER 2

GROUNDWATER
BASICS

By Alfonso Rivera




2.1 INTRODUCTION

Groundwater accounts for nearly all of the poten-
tially drinkable water on Earth, with the exception
of water in polar caps. New exploration and pro-
duction techniques and a better understanding of
the dynamics of natural groundwater reservoirs
are helping Earth scientists find new sources of
this essential commodity.

Global changes, such as population growth, cli-
mate variability, expanding urbanization, often
combined with pollution, severely affect water avail-
ability and are leading to chronic water shortages
in a growing number of regions. The World Health
Organization estimates that, within 12 years, two
thirds of the world’s inhabitants will live in countries
with serious water problems. Inventive approaches

and innovative technologies must be developed for
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every possible water resource.

Groundwater is one of the most important nat-
ural resources; it is the main source of water for
irrigation worldwide (more than one-third of the
arable landmass is irrigated with groundwater),
and it is the main source of drinking water for a
number of countries.

Within this chapter, we provide an overview of
groundwater’s basic characteristics as a resource
by exploring aquifers, groundwater flow mechan-
isms, wells, the natural quality of groundwater and
its interaction with the environment. Together with
Chapter 3, this chapter expands on regional aquifer
characterization and groundwater resource assess-
ments for an integrated understanding of aquifer
systems and the science required for sustainable

management of groundwater resources.
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Figure 2.1 Global pools and fluxes of water on Earth, showing the magnitude of groundwater storage relative to other major water storage and fluxes (reproduced
and modified from Schlesinger, 1997). Pools (in red text) are in cubic kilometres; fluxes are in cubic kilometres per year.
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2.2 WHAT IS GROUNDWATER?

Groundwater is a vital and essential part of the
water or hydrologic cycle; it is the water that seeps
into the ground, filling voids, cracks and fractures
in rocks. The water cycle (schematically repre-
sented in Figure 2.1 in the form of pools and fluxes)
is driven by thermal energy provided by the Sun.
Water evaporates from the surface of the oceans
and continents and is transported through the
atmosphere, where it remains no longer than eight
days before it precipitates as rain on continents and
oceans. Once on the ground, precipitation fluxes
are redistributed. Direct evaporation returns one
part of the flux to the atmosphere during and after
rainfall. Transpiration from vegetation returns to

the atmosphere as part of the water that has seeped
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into the ground during rainfall. The sum of both
fluxes is called evapotranspiration and it is by far
the most important flux of the cycle, representing,
on average, 63% of annual precipitation.

During the summer, ground infiltration helps
form the near-surface stock of water needed for
evaporation and transpiration. In cooler seasons,
however, water infiltrates deeper into the ground,
recharging the groundwater contained in soils and
rocks. This deeper infiltration represents, on aver-
age, 13% of annual precipitation.

Runoff, representing, on average, 24% of precipi-
tation, is another important flux of the hydrologic
cycle. Runoff occurs immediately after soil satur-
ation, when the soil can no longer absorb more
water. Runoff has high variability, depending on
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the type of soil and rain intensity; it may, as sur-
face water, eventually form rivers. A large part of
groundwater also ends up in rivers, forming what
is known as river “baseflow,” or natural water flow
in the absence of rain (these occurrences explain
the differences between ocean fluxes and land
fluxes in Figure 2.1).

The sum of evapotranspiration (ET), ~ 496,000
km?/year from oceans and land, equals the sum
of precipitation (P) at the global scale (Figure 2.1).
Rainfall, on average, exceeds evaporation on the
Earth’s continents, whereas evaporation exceeds
rainfall on the Earth’s oceans. This difference is
40,000 km?/year at the global scale. The equilibrium
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TABLE 2.1 GLOBAL VALUES OF WATER FLUXES
ON THE SCALE OF THE PLANET (IN VOLUME,
KM3/YR, AND IN EQUIVALENT WATER BAND,

MM/YR; WRI, 1990)

Evaporation on oceans 425,000 km3/yr (1,250 mm/yr)
Evaporation on continents | 71,000 km®/yr (410 mm/yr)
Precipitation on oceans 385,000 km®/yr (1,120 mm/yr)
Precipitation on continents | 111,000 km?/yr (720 mm/yr)

TABLE 2.2 WATER FLUXES FROM CONTINENTS
TO OCEANS (IN KM3/YR)

Flow rate of rivers 27,000 km/yr
Base flow from aquifers to rivers and oceans | 10,500 km3/yr
Input from glaciers to oceans 2,500 km®/yr
Total 111,000 km®/yr
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Figure 2.2 Pools and fluxes of water in Canada. Pools (in red text) are in cubic kilometres; fluxes are in cubic kilometres per year (Sources: P from Statistics
Canada, 2003; ET from Liu et al., 2003; RF from WRI, 1990; ice from Demuth, 1997; | from WRI, 2007, and groundwater in storage [pool], Rivera, 2008; Rivera

and Vigneault, 2010).

of the Earth’s water cycle means that every year
continents send 40,000 km? of water to the oceans
(World Resources Institute [WRI], 1990) (Tables
2.1 and 2.2).

In temperate regions, like Canada, when rain
arrives on the ground, one part infiltrates and
is essentially used to recharge the “soil reser-
voir” from where evapotranspiration transports
it back to the atmosphere. During the cooler
seasons, when evaporation is lowest, water con-
tinues downward and reaches the water table.
This process is complex and variable, depending
on the region. Permafrost, for instance, has often
been considered an impermeable barrier (or
aquiclude) to groundwater movement because
of the presence of ice-filled pores and fractures.
Consequently, many people believe that northern
Canada lacks active groundwater flow systems.
Although permafrost does have a significant
impact on groundwater flow regimes, especially
the recharge component, active groundwater
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flow can be found to varying degrees throughout
Canada’s permafrost regions (see Chapter 15).
How does Canada fit into the global water-bal-
ance picture? Figure 2.2 summarizes Canada’s
pools and water fluxes. 5,500 km?* of precipitation
(P) falls on Canada every year, mainly in the form
ofrain and snow. Evapotranspiration (ET) accounts
for 40% of P with 2,200 km?. River flow (RF), fed
by runoff and groundwater (baseflow), accounts
for 53% of P with 2,915 km?®. The contribution of
runoff to streamflow varies seasonally, depending
on precipitation, snowmelt, and in some locations,
the summer melting of glaciers. Lastly, ground-
water recharge (I) accounts for 7% of P with 385
km? (estimated from the sum of all baseflow of the
rivers in Canada for which data exist). The pools in
the figure, ice and groundwater, are much larger
than the yearly precipitation and all river flow com-
bined (Figure 2.2). However, the ice pool cannot
be used directly, although it does serve to main-
tain river flow and to recharge aquifers in some
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Figure 2.3 Groundwater flow and geological units forming aquifers.

locations (e.g., the foothills of Alberta).

Canada’s large groundwater pool (estimated to be
70,000 km®, Figure 2.2; Rivera and Vigneault, 2010)
represents the storage volume of groundwater in
aquifers, other than the yearly recharge. This stor-
age volume is estimated to be an average of the
upper 150 metres only; it is not all usable and might
not be sustainable over the long term. Currently,
there are no precise estimates available of the vol-
ume that would be sustainable on a national scale.

A comparison of Canada’s average yearly water
fluxes with global water fluxes on Earth (water cycle,
Figure 2.1), reveals some particular differences.
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Evapotranspiration is much lower in Canada than
the world average, while runoff is more than twice
the world average. Recharge, on the other hand,
is smaller than the world average (although there
is much uncertainty about estimates of this flux).
Canada’s climatic, geographic and geological char-
acteristics impact on the country’s water cycles,
making Canada quite different from many other

countries.
2.2.1 Groundwater flow mechanisms

Groundwater refers to water that resides within
the zone of saturation beneath the Earth’s surface;
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An aquifer is a permeable material that can
transmit significant quantities of water to a well,
springs or surface water bodies.

it is the liquid that completely fills pore and frac-
ture spaces in the subsurface, as shown in Figure
2.3. Geological units can be defined on the basis of
their ability to store and transmit water. An aquifer
is a permeable material that can transmit signifi-
cant quantities of water to a well, springs or surface
water bodies. An aquifer is by no means equivalent
to a single geologic, lithographic or stratigraphic
unit; two contiguous layers of sand and limestone,
for instance, may form a single aquifer. Conversely,
a single regional stratigraphic unit may have more
than one groundwater flow type, depending on
the space and time scales considered. In some
cases, we define aquifer systems, which include
more than one type of groundwater flow. Aquifers
may be composed of (a) unconsolidated sand and/
or gravel; (b) permeable consolidated deposits, e.g,,
sandstone, limestone; or (c) consolidated less-per-
meable fractured rocks (granitic and metamorphic
rocks).

Figure 2.3 shows unsaturated and saturated
zones defined by water table or piezometric levels.
In general, groundwater is gravity-driven: it moves
from areas of high hydraulic head (pressure) to
areas of lower hydraulic head (e.g., toward lowland
areas in Figure 2.3). In some exceptional circum-
stances, groundwater can move against gravity, as
in the case of density-driven flow (e.g., the occur-
rence of dense non-aqueous phase liquids, com-
monly known as DNAPLSs, or interaction between
fresh water and saltwater). However, on a regional
scale, groundwater always moves from high to low
topographic points.

Aquifers are recharged in many different ways.
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In addition to direct recharge from precipitation
(Figure 2.3), surface water bodies can be both
sources and sinks for groundwater. For example,
the right-hand side of Figure 2.3 shows ground-
water recharged by river water, which later dis-
charges back to the river. Thus, surface water—
groundwater interaction is highly dynamic. This
interaction may not always take place, depending
on the type of aquifer system, the permeabil-
ity of rocks, and climate. In Canada, this inter-
action is extremely important because most of
the currently exploited aquifers are shallow, and
located in unconsolidated Quaternary sediments.
Groundwater also maintains wetlands and aqua-
tic health by buffering nutrients and temperature
fluctuations, especially in riparian and hyporheic
zones (Hayashi and Rosenberry, 2001).

2.2.2 How do groundwater aquifers differ
from surface water watersheds?
Groundwater flow occurs in aquifers, while sur-
face water flow occurs in watersheds. Watershed
boundaries can be clearly defined by topography,
whereas aquifer boundaries cannot. Aquifer
boundaries and watershed boundaries may or
may not coincide, but more often they overlap. In
some cases, very deep aquifers may be recharged
in remote mountain ranges. Water infiltrating into
fractured rock within the mountains may flow
downward and then move laterally into confined
aquifers. In some regions, these aquifers extend
for many hundreds of kilometres beneath the land
surface, and sometimes crossing natural surface
watershed boundaries or jurisdictional bound-
aries. Thus, groundwater in a confined aquifer
may recharge in one watershed and discharge
in another, or perhaps recharge in one province
or nation and discharge in another; the latter
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Figure 2.4 Range of hydraulic conductivity (K) values for geological materials (modified from Driscoll, 1986 and Todd, 1980).

phenomenon is classified as a “trans-boundary
aquifer” (see section 2.6 and Chapter 16).

Watershed boundaries and aquifer boundaries
may coincide when aquifers are located in uncon-
solidated shallow sediments, under unconfined
conditions, such as valleys and deltas composed
of glaciolacustrine or glaciofluvial sediments. In
those cases, interaction between surface water
flow and groundwater flow occurs as a result of
hydraulic interconnections between surface water
bodies and aquifers under phreatic conditions (at
atmospheric pressure).

In cases where surface water and groundwater
interact, seasonal water table fluctuations follow a
pattern similar to those of river levels (more details
in Chapter 4 and 5).

Materials through which groundwater can pass
easily are said to be permeable and those that
scarcely allow groundwater to pass or only with
difficulty are described as impermeable.
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2.3 NATURE OF PERMEABILITY

Permeability is an essential physical property of
rock-forming aquifers. Scientists distinguish two
permeability types: intrinsic, or specific, perme-
ability (in m?) and hydraulic conductivity (in m/s).
The former relates to the porous medium regard-
less of the fluid characteristics (as used in soil/rock
mechanics), while the latter is a vector as used in
hydrogeology. The intrinsic permeability is only
defined at the macroscopic scale with dimensions
of a surface area. However, permeability is often
expressed in darcys, which is a unit equal to 0.987
10"? m?. Intrinsic permeability and hydraulic con-
ductivity are linked by the intrinsic properties
of the medium and physical nature of the fluid,
defined as:

K=kpg/u 2.1)

where K is the hydraulic conductivity; k is the
intrinsic permeability; p is the water density (kg/
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m?); g is the acceleration of gravity (m/s?); and p is
the dynamic viscosity of the fluid (usually water)
(kg/m s). Intrinsic permeability depends on the
porous matrix properties exclusively. The medium
is termed homogeneous if k does not vary in space.
If k varies in different points in space, the medium
is called heterogeneous and if k varies in different
directions, the medium is called anisotropic, other-
wise it is isotropic.

Other factors, which can affect the intrinsic per-
meability of a medium, include deformation of the
porous matrix (e.g.,, consolidation leading to land
subsidence), dissolution of solid particles, and
chemical and biological processes.

The relationship between K and kin Eq. 2.1 is not
very often used in studies of groundwater resour-
ces, but rather in studies of coupled phenomena
such as hydraulic-mechanic (subsidence due to
intense pumping), and hydraulic-transport (solute
or heat transfer in groundwater pollution problems
or in variable-density problems).

Groundwater resource studies most commonly
use the hydraulic permeability, K (the permeability
of hydrogeologists), generally without distinction
with k. For most practical purposes, and under iso-
thermal conditions, intrinsic permeability (k) can
be related to hydraulic conductivity (K) as k (m?) =
107 - K (m/s).

Hydraulic conductivity is a measure of the
ease with which groundwater flows through
the rock-forming aquifers. The ease with which
groundwater flows through a rock mass in a por-
ous aquifer, or the fractures in a fractured aquifer,
depends on a combination of the size of the pores,
or the fractures, and the degree to which they
are interconnected. These features determine the
overall permeability of the aquifers. For instance,
in clean, granular materials, hydraulic conductivity
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increases with grain size. Typicalranges of hydraulic
conductivity for the main types of aquifer materi-
als are shown in Figure 2.4. The limit separating
permeable from impermeable material is often
(arbitrarily) set at 10 m/s, which is acceptable for

most groundwater resources studies.

2.3.1 Darcy’s Law

Darcy’s Law (formulated by Henry Darcy in 1856)
is an equation which describes groundwater
flow. This law states that the volumetric flow rate
through porous media is proportional to flow area

A, the hydraulic conductivity K, and the hydraulic

gradient i:

Q=AKi (2.2)
in which

i= (h,—h)/Al (2.3)

where Q is the volumetric rate of flow through area
A under a hydraulic gradient Ah/Al (the difference
in hydraulic heads (h, — h,) between two measur-
ing points), divided by the distance between them.

Equations 2.2 and 2.3 can be combined to repre-
sent the volumetric flow per unit surface area q, as:

Q/A =q=-K (h,—h)/L=-KAh/Al (2.4)

The direction of groundwater flow in an isotropic
aquifer is at right angles to lines of equal head. A
simple experimental apparatus used to demon-
strate Darcy’s Law is shown in Figure 2.5, indicat-
ing also the elevation and pressure components of
hydraulic head referred to above. The equation for
Darcy’s Law is conventionally written with a minus
sign because flow is in the direction of decreasing
hydraulic heads.

This representation is very convenient because it
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Figure 2.5 Darcy’s experimental setup (modified from Price, 1996).

provides rapid and easy estimates of groundwater
flow where values of groundwater elevations are
known or available. A graphical illustration of the
use of the steady-state groundwater flow equation
(based on Darcy’s Law and the conservation of
mass) is in the construction of groundwater flow
lines (or equipotentials), to quantify the amount of
groundwater flowing under a dam or an aquifer.
An example of this is given below (see Figure 2.6).

Darcy’s Law is only valid for slow, viscous flow,
but, fortunately, most groundwater flow cases fall
in this category. Typically any flow with a Reynolds
number’ less than 1 is clearly laminar, and Darcy’s
Law would apply. Experimental tests have shown

that flow regimes with Reynolds value numbers of

up to 10 may still be Darcian.
A very simple and practical example of the use-
fulness of Darcy’s Law is given below.
Consider the aquifer depicted ona2D-horizontal
dimension over a three-dimensional schematic
aquifer in Figure 2.6; using Darcy’s Law, calculate:
1) The time it takes to transport a drop of ground-
water from point B to point A

2) The groundwater volumetric fluxes per stream-
line and per metre thickness of aquifer, in
m?’/year

3) The water infiltrated over the whole area of

the aquifer in an equivalent recharge, in
mm/year

The aquifer is composed of a porous medium

1. In fluid mechanics, the Reynolds number (Re) is a dimensionless number that gives a measure of the ratio of inertial forces to viscous forces and
consequently quantifies the relative importance of these two types of forces for given flow conditions. Re is used to characterize different flow regimes,
such as laminar or turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth,
constant fluid motion, that is generally the case for groundwater flow in porous medium.
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Figure 2.6 Example of application of groundwater flow lines and Darcy flow.

with sand and gravels. Let’s take typical values

from Figure 2.4 and Table 2.3: a hydraulic conduc-

tivity of K=10"m/s and a specific yield (Sy) of 10%.
Using equations 2.2, 2.3 and 2.4 we have:

Darcy flux and groundwater velocity:
Using q = -K- i; with i from Eq. 2.3:
i = (h,,—h)/L=60/5000=1.2 102

q=10"m/s-1.2-102
=1.2-10°m/s

A linear pore velocity (average linear groundwater
velocity), v, which is the volumetric flow rate per area
of connected pore space can be calculated as v=q/n, if
the porosity, n, is known (it is necessary to know the
effective or dynamic porosity, ne, which represents
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the proportion of the total porosity involved in
groundwater movement). This can often be difficult
to measure, although, for unconfined aquifers, n is
probably close to the specific yield values given in
Table 2.3. Thus we can define:

V=q/S =12-10*m/s
y

and the travel time from B to A as: L/v =4.17 -107

sec, or 1.32 years

Volumetric fluxes:
Using Eq. 2.4, we can calculate the groundwater
flux across each unit surface area (Ah =10 m):
A=5000 m X 10 m; and
Q=q-A=(12-107) (56-10%) = 0.6 m'/s

Or a total of 19 Mm‘/year, per flow line, per metre
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Figure 2.7 Water, solid and air phases in a porous media rock formation.

thickness of aquifer.

Infiltrated equivalent water band:

I = Volume/surface area (m*/year/m?)

I =19 10" (m’/year) / (Length -Width) (m?) = 760

mm/year

2.4 ROCK-FORMING AQUIFERS
Groundwater occurs in most geological formations
because nearly all rocks in the uppermost part of
the Earth’s crust possess openings called pores or
voids. Figure 2.7 depicts schematically water situ-
ated in the voids or pores of a porous media rock
formation. Geologists traditionally subdivide rock
formations into three classes according to origin
and creation: Sedimentary rocks, Igneous rocks and
Metamorphic rocks.

Sedimentary rocks are formed by deposition of
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material, usually underwater, from lakes, rivers
and the sea. Unconsolidated granular materials
such as sand and gravels have voids, or spaces
between the grains (Figure 2.8A). The material
may become consolidated, through physical com-
paction and chemical cementation (Figure 2.8D),
to form typical sedimentary rocks such as sand-
stone, limestone and shale, with the void space
much reduced between grains, but with a por-
osity high enough to allow groundwater flow.
These type of rocks form many important aqui-
fers in Canada.

Igneous rocks are formed from molten geological
material rising from great depths within the Earth,
then cooling to form crystalline rocks either below
ground or at the Earth’s surface. These rocks
include the granites and many volcanic types of
lava such as basalts. Most igneous rocks are rela-
tively dense and, being crystalline, usually have
some voids between the grains, although these
are not well-connected. Igneous rocks cover nearly
one third of Canada’s total land area (forming the
Canadian Shield).

Metamorphic rocks are formed by deep burial,
compaction, melting and alteration or re-crystal-
lization of other rocks during periods of intense
geological activity. These rocks include gneisses
and slates. They are dense with few void spaces
in the matrix between grains.

The only void spaces in some dense rocks, may
be as a result of fractures caused by fold and fault
stresses. These fractures may be completely closed
or they may have small, not very extensive (or
even poor) interconnected openings of relatively
narrow aperture (Figure 2.8F). Weathering and
decomposition of igneous and metamorphic rocks
may significantly increase void spaces in both the
rock matrix and in the fractures. Fractures may

UNDERSTANDING GROUNDWATER



(A) Well-sorted, unconsolidated sedimentary (B) Poorly-sorted, sedimentary
deposit having high porosity deposit having low porosity

(C) Well-sorted, sedimentary deposit consisting (D) Sedimentary deposit whose porosity
of pebbles that are themselves porous, has been diminished by the deposition of
so the deposit as a whole has high porosity mineral matter between the grains

(E) Rock with porosity increased by solution (F) Rock with porosity increased by fracturing

Figure 2.8 Rock texture and porosity of typical aquifer materials (based on Todd, 1980).

also be enlarged into open fissures as a result of  salts, are particularly susceptible to active dissolu-
dissolution by flowing groundwater (Figure 2.8E).  tion, which often produces the caverns, sinkholes
Limestone, largely composed of calcium carbon-  and other characteristic features of karstic aquifers.
ate, and evaporates composed of gypsum or other The three basic rock formations described above
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Figure 2.9 Combined groundwater flow systems through pores and
fractures, in the St. Lawrence Lowlands, Province of Quebec.

are usually subdivided by geologists to study
origins, structure and other natural processes.
Hydrogeologists, on the other hand, tend to classify
rock-forming aquifers as unconsolidated or consoli-
dated, depending on whether water is stored and
on how it moves between grains of the rock matrix,
or through fractures. Because geological maps are
one of the main sources of information required
to characterize aquifers and to assess ground-
water flow systems, it is worthwhile to understand
the main geological terms geologists use (see also
Chapter 3).
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2.4.1 Porosity

Rock porosity depends on the volume of water that

can be stored in the rock, which in turn, depends on
the proportion of openings or pores in any given rock
volume. Thus, the porosity of a geological material is
theratio of the rock volume to total volume, expressed
as a decimal fraction or percentage.

Figure 2.9 shows a typical case in the St.
Lawrence Lowlands, Province of Quebec (see the
Central St. Lawrence Lowlands Hydrogeological
Region in chapter 13), where groundwater flows
through both the pores and fractures.
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TABLE 2.3 POROSITY AND SPECIFIC YIELD
OF GEOLOGICAL MATERIALS (FREEZE AND
CHERRY, 1979; DOMENICO AND

SCHWARTZ, 1998)

SPECIFIC
MATERIAL POROSITY YIELD

Unconsolidated sediments
Gravel 0.25-0.35 0.16-0.23
Coarse sand 0.30-0.45 0.1-0.22
Fine sand 0.26-0.5 0.1-0.25
Silt 0.35-0.5 0.05-0.1
Clay 0.45-0.55 0.01-0.03
Sand and gravel 0.2-0.3 01-0.2
Glacial till 0.2-0.3 0.05-0.15

Consolidated sediments

Sandstone 0.05-0.3 0.03-0.15
Siltstone 0.2-0.4 0.05-041
Limestone and dolomite 0.01-0.25 0.005-0.1
Karstic limestone 0.05-0.35 0.02-0.15
Shale 0.01-0.1 0.005-0.05
Vesicular basalt 01-0.4 0.05-0.15
Fractured basalt 0.05-0.3 0.02-01
Tuff 0.1-0.55 0.05-0.2
Fresh granite and gneiss 0.0001-0.03 <0.001
Weathered granite and gneiss 0.05-0.25 0.005-0.05

A sinkhole in a karstic aquifer
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Although water is present in the unsaturated
zone between the surface of the soil and the top
of the saturated zone underneath, it cannot be
considered as a resource because its residence
time is short and transient: the water is not in
hydrodynamic equilibrium. The deeper saturated
zone of soil and rock, with its ensemble of voids,
allows water to accumulate. It is in this area where
groundwater is considered as a resource, and
the soils and rocks containing the groundwater
considered as aquifers.

In this book we consider groundwater as a
resource only within the saturate zone.

Porosity is a very useful property in hydrogeol-
ogy, as increasing pore space results in higher por-
osity and greater water storage potential. Typical
porosity ranges for common geological materi-
als are shown in Table 2.3, with emphasis on the
hydrogeologists” division of unconsolidated and
consolidated aquifer types referred to above.

2.5 GROUNDWATER SYSTEMS

One common belief about groundwater is that it
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Figure 2.10 Karstic aquifer systems (modified from Bakalowicz, 2005).

flows through underground rivers or collects in
underground lakes. Groundwater is not confined
to only a few channels or depressions in the same
way that surface water is concentrated in streams
and lakes. Rather, it exists almost everywhere
underground, in the spaces between particles of
rock and soil, or in crevices, fractures and cracks
in rock.

The water filling these openings is usually within
100 metres of the Earth’s surface, although it can
also be found hundreds of metres lower, in deeper
formations, depending on rock conditions (much
of the Earth’s fresh water is found in these voids).
These openings are much smaller at greater depths
because of the weight of overlying rock. They hold
considerably smaller quantities of water, which
may be of significantly poorer quality.

Very often these saturate zone voids are small,
even sub-millimetric, sometimes existing as
spaces between the grains of sedimentary rock, or
as small holes visible only under the magnifying
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Dolostone and carbonate rocks of the Chateauguay aquifer south of Montreal.

glass in rocks like chalk or sandstone. These voids
can also exist as very fine fissures (a fraction of
a millimetre aperture) formed over time in hard
rocks like granites, some lavas and certain hard
carbonate rocks. In very special cases, these aper-
tures may be centimetres or even metres wide;
forming what are known as karstic systems.
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Sandstone outcropping on a cliff in Prince Edward Island

2.5.1 Aquifers

An aquifer can be defined as a single geologic unit,
or as a set of interconnect hydrostratigraphic units
which can yield significant quantities of water to
wells. Aquifers are classified as unconsolidated or
consolidated, and, in the latter case, reclassified
as to whether water is stored and moves mainly
between the grains of the rock matrix, or through
fractures. In Canada, aquifers formed of uncon-
solidated granular material, such as sand and grav-
els, abound in deltas and buried valleys, and are
typically formed by deposition of material usually
underwater from lakes, rivers and the sea, or as
remnants of past glaciations. Sedimentary rocks,
on the other hand, turn into consolidated aqui-
fers through physical compaction and chemical
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cementation, as the voids between the grains in
sandstone, limestone, and shale are much reduced.
In these types of consolidated aquifers, water is
stored and transmitted through fractures, rather
than through pores.

Other types of consolidated aquifers include
igneous and metamorphic rocks of differing ori-
gins and types (granites, lavas, basalts, gneisses).
These rock formation specimens have very few
void spaces in the matrix between grains. Indeed,
the only void spaces may be fractures resulting
from fold and fault stresses; these fractures may
be completely closed or have very small, and not
extensive, or poorly interconnected openings
of relatively narrow aperture. Fractures may be
enlarged into open fissures as result of dissolution

CANADA'S GROUNDWATER RESOURCES



Water level in
confined aquifer

Unsaturated
zone

High hydraulic-conductivity aquifer Very low hydraulic-conductivity bedrock

Low hydraulic-conductivity confining unit <= Direction of ground-water flow

Figure 2.11 Unconfined and confined aquifers.

by flowing groundwater. One particular case of
rock susceptible to active dissolution is limestone,
which is largely made up of calcium carbonate, and
evaporates of gypsum or other salts. This limestone
dissolution can produce the caverns, sinkholes and
other characteristic features of karstic aquifers (see
Figure 2.10).

Many Canadian aquifers are in unconsolidated
deposits of sand and gravel formed by rivers or
lakes created from melting glaciers during the last
ice age; some regional examples of these granular
aquifers include

Waterloo Moraine, Ontario

Fredericton area, New Brunswick

Carberry aquifer, Manitoba

Fraser Valley aquifer, British Columbia

Many other regional aquifers are in fractured-rock
formations; regional examples of these include

* The entire province of Prince Edward Island

(sandstone)

* Winnipeg region (carbonate, shale), Manitoba
* Montrealregion (carbonate, dolostone, dolomite),

An artesian well north of Montreal

CANADA’S GROUNDWATER RESOURCES m UNDERSTANDING GROUNDWATER



Quebec
¢ Moncton area (carboniferous), New Brunswick

Aquifers can be further differentiated under con-
fined and unconfined conditions (Figure 2.11). This
distinction has important implications for ground-
water development and protection.

An unconfined aquifer is one in which the upper
limit of the zone wherein all pore spaces are fully
saturated (i.e, the water table) is at atmospheric
pressure (see Figure 2.11). When the aquifer
extends to greater depths, less permeable layers are
found. These diminish the aquifer’s effective thick-
ness, but may induce water pressures much greater
than atmospheric. When the overlying layer of an
aquifer has such low permeability (as in clay) that
it prevents water movement through it, the aquifer
is defined as fully confined. Water pressure at any
point in a confined aquifer is greater than atmos-
pheric. When a well is drilled down through the
confined layer into the aquifer, groundwater will
rise up the borehole to a level that balances the
aquifer pressure. An imaginary surface joining
well water levels in wells and drilled boreholes in a
confined aquifer is called the piezometric (or equi-
potential) surface, which can be above or below
the ground surface. An example of this surface is
illustrated in Figure 2.11 (for more detailed exam-
ples of these hydrogeological conditions see also
Figures 2.12 and 2.13). If the pressure in the con-
fined aquifer is such that the piezometric surface is
above ground level, then a well drilled through the
aquifer will overflow. These types of overflowing
wells are called artesian wells.

A large percentage of Canadian wells can be
found in unconfined aquifers. These aquifers are
favoured, from a groundwater development per-
spective, because their storage properties make
them more efficient, and they are also likely to
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be shallower and therefore cheaper to drill into
and pump from. A confined aquifer, on the other
hand, even with a modest overlying less perme-
able layer, is likely to be much less vulnerable to
pollution.

Development of groundwater resources in
unconfined, shallow Canadian aquifers may have
important consequences in terms of groundwater
sustainability and vulnerability. Shallow, uncon-
fined aquifers are generally hydraulically con-
nected to surface water bodies and, thus, more
likely to affect or be affected by these water bodies
(in terms of baseflow or surface water pollution);
alternatively, many of these shallow aquifers pro-
vide essential water needs for ecosystems (wet-
lands, riparian zones, fish, etc.; see Chapter 5).
Development and effective management of shal-
low unconfined aquifers must consider long-term
implications of water availability and water quality

for all users.

2.5.1.1 Aquifer systems

Any “aquifer system,” from the hydrogeological
viewpoint, is a set of spatially and hydraulically
interconnected stratigraphic units of different ori-
gins having the ability to store and transmit water.
One excellent example of such a system is Alberta’s
Paskapoo aquifer system (Figure 10.20).

Figure 212 illustrates the effects of ground-
water pumping in aquifers. Without pumping
(Figure 2.12a), water recharge from the sandy area
flows toward the deepest part of the aquifer, then
rises locally to discharge close to a surface water
body, or to the sea. When this state is disturbed
by groundwater pumping (Figure 2.12b), both the
piezometric level of deeper beds and the water
table in upper sands descend; the hydraulic gra-
dient between them increases and most flowpaths
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turn downward, decreasing natural discharge to
surface water bodies.

Developed aquifers are defined as those aquifers
within which wells have been constructed to util-

ize groundwater.

2.5.2 Aquitard characteristics

An aquitard is a zone within the earth that restricts
the flow of groundwater from one aquifer to
another. An aquitard, when completely imperme-
able, can sometimes be called an aquiclude or aqui-
fuge. Aquitards comprise layers of either clay or
non-porous rock with low hydraulic conductivity.
Northern Canada’s permafrost layers can also be
considered as a type of aquitard.

An aquitard may behave as an impermeable layer
relative to the much more permeable aquifer layers
above or below it. An aquitard is impermeable and
it will remain impermeable, although an aquitard
layer may eventually contribute to groundwater
flow through layers in the vertical direction. This
process can be artificially induced through heavy
pumping into an aquifer underlying an aquitard
(causing aquitard leakage). Such activity can lead
to consolidation, or to subsidence, a phenomenon
which occurs in many parts of the world (e.g,
Mexico City, Venice, Houston, California, etc.).

2.5.3 Groundwater storage in aquifers
What is groundwater storage? How is water put
into and taken out of storage?

The storativity of a saturated confined aquifer
can be defined as “the volume of water that an
aquifer releases or takes into storage per unit sur-
face area of aquifer per unit change in the compon-
ent of hydraulic head normal to the surface”. The
specific storage coefficient for a saturated porous
media was originally derived from purely hydraulic
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principles in soil mechanics (Jacob, 1950; Cooper,
1966; Lohman et al., 1972), and defined as:

S,=pgn (B +o/n) (2.5)

where S_is the specific storage coefficient (1/m), nis
the porosity, [3, is the coefficient of compressibility
of the fluid (water, in Pa™ or kg/m s?), and O is the
coefficient of compressibility of the porous matrix
(Pa™). It is convenient to think of the specific stor-
age coefficient in terms of the storage related to the
elasticity of the water, as well as storage related to
the elasticity of the porous medium.

The coefficient defined by Eq. 2.5 is not often
used by hydrogeologists studying groundwater
resources. Instead, these scientists more often
employ the storage coefficient S, which is related
to S_by:

S=S.-b 2.6)

where b is the thickness of the aquifer and S is
dimensionless. S can be estimated with long-term
pumping tests using observation wells or bore-
holes. However, in the absence of pumping tests,
which in most cases are very expensive to carry
out, SS can be easily calculated if the compress-
ibility and the porosity of the material are known.
Indeed, as Bl is very small (5-107" Pa™), it can be
neglected with respect to the value of O (except in
low-porosity hard rocks).
Typical values of compressibility for some com-

mon materials are given below:

Clays 10 to 10* Pa™
Sand 107 to 10 Pa'
Gravel 108 to 107 Pa’!
Sandstone 10 to 10" Pa™
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TABLE 2.4 SELECTED VALUES OF STORAGE AND SPECIFIC STORAGE COEFFICIENTS

AQUIFERS/ROCK TYPES/REFERENCE SPECIFIC STORAGE STORAGE COEFFICIENT (S)
COEFFICIENT (Ss) [1/M]
ergbel aquifer St. Lawrence Lowlands; fractured/porous Not available Bedrock = 5x10° to 45103
aquifer (Nastev et al., 2005)
Chateauguay aquifer; fractured/porous aquifer . "
(Lavigne et al,, 2010) Not available 5x10
Bedrock = 10 (averaged)
Bedrock aquifers in the Appalachians; fractured rock aquifer Not available
(Rivard et al., see Chapter 14) Sediments= 1x10 (averaged); 10 and 0.5
(range)
0Oak Rldges Moraine porous medium aquifer, sand, 5 5102105 x 10+ 03
gravel, till
Assiniboine aquifer Manitoba porous medium aquifer, sand Not available 6 x10- to 1107
and gravel
Alluvial gravels of old river channels in Old Crow, Yukon; 152 x 10 to
located on an old floodplain of the Porcupine River (see Not available 3.62 x 10°
Chapter 15 and Trimble et al., 1983)

Some selected values of specific storage coeffi-
cients (Ss) and of storage coefficients (S) in Canada
are provided in Table 2.4, although, these values
are approximate numbers obtained, for the most
part, from consultants’ reports or from pump-
ing tests performed by the Geological Survey of
Canada; their interpretation is often ditficult and
their values questionable. The lack of accurate stor-
age coefficients is an important data gap through-
out Canada, and one that hinders estimates and

simulation of transient conditions in most aquifers.

2.6 PRINCIPLES OF REGIONAL GROUND-

WATER FLOW

A groundwater flow system is a three-dimensional

entity having the following components:

* a recharge area where water enters the flow
system

* a discharge area where water exits the flow
system

¢ hydraulic boundary conditions and physical
dimensions
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In addition to these features, groundwater flow is

highly dependent on temporal and spatial scales.

2.6.1 Recharge
Recharge refers to water entering a groundwater
system regardless of scale. Areas where recharge
occurs are designated as recharge areas or recharge
zones. There are several mechanisms through
which recharge enters a flow system: these can
include direct infiltration of precipitation, or by
infiltration through streambeds or reservoirs (see
Chapters 4 and 5). In some parts of the world,
especially arid regions, infiltration of storm runoff
through intermittent stream beds is the dominant
recharge form. Water can also enter a ground-
water flow system through inter-layered flow, or
interformational flow, usually in the form of flow
through leaky confining layers (see aquitards)
where water is drawn in by drawdowns at wells, or
where underlying aquifers have significant over-
pressure and water is forced upward.

Most research studies and numerical models
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Figure 2.13 Plan views of boundary
conditions for groundwater flow:
(a) no-flow boundary created by
juxtaposition of permeable alluvial
sediments and low-permeability
crystalline bedrock. (b) Parallel flow
lines create a no-flow symmetry
boundary. (c) Groundwater divide
produced by high water levels. (d)
A constant-head boundary at a non-
flowing body of water (in this case,
a lake). (e) A stream constant-head
boundary.
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Rates of groundwater turnover vary from years
to millennia, depending on aquifer location, type,
depth, properties, and connectivity.

consider recharge as some percentage of pre-
cipitation. These percentages have a wide range
depending on the climate of the region and the
geological and hydraulic characteristics of the
aquifer. Chapter 4 provides a very detailed analy-
sis of these. In Canada, recharge rates have a very
large geographical distribution, varying from 7%
of annual precipitation rates up to 65% in some
specific locations (BC) (see Figures 4.3 and 4.5,
and Table 4.2).

Recharge rates are difficult to quantify; many
methods involve measuring precipitation and per-
forming a water balance by quantifying all the
other surface water fluxes (surface runoff, evapora-

tion, transpiration).

2.6.2 Discharge

There are several mechanisms through which water
discharges from a groundwater flow system. These
include discrete discharge to a spring or seep, dis-
charge into a gaining stream or lake, flow through
formations, or pumping from a well. In some arid
and semiarid regions (the Canadian Prairies, for
example), direct evaporation and/or evapotranspir-
ation from the shallow water table is the primary
discharge mechanism.

Discharge can also be hard to quantify, especially
in areas dominated by well pumping or evapora-
tion. Discharge flow through formations (multi-
layered systems) is usually much less than that of
other mechanisms. Flow through springs and gain-
ing streams can be measured, and changes in flow
across a certain areas attributed to either recharge or
discharge. Chapter 4 provides detailed explanations
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of these mechanisms. Chapter 5 describes dis-
charge mechanisms through riverbeds and other

surface water bodies.

2.6.3 Boundary conditions

Groundwater flow systems are three-dimensional
bodies with boundaries. There are two types of
basic boundaries, or boundary conditions, which
characterize the limits of groundwater flow sys-
tems at any scale: no-flow boundaries and con-
stant-head boundaries.

A no-flow boundary has a hydraulic gradient
of zero, expressed as dh/dxi=0 (where h is the
hydraulic head and xi the flow directions), therefore
no flow occurs across boundaries. No-flow bound-
aries can be physical when permeable aquifer
units are in contact with low-permeability bedrock
(Figure 2.13a). A no-flow boundary can also exist
when flow lines are parallel, creating a symmetry
boundary (Figure 2.13b). Modellers often use sym-
metry boundaries to constrain numerical ground-
water models of aquifers. On a smaller scale, high
water levels can create a type of no-flow boundary
known as a groundwater divide (Figure 2.13c)
wherein water flows away from the partition on
either side (similar to surface runoff at a drainage
divide).

A constant-head boundary is characterized by
hydraulic heads that do not change. Non-flowing
bodies of water, such as lakes, ponds, or oceans,
can create a constant-head boundary (Figure 2.13d)
as, in each case, the shore of the body represents a
single equipotential line (or line of constant head)
in the aquifer: water flow is perpendicular to the
shoreline (either into the aquifer from the surface
body or vice versa). A stream can also act as a con-
stant-head boundary (Figure 2.13e); although the
actual heads will vary along the stream gradient,
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each point is considered constant and represents a
point on an equipotential.

2.6.4 Issues of scale: Time and space
Groundwater is often misinterpreted because of
the lack of knowledge of time and space scales
associated with the response of groundwater flow
to natural and anthropogenic stresses.

Groundwater flow systems occur at different
scales both in space and in time. Hydrogeologists
distinguish three spatial scales and two temporal
scales (Rivera, 2008).

Spatial scales are identified as: (a) regional
(greater than 1,000 km?% found usually under
steady-state conditions), (b) local (typically hun-
dreds of square kilometres; found both in steady-
state and transient conditions), and (c) site (gener-
ally less than 100 km?; typically found under tran-
sient conditions).

Temporal scales refer to (a) steady-state condi-
tions of hydrodynamic equilibrium, and (b) transi-
ent conditions in which the system is under stress

(by pumping).

Although absolute areas for each spatial scale
are somewhat arbitrary, they do indicate import-
ant differences in Canadian aquifers (Rivera,
2005). Figure 2.14 is a schematic representation
of these scales. In general, aquifers are hetero-
geneous in nature, and their hydraulic/hydrogeo-
logical behaviour (flow rates, flow volumes, mass
and heat transport) is partially dictated by this
heterogeneity. Site-scale shallow aquifers dem-
onstrate a relatively rapid response to applied
stresses; the effect of these stresses is limited in
time and in space, from hundreds of metres to a
few kilometres, and from tens of days to hundreds
of days. Aquifers at local to regional scales have
a much broader and longer-term response; the
effects are spread out over tens of kilometres, and
tens to hundreds of years. These space and time
effects are even more striking when aquifer sys-
tems contain aquitards (relatively impermeable
layers) (Figure 2.14), a situation not uncommon
in Canada, as has been observed in the Prairies

10 - 100km

1-10km
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=3l Unconfined ||

P

water table

.
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& Length scale
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- Regional scale groundwater flow
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Figure 2.14 Schematic representation of space and time scales for groundwater (modified from Johnston, 1999).
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Figure 2.16 Flow patterns control by topography (after Hubbert, 1940).
(Maathuis and Thorleifson, 2000).

The scale issue is not trivial and cannot be ignored.
One question a water resource manager or a commun-
ity might ask is: “How quickly can we expect to detect
a change in groundwater level during a drought?”
or “Should nutrient source controls be implemented,
how fast would we see a change in nitrate concentra-
tion of the aquifer?”

How rapidly an aquifer responds to change
in hydraulic stress (increase or decrease in the

CanaDA’S GROUNDWATER RESOURCES ®
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amount of water input or increase in well pump-

ing), or chemical stress (decrease in nitrogen load-
ing) can be estimated by calculating an aquifer’s
hydraulic or chemical response time.

Hydrogeologists are able to calculate hydraulic
response time once they know the key aquifer par-
ameters and the relative permeability of adjacent
rocks. If chemical reactions and transport parameters
are known, the chemical response time can also be
calculated.
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Figure 2.17 Hierarchically nested gravity-flow systems of groundwater in drainage basin with complex topography (after Téth, 1962).

2.6.5 Gravity-driven groundwater flow

Scientists were aware of the relationship between
topography and groundwater flow patterns in
unconfined aquifers as early as the end of the
19th century. King (1899) and Hubbert (1940)
noticed that any water table tends to become a
subdued replica of its topography (Figure 2.15),
while Hubbert (1940) suggested that topog-
raphy can control groundwater flow patterns so
that high elevations become recharge areas and
low elevations discharge areas (Figure 2.16).
Toth (1962) and Freeze and Witherspoon (1967),
working in the 20th century, developed computer
models that simulated the effects of topography
on groundwater flow systems: both of these
simulations supported King’s and Hubbert’s con-
clusions. The models also illustrated the fact that

sinusoidal topography can result in the formation
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of smaller local flow systems, with local recharge
and discharge areas, within larger regional sys-
tems (Figure 2.17, after Toth, 1962).

2.7 GROUNDWATER EXTRACTION

AND WELLS

Developed aquifers are those aquifers wherein
wells have been installed to utilize groundwater.
Over the long term, a developed aquifer may
function by inducing recharge from surface water
sources and/or by decreasing discharge to streams
and springs. The sum of these two flow components
is sometimes termed as the “capture” (Bredehoeft
et al,, 1982); capture is dynamic, highly dependent
on aquifer properties, space and time scales, and
aquifer geometry. Any increase in aquifer inflow
usually originates from three primary sources:
1) a rise in percolation due to irrigation surplus,
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changed soil characteristics and decreased evapo-
transpiration; 2) induced recharge from surface
water bodies; and 3) induced recharge from neigh-
bouring aquifers or groundwater basins. A com-
bination of conditions 2 and 3 may also happen at
regional scales.

The initial lowering of the water table, or pie-
zometric surface, sparked by pumping, ceases

when capture and pumping stresses reach a

In the preceding sections of this chapter, we have
described the regional approach, or aquifer scale.
Hydrogeologists and planning engineers must
also consider the scale of pumping wells—what
happens in the vicinity of an individual well and
how to determine the drawdown produced in
the well itself and in its vicinity?
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new equilibrium. An extraction which may have
initially appeared as “excessive” overdraft can later
reveal itself to be sustainable, albeit with some loss
of local surface water or aquifer discharge. Should
groundwater pumping exceed available capture,
therefore preventing an equilibrium, the difference
will be drawn from storage, and groundwater lev-
els will decrease (see more in Chapters 6 and 10).

A pumped aquifer may reach a new equilibrium
within the expected time frame and hydraulic con-
ditions described above, or it may not.

Consider the case of Saskatchewan’s Estevan
aquifer, a preglacial, buried-valley formation
described in Box 10-2. In 2011, 17 years after
pumping ceased, residual drawdown in the aqui-
fer was still far from equilibrium, as shown by
Maathuis and van der Kamp (2011). Thus, the
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In this book, we examine wells only as input
or output sources which affect the overall
groundwater flow pattern of any aquifer. Actual
well structure, drilling, completion techniques
and sealing are not elements we have considered.
Instead, we refer readers to specialized texts on
these subjects (e.g., Johnson Inc., 1966; Campbell
and Lehr, 1973)

combination of conditions 2 and 3, as described
above, does not seem to include all equilibrium
factors. In the case of the Estevan aquifer, the
most likely explanation is that excessive ground-
water continued to be removed from storage, dic-
tating a much longer recovery time frame than
would have been the case if conditions 2 and 3
(outlined above) had been rigorously applied.
Long-term analysis of well data indicates that
sustainable yield for this type of aquifer can often
be significantly less than originally expected
(Maathuis and van der Kamp, 2011).
Hydrogeologists evaluating groundwater resour-
ces use terms like groundwater yield, well yield,
aquifer yield, and more recently, sustainable yields.
These concepts are important and applicable at sev-
eral scales, and they are clear indicators of the main
question hydrogeologists seek to discover: what are
the maximum possible pumping rates compatible
with the hydrogeological environment from which
aquifer water will be taken? As scientists search for
answers, they need to find a compatible comprom-
ise between the environment and groundwater
availability; they must evaluate those groundwater
yields in terms of balance between the benefits of
pumpage and the undesirable changes such pum-
page induces. The most common change pumping
produces is a lowering of groundwater levels. Thus
yield can be defined, in the simplest cases and at
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more local scales, as the maximum rate of allowable
pumpage to ensure that water-level declines are
kept within acceptable limits.

Chapter 6 provides a more detailed analysis of
aquifer scale sustainability.

The hydraulics of pumping wells is in itself a vast
domain, developed mostly from well pumping
tests drilled in confined, leaky, and phreatic aqui-
fers, under a myriad of conditions. The resulting
literature is comprehensive, consisting of a large
number of analytical equations designed to solve
for groundwater flow to a well and to provide
boundary values, which define aquifer parameters.
Some of the most complete handbooks on this topic
include Kruseman and de Ridder (1970), Ferris et
al. (1962) and Walton (1970). Bear (1979) also pro-
vides an exhaustive summary of the mathematical
treatment of pumping hydraulics and recharging
wells.

What is the response of an aquifer to pumping, as
measured by aquifer yield? This yield depends both
on the manner in which the effects of withdrawal
(pumping) are transmitted through the aquifer
and on changes in groundwater recharge rates
and discharge induced by withdrawals. Note that
aquifer withdrawal is not only the result of pump-
ing (anthropogenic conditions); it can also occur
as a result of natural climate changes, for example,
increase in evapotranspiration or decrease in river
tlow.

In its simplest, the transient hydrologic projec-
tion for any saturated portion of an aquifer can be

described as
Qt)=R(t) = D(t) +dS/dt (2.7)

where:

Q(t)= total rate of groundwater withdrawal
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Figure 2.18 Relationship between pumping (Q), recharge (R), and discharge
(D) in a basin (reproduced from Freeze, 1971).

R(t)= total rate of groundwater recharge to
aquifer

D(t)= total rate of groundwater discharge from
aquifer

dS/dt= rate of change in storage in the saturated
zone of the aquifer

Freeze (1971) examined the response of R(t) and
D(t) to an increase in Q(t), applying Eq. 2.7 to a
hypothetical aquifer in a humid climate where the
water table is located near the Earth’s surface. He
simulated the response using a three-dimensional
transient analysis of a complete saturated-unsatur-
ated system equipped with a pumping well.

Figure 2.18 (reproduced from Freeze, 1971), illus-
trates the hydraulic behaviour of an aquifer as a
function of time as groundwater is pumped. These
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diagrams depict time-dependent changes, which
might be expected as a result of Eq. 2.7 variables
under increased pumpage. Groundwater pumping
increase in a step-wise manner causes recharge
increase in a subtly similar stepwise manner
because the resultant signal impacts are spread
over a large area, causing a stepwise discharge
decrease.

The upper portion of Figure 2.18 initially depicts
a steady-state condition at to wherein recharge Ro
equals discharge Do. New wells begin to tap the
system and the pumping rate Q undergoes a set of
stepped increases. Each increase in an unconfined
aquifer is initially balanced by a change in stor-
age (dS/dt). Increases in Q translate to immediate
water-table declines in this case (see also Figure
2.12). Forces within the aquifer move to find a new
hydraulic equilibrium under conditions of increased
recharge, R. After a certain pumping time (t5), Q
is fed entirely by recharge and induced discharge,
D, resulting in a significant water table decline.
Steady-state equilibrium conditions are reached
prior to each new increase in withdrawal rate (Q).

The lower portion of Figure 2.18 shows the same
sequence of events under conditions of continu-
ouslyincreasing groundwater development (pump-
ing) over several years. This schematic clearly illus-
trates that, when pumping rates increase indefin-
itely, an unstable situation may arise. The declin-
ing water table will reach a depth below which the
maximum rate of groundwater recharge R can no
longer be sustained. It is impossible for an aquifer
to supply increased rates of withdrawals once the
maximum available rate of induced discharge is
attained. The only remaining groundwater source
lies in an increased rate of storage withdrawal (dS/
dt), which manifests itself in a rapidly decreasing
water table, among other consequences.
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One of the most well-known consequences of
groundwater overexploitation is land subsidence.
Many areas around the world are coping with prob-
lems of regional subsidence on a regional scale:
some of the better-known examples have been
documented in California’s San Joaquin Valley,
the Houston-Galveston area, Bangkok, Venice and
Ravenna, and Mexico City (Rivera et al.,, 1991).

Groundwater pumping may, and often does, have
an important impact on our environment, spe-
cifically in the form of water level reduction, base-
flow decline, subsidence and saltwater intrusion.
These issues, and other environmental concerns are

described in more detail in Chapters 5 and 6.

2.8 INTERACTIONS WITH SURFACE WATER
The scientific community has long recognized
that, within the water cycle, there are continuous
dynamic interactions between surface water bod-
ies (e.g, rivers, lakes, wetlands) and groundwater
(aquifers). These occur at various spatial and tem-
poral scales.

Clearly, surface water and groundwater should
be considered and treated in an integrated way,
despite their very different nature and scales. Very
few scientists, however, let alone water resource
managers, take this holistic approach; surface
water resources are usually studied, and managed,
without consideration of groundwater. Most water
investment research funding in Canada is used to
assess and develop surface water resources; much
less is allocated to groundwater study.

Much of this funding discrepancy can be attrib-
uted to persistent knowledge gaps about the inter-
action between surface water and groundwater,
although the physical processes and mathematics
needed to assess surface water/groundwater inter-
actions (SW-GW) are known and relatively well
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Shallow groundwater flow systems should be
distinguished from deep groundwater flow
systems; the former interact with surface water, the
latter do not.

established. Scientists today couple basic hydraul-
ics principles, hydrological processes and geology
with equations describing groundwater flow (i.e,
Darcy’s Law) to assess these interactions. However,
the application of theory is not straightforward,
even when basic theoretical knowledge exists, due
to complex interactions between groundwater and
surface water.

A sound hydrogeological framework is needed to
understand these interactions in relation to climate,
landforms, geology, hydrology and biotic factors. It
is the lack of such a framework that represents the
main knowledge gap in Canada.

Studies of SW-GW interactions have expanded
in recent years (Sophocleous, 2002) to include
studies of headwater streams, lakes, wetlands,
and estuaries. Those countries with limited water
resources have widened their SW-GW research
scope to include conjunctive use of surface water
and groundwater in water management practices.
A major factor in modern-day SW-GW research
is the introduction of comprehensive conceptual-
izations of SW-GW interactions involving teams
of geologists, hydrogeologists, hydrologists and
ecologists.

Research needs and challenges facing this evolv-
ing field are linked components of a hydrological
continuum leading to related water sustainability
issues:
¢ Current frontiers in SW-GW interactions seem

to be near-channel and in-channel exchange of
water solutes and energy. Understanding these

processes is key to evaluating the ecological
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structure of stream systems and their manage-
ment (Sophocleous, 2002)

* Analysis over time of sediment and reach
scales within the hyporheic zone (that thin
layer beneath the river bed) remains unclear at
present, and can be neglected when dealing with
regional-scale integrated water resources (water
quantity). For detailed biochemical analysis and
transport, however, this layer is very significant
and must be considered in any detailed bio-
chemical and transport investigation

¢ SW-GW should not be estimated but measured

* The use of heat, chemical tracers, and age dat-
ing should be studied, and the results integrated
into numerical models

* Groundwater-level measurements should con-
tinue and be increased. When and where pos-
sible, these measurements should be taken in
real-time, especially in shallow, sensitive aqui-
fers. The resultant figures should be analyzed
at the basin-scale and in association with river
hydrographs

Chapter 5 presents a more comprehensive analy-
sis of surface water and groundwater interactions
and related issues pertaining to Canadian condi-

tions of use, dynamics and occurrence.

2.8.1 Differences in flows between surface
water and groundwater

When we consider groundwater in terms of flow-
paths and fate, there are two classifications: shal-
low groundwater flow and deep groundwater flow.
Shallow groundwater flow, termed as groundwater
runoffby some scientists, intercepts the land surface,
feeding springs which seep back to surface wat-
ers as the perennial flow (or baseflow) of streams/
rivers and other freshwater bodies (swamps, wet-
lands and lakes, for example). Deep groundwater
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flow, or groundwater runout, on the other hand,
does not intercept the land surface; instead, it flows
directly, albeit very slowly, into the Earth’s oceans.
The source of shallow groundwater flow is shallow
percolation (or shallow groundwater infiltration).
On a global basis, deeper groundwater infiltration
accounts for an average of 13% of the Earth’s pre-
cipitation, while the amount of shallow percolation
is equal to the annual amount of baseflow dis-
charging into the world’s streams and rivers. Since
baseflow constitutes about 30% of streamflow (or
runoff) and streamflow is on average about 24%
of precipitation, it follows that basetlow or shallow
percolation constitutes (0.30 x 0.24) x 100=7.2% of
precipitation.

Chapter 5 describes groundwater extraction and
its influence on surface water bodies (rivers, lakes,

wetlands) in greater detail.

2.9 GROUNDWATER QUALITY (NATURAL
AND CONTAMINATED)

2.9.1 Natural quality

Water, in nature, is never “pure”. It picks up small
amounts of everything with which it comes into
contact, including minerals, silt, vegetation, fer-
tilizers, and agricultural runoff. Canada’s diverse
physical geography (from coastal regions to moun-
tains from prairies, to northern tundra and the
Canadian Shield) means that the characteristics
of its natural water will vary greatly across the
country, and, even in relatively pristine areas, will
usually requires some type of treatment before it is
safe to drink.

Canada’s drinking water comes either from
groundwater (wells in aquifers), or from surface
waters (lakes and rivers). Most Canadians get their
drinking water from public water systems which
must meet quality requirements set by provincial
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and territorial governments. People living in rural
and remote areas may get their drinking water
from wells, or from surface water sources located
on private property. These consumers are individ-
ually responsible for the safety of their drinking
water.

68.7% of all of the Earth’s fresh water is perma-
nently stored in icecaps and glaciers, 30.1% is
groundwater, 0.3% is surface water, and 0.9% is
other minor storage (soil water, plants) (Figure
2.1). Further, an analysis of available fresh water
on the planet shows that groundwater is about one
hundred times more plentiful than surface water,
although surface water is typically low in salt ions.
Groundwater, however, particularly that lying at
great depth, may contain high concentrations of
salt ions, significantly limiting its use as natural
drinking water.

The natural quality of groundwater has import-
ant implications for its use and sustainable
development.

Water quality is assessed by measuring the
amounts of its various constituents; these are often
expressed as milligrams of substance per litre of
water (mg/L) (which is equivalent to the number of
grams of a substance per million grams of water).

The natural quality of groundwater ditfers
from that of surface water because (a) ground-
water quality, temperature and other parameters,
for any given source, are less variable over the
course of time; and (b) the range of ground-
water parameters encountered is much greater
than that for surface water. TDS (total dissolved
solids?) in groundwater can range from 25 mg/L
within some areas within the Canadian Shield
to 300,000 mg/L in the deep saline waters of the
Interior Plains.

Deep groundwater infiltration, by definition, does
not belong to the surface water catchment area
and, therefore, it cannot affect its quantity.

Groundwater tends to be harder and more saline
than surface water, when the two are compared, at
any given location, although this is by no means a
universal rule. Another generality is the fact that
groundwater becomes more saline with increasing
depth, although, again, there are many exceptions
to this rule.
The salinity of fresh water is less than 500 mg/L,
while the salinity of ocean water is about 35,000
mg/L. Definitions of water salinity vary within the
literature. For example,
¢ Brackish water is defined as having a TDS con-
centration ranging from 1,000 to 10,000 mg/L;
saline water from 10,000 mg/L to 100,000 mg/L,
and brine as >100,000 mg/L (Freeze and Cherry,
1979; Fetter, 1993).

* Hem (1970) defines moderately saline water as
ranging from 3,000 mg/L to 10,000 mg/L.

Slightly saline water, an example of which might
be irrigation water, has concentrations from 500 to
1,500 mg/L. Moderately saline water, such as drain-
age water, ranges from 1,500 to 5,000 mg/L, while
highly saline groundwater may have salinity con-
centrations in excess of 10,000 mg/L. Groundwater
is considered “saline” with concentrations in excess
of 10,000 parts per million (mg/L).

Saline groundwater depth in the United States
varies from less than 150 metres to more than
300 metres (Alley, 2003). Saline groundwater in
Canada may be found at various depths depending
on the “saline” definition. In Alberta, for example,
saline groundwater is defined as water with a
TDS concentration exceeding 4,000 mg/L (this

2. Total Dissolved Solids (TDS) concentrations are comprised of dissolved inorganic salts (principally calcium, magnesium, potassium, sodium,

bicarbonate, chloride and sulphate) and small amounts of organic matter.
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TABLE 2.5 MAXIMUM ACCEPTABLE CONCENTRATIONS (MAC) IN GROUNDWATER IN CANADA

(HEALTH CANADA, 2010)

PARAMETER MAXIMUM ACCEPTABLE CONGENTRATION (MAC)

BACGTERIOLOGICAL
Escherichia Coli 0 per 100 mL
Total coliforms 0 per 100 mL
Heterotrophic plate count No numerical guideline required
Emerging pathogens No numerical guideline required
Protozoa No numerical guideline required
Enteric viruses No numerical guideline required
Turbidity 0.3/1.0/0.1 NTU

CHEMICAL AND PHYSICAL PARAMETERS
Aluminum 0.1/0.2 (mg/L)
Ammonia No numerical guideline required
Antimony 0.006 (mg/L)
Arsenic 0.010 (mg/L)
Asbestos No numerical guideline required
Benzene 0.005 (mg/L)
Bromate 0.01 (mg/L)
Chlorate 1.0 (mg/L)
Chlorine No numerical guideline required
Chloride <250 (mg/L)
Chlorite 1.0 (mg/L)
Cyanobacterial toxins--microcystin-LR 0.0015 (mg/L)
Fluoride 1.5 (mg/L)
Formaldehyde No numerical guideline required
Haloacetic Acids--Total (HAAs) 0.080 (mg/L)
Hardness No numerical guideline required
Iron <0.03 (mg/L)
Lead 0.01 (mg/L)
Magnesium No numerical guideline required
Manganese <0.05 (mg/L)
Mercury 0.001 (mg/L)
2-Methyl-4-chlorophenoxyacetic acid (MCPA) 0.1 (mg/L)
Methyl tertiary-butyl ether (MTBE) 0.015 (mg/L)
Nitrate 45 (mg/L)
pH 6.5-8.5
Silver No numerical guideline required
Sodium <200 (mg/L)
Sulphate <500 (mg/L)
Sulphide (as H,S) <0.05 (mg/L)
Trichloroethylene (TCE) 0.005 (mg/L)
Trihalomethanes--Total (THMs) 0.100 (mg/L)
Uranium 0.02 (mg/L)
RADIOLOGICAL PARAMETERS

Cesium-137 ("*'Cs) 10 Ba/L
lodine-131 (*'l) 6 Ba/L
Lead-210 (*°Pb) 0.2 Bg/L
Radium-226 (***Ra) 0.5Bg/L
Strontium-90 (°°Sr) 5Bg/L
Tritium (°H) 7,000 Bg/L
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definition was developed to distinguish between
saline and non-saline water use, largely as it related
to agricultural purposes and crop tolerances, e. g,
irrigation). Saline groundwater depth varies from
300 metres to 500 metres. Saline waters in other
Prairie Provinces (Saskatchewan, for example) can
contain over 300,000 mg/L at a depth of 600 metres
(Grasby and Chen, 2005).

Water suitability for specific uses also depends
on a variety of other factors including hardness,
pH, and naturally occurring chemical elements or
compounds found within the water (e.g. sodium,
sulphate, etc.). Acceptable values for each of these
parameters depend on the end water use, not on
the source; thus those considerations import-
ant for surface water are equally applicable to
groundwater.

The chemical nature of water continually evolves
as it moves through the hydrologic cycle. Chemical
constituents found in any groundwater sample
depend, in part, on the chemistry of the related
precipitation and recharge water. Precipitation
near coastlines contains higher concentrations of
sodium chloride, while airborne sulphur and nitro-
gen compounds, downwind of industrial areas,
make precipitation in those areas acidic.

One of the most important natural changes in
groundwater chemistry occurs in the soil, which
contains high concentrations of carbon dioxide
readily dissolvable in groundwater, creating a weak
acid capable, in turn, of dissolving many silicate
minerals. As groundwater passes from recharge to
discharge area, it may absorb and dissolve those
substances it encounters, or it may deposit some
of those constituents along the way. The eventual
groundwater quality depends on temperature and
pressure conditions, on the kinds of rock and soil
formations through which the water flows, and
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possibly on the residence time. In general, faster
flowing water dissolves less material although
groundwater carries with it any soluble contamin-
ants with which it comes in contact.

2.9.2 Quality standards
In general we evaluate groundwater quality in
relation to its end use.

Most of us think of water quality as a matter of
taste, clarity and odour, and those additional terms
which determine whether water is potable or not.
Different properties, however, may be import-
ant when water is used for other purposes, and
most of these properties depend on the types of
substances dissolved or suspended in the water.
Water for many industrial purposes need not be as

pure as water used for drinking, but it must not

Arsenic  (As) occurs naturally in Canada,
although its concentration is generally below the
recommended standard for drinking water (0.01
mg/L), and, in most cases below detection limits.
Environment Canada has reported arsenic values
less than 6 pg/L, and there are cases where As
concentration is above the drinking standards
(in Nova Scotia, for example, due to weathering
of mining waste piles containing arsenopyrite).
These instances are not of “natural occurrence,”
rather, they represent anthropogenic (human
activity related) sources. This type of dissolved
metal (As) contamination exists across Canada,
sometimes in high concentrations (considered as
point-source contaminates, because they travel
via groundwater flow only tens and in some case
hundreds of metres, but not kilometres, from
mine waste sites; should these contaminates
reach rivers or streams, however, they can easily
travel hundreds of kilometres and more).
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Health Canada reports of the highest
concentrations of arsenic (and its inorganic
compounds) within the Canadian environment
occur near active and abandoned gold- and base-
metal mining and/or ore processing facilities,
as well as in those areas affected by the use of
arsenical pesticides. Mean arsenic concentrations
of up to 45 pg/L in surface waters, 100 to 5,000
mg/kg in sediments and 50 to 110 mg/kg in soils
have been found near such sources in many areas
throughout the country.

be corrosive and must not contain dissolved solids
that might precipitate on the surfaces of machinery
and equipment.

In Canada, all levels of government play a role
making sure our water supplies are safe. Although
provincial and territorial governments are gen-
erally in charge of protecting our water supply,
the federal government also has a number of
responsibilities in this area.

Groundwater quality is managed in part by the
provinces and territories through
* Regulation of waste discharges to the ground
* Remediation of contaminated sites
* Regulation of drinking water sources
¢ Watershed planning and source protection

measures
¢ Wellhead protection initiatives
* Application of best management practices
¢ Water quality standards and guidelines

The Federal Department of Health Canada works
with the provincial and territorial governments
to develop guidelines that set up the maximum
acceptable concentrations of various substances
in drinking water. The guidelines set out the basic
parameters that every water system should strive
to achieve in order to provide the cleanest, safest
and most reliable drinking water possible.
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Guidelines for Canadian Drinking Water Quality,
published by Health Canada on behalf of the
Federal-Provincial-Territorial ~ Committee  on
Drinking Water (CDW), examines microbiological,
chemical and radiological water contaminants,
in addition to addressing concerns with physical
characteristics, such as taste and odour.

These guidelines are updated regularly and
published on Health Canada’s website (www.
healthcanada.gc.ca/waterquality). Table 2.5 pro-
vides a summary list of current numerical guide-
lines for microbiological, chemical and physical
parameters.

According to Health Canada, quality standards
specify (a) maximum acceptable concentration
(MAC) of pollutants in groundwater which can
be tolerated without creating a threat to human
health, (b) aesthetic objectives (AO), an excess
of which renders groundwater unsuitable for use
as a drinking water source, and (c) operational
considerations, listed as Operational Guidance
Values (OG).

Trace metals (Ag, Cd, Cr, Cu, Hg, Fe, Mn, Zn)
found in natural flowing groundwater rarely
occur at concentrations high enough to comprise
a significant percentage of the TDS; however,
depending on the source and hydrochemical
environment, some of the elements in this group
(referred to as heavy metals) may have concentra-
tion above the limits specified in drinking water
standards. Nevertheless, with the exception of
iron, trace metals in natural groundwater almost
invariably occur at concentration well below 1
mg/L.

Some elements, on the other hand, those known
as trace nonmetals (including, for example, dissolved
forms of chlorine and sulphur), occur in abundance
in most natural and contaminated groundwater.
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Figure 2.19 Groundwater contaminations from waste disposal sites.

2.9.3 Contaminated groundwater

Any human-activity-caused addition of undesir-
able substances to groundwater is considered con-
tamination, and, although many people through-
out history have assumed that contaminants left on
or under the ground will remain there, this prem-
ise has proved a prime example of wishful think-
ing. Groundwater frequently spreads the effects of
dumps and spills far beyond the original contam-
ination sites; the resultant damage is extremely
difficult, very costly, and sometimes impossible, to
clean up.

Groundwater contaminants originate from two
source categories: point sources and distributed, or
non-point, sources.

Landfills, leaking gasoline storage tanks, leak-
ing septic tanks, and other accidental spills are

UNDERSTANDING GROUNDWATER @

industrial storage/
contaminated land

pesticides and
fertiliser application

manure

ed
70n€!
5

point source examples. Other point sources are

individually less significant, but occur in large
numbers all across the country. Examples of these
dangerous and widespread contamination sources
are septic tanks, cesspool leaks and spills of pet-
roleum products and of dense industrial organic
liquids.

Infiltration from farm land treated with pesti-
cides and fertilizers is one example of a non-point
source; others include municipal landfills and
industrial waste disposal sites. When any of these
occurs in or near a sand and/or gravel aquifer, the
potential for widespread contamination is enor-
mous (see Figure 2.19).

Septic systems are designed to degrade (or
break down) a certain percentage of waste sew-
age within the septic tank proper, while dispersing
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the remaining sewage for absorption and break-
down into the surrounding sand and subsoil.
Contaminants known to enter groundwater from
septic and cesspool systems include bacteria,
viruses, nitrates, detergents, and household clean-
ers. These can all create serious contamination
problems, and, despite the fact that septic tanks
are known contaminant sources, they usually are
poorly monitored and very little studied.

Contamination often renders groundwater
unsuitable for use, although the overall extent of
the problem across the country is unknown. There
are, however, many individually documented high
profile contamination in Canada, including Ville
Mercier (Quebec, see Box 13-3, chapter 13), Nova
Scotia’s highway deicing salt problem, the indus-
trial effluents runoff in Elmira (Ontario), various
pesticide infiltrations in the Prairie provinces, and
industrial contamination in Vancouver, to name
a few. In most of these, the contamination was
identified only after groundwater users had been
exposed to potential health risks.

Canada’s groundwater contamination problems
are increasing because of the large number of
toxic compounds used in our industry and agri-
culture. This usage is increasing rapidly. Scientists
suspect that many rural Canadian household
wells are contaminated by substances from such
common sources as septic systems, underground
tanks, used motor oil, road salt, fertilizer, pesti-
cides, and livestock wastes. Scientists also predict
that, within the next few decades, more contam-
inated aquifers will be discovered, new contam-
inants will be identified, and more contaminated
groundwater will be discharged into wetlands,
streams and lakes.

Once an aquifer is contaminated, it is often
unusable for decades. The response time, as noted
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in Section 2.6, can be anywhere from two weeks to
hundreds or even thousands of years.

The effects of groundwater contamination do
not end with the loss of well-water supply. Several
studies have documented the migration of con-
taminants from disposal or spill sites to nearby
lakes and rivers as the tainted groundwater passes
through the hydrologic cycle; scientific opinion
remains inconclusive at this time because these
processes are not yet well understood.

Pollution of surface water by groundwater in
Canada is probably at least as serious as con-
tamination of the groundwater supply. The most
practical solution to this problem is the prevention
of contamination in the first place, which can be
implemented through the adoption of effective
groundwater management practices by all levels
of government, by industry and by all Canadians.
Current progress in this direction is hampered by
a serious shortage of groundwater experts and
a general lack of public knowledge about how
groundwater behaves.

Some provinces have begun adopting a
multi-barrier approach to safe drinking water;
and understanding and meeting the guidelines
described above is a very important component of
this approach.

The most effective way to ensure our drinking
water supply is clean, safe and reliable is to take
a preventive risk management approach, herein
we understand each water supply from its natural
beginning to its final destination, the consumer.
This approach presupposes knowledge of the
water’s characteristics, potential methods of con-
tamination, and the type of treatment the water
may require to become suitable for public use.
Answers to all of these issues can be determined,
and corrective procedures implemented through
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the collection and study of the drinking water sup-
ply and its three components: source water, the
drinking water treatment system, and the water
distribution system (which carries treated water to
homes— the treated water inside every residence is
an extension of this system—businesses, schools,

and others).

As drinking water travels on its journey to the
users, it can become contaminated in many ways.
Thus, the multi-barrier approach to manage drink-
ing water supplies is a preventive risk management
approach that identifies all known and potential
hazards and makes sure barriers are in place to

reduce or eliminate the risk of contamination.
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