## GEOLOGICAL SURVEY OF CANADA OPEN FILE 7834

# Regional Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2014 

A.L. Bent

# GEOLOGICAL SURVEY OF CANADA OPEN FILE 7834 

# Regional Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2014 

## A.L. Bent

## 2015

© Her Majesty the Queen in Right of Canada, as represented by theMinister of Natural Resources Canada, 2015
doi:10.4095/296822
This publication is available for free download through GEOSCAN (http://geoscan.nrcan.gc.ca).

## Recommended citation

Bent, A.L., 2015. Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2014; Geological Survey of Canada, Open File 7834, 35 p. doi:10.4095/296822


#### Abstract

Regional centroid moment tensor solutions have been determined for twelve moderatesized earthquakes in eastern Canada during 2014. The moment tensor inversion method is used to determine the focal mechanism, depth and seismic moment of the earthquakes. These parameters, in turn, provide information about the seismotectonic environment in which the earthquakes occur and may help improve seismic hazard estimates. The purpose of this report is not to provide an in-depth analysis of any specific earthquake but to catalog the solutions and data used to obtain them to make them available for future research projects.


## Introduction

Earthquake focal mechanisms provide information about the orientation and direction of motion on the fault that generated the earthquake. A suite of focal mechanisms from a particular region can be used to improve the understanding of the seismotectonic environment in which the earthquakes occur. In the past, focal mechanisms were most often determined by the polarity distribution of first motions. This method is tedious and requires a large number of clear readings from a wide variety of azimuths, which makes it difficult to obtain unique solutions for smaller earthquakes or those occurring in regions, such as the offshore, where the station density is low and azimuthal coverage poor. The moment tensor inversion, which makes use of a longer portion of the waveform, is a more robust and more objective method to determine focal mechanisms. They also provide the hypocentral depth, which has implications for seismic hazard as well as information about regional seismotectonics, and seismic moment (and moment magnitude), which is generally considered the best measure of earthquake size. However, moment tensors use relatively long-period data and they, too, do not always result in good-quality solutions for smaller earthquakes. Having said that, there has been an increase in the percentage of magnitude 4+ earthquakes for which focal mechanisms could be determined since regional centroid moment tensor (RCMT) method was implemented in eastern Canada around 2005-2006. The impact is most notable in the north where it was difficult to obtain focal mechanism solutions for all but the few earthquakes large enough to be well-recorded at teleseismic distances. For example, Bent et al (2003) were able to obtain focal mechanisms for only four of fourteen events evaluated in the region extending from the Labrador Sea to northern Baffin BayBaffin Island during the period 1994-2000. From 2011 through 2013 seven solutions were obtained via the RCMT inversion method for ten events evaluated in the same region (Bent, 2015) and another twelve (out of twelve) for 2014 (this paper). Note that in 2014 all RCMT solutions for eastern Canada are for earthquakes that occurred in the north as there were no southeastern earthquakes of magnitude $\left(m_{N}\right) 4.0$ or greater.

For seismological purposes eastern Canada is roughly defined as east of $100^{\circ} \mathrm{W}$ longitude. Some judgment calls in whether to treat earthquakes as western or eastern, however, are made in the case of the extreme north where lines of longitude are close together and where the $m_{N}$ or Nuttli magnitude scale (Nuttli, 1973) used for eastern Canada may be used as the primary or database magnitude for earthquakes west of this line. As a general practice earthquakes falling within the territory of the United States or Greenland are not included although exceptions may be made in the case of any event close to the border that was widely felt in Canada. In some cases the closest seismograph station to the earthquake may be in the United States or Greenland even if the earthquake is in Canada. With respect to offshore earthquakes there are no strict criteria used to determine which earthquakes to study but most earthquakes occurring close enough to Canadian territory to have been recorded by a reasonable number of seismograph stations at distances between 150 and 1500 km will be evaluated.

RCMT solutions for all of Canada through the end of 2010 were summarized by Kao et al. (2012) and Bent (2015) catalogued eastern solutions for 2011-2013. The current paper catalogs the RCMT solutions for eastern Canada in 2014. Solutions that met the minimum quality criteria were obtained for all twelve earthquakes evaluated. This report is the second in a series of RCMT summaries for eastern Canada intended to be
produced on an annual basis although other options for the dissemination of RCMT solutions, such as the creation of an online database are being explored. It should be noted that although this report focuses on eastern Canada, the RCMT method is also routinely applied to earthquakes in western Canada. (for example, Ristau, 2004; Ristau et al., 2007; Kao et al., 2012)

## Regional Centroid Moment Tensor Inversion Method

Moment tensor inversion is one method by which earthquake focal mechanisms, or faulting parameters may be determined. It also provides additional source parameters including depth, seismic moment and source time function as well as a measure of any non-double couple component of the source. Note that source time function is generally not well resolved for small and moderate earthquakes. For all earthquakes summarized in this paper a $1.0 / 1.0 / 1.0$ (sec) time function is assumed. Because it is based on fitting a relatively long portion of the recorded waveform and provides a quantitative measure of the fit, the RCMT is advantageous over other methods of focal mechanism determination, such as first motions which are based on a very small portion of the waveform, which can be difficult to pick accurately for small earthquakes and which require a larger number of good quality recordings for a unique solution to be determined.

The RCMT method used to analyze Canadian earthquakes is that of Kao et al (1998). More details about the method may be found in that paper and an in-depth discussion of its implementation in Canada is covered by Kao et al (2012). Both papers also include references which provide supplementary background information on centroid moment tensors. The discussion below is focused on topics specifically related to eastern Canada.

In eastern Canada the RCMT inversion is run for all earthquakes of magnitude 4.0 or greater. Note that the Nuttli $m_{N}$ magnitude is the most commonly used magnitude scale in eastern Canada but that $M_{\llcorner }$may be listed as the magnitude for offshore earthquakes for which the Lg wave is either not observed or is strongly attenuated. Moment magnitude, $M_{W}$, for eastern Canada is, on average, about 0.5 magnitude units smaller than $\mathrm{m}_{\mathrm{N}}$ (Bent, 2011). Good quality solutions cannot always be obtained for the smallest earthquakes because the signal to noise ratio is generally poor at the long periods modeled. The default frequency range is $0.03-0.06 \mathrm{~Hz}$ but the inversion code will modify the range if there is sufficient long period energy in the data in other frequency bands, sufficient energy being roughly defined as a signal to noise ratio $(\mathrm{S} / \mathrm{N})$ of 2.0 or greater.

Data from three-component broadband (both $\mathrm{bh}^{*}$ and $\mathrm{hh}^{*}$ ) stations are used in the inversion. Standard practice is to use only stations from which data are received in real time by the Geological Survey of Canada (GSC; CNWA, 2015). Data from additional stations may be added if an earthquake is of particular interest and if additional data are likely to improve the quality of the solution. For example, data from Greenland often help constrain the solutions for earthquakes occurring in Baffin Bay.

Two velocity models are used- one for southeastern Canada and one for the north. Essentially these are the same model, the only difference being the depth of the Moho discontinuity- 40 km for the south and 35 km for the north. These are referred to as EM40 and EM35 models respectively. With the exception of the modified Moho depth
the velocity model is that of Brune and Dorman (1963). The boundary between north and south is at approximately $60^{\circ} \mathrm{N}$. If an earthquake occurs close to the boundary the inversion may be run with both models and the best solution selected. At some future point a suite of regional models may be implemented if there is evidence that this would improve the quality of the solutions. The current model is based on shield paths but it should be noted that even for those earthquakes that occur in the Appalachians most of the paths modeled are sufficiently long that there will be a strong shield component. This statement may not be true for all offshore events. The southern model is shown in Table 1. For the southeast the thickness of layer 3 is increased to 24 km . The lowermost layer is a mantle half-space.

## Table 1 <br> Velocity Model for Northeastern Canada

| Layer | Thickness (km) | $\mathbf{V p}(\mathbf{k m} / \mathbf{s})$ | $\mathbf{V s} \mathbf{( k m} / \mathbf{s})$ | Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 5.64 | 3.47 | 2.70 |
| 2 | 10 | 6.15 | 3.64 | 2.80 |
| 3 | 19 | 6.60 | 3.85 | 2.85 |
| 4 | - | 8.10 | 4.72 | 3.30 |

Solutions are rated using the quality classification table in Kao et al. (2001). The classification consists of a character value from A through F based on the average misfit and a numerical value from 1 through 4 based on the compensated linear vector dipole (CLVD) component. Solutions must have a minimum quality of C 4 to be accepted. The user of these solutions should bear in mind that the quality classification is strictly based on the fit of the solutions to the data modeled and does not consider the number of components modeled. Solutions based on small numbers of modeled waveforms should be used with some caution even if the fit is reasonably good.

## Regional Centroid Moment Tensor Solutions for Eastern Canada

Twelve earthquakes were evaluated (Figure 1 and Table 2). Solutions of quality C4 or better were obtained for all events.

Table 2
Earthquakes Evaluated: Solutions Obtained

| Date | Time (UT) | Lat ( ${ }^{\circ} \mathrm{N}$ ) | Lon ( ${ }^{\circ} \mathrm{W}$ ) | Mag ( $\mathrm{M}_{\mathrm{w}}$ ) | Location/Region | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2014-01-03 | 00:07:33 | 61.43 | 59.53 | 3.8 | Labrador Sea | C3 |
| 2014-02-07 | 13:16:28 | 74.32 | 84.48 | 4.0 | 41 km SW of Dundas Harbour, NU | B2 |
| 2014-02-22 | 06:41:59 | 72.29 | 75.85 | 3.9 | 85 km SE of Pond Inlet, NU | B3 |
| 2014-03-03 | 19:08:48 | 59.79 | 55.70 | 4.2 | Labrador Sea | C2 |
| 2014-03-05 | 13:50:52 | 60.93 | 59.26 | 4.1 | Labrador Sea | C2 |
| 2014-03-11 | 05:25:38 | 74.49 | 72.78 | 4.6 | Baffin Bay | B3 |
| 2014-05-18 | 14:46:59 | 77.62 | 86.17 | 3.6 | 158 km NW of Grise Fiord, NU | C4 |
| 2014-09-02 | 04:57:34 | 70.98 | 65.61 | 4.0 | 124 km NE of Clyde River, NU | C3 |
| 2014-10-03 | 02:44:29 | 71.16 | 62.85 | 4.4 | 225 km NE of Clyde River, NU | C2 |
| 2014-11-09 | 04:42:40 | 76.51 | 97.12 | 4.7 | 125 km N of Polaris, NU | A4 |
| 2014-11-09 | 06:32:44 | 76.62 | 96.88 | 4.6 | 137 km N of Polaris, NU | B2 |
| 2014-11-11 | 19:24:24 | 60.58 | 57.91 | 4.0 | 381 km E of Killiniq, QC | B2 |



Figure 1: Locations and quality of solutions of all earthquakes evaluated in this study. Note that some points may plot on top of each other.

The solutions for the earthquakes listed in Table 2 are presented below (Figures 2a-2l) in chronological order without additional comments. Each solution is presented as a figure with the format discussed in the next few paragraphs. The solution is summarized in the upper left corner. The origin times and epicenters are taken from the Canadian National Earthquake Database (CNED, 2015). All other parameters are derived from the RCMT inversion. Only the best fitting double couple solution is summarized on the figure. The complete moment tensor solutions may be found in the Appendix.

The map in each plot shows the best fitting focal mechanism (lower hemisphere projection) from the inversion. The solid lines show the best fitting double couple solution and the shaded and white regions show the full moment tensor solution with the shaded regions representing compressional regions and white dilations. The P - and T -axes are indicated by gray and white dots, respectively.

To the right of the map the average misfit is plotted as a function of depth. The best fitting focal mechanism for each depth is plotted and the size of the symbol is scaled to the moment magnitude for that particular solution. Lack of variation in symbol size, as is most often the case, indicates that the calculated seismic moment is not heavily dependent on depth. A flat misfit plot indicates that the depth is not well constrained (for example, 20140507, Figure 2g) whereas a sharp dip in the misfit function is an indication of a well-constrained depth (for example, 20140103, Figure 2a). In most cases the focal mechanism is relatively independent of depth but there are solutions for which this is not the case. If the best fitting mechanism has a significantly lower misfit than one indicating a different style and/or orientation of faulting it is likely correct (for example, 20140207, Figure $2 b$ ). If two significantly different mechanisms have similar misfits (for example, 20141003, Figure 2f) anyone with a particular interest in that earthquake may need to consider both as viable options or apply additional techniques to the data to determine which solution is better.

Below that, the waveforms are shown with the solid lines representing the data and the dashed lines the synthetic seismograms. For each station the waveforms from left to right are the vertical, radial and tangential components respectively. The misfit is indicated below the waveforms. The horizontal (time) and vertical (amplitude) scales are indicated to the right. The waveforms for each station are scaled to the largest amplitude at that station. Components not plotted were not used in the inversion. The most common reason for rejecting a component is a poor signal to noise ratio at the periods modeled. There could be other reasons, however, such as lack of data from one component. Note that the RCMT inversion program allows for more complicated weighting schemes but practice is to use either 1.0 (full weight) or 0.0 (not used). There were other weighting schemes proposed in RCMT studies in other regions, such as given higher weighting for stations with good S/N or lower weight for a group of stations in the same area. Give the station distribution in eastern and northern Canada there have been no obvious benefits derived from using other weighting schemes. The text to the left of each set of waveforms provides information about the station. The first line is the station code and velocity model used. The second line indicates the azimuth of the station with respect to the epicenter. The third line gives the epicentral distance, the fourth the frequency range modeled and the fifth the average misfit for the station.

2014/01/03 00:07:33.3 (UT) Epicenter: 61.43-59.53 Depth: $\mathbf{7 k m}$ Mw: 4.32 Mo: $3.812 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions FP1: 302.7740 .2763 .93
FP2: 155.4454 .51110 .42
Iso.= 3.2 \% CLVD= 30.5 \%
Misfit= 0.581

FRB (EM35) 303.05 deg. 529.71 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.705
KAJQ (EM35) 232.26 deg. 469.02 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.590 KNGQ (EM35) 276.92 deg. 660.58 km $0.01-0.05 \mathrm{~Hz}$ Misfit: 0.582
MKVL (EM35) 178.23 deg . 706.48 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.436
NANL (EM35) 193.78 deg . 559.25 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.321 SCHQ (EM35) 213.50 deg. 850.74 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.720
SFJD (EM35) 30.94 deg. 754.50 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.717

0.283


0.742


R-comp



T-comp



Source Time Function: 1.001 .001 .00
Figure 2a

2014/02/07 13:16:28.7 (UT)
Epicenter: 74.32-83.48 Depth: $\mathbf{7 k m}$ Mw: 4.04
Mo: $1.408 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 83.8235 .19 -81.43
FP2: 253.38 55.26-96.00
Iso.= -2.8 \% CLVD= 14.1 \% Misfit= 0.461


ILON (EM35)
173.24 deg.
554.93 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.507

KULL (EM35) 75.24 deg. 780.41 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.308
RES (EM35) 282.41 deg . 342.45 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.628
TULE (EM35)
52.02 deg.
478.77 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.403


T-comp


$3.73 \mathrm{e}-04 \mathrm{~mm}$


Source Time Function: 1.001 .001 .00
Figure 2b

2014/02/22 06:41:59.0 (UT)
Epicenter: 72.29-75.85
Depth: $\mathbf{1 0}$ km Mw: 3.89
Mo: $8.517 \mathrm{e}+14 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 230.0138 .46107 .21
FP2: 28.4253 .5576 .77
Iso.= 1.7 \% CLVD= 37.7 \% Misfit= 0.492



ILON (EM35) 216.82 deg. 391.84 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.618
KULL (EM35) 57.91 deg. 642.48 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.410
RES (EM35) 302.86 deg. 657.58 km $0.02-0.05 \mathrm{~Hz}$ Misfit: 0.308
TULE (EM35) 20.60 deg. 518.30 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.631

R-comp
T-comp
V-comp



### 0.895


0.380

0.308

### 0.440


0.363

Source Time Function: 1.001 .001 .00
Figure 2c

2014/03/03 19:08:48.9 (UT)
Epicenter: 59.79 -55.70
Depth: $\mathbf{7 k m}$ Mw: 4.23
Mo: $2.725 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 159.4839 .6989 .47
FP2: 340.1750 .3190 .44
Iso.= 0.5 \% CLVD= 12.3 \%
Misfit= 0.611
KAJQ (EM40)
262.61 deg.
595.63 km
$0.03-0.06 \mathrm{~Hz}$

Misfit: 0.659
MKVL (EM40) 203.25 deg. 563.12 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.537 NATG (EM40) 206.21 deg. 1149.71 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.762 SCHQ (EM40) 235.32 deg. 866.76 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.488
V-comp



$$
0.537
$$

0.766




0.825




Source Time Function: 1.001 .001 .00
Figure 2d

2014/03/05 13:50:52.8 (UT) Epicenter: 60.93-59.26
Depth: $\mathbf{1 4} \mathbf{~ k m ~ M w : ~} 4.09$
Mo: $1.713 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 125.9687 .240 .00
FP2: 35.9690 .00177 .24
Iso.= 0.1 \% CLVD= 10.6 \% Misfit= 0.694


FRB (EM40)
307.22 deg. 573.73 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.823 KAJQ (EM40) 239.29 deg. 448.93 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.509
NANL (EM40)
197.07 deg.
508.61 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.759
SFJD (EM40) 28.22 deg. 796.60 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.687

## V-comp




R-comp




T-comp

## \&-4



100 sec

Source Time Function: 1.001 .001 .00
Figure 2e

2014/03/11 05:25:38.2 (UT)
Epicenter: 74.49-72.78 Depth: $\mathbf{8 k m}$ Mw: 4.57 Mo: $8.850 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 359.0345 .89127 .02
FP2: 131.7355 .0258 .16
Iso.= -10.9 \% CLVD= 38.2 \%
Misfit= 0.373

CLRN (EM35)
160.54 deg .
469.19 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.289
EUNU (EM35) 338.16 deg. 702.09 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.422
ILON (EM35) 213.13 deg . 649.69 km $0.02-0.06 \mathrm{~Hz}$ Misfit: 0.319
KULL (EM35) 81.23 deg . 461.99 km $0.01-0.06 \mathrm{~Hz}$ Misfit: 0.361 RES (EM35) 282.61 deg. 653.04 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.435 TULE (EM35) 23.86 deg. 253.91 km $0.01-0.06 \mathrm{~Hz}$ Misfit: 0.410

V-comp


R-comp


0.424

0.236

0.170
0.271



T-comp


## 




Source Time Function: 1.001 .001 .00
Figure 2 f

2014/05/18 14:46:59.0 (UT)
Epicenter: 77.69-85.83 Depth: $\mathbf{2 9} \mathbf{~ k m ~ M w : ~} 3.61$
Mo: $3.241 \mathrm{e}+14 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 208.1730 .62131 .58
FP2: 342.2967 .6168 .55
Iso.= -0.8 \% CLVD= 43.1 \%
Misfit= 0.598
V-comp
EUNU (EM35)
357.55 deg. 264.38 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.826 ILON (EM35) 170.28 deg. 936.26 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.817
RES (EM35)
220.29 deg . 411.92 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.156
TULE (EM35)
98.46 deg. 440.85 km $0.01-0.06 \mathrm{~Hz}$ Misfit: 0.591


~A氏


R-comp



T-comp

$5.91 \mathrm{e}-05 \mathrm{~mm}$

50 sec


Source Time Function: 1.001 .001 .00

Figure 2g

2014/09/02 04:57:34.6 (UT) Epicenter: 70.98-65.61 Depth: $\mathbf{1 5} \mathrm{km}$ Mw: 3.96 Mo: $1.069 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 232.12 82.36-179.18
FP2: 142.0289 .19 -7.64
Iso.= -0.3 \% CLVD= 33.7 \% Misfit= 0.700


CLRN (EM35) 244.38 deg. 123.10 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.728 ILON (EM35) 261.47 deg. 637.32 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.842
ILUL (EM35) 102.72 deg. 583.81 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.703
KULL (EM35) 30.64 deg. 487.69 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.525

## V-comp

R-comp

T-comp






Source Time Function: 1.001 .001 .00
Figure 2h

2014/10/03 02:44:29.0 (UT)
Epicenter: 71.25-62.39
Depth: $\mathbf{1 7} \mathrm{km}$ Mw: 4.43
Mo: $5.583 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 29.35 84.18-1.34
FP2: 119.48 88.67-174.18
Iso.= -0.2 \% CLVD= 15.4 \% Misfit= 0.545


CLRN (EM35) 252.09 deg. 242.66 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.280 FRB (EM35) 200.33 deg . 875.99 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.569
TULE (EM35) 344.41 deg. 622.11 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.788


R-comp
T-comp


Source Time Function: 1.001 .001 .00
Figure 2i

2014/11/09 04:42:40.4 (UT) Epicenter: 76.51 -97.12 Depth: 5 km Mw: 4.66 Mo: $1.233 \mathrm{e}+16 \mathrm{Nt}-\mathrm{m}$

Best double couple solutions
FP1: 106.6573 .9716 .12
FP2: 12.0874 .52163 .35
Iso.= 0.4 \% CLVD= 54.7 \% Misfit= 0.213

INK (EM35)
251.69 deg
1491.34 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.231


R-comp




Source Time Function: 1.001 .001 .00
Figure 2j

2014/11/09 06:32:44.9 (UT)
Epicenter: 76.62-96.88
Depth: $\mathbf{2 3} \mathbf{~ k m}$ Mw: 4.57
Mo: $9.062 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 127.9282 .53173 .86
FP2: 218.7283 .917 .51
Iso.= -0.3 \% CLVD= 15.4 \% Misfit= 0.395



CB31 (EM35) 201.94 deg. 876.52 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.147 CLRN (EM35) 113.27 deg. 1108.53 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.617
RES (EM35)
164.75 deg. 221.90 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.357
TULE (EM35) 77.02 deg. 720.43 km $0.03-0.06 \mathrm{~Hz}$ Misfit: 0.458

V-comp
R-comp

0.102



Source Time Function: 1.001 .001 .00

Figure 2k

2014/11/11 19:24:24.1 (UT)
Epicenter: 60.58-57.91
Depth: 6 km Mw: 4.00
Mo: $1.246 \mathrm{e}+15 \mathrm{Nt}-\mathrm{m}$
Best double couple solutions
FP1: 294.6737 .3194 .51
FP2: 109.0052 .8286 .57
Iso.= 0.1 \% CLVD= 23.2 \%
Misfit= 0.459


V-comp


R-comp


T-comp
FRB (EM35)
307.14 deg.
656.31 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.570
KAJQ (EM35)
248.65 deg.
498.34 km
$0.01-0.06 \mathrm{~Hz}$
Misfit: 0.535
NANL (EM35)
207.70 deg.
500.56 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.233
NWRL (EM35)
190.75 deg.
796.60 km
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.479
SCHQ (EM35)
$223.60 ~ d e g . ~$
830.56 km.
$0.03-0.06 \mathrm{~Hz}$
Misfit: 0.478





Source Time Function: 1.001 .001 .00
Figure 21

## Summary

Regional moment tensor solutions have been determined for twelve moderate earthquakes occurring in northeastern Canada during 2014. These moment tensor solutions include focal mechanisms, depths and moment magnitudes which provide input into further studies regarding seismic hazard, regional seismotectonics or stress field to name a few. These results are particularly valuable in this region where there have been considerable difficulties in obtaining these parameters through other methods. Note that there were no earthquakes in southeastern Canada during 2014 that met the minimum magnitude criterion for running the RCMT inversion. This paper is the second in what is intended to be a series of annual updates but other methods, such as an online database, for disseminating the solutions are being explored.

## Acknowledgments

I thank Honn Kao for his review of the manuscript.
The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for access to waveforms and metadata required in this study from the following stations of the Danish Network operating in Greenland: TULEG, KULLO, ILULI. The IRIS DMS is funded through the National Science Foundation and specifically the GEO Directorate through the Instrumentation and Facilities Program of the National Science Foundation under Cooperative Agreement EAR-1063471. Some activities of IRIS are supported by the National Science Foundation EarthScope Program under Cooperative Agreements EAR-0733069, EAR-1261681.

## References

Bent, A. L. (2011). Moment magnitude ( $\mathrm{M}_{\mathrm{w}}$ ) conversion relations for use in hazard assessment in eastern Canada, Seismological Research Letters, 82, 984-990, doi:10.1785/gssrl.83.3.984.

Bent, A. L. (2015). Regional Centroid Moment Tensor Solutions for Eastern Canadian Earthquakes: 2011-2013, Geological Survey of Canada Open File 7726, 71 p.

Bent, A. L., J. Drysdale and H. K. C. Perry (2003). Focal mechanisms for Eastern Canadian Earthquakes; 1994-2000, Seismological Research Letters, 74, 452-468.

Brune, J. and J. Dorman (1963). Seismic waves and earth structure in the Canadian shield, Bulletin of the Seismological Society of America, 53, 167-210.

Canadian National Earthquake Database (CNED, 2015). On-line database, http://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php, last accessed 28 January 2015.

Canadian National Waveform Archive (CNWA, 2015). On-line database, http://www.earthquakescanada.nrcan.gc.ca/stndon/wf index-eng.php, last accessed 28 January 2015.

Kao, H., P.-R. Juan, K.-F. Ma, B.-S. Huang and C.-C. Liu (1998). Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophysical Research Letters, 25, 3619-3622.

Kao, H., Y.-H. Liu and P.-R. Juan (2001). Source parameters of regional earthquakes in Taiwan: January-December 1997, Terrestrial, Atmospheric and Oceanic Sciences, 12, 431-439.

Kao, H., S.-J. Shan, A. Bent, C. Woodgold, G. Rogers, J. F. Cassidy and J. Ristau (2012). Regional Centroid-Moment-Tensor Analysis for Earthquakes in Canada and Adjacent Regions: An Update, Seismological Research Letters, 83, 505-515, doi:10.1785/gssrl.83.3.505.

Nuttli, O. (1973). Seismic wave attenuation and magnitude relations for eastern North America, Journal of Geophysical Research, 78, 876-885.

Ristau, J. P. (2004). Seismotectonics of western Canada from regional moment tensor inversion, Ph.D. Thesis, University of Victoria, Victoria BC, Canada.

Ristau, J., G. Rogers and J. F. Cassidy (2007). Stress in western Canada from regional moment tensor analysis, Canadian Journal of Earth Sciences, 44, 127-148, doi:110.1139/E1106-1057.

## Appendix <br> Complete Moment Tensor Solution for Earthquakes in Table 1

For each event listed in Table 1 the full moment tensor from the RCMT inversion is given. The format is described below (written communication from Kao, 2005). The earthquakes are identified by date of occurrence. In the case of two events on the same day, the origin time (hh:mm) is added for clarification.

Line 1-25: depth, E_nosh, E_sh, Mxx, Myy, Mzz, Mxy, Mxz, Myz (E_nosh: average misfit without any shift of synthetic seismograms)
(E_sh: average misfit with shift of synthetic seismograms)
< repeat for each depth >
Line 26: station(i), ishift(i), E(i), Ez(i), Er(i), Et(i)
(station: station name)
(ishift: number of shifted points, original position + ishift = final position)
(E: average misfit for this station at the best-fitting depth)
(Ez: Z-comp misfit for this station at the best-fitting depth)
(Er: R-comp misfit for this station at the best-fitting depth)
(Et: T-comp misfit for this station at the best-fitting depth)
< repeat for each station >
Author's note: the misfit for each component is given for all stations used regardless of whether the component was used in the inversion; the average misfit, both for each station and overall, is calculated only from the components that were used

| 6 | 0.7265 | 0.6107 | -78.28946 | -124.52686 | 266.92116 | -150.05410 | -46.93472 | 172.21486 |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 0.6688 | 0.5812 | -149.27379 | -181.57545 | 371.03444 | -155.26545 | -41.96365 | 151.68760 |
| 8 | 0.6422 | 0.5885 | -153.99435 | -166.57835 | 305.71398 | -126.74936 | -30.38822 | 107.26442 |
| 9 | 0.6580 | 0.6185 | -163.24357 | -170.05050 | 266.51087 | -152.34908 | -33.96656 | 114.01965 |
| 10 | 0.6938 | 0.6423 | -141.87745 | -143.49792 | 185.90776 | -167.33861 | -38.16547 | 121.60712 |
| 11 | 0.7243 | 0.6549 | -98.64846 | -103.63631 | 101.37234 | -172.64625 | -37.75671 | 114.52963 |
| 12 | 0.7427 | 0.6643 | -76.01258 | -74.08082 | 52.85764 | -159.38077 | -37.78495 | 110.57620 |
| 13 | 0.7576 | 0.6733 | -59.76669 | -54.04891 | 22.25837 | -152.65896 | -37.30612 | 107.25934 |
| 14 | 0.7703 | 0.6831 | -50.46558 | -39.73776 | 3.33505 | -145.05454 | -36.64631 | 104.73144 |
| 15 | 0.7811 | 0.6910 | -45.81711 | -29.15734 | -8.74707 | -136.97964 | -35.75254 | 102.65334 |
| 16 | 0.7894 | 0.6989 | -44.37885 | -22.88780 | -9.40115 | -128.11349 | -40.94641 | 115.42996 |
| 17 | 0.7977 | 0.7056 | -40.84331 | -12.45346 | -18.82694 | -117.69682 | -40.80187 | 113.00015 |
| 18 | 0.8054 | 0.7149 | -39.46636 | -3.64004 | -25.20199 | -106.99751 | -40.27173 | 111.33142 |
| 19 | 0.8098 | 0.7158 | -35.85552 | 1.58203 | -30.70844 | -106.72585 | -40.21748 | 109.61656 |
| 20 | 0.8147 | 0.7200 | -37.34339 | 8.07243 | -33.30673 | -96.30626 | -39.90290 | 108.25336 |
| 21 | 0.8192 | 0.7239 | -39.68155 | 13.81952 | -34.59818 | -85.88769 | -39.42105 | 106.85444 |
| 22 | 0.8224 | 0.7256 | -42.48042 | 19.38745 | -35.53000 | -75.78666 | -39.04753 | 105.83789 |
| 23 | 0.8229 | 0.7281 | -45.66299 | 25.86163 | -37.17245 | -65.77755 | -38.84833 | 105.50444 |
| 24 | 0.8298 | 0.7294 | -44.79602 | 28.25650 | -33.85242 | -51.03688 | -34.92940 | 95.15160 |
| 25 | 0.8309 | 0.7296 | -48.32558 | 32.96952 | -33.68765 | -42.54226 | -34.54302 | 94.52632 |
| 26 | 0.8318 | 0.7285 | -52.07759 | 37.71103 | -33.31893 | -34.26531 | -34.16099 | 94.03543 |
| 27 | 0.8357 | 0.7282 | -49.84561 | 38.73363 | -33.40299 | -35.50301 | -32.62217 | 91.02082 |
| 28 | 0.8362 | 0.7283 | -54.10716 | 43.16597 | -33.05273 | -28.19262 | -32.31939 | 9.91360 |
| 29 | 0.8372 | 0.7286 | -58.62255 | 47.46193 | -32.35708 | -20.73759 | -31.97971 | 90.84053 |
| 30 | 0.8382 | 0.7290 | -62.65751 | 52.88596 | -31.71884 | -13.74401 | -31.68525 | 90.80312 |

frb 20.7045590 .7436970 .6654200 .621310
kajq -1 0.5895240 .7010250 .5420490 .525499
kngq -2 0.5820600 .5820600 .8050280 .978489
 nanl -4 0.3207280 .3207280 .9215100 .940217 schq 20.7195310 .7416060 .6974561 .000000 sfjd $-1 \quad 0.7166320 .6785500 .7547141 .000000$

| 6 | 0.5292 | 0.4839 | 102.53643 | -13.54670 | -104.32480 | -17.49635 | 54.03628 | -30.45191 |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.5008 | 0.4613 | 118.30874 | 9.30872 | -139.95770 | -22.39080 | 44.23607 | -23.30694 |
| 8 | 0.5012 | 0.4761 | 90.66482 | 24.48943 | -119.47939 | -20.57764 | 29.89938 | -14.87858 |
| 9 | 0.5255 | 0.5144 | 71.71940 | 34.41175 | -105.49329 | -23.45466 | 26.82698 | -12.77096 |
| 10 | 0.5723 | 0.5593 | 48.95470 | 41.50255 | -87.14075 | -29.38413 | 25.56221 | -11.76037 |
| 11 | 0.6236 | 0.6005 | 25.33469 | 48.96848 | -70.00032 | -37.37383 | 24.61634 | -10.98157 |
| 12 | 0.6722 | 0.6323 | 2.31379 | 58.52586 | -56.37320 | -46.26512 | 23.89749 | -10.35044 |
| 13 | 0.7092 | 0.6471 | -20.32373 | 72.67158 | -47.79740 | -56.62351 | 24.45264 | -10.30976 |
| 14 | 0.7194 | 0.6476 | -40.25070 | 83.30468 | -38.67549 | -61.76928 | 24.02111 | -9.91522 |
| 15 | 0.7145 | 0.6406 | -55.91609 | 91.52137 | -31.34088 | -63.34987 | 23.72124 | -9.64613 |
| 16 | 0.7072 | 0.6437 | -61.27650 | 93.75237 | -28.85454 | -59.62302 | 25.47522 | -10.34032 |
| 17 | 0.7007 | 0.6449 | -69.98816 | 9.49448 | -82.00329 | -54.40326 | 25.33992 | -10.33900 |
| 18 | 0.6956 | 0.6495 | -73.11680 | 93.54456 | -17.01398 | -48.73509 | 25.37045 | -10.43430 |
| 19 | 0.6930 | 0.6530 | -72.61220 | 89.45359 | -13.51190 | -43.61702 | 25.53457 | -10.59380 |
| 20 | 0.6925 | 0.6531 | -70.17137 | 84.51309 | -11.09602 | -39.32101 | 25.79008 | -10.78966 |
| 21 | 0.6963 | 0.6558 | -67.01630 | 79.60081 | -9.41908 | -35.01071 | 26.17246 | -10.98351 |
| 22 | 0.7000 | 0.6559 | -63.90013 | 75.02717 | -8.05258 | -31.98201 | 26.51472 | -11.21084 |
| 23 | 0.7019 | 0.6561 | -63.06629 | 73.34959 | -7.30731 | -32.39685 | 26.75640 | -11.22756 |
| 24 | 0.7047 | 0.6570 | -60.17367 | 69.77667 | -6.75002 | -29.76979 | 26.98335 | -11.72003 |
| 25 | 0.7099 | 0.6585 | -57.40294 | 66.46027 | -6.34153 | -27.99487 | 27.40551 | -11.98530 |
| 26 | 0.7158 | 0.6609 | -55.03947 | 63.64659 | -6.04122 | -26.46492 | 27.81876 | -12.25788 |
| 27 | 0.7202 | 0.6601 | -53.10670 | 61.33334 | -5.81373 | -25.17133 | 28.20441 | -12.53756 |
| 28 | 0.7263 | 0.6632 | -51.59284 | 59.54028 | -5.65099 | -24.19369 | 28.54032 | -12.79766 |
| 29 | 0.7317 | 0.6639 | -50.44414 | 58.23544 | -5.60448 | -23.05700 | 28.84421 | -12.96552 |
| 30 | 0.7352 | 0.6652 | -53.00054 | 60.62661 | -5.58751 | -26.37611 | 28.85984 | -12.93751 |
| ilon | -1 | 0.506645 | 0.967022 | 0.506645 | 0.975262 |  |  |  |
| kull | -1 | 0.307823 | 0.307823 | 1.000000 | 1.000000 |  |  |  |
| res | 6 | 0.627676 | 0.341207 | 0.914145 | 0.798181 |  |  |  |
| tule | -1 | 0.402998 | 1.00000 | 0.402998 | 1.000000 |  |  |  |


| 6 | 0.6375 | 0.5288 | 6.23512 | -7.33580 | 13.03098 | 47.53710 | 3.86083 | -33.07794 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.6379 | 0.5347 | -2.70064 | -21.68203 | 38.04444 | 54.21920 | 3.49947 | -28.61099 |
| 8 | 0.6432 | 0.5343 | -14.40949 | -36.67628 | 63.54373 | 56.84195 | 3.71846 | -26.01638 |
| 9 | 0.6236 | 0.5091 | -21.38538 | -44.74164 | 74.6686 | 55.25699 | 4.40251 | -24.58094 |
| 10 | 0.6090 | 0.4919 | -21.35514 | -45.67105 | 71.67646 | 53.15408 | 5.20872 | -23.69957 |
| 11 | 0.6103 | 0.5004 | -16.05300 | -42.58792 | 60.59751 | 52.49835 | 5.34036 | -23.49447 |
| 12 | 0.6139 | 0.5101 | -11.60016 | -41.40044 | 53.45104 | 54.08775 | 5.75307 | -22.98455 |
| 13 | 0.6173 | 0.5203 | -7.32907 | -40.94855 | 47.83337 | 56.52196 | 5.82398 | -22.55361 |
| 14 | 0.6199 | 0.5312 | -3.53007 | -41.09375 | 43.62756 | 59.06704 | 5.51549 | -22.18233 |
| 15 | 0.6229 | 0.5435 | -0.23544 | -41.54989 | 40.42649 | 61.17982 | 4.75656 | -21.86586 |
| 16 | 0.6269 | 0.5559 | 1.21687 | -45.54486 | 43.32683 | 65.84838 | 6.26297 | -24.54580 |
| 17 | 0.6384 | 0.5776 | 4.39966 | -46.01835 | 40.53631 | 67.48514 | 6.79743 | -24.29097 |
| 18 | 0.6531 | 0.6018 | 7.14070 | -46.09478 | 37.88994 | 67.58681 | 7.19563 | -24.18165 |
| 19 | 0.6690 | 0.6226 | 8.40966 | -46.15853 | 36.68240 | 65.45738 | 7.84558 | -23.97078 |
| 20 | 0.6845 | 0.6466 | 10.76753 | -45.53768 | 33.81840 | 63.35307 | 8.04607 | -24.04380 |
| 21 | 0.6989 | 0.6699 | 13.11412 | -44.92032 | 30.98664 | 60.99136 | 8.22147 | -24.14506 |
| 22 | 0.721 | 0.6911 | 15.51729 | -44.37914 | 28.17238 | 58.58742 | 8.28812 | -24.27112 |
| 23 | 0.7218 | 0.7055 | 18.08504 | -44.31751 | 25.68001 | 56.96194 | 8.30078 | -24.40122 |
| 24 | 0.7289 | 0.7096 | 20.83703 | -44.65574 | 23.39665 | 55.94932 | 8.28433 | -24.53035 |
| 25 | 0.7357 | 0.7103 | 22.23499 | -44.40567 | 21.91621 | 54.89894 | 8.44571 | -24.62662 |
| 26 | 0.7360 | 0.7011 | 25.45127 | -45.61049 | 20.01742 | 55.24341 | 8.32219 | -24.71739 |
| 27 | 0.7333 | 0.6899 | 28.98098 | -47.33012 | 18.30566 | 56.35843 | 8.12199 | -24.78524 |
| 28 | 0.329 | 0.6859 | 31.79078 | -49.56605 | 17.72225 | 56.71904 | 7.97878 | -24.76636 |
| 29 | 0.7284 | 0.6740 | 36.06899 | -52.15483 | 16.09271 | 58.89362 | 7.59897 | -24.77388 |
| 30 | 0.7215 | 0.6617 | 40.91719 | -55.56353 | 14.70479 | 62.35017 | 7.15838 | -24.76434 |
| ilon | -5 | 0.618152 | 0.274504 | 0.685403 | 0.894550 |  |  |  |
| kull | -1 | 0.410432 | 0.380457 | 0.440407 | 0.775427 |  |  |  |
| res | -1 | 0.308362 | 0.308362 | 0.987206 | 0.962382 |  |  |  |
| tule | -2 | 0.630837 | 0.363050 | 0.898623 | 0.977742 |  |  |  |

## 2014-03-03

| 6 | 0.6783 | 0.6434 | 24.20911 | -174.89891 | 167.60236 | -92.96453 | -19.60705 | -50.13016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 0.6426 | 0.6114 | -16.18739 | -239.71621 | 260.27040 | -94.89930 | -15.88267 | -47.54778 |
| 8 | 0.6579 | 0.6359 | -33.32854 | -276.24688 | 278.55701 | -101.40766 | -21.40239 | -42.39714 |
| 9 | 0.7165 | 0.726 | 45.23769 | -245.20594 | 139.37361 | -115.34751 | -21.59863 | -49.14611 |
| 10 | 0.7712 | 0.7391 | 121.36923 | -182.76701 | 2.51578 | -112.41881 | -27.22229 | -46.83609 |
| 11 | 0.7845 | 0.7471 | 168.65922 | -156.47197 | -60.88628 | -109.41452 | -25.50613 | -47.01742 |
| 12 | 0.7846 | 0.7537 | 144.57875 | -109.13796 | -66.07501 | -79.47341 | -22.21647 | -33.41190 |
| 13 | 0.7803 | 0.7543 | 151.66737 | -105.26709 | -71.22212 | -75.15570 | -20.31132 | -31.70465 |
| 14 | 0.7795 | 0.7546 | 156.81429 | -104.40476 | -74.46890 | -73.44721 | -23.68795 | -28.96398 |
| 15 | 0.7759 | 0.7552 | 157.70962 | -104.40045 | -72.43338 | -70.19953 | -21.97792 | -27.45402 |
| 16 | 0.7790 | 0.7597 | 163.30542 | -101.66271 | -78.45999 | -69.16135 | -28.24238 | -29.31171 |
| 17 | 0.7779 | 0.7620 | 162.20428 | -101.08829 | -75.10541 | -66.34196 | -25.54456 | -28.51461 |
| 18 | 0.7819 | 0.7676 | 162.40272 | -100.72668 | -74.18580 | -65.51146 | -28.55438 | -26.65822 |
| 19 | 0.7819 | 0.7701 | 159.04175 | -99.23995 | -70.55356 | -64.04771 | -27.08669 | -25.20647 |
| 20 | 0.7789 | 0.7624 | 247.70384 | -155.41764 | -109.09560 | -99.85408 | -47.59792 | -36.76814 |
| 21 | 0.7717 | 0.7570 | 253.34374 | -161.82599 | -108.34952 | -101.50267 | -47.25856 | -36.93468 |
| 22 | 0.7623 | 0.7486 | 251.29312 | -159.63404 | -108.83205 | -100.65650 | -52.77679 | -34.06917 |
| 23 | 0.7587 | 0.7468 | 257.20281 | -166.12230 | -108.04968 | -102.64881 | -52.91292 | -34.18159 |
| 24 | 0.7565 | 0.7452 | 263.65037 | -172.77046 | -107.34771 | -104.86004 | -53.20868 | -34.17691 |
| 25 | 0.7541 | 0.7427 | 261.23055 | -172.00947 | -105.44413 | -104.16883 | -58.93072 | -31.00607 |
| 26 | 0.7536 | 0.7430 | 268.79701 | -179.35963 | -104.80657 | -106.61652 | -59.55325 | -30.79561 |
| 27 | 0.7525 | 0.7410 | 265.73656 | -176.98216 | -103.27830 | -107.73688 | -66.57200 | -26.69001 |
| 28 | 0.7529 | 0.7420 | 274.65248 | -185.34920 | -102.69867 | -110.44674 | -67.29298 | -26.36733 |
| 29 | 0.7538 | 0.7427 | 273.00514 | -185.37635 | -99.87676 | -109.29389 | -73.77549 | -22.77479 |
| 30 | 0.7525 | 0.7424 | 284.41944 | -193.85978 | -101.32688 | -111.72779 | -74.61601 | -22.65112 |

## 2014-03-05

| 7 | 0.8072 | 0.7906 | 32.02082 | -45.82146 | 11.76249 | -5.80159 | 5.39244 | -3.88686 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 0.8138 | 0.7960 | 44.82757 | -50.57118 | 2.76744 | -9.77621 | 5.00250 | -4.05485 |
| 9 | 0.8084 | 0.7923 | 59.25626 | -54.97183 | -6.61252 | -13.80527 | 4.66179 | -4.26775 |
| 10 | 0.7991 | 0.7741 | 105.978787 | -94.40040 | -13.42923 | -25.62131 | 6.16838 | -5.97361 |
| 11 | 0.7749 | 0.7442 | 128.77370 | -116.55445 | -13.17589 | -32.41248 | 5.87158 | -5.91478 |
| 12 | 0.7623 | 0.7191 | 144.55153 | -133.47682 | -11.38980 | -38.02206 | 5.42953 | -5.66711 |
| 13 | 0.7661 | 0.7017 | 163.11242 | -152.79670 | -10.25055 | -45.86250 | 5.43945 | -5.90238 |
| 14 | 0.7756 | 0.6944 | 167.19960 | -157.70588 | -9.19338 | -53.05003 | 5.38778 | -6.27270 |
| 15 | 0.7863 | 0.7001 | 164.73581 | -155.29041 | -9.00957 | -63.11493 | 5.80331 | -7.14849 |
| 16 | 0.8016 | 0.7240 | 141.59127 | -130.83293 | -10.41886 | -67.32615 | 6.70328 | -8.73849 |
| 17 | 0.8249 | 0.7624 | 90.22506 | -80.86215 | -9.21602 | -58.04814 | 6.07290 | -8.19438 |
| 18 | 0.8460 | 0.7995 | 62.55307 | -53.34052 | -9.27624 | -52.35268 | 6.14882 | -8.72022 |
| 19 | 0.8616 | 0.8304 | 40.92423 | -32.24694 | -8.92621 | -43.76453 | 6.02956 | -8.94741 |
| 20 | 0.8749 | 0.8562 | 24.92189 | -16.77345 | -8.51790 | -35.81602 | 5.58048 | -8.68368 |
| 21 | 0.8887 | 0.8770 | 14.84805 | -7.22832 | -8.13004 | -29.47794 | 5.47990 | -8.90090 |
| 22 | 0.8978 | 0.8918 | 6.77589 | 0.05106 | -7.44272 | -23.55210 | 5.20413 | -8.82595 |
| 23 | 0.9052 | 0.9012 | 1.77221 | 4.52800 | -6.98411 | -18.93227 | 4.98295 | -8.59735 |
| 24 | 0.9109 | 0.9089 | -1.73719 | 7.52394 | -6.50477 | -15.18618 | 4.73382 | -8.50336 |
| 25 | 0.9151 | 0.9140 | -4.34771 | 9.89342 | -6.30795 | -12.65785 | 4.65945 | -8.71922 |
| 26 | 0.9179 | 0.9168 | -6.25968 | 11.39610 | -5.89166 | -10.19830 | 4.47161 | -8.58346 |
| 27 | 0.9196 | 0.9185 | -7.82784 | 12.83179 | -5.75014 | -8.43284 | 4.38941 | -8.78916 |
| 28 | 0.9194 | 0.9179 | -9.1447 | 14.26145 | -5.82468 | -7.47454 | 4.21098 | -8.87569 |
| 29 | 0.9201 | 0.9179 | -10.23305 | 15.27982 | -5.72137 | -6.09941 | 4.11552 | -9.07853 |
| 30 | 0.9195 | 0.9167 | -11.72281 | 16.65884 | -5.56203 | -4.84288 | 4.02701 | -9.27254 |
| frb | 1 | 0.823339 | 0.823339 | 0.975066 | 0.991102 |  |  |  |
| kajq | 0 | 0.508838 | 0.522638 | 0.495038 | 0.977480 |  |  |  |
| nanl | 1 | 0.759095 | 0.759095 | 0.967061 | 1.000000 |  |  |  |
| sfjd | -8 | 0.686522 | 0.686522 | 0.649755 | 0.974853 |  |  |  |

```
    7 0.5054 0.4081 -271.36830 -860.94346 963.77126 -305.70396 567.92239 -105.25564
    80.4711 0.3728 -187.32130 -730.52573 634.29892 -291.10189 454.78988 -78.53989
    9 0.9321 0.9321 -0.13843E-04 0.38422E-04 -0.72536E-05 0.16391E-04 -0.23773E-04 0.65047E-
0 5
    10 0.9321 0.9321 0.13747E-03 -0.30639E-03 0.93268E-05 -0.17214E-03 0.17540E-03 -0.18869E-
0 4
    11 0.9321 0.9321 -0.43476E-03 0.83331E-03 -0.57188E-04 -0.48690E-03 0.52771E-03 0.59751E-
04
    12 0.9321 0.9321 -0.50444E-03 0.76014E-03 -0.12117E-03 -0.49196E-03 0.53251E-03 0.58649E-
04
    13 0.9321 0.9321 -0.57508E-03 0.66191E-03 0.24259E-03 -0.49843E-03 0.54203E-03 0.58381E-
04
```

140.44560 .4246
150.44150 .4282
160.44240 .4318
170.44390 .4378
180.44760 .4427
190.45260 .4445
200.45860 .4496
210.46500 .4538
220.47190 .4588
230.48040 .4608
240.48840 .4627
250.49120 .4634
260.49700 .4641
270.50070 .4645
280.50430 .4662
290.50990 .4685
300.51650 .4665
505.46368 -622.13453
$543.57865-619.27207$

## $586.35083-620.89728$

$616.28842-618.11682$
644.31790
665.26515
615.91277
693.52291 -624.67765
707.71609 -629.25064
$719.64339-635.71263$
734.37421 -642.28205
659.28997 -571.30855
$674.54309-579.47645$
$700.30939-588.32225$
$716.89264-602.28363$
$738.54637-617.17825$
$792.56080-654.97006$
-290.90327
-306.52226
-316.62115
-316.62115
-324.74429
-324.74429
-337.82536
-339. 15019
-333.31095
-331.13180
-329.56839
-325.01726
-324.02509
-284.27935
-284.07980
-294.00638
-292.62041
-296.40637
-309.05322
611.81994
-630.07758
-642.76985
-656.97797
-671.08362
-682.80570
-693.66532
-705.72548
-718.77864
-730.92734
-744.12528
-666.35469
-679.99334
$-697.73402$
-716.27427
-734.58732
-785.73854
$552.60911-80.16947$

## $540.59589-73.54601$

$608.26603-74.53999$
600.44147 -67.84890
$589.56989-58.48533$
$584.30724-49.11064$

### 584.85043 -48.95921

581.58556 -41.89552
576.07758 -37.15695
573.55302 -30.26664
569.78427 -22.74973
497.05774 -13.39692
$493.03845-6.93771$
$486.48527 \quad 2.89628$
$486.56207 \quad 8.85338$
$482.42488 \quad 9.11348$
$491.39573 \quad 12.91788$

```
clrn -1 0.2890780 .2890780 .9838080 .884545
eunu 40.4224810 .3183760 .5265860 .965775
ilon 10.3187690 .1975910 .1697750 .588941
kull 10.3606530 .2728420 .2712890 .537828
res 10.4354220 .4243480 .3232290 .558688
tule 20.4102480 .2364160 .5765810 .417747
```


## 2014-05-18

| 6 | 0.7338 | 0.6289 | 15.30932 | -4.85375 | -5.42194 | 2.83472 | -28.40935 | -32.62444 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.7387 | 0.6247 | 12.30363 | -15.41077 | 10.21551 | 2.26192 | -23.73084 | -29.91497 |


| 8 | 0.7336 | 0.6205 | 2.91876 | -30.59274 | 34.93686 | 1.88526 | -20.22014 | -28.08225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 0.7151 | 0.6229 | -2.66378 | -40.42959 | 47.73721 | 1.69774 | -17.95389 | -27.43586 |
| 10 | 0.6964 | 0.6210 | -0.41750 | -42.12148 | 44.71803 | 1.38223 | -16.09569 | -25.66835 |
| 11 | 0.6833 | 0.6231 | 3.39551 | -41.96446 | 39.48616 | 0.82795 | -13.98632 | -24.37137 |
| 12 | 0.6742 | 0.6256 | 7.70545 | -41.67674 | 34.21352 | 0.50235 | -12.53576 | -23.08251 |
| 13 | 0.6710 | 0.6272 | 11.38470 | -42.96489 | 31.48429 | 0.29482 | -11.68009 | -22.59708 |
| 14 | 0.6682 | 0.6303 | 14.41423 | -44.08719 | 29.33418 | 0.15057 | -11.14782 | -22.34638 |
| 15 | 0.6675 | 0.6298 | 12.22800 | -32.97630 | 20.36154 | 0.04538 | -7.90722 | -16.26032 |
| 16 | 0.6650 | 0.6261 | 11.77917 | -34.84631 | 22.82870 | 0.07787 | -8.58996 | -18.32104 |
| 17 | 0.6632 | 0.6202 | 12.80539 | -34.91556 | 21.78449 | 0.08897 | -8.22491 | -18.32212 |
| 18 | 0.6631 | 0.6163 | 13.33623 | -34.67327 | 20.93606 | 0.13202 | -7.92456 | -18.36306 |
| 19 | 0.6614 | 0.6116 | 14.05658 | -34.44673 | 19.91707 | 0.28776 | -7.91250 | -18.44792 |
| 20 | 0.6621 | 0.6104 | 14.15748 | -34.32349 | 19.64857 | 0.27982 | -7.71601 | -18.31503 |
| 21 | 0.6647 | 0.6104 | 13.80899 | -33.55255 | 19.16804 | 0.35857 | -7.55204 | -18.44679 |
| 22 | 0.6680 | 0.6084 | 13.30162 | -32.70070 | 18.77133 | 0.44066 | -7.41865 | -18.58203 |
| 23 | 0.6716 | 0.6057 | 12.69347 | -31.80884 | 18.44078 | 0.52311 | -7.30028 | -18.71787 |
| 24 | 0.6757 | 0.6030 | 12.07163 | -30.93298 | 18.14950 | 0.57152 | -7.17457 | -18.85751 |
| 25 | 0.6800 | 0.6009 | 11.38756 | -30.08495 | 17.94964 | 0.65627 | -7.07460 | -18.97890 |
| 26 | 0.6804 | 0.5995 | 10.75841 | -29.25583 | 17.71456 | 0.75777 | -7.11120 | -19.20509 |
| 27 | 0.6860 | 0.5978 | 10.62394 | -28.98113 | 17.55566 | 0.98599 | -7.15760 | -19.20679 |
| 28 | 0.6885 | 0.5977 | 10.57414 | -29.31997 | 17.91921 | 0.98334 | -7.06170 | -19.14333 |
| 29 | 0.6942 | 0.5976 | 10.08644 | -28.94340 | 17.99867 | 1.10954 | -6.97590 | -19.20039 |
| 30 | 0.6968 | 0.5978 | 10.17645 | -30.04815 | 18.97778 | 1.31113 | -7.18664 | -20.10078 |
| eunu 40.8264770 .7904640 .9761280 .862491 <br> ilon 00.8170820 .8312910 .9929500 .802873 |  |  |  |  |  |  |  |  |
| res -20.1562780 .1562780 .9473200 .880846 |  |  |  |  |  |  |  |  |
|  | -1 0.59 | 730. | 600.803 | 130.886187 |  |  |  |  |

## 2014-09-02

| 6 | 0.8227 | 0.7960 | 27.22524 | -23.24848 | -1.57469 | -8.37841 | 20.33246 | -39.54307 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.8202 | 0.7994 | 25.05185 | -32.73524 | 10.33168 | -5.86143 | 14.28688 | -31.29924 |


| 8 | 0.8048 | 0.7881 | 24.74724 | -45.41179 | 22.96676 | -3.10969 | 9.72706 | -25.15031 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 9 | 0.7921 | 0.7783 | 27.62612 | -55.93263 | 29.72864 | 0.20599 | 6.00610 | -20.39392 |
| 10 | 0.7879 | 0.7732 | 36.30246 | -64.08975 | 28.30536 | 4.28900 | 2.91835 | -17.44623 |
| 11 | 0.7748 | 0.7541 | 48.90697 | -75.44091 | 26.35992 | 8.84858 | 1.14191 | -16.43821 |
| 12 | 0.7611 | 0.7319 | 62.54866 | -87.22504 | 24.07255 | 13.90542 | -0.48181 | -16.05837 |
| 13 | 0.7508 | 0.7141 | 76.39851 | -99.13174 | 21.78206 | 19.06621 | -2.08905 | -15.45870 |
| 14 | 0.7438 | 0.7029 | 85.83403 | -106.58528 | 19.61957 | 22.89096 | -3.47733 | -14.91443 |
| 15 | 0.7417 | 0.6997 | 91.77631 | -111.06866 | 18.11297 | 25.28700 | -4.69377 | -14.64821 |
| 16 | 0.7430 | 0.7024 | 93.22602 | -118.25567 | 24.37781 | 27.74566 | -6.39816 | -17.73958 |
| 17 | 0.7497 | 0.7095 | 88.72334 | -113.79166 | 24.48795 | 26.33690 | -6.84394 | -18.16662 |
| 18 | 0.7603 | 0.7210 | 81.91979 | -106.35869 | 23.94221 | 23.70987 | -7.22183 | -18.46552 |
| 19 | 0.7699 | 0.7317 | 75.46490 | -99.81424 | 23.88298 | 21.32311 | -7.65820 | -18.72003 |
| 20 | 0.7807 | 0.7423 | 68.42195 | -92.31327 | 23.44194 | 18.62031 | -7.68963 | -18.84666 |
| 21 | 0.7919 | 0.7531 | 60.70549 | -83.72318 | 22.61731 | 15.53261 | -7.91472 | -19.32657 |
| 22 | 0.7994 | 0.7610 | 56.09332 | -78.69306 | 22.22688 | 14.02597 | -8.42141 | -19.12975 |
| 23 | 0.8049 | 0.7672 | 52.42418 | -74.85092 | 22.07315 | 13.03457 | -8.88852 | -19.01321 |
| 24 | 0.8092 | 0.7717 | 51.58681 | -74.43100 | 22.49363 | 12.31673 | -9.02219 | -9.72999 |
| 25 | 0.8122 | 0.7758 | 49.35006 | -71.92111 | 22.20465 | 11.98105 | -9.51100 | -19.12264 |
| 26 | 0.8152 | 0.7787 | 49.63736 | -72.93017 | 22.90116 | 12.45368 | -10.30555 | -19.33281 |
| 27 | 0.8154 | 0.7812 | 48.52385 | -71.56632 | 22.63651 | 12.73348 | -10.63599 | -18.60010 |
| 28 | 0.8183 | 0.7835 | 48.38150 | -71.77900 | 22.93964 | 13.02933 | -10.86497 | -18.97095 |
| 29 | 0.8180 | 0.7843 | 50.82447 | -75.10869 | 23.77403 | 14.69789 | -11.52955 | -18.80932 |
| 30 | 0.8166 | 0.7843 | 54.40340 | -79.67018 | 24.71133 | 16.97519 | -12.13316 | -18.53624 |
| clrn | 1 | 0.728269 | 0.728269 | 0.922639 | 0.998455 |  |  |  |
| ilon | 4 | 0.841539 | 0.660171 | 0.841539 | 1.000000 |  |  |  |
| ilul | -1 | 0.703463 | 0.931681 | 0.885587 | 0.703463 |  |  |  |
| kull | 2 | 0.525375 | 0.991077 | 0.525375 | 0.929855 |  |  |  |

## 2014-10-03

$10.55870 .5575-0.10148+307 \quad 0.18530+307-0.10638+307 \quad 0.91569+307-0.11984+307$

clrn -1 0.2795370 .2795370 .9356930 .982770
frb 20.5689800 .6276120 .5103490 .964527
tule -5 0.7879010 .8505240 .7252780 .970249

## 2014-11-09 04:42

| 1 | 0.6738 | 0.4579 | 86.68978 | -348.40988 | 264.01717 | -667.14758 | 2323.58270 | -2263.62470 |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | ---: | :--- |
| 2 | 0.5911 | 0.2451 | 137.08210 | -401.62344 | 291.76112 | -794.84070 | 695.14997 | -1093.71609 |


| 3 | 0.5496 | 0.2285 | 194.34185 | -474.53088 | 325.72498 | -883.30744 | 535.23780 | -292.12520 |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.5210 | 0.2197 | 249.01851 | -604.90518 | 390.78114 | -925.00765 | 289.82967 | -198.34482 |
| 5 | 0.4676 | 0.2133 | 321.26979 | -780.06952 | 473.68640 | -1001.64594 | 184.25836 | -122.97230 |
| 6 | 0.4367 | 0.2186 | 451.07463 | -912.86700 | 459.83456 | -1069.22187 | 124.26225 | -126.55556 |
| 7 | 0.4166 | 0.2188 | 594.00302 | -1093.92280 | 459.15740 | -1151.65334 | 41.24282 | -84.1815 |
| 8 | 0.4010 | 0.2380 | 840.32547 | -1313.67402 | 380.83512 | -1305.33899 | -7.55580 | -65.20791 |
| 9 | 0.4186 | 0.2634 | 1117.45670 | -1454.71241 | 200.93292 | -1446.36084 | -39.68716 | -41.88902 |
| 10 | 0.4298 | 0.2923 | 1412.38577 | -1596.32742 | 4.98301 | -1623.20069 | -72.79474 | -25.44260 |
| 11 | 0.4514 | 0.3216 | 1692.76502 | -1724.06571 | -190.89168 | -1851.89580 | -109.98512 | 10.02943 |
| 12 | 0.4830 | 0.3648 | 1892.00223 | -1726.13122 | -440.85196 | -2057.05653 | -146.37402 | 32.87158 |
| 13 | 0.5171 | 0.4059 | 1591.33175 | -1241.29147 | -621.70195 | -1820.57646 | -141.94690 | 51.95432 |
| 14 | 0.5011 | 0.4172 | 1316.62859 | -765.05803 | -841.12078 | -1693.76596 | -144.67395 | 58.54485 |
| 15 | 0.5033 | 0.4424 | 879.05507 | -190.76198 | -969.22541 | -1431.97011 | -124.43761 | 68.15988 |
| 16 | 0.5264 | 0.4562 | 472.07003 | 342.68210 | -1073.63146 | -1181.33465 | -134.89603 | 82.15001 |
| 17 | 0.5458 | 0.4590 | -73.50160 | 927.17880 | -1080.00366 | -872.06501 | -115.77920 | 96.37078 |
| 18 | 0.5096 | 0.4357 | -508.72985 | 1373.35147 | -1062.71323 | -637.28127 | -101.75973 | 97.94451 |
| 19 | 0.5053 | 0.4418 | -796.42837 | 1592.68910 | -957.00336 | -441.45127 | -78.28823 | 104.93038 |
| 20 | 0.4967 | 0.4446 | -1037.40695 | 1818.65608 | -923.13446 | -332.60268 | -67.98757 | 108.09497 |
| 21 | 0.4864 | 0.4560 | -1141.67727 | 1849.54314 | -825.48250 | -246.17646 | -50.82083 | 117.03910 |
| 22 | 0.4750 | 0.4695 | -1144.57497 | 1759.23978 | -709.23023 | -182.66740 | -35.88433 | 120.28530 |
| 23 | 0.4637 | 0.4584 | -1196.29996 | 1777.52719 | -664.47993 | -150.81843 | -30.74972 | 121.47341 |
| 24 | 0.4550 | 0.4493 | -1275.44109 | 1848.74722 | -649.03464 | -137.58786 | -25.64173 | 117.08725 |
| 25 | 0.4452 | 0.4413 | -1295.42943 | 1842.38242 | -614.62871 | -122.32501 | -23.36827 | 118.83030 |
| ink | 4 | 0.231072 | 0.172810 | 0.289334 | 1.000000 |  |  |  |
| res | 3 | 0.279538 | 0.052011 | 0.432005 | 0.354598 |  |  |  |
| tule | 1 | 0.129193 | 0.024372 | 0.240832 | 0.122375 |  |  |  |

## 2014-11-09 06:32

| 6 | 0.7231 | 0.5285 | -367.52377 | 134.03718 | 281.49038 | 54.12518 | -140.89675 | 338.42276 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 0.7045 | 0.5343 | -511.29857 | 77.27521 | 477.73409 | 62.07340 | -99.88065 | 263.84668 |
| 8 | 0.6779 | 0.5426 | -601.31729 | 42.63197 | 564.94196 | 65.45814 | -70.77449 | 210.55605 |


| 9 | 0.6411 | 0.5290 | -551.37575 | 131.95365 | 394.09593 | 66.95647 | -53.57524 | 174.42522 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0.6294 | 0.5170 | -551.70122 | 260.66595 | 255.20668 | 79.75180 | -47.43015 | 169.89217 |
| 11 | 0.6293 | 0.5057 | -598.97693 | 390.60424 | 170.00390 | 98.84815 | -43.28158 | 175.62489 |
| 12 | 0.6320 | 0.4976 | -642.41946 | 496.05781 | 109.62108 | 115.77010 | -37.05214 | 175.83544 |
| 13 | 0.6341 | 0.4939 | -672.70019 | 572.61038 | 66.71726 | 128.55404 | -29.71794 | 170.77654 |
| 14 | 0.6351 | 0.4905 | -727.51423 | 662.17642 | 34.98385 | 151.82645 | -17.05971 | 161.48761 |
| 15 | 0.6359 | 0.4849 | -765.75499 | 725.49079 | 11.97582 | 163.30400 | -9.90928 | 156.02271 |
| 16 | 0.6303 | 0.4666 | -747.73012 | 719.22132 | 7.26407 | 163.52032 | -12.10887 | 178.97531 |
| 17 | 0.6216 | 0.4497 | -751.19981 | 736.36919 | -2.20465 | 168.37940 | -8.54734 | 172.73889 |
| 18 | 0.6352 | 0.4336 | -1035.54777 | 1028.98227 | -13.21400 | 229.52512 | -16.41633 | 246.60890 |
| 19 | 0.6164 | 0.4195 | -939.43084 | 947.00261 | -22.61572 | 212.67872 | -10.18186 | 216.35096 |
| 20 | 0.5940 | 0.4121 | -903.96433 | 922.19580 | -30.52483 | 208.57919 | -5.23155 | 201.07331 |
| 21 | 0.5729 | 0.4026 | -900.36155 | 927.78142 | -37.90436 | 211.54503 | -0.55783 | 192.83219 |
| 22 | 0.5569 | 0.3973 | -894.23151 | 929.32151 | -44.02853 | 213.76686 | 4.11067 | 183.79798 |
| 23 | 0.5445 | 0.3945 | -846.01115 | 885.61942 | -46.82744 | 205.30177 | 5.85753 | 167.13115 |
| 24 | 0.5334 | 0.3946 | -875.19850 | 920.37157 | -51.68983 | 218.23687 | 13.37792 | 159.33463 |
| 25 | 0.5238 | 0.3955 | -907.45458 | 959.44104 | -57.75936 | 229.33523 | 18.07000 | 156.80871 |
| 26 | 0.5214 | 0.3953 | -842.54617 | 893.67572 | -55.80928 | 211.03700 | 14.84767 | 148.03781 |
| 27 | 0.5167 | 0.3968 | -831.98288 | 885.55001 | -57.49935 | 209.90025 | 17.284455 | 138.16754 |
| 28 | 0.5124 | 0.3991 | -867.73475 | 926.65170 | -62.36482 | 221.36104 | 21.06908 | 135.13887 |
| 29 | 0.5084 | 0.4027 | -905.71147 | 970.72168 | -67.90146 | 234.50108 | 25.26733 | 131.42651 |
| 30 | 0.5065 | 0.4074 | -894.12860 | 961.89958 | -69.82710 | 235.53895 | 28.33470 | 119.64344 |
| cb31 | 1 | 0.146800 | 0.154971 | 0.101981 | 0.183448 |  |  |  |
| clrn | -8 | 0.616818 | 0.616818 | 0.974982 | 0.995295 |  |  |  |
| res | 0 | 0.356505 | 0.278979 | 0.708538 | 0.434031 |  |  |  |
| tule | 3 | 0.457910 | 0.297426 | 0.777930 | 0.618394 |  |  |  |

## 2014-11-11

| 1 | 0.7391 | 0.6687 | -34.44040 | 11.43154 | 22.75784 | -13.50611 | 158.21291 | -50.96455 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.6730 | 0.5731 | -34.81223 | -9.74563 | 52.56963 | -18.70266 | 92.78643 | 17.06965 |


| 3 | 0.6492 | 0.5433 | -45.24150 | -14.91041 | 69.79850 | -19.16342 | 58.95558 | 11.07134 |
| ---: | ---: | ---: | ---: | :--- | :---: | :--- | :---: | :---: |
| 4 | 0.6215 | 0.5112 | -62.51274 | -23.49494 | 95.59252 | -20.70020 | 42.95645 | 8.50258 |
| 5 | 0.5797 | 0.4683 | -86.70099 | -33.52844 | 124.93739 | -25.67483 | 34.14062 | 6.09460 |
| 6 | 0.5688 | 0.4590 | -97.94579 | -28.37392 | 126.79242 | -33.63016 | 33.36573 | 5.59818 |
| 7 | 0.571 | 0.4988 | -108.63379 | -21.64430 | 118.67247 | -53.57360 | 26.70152 | 3.44874 |
| 8 | 0.6114 | 0.5390 | -113.71372 | 2.90059 | 85.39543 | -98.96592 | 25.81356 | 1.03494 |
| 9 | 0.6115 | 0.5178 | -113.00355 | 46.08812 | 31.46978 | -168.15134 | 27.53239 | -1.79084 |
| 10 | 0.6115 | 0.5061 | -93.85975 | 82.12576 | -20.88380 | -206.55734 | 24.21669 | -3.84850 |
| 11 | 0.6205 | 0.5001 | -82.51927 | 108.31653 | -53.79206 | -236.36608 | 20.29462 | -5.19347 |
| 12 | 0.6269 | 0.4955 | -67.90385 | 112.52803 | -65.74406 | -229.51762 | 15.78649 | -5.42158 |
| 13 | 0.6271 | 0.5009 | -60.95106 | 120.87556 | -78.68190 | -242.83450 | 13.89636 | -6.02200 |
| 14 | 0.6275 | 0.5141 | -49.45160 | 121.99803 | -9.67053 | -252.87535 | 12.47222 | -6.62080 |
| 15 | 0.6273 | 0.5232 | -32.55695 | 118.90718 | -105.90575 | -266.17443 | 11.65351 | -7.53148 |
| 16 | 0.6344 | 0.5397 | 5.01826 | 96.19937 | -121.38768 | -254.43330 | 10.54123 | -9.91306 |
| 17 | 0.6448 | 0.5607 | 36.86619 | 62.00415 | -119.38981 | -211.40943 | 8.21716 | -8.82711 |
| 18 | 0.6603 | 0.5845 | 60.23120 | 33.14557 | -114.11448 | -167.01060 | 6.52049 | -8.79464 |
| 19 | 0.6683 | 0.6006 | 72.36815 | 12.86521 | -105.30636 | -125.64698 | 5.74089 | -8.70660 |
| 20 | 0.6762 | 0.6103 | 78.73238 | -1.37465 | -96.46092 | -91.77572 | 4.18733 | -8.70862 |
| 21 | 0.6830 | 0.6166 | 83.94331 | -10.72261 | -91.78992 | -68.92554 | 2.90264 | -9.10937 |
| 22 | 0.6874 | 0.6208 | 90.15041 | -17.69448 | -90.93049 | -53.50613 | 1.72706 | -9.90908 |
| 23 | 0.6889 | 0.6226 | 92.81427 | -22.50227 | -88.03231 | -40.35466 | 0.47435 | -10.47665 |
| 24 | 0.6938 | 0.6238 | 90.8929 | -24.3645 | -82.91852 | -29.54634 | 0.18665 | -10.87726 |
| 25 | 0.6959 | 0.6234 | 93.08471 | -27.1936 | -81.61982 | -21.96564 | -1.20525 | -10.66589 |
| frb | -3 | 0.570062 | 0.570062 | 0.976449 | 0.686675 |  |  |  |
| kajq | 0 | 0.534789 | 0.514516 | 0.555063 | 1.000000 |  |  |  |
| nanl | -2 | 0.232857 | 0.231595 | 0.234119 | 0.990185 |  |  |  |
| nwrl | 2 | 0.479234 | 0.479234 | 0.968268 | 0.991066 |  |  |  |
| schq | 2 | 0.477815 | 0.477815 | 0.965674 | 1.000000 |  |  |  |

