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INTRODUCTION

Unlike gravity data, gravity gradiometer (GG) data
comprise measurements of all components of the grav-
ity field and provide greater sensitivity at shorter wave-
lengths, making them well suited for small-scale min-
eral exploration studies. Recently, the Geological
Survey of Canada has collected GG data over several
mineral prospects in Canada. To understand and effec-
tively utilize these data, our studies had two main
goals: (1) to quantify the information content in the dif-
ferent gravity gradient tensor components and (2) to
suppress the noise in the measured data.

Methods of interpretation for GG data parallel those
developed for gravity and magnetic data due to their
similarities but gradiometer systems measure compo-
nents that do not have an equivalent counterpart in
gravity and magnetic interpretation. Qualitative meth-
ods, such as a simple visual inspection of all tensor
components, are hindered by the complicated form of
the non-Tzz components. Consequently, Tzz is usually
the component of choice, especially for qualitative
interpretation. Quantitative methods have been devel-
oped for GG data that use either single tensor compo-
nents or combinations thereof (Vasco and Taylor, 1991;
Zhang et al., 2000; Zhdanov et al., 2004; Beiki and
Pedersen, 2010; Martinez et al., 2013). A quantitative

comparison of tensor components and their combina-
tions was made by Pilkington (2012), who utilized GG
data to determine the densities within a three-dimen-
sional (3-D) subsurface volume. Using a  measure of
information content commonly used in optimal survey
design to rate different components (and some compo-
nent combinations), Pilkington (2012) concluded that
Tzz was the most useful single tensor component and
that results could be improved by adding more compo-
nents to the data vector. However, Pilkington (2012)
did not consider data errors and the geometry of the
model employed did not allow for investigation of indi-
vidual model parameters and their effects on the com-
ponents. Therefore, we used parametric inversion to
evaluate tensor components and their combinations
through inversions using models with only a small
number of parameters. By analyzing the parametric
errors generated by inversion of different tensor com-
ponents and combinations, we evaluated the relative
information content of the different data types. 

Collecting gravity data in a dynamic environment,
such as an aircraft, leads inevitably to the presence of
noise in the measurements. The sources and
approaches to treatment of noise in airborne gravity
gradiometer systems are numerous and have been dis-
cussed extensively (e.g. Dransfield and Christensen,
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ABSTRACT

Gravity gradiometer surveys are becoming increasingly important in the search for and characterization of
mineral deposits. Measurement of the full gravity gradient tensor provides the opportunity for processing
and interpretation of single tensor components or combinations of components. To effectively use these
components and combinations thereof, it is necessary to characterize the information content in order to
interpret the gradiometer data correctly. We use linear inverse theory to evaluate different components and
their combinations and find that which concatenated components produce the smallest modelling errors. Of
the single tensor components, the Tzz component was found to provide the best performance overall. Since
airborne gradiometer data are collected in a highly dynamic environment, noise is ever-present and must be
compensated for to produce a clean signal for interpretation. Two approaches were investigated for remov-
ing noise: kriging and directional filtering. The kriging and directional filtering results show a similar level
of smoothness, the main difference being the increased smoothing along strike of the directionally filtered
data. Since kriging is a data-driven procedure, it provides an objective estimate of the data noise level and
degree of smoothness. Based on the kriging results, processing parameters can be chosen to give a similar
level of smoothness and noise suppression for directional filtering, that more effectively delineates geolog-
ical trends in the data.
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2013). Standard processing of GG data is designed to
suppress the unwanted noise and emphasize the geo-
logical signals. Nonetheless, currently produced GG
data often still contain high enough levels of noise to
interfere with both qualitative and quantitative inter-
pretations. Our approach was to explore several noise-
reduction methods to determine their applicability and
effectiveness in removing unwanted noise in GG data.

RESULTS

Evaluating Tensor Component Utility

The aim of this study was to use the estimated param-
eter errors resulting from inversions of single and mul-
tiple tensor components to quantitatively rate their
information content. Table 1 gives a list of 17 different
component quantities consisting of single tensor com-
ponents (1 to 6), combinations of components (7 to 11),
and concatenations of components (12 to 17); Figure 1
shows quantities 1 through 11 calculated for a pris-
matic model. 

Linear inverse theory provides all the tools to exam-
ine the relationship between the different data types
and the model parameters (Inman, 1975). A simple
prism model (Fig. 1) was used, which was character-
ized by just seven parameters: xc and yc - the x and y
coordinates of the prism centre; w and b - the prism
width (in x) and breadth (in y); ρ - the density; z - the
depth to the top surface; and t - the vertical thickness.

Once an inversion is completed, the errors in the
model parameters can be estimated (Pilkington, 2014).
A range of models was tested to determine how differ-
ent component quantities affected parameter errors (see
Table 2 for a list of parameter values). Varying param-
eters t, w, b, and z simulates shallow to deep prisms,
and thin to thick plates and dykes. For each model, the

standard deviations of the parameter errors were calcu-
lated. The resulting standard deviations were then
ranked for each parameter by component quantity
(Table 1), with a value of 1 assigned to the smallest
parameter error and a value of 17 to the largest. Figure
2 illustrates the summing of the rank values for the 29
models (a high-ranking value is indicative of large
parameter errors). Seven points are plotted for each
component quantity, each corresponding to a single
model parameter. 

Figure 2 shows that most of the 17 component quan-
tities have parameter rankings clustered fairly close
together, i.e., none of the parameters are much more
reliably estimated than the others. Tzz shows a lower
ranking (lower error) than the other single components
(Fig. 2). Some individual parameters are estimated to
have lower errors than those generated using Tzz but
these are limited to a few cases where parameters ben-
efit from directional strengths in some of the single ten-
sor components. The mainly horizontal component
combinations H1 and C1 (Tuv | Txy, Table 1) are ranked
at a similar level as Tzz. In contrast, the purely hori-
zontal quantities H2, Tuv, and Txy have higher errors.
These three components comprise just Txx, Tyy, and/or

No. Description

1 Txx = Gradient in x direction of x-component of gravity field
2 Txy = Gradient in y direction of x-component of gravity field
3 Txz = Gradient in z direction of x-component of gravity field
4 Tyy = Gradient in y direction of y-component of gravity field
5 Tyz = Gradient in z direction of y-component of gravity field
6 Tzz = Gradient in z direction of z-component of gravity field
7 Tuv = = 0.5*(Txx-Tyy)
8 I1 = TxxTyy+TyyTzz+TxxTzz-Txy2-Tyz2-Txz2

9 I2 = Txx(TyyTzz-Tyz2)+Txy(TyzTxz-TxyTzz)+Txz(TxyTyz-TxzTyy)
10 H1 = sqrt(Txz2+Tyz2)
11 H2 = sqrt(Txy2+0.25*(Tyy-Txx)2)
12 C1 = Tuv | Txy
13 C2 = Txz | Tyz | Tzz
14 C3 = Txy | Tyz | Txz
15 C4 = Txx | Tyy | Txy
16 C5 = Tzz | Tyz | Txz | Txy | Txx
17 C6 = Tyy | Tyz | Txz | Txy | Txx

Table 1. Tensor components and component combinations
used in this paper (notation Tuv | Txy means that, for exam-
ple, data vectors Tuv and Txy both with length n are con-
catenated to form an augmented vector with length 2n).
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Figure 1. Component quantities from Table 1 (1 to 11) calcu-
lated over a single prism, with the measurement coordinate
system rotated by 30º, which simulates a flight direction of
N60ºE. Prism model parameters are z = 2 km, t = 8 km, w = 20
km, b = 20 km, ρ = 0.2 gcm-3. 
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Txy. The invariants I1 and I2 are ranked between the
lower ranked concatenated combinations and those dis-
cussed above. Both I1 and I2 have tightly clustered
parameter rankings and have the lowest errors of the
combined component quantities. 

In agreement with Pilkington (2012), Figure 2
shows that the concatenated components have the low-
est ranking, producing the smallest parameter error
estimates. This demonstrates that when components
are combined into a single quantity through multiplica-
tion and addition, it does not perform as well as if the
same components are simply concatenated. For exam-
ple, comparing H2 and C4 (Txx | Tyy | Txy combina-
tion, Table 1), they both contain the same (purely hori-
zontal) components but provide very different error
estimates, the latter having much lower errors.
Component quantity C1 (Tuv | Txy, Table 1) is a mix of
combination and concatenation, and has a ranking
between H2 and C4 (Txx | Tyy | Txy, Table 1).

Noise Suppression for Gradiometer Data

Two approaches were considered for noise removal in
GG data: kriging and directional filtering. Kriging is an
estimation procedure commonly used in geostatistics
for the interpolation of spatial data (Matheron, 1963)
and provides the best linear unbiased estimator. A more
detailed description of the method can be found in
Keating and Pilkington (2013) and Pilkington and
Shamsipour (2014). For the simple case of signal
(gravity effects of geology) and uncorrelated noise,
ordinary kriging provides an unbiased estimate of a
noise-free signal and hence was chosen for use with the
GG data. 

Figure 3a shows a portion of the Tzz component
from a GG data survey, illustrating the noisy character
of this kind of data. The kriged data (Fig. 3b) shows a
significant reduction in uncorrelated noise level, result-
ing in the appearance of more coherent gradient fea-

tures throughout the area. With the suppression of
shorter wavelength components, the kriged data are
generally smoother than the gridded (minimum curva-
ture) flight-line data (Fig. 3a). The kriged values are,
nonetheless, optimal in the sense of being estimated
from an interpolator based on the data themselves, and
not from an arbitrary interpolator such as the minimum
curvature operator. The difference between standard
minimum curvature gridding (Fig. 3a) and kriging (Fig.
3b) is illustrated in Figure 3c, which shows the mostly
uncorrelated noise components removed by the kriging
method.

The type of anomaly in GG data that is most useful
for geological mapping is two-dimensional (2-D).
Quasi-linear (2-D) features in the data may correspond
to lithological contacts, but even if this is not the case,
such trends can help in distinguishing structural
regimes, and deformation styles and trends. Since a 2-
D feature varies more smoothly along strike than per-
pendicular to strike, low-pass filtering to remove noise
can be tuned to take this into account. Short-wave-
length features can be removed preferentially along
strike but preserved in the cross-strike direction. In this
fashion, short-wavelength components that provide the
detailed definition of the 2-D features are unaffected,
whereas the short-wavelength noise that overprints and
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Figure 2. Parameter rankings versus component type based
on 29 model inversions. For each inversion, the parameter
standard deviations were ranked by component quantity (see
Table 1), with a value of 1 assigned to the smallest parame-
ter error and a value of 17 to the largest. Plotted values are
the sums of the ranked values. High-ranking values are
equivalent to large parameter errors.
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(km)

ρ 
(g/cm3)

32 32 4 1,3,6,13,43 12 12 0.2
32 32 4 13 0.1,0.5,2,6,9 12 0.2
32 32 0.1,1,3,6,12 40 12 12 0.2
32 32 2 1 1 1 0.2
32 32 2 4 4 4 0.2
32 32 2 8 8 8 0.2
32 32 0.5,1,2 4 1 1 0.2
32 32 0.5,1,2,4 1 8 8 0.2
32 32 0.5,1,2,4 2 2 2 0.2

xc
(km)

z
(km)

t
(km)

w
(km)

b
(km)

Table 2. Values of the parameters used in the 29 models
shown in Figure 2. Note: xc and yc are the x and y coordi-
nates of the prism centre; w and b are the prism width (in x)
and breadth (in y); ρ represents the density; z is the depth to
the top surface; and t is the vertical thickness.
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disrupts along-strike trends is suppressed. This is the
essence of directional filtering (e.g. Brewster, 2013). A
directional filter requires the orientation or strike of the
filter to be known at each grid point, which can be
found from the two orthogonal horizontal gradients of
the component.

Figure 3d shows the results of directionally filtering
the data in Figure 3a. There is likely still some residual
short-wavelength noise in the filtered grid, but through
the smoothing effect of the directional filter the signal-
to-noise ratio of the data is increased. Also, because the
directional filtering uses the long-wavelength portion
(assumed noise-free) of the input data to orient the
smoothing, the short-wavelength trends are likely more
reliable. Figure 3e shows the difference between the
original (Fig. 3a) and directionally filtered data (Fig.
3d) for the Tzz component. The difference grid appears
predominantly random, except for some coherent sig-
nals related to the strong ENE-WSW negative anomaly
in the centre of the area. The kriging (Fig. 3b) and
directional-filtering results (Fig. 3d) are not grossly
different in appearance. The level of smoothness is

similar and the main contrast between the two is the
extra smoothing along strike for the directionally fil-
tered data. 

Kriging is computationally intensive, but almost
completely data driven. On the other hand, directional
filtering requires several user-defined parameters. A
practical approach for noise reduction is to use kriging
first and use the results to guide the choice of the
parameters required in directional filtering. Kriging
gives an estimate of how much noise is present and
also specifies the correlation character of the data. The
directional filtering can then be tuned to give a similar
level of smoothness and noise suppression as the krig-
ing results, but with the advantage of keeping more
short-wavelength information in the cross-strike direc-
tion for better trend definition.

DISCUSSION

Using estimated parameter errors from parametric
inversions allows for a quantitative ranking of single
tensor components, combinations of components, and
concatenations of components. Furthermore, linear
inverse theory allows incorporation of the appropriate
relative noise levels of the tensor components. Ranking
of the estimated model errors from a range of model
types shows that data sets consisting of concatenated
components produce the smallest parameter standard
deviations. Combinations of the purely horizontal com-
ponents Txx and Tyy perform the poorest. Of the sin-
gle tensor components, Tzz gives the best performance
overall, but single components with strong directional
sensitivity (e.g. Txx, Tyy) can produce some individual
parameter estimates with smaller errors. 

Both ordinary kriging and directional filtering are
shown to be viable options for noise suppression in
gravity gradiometer data. Kriging is based on the sta-
tistical character of the data and produces estimates
with a commensurate level of smoothness and noise
reduction. For directional filtering, the degree of
smoothing is user-defined but has the advantage of
being sensitive to strike information derived from the
data. Both approaches successfully reduce noise levels
so that coherent, geologically meaningful anomaly pat-
terns are revealed. 

IMPLICATIONS FOR EXPLORATION

The utility of gravity gradiometer data is dependent on
both the quality of the data and also our understanding
of what information the data contain. The development
of practical ways of suppressing noise in GG data
allows more effective presentations of the data for
qualitative interpretation and provides more accurate
input values into quantitative interpretation methods
such as modelling and inversion. Determining the
information content in the individual tensor compo-
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nents and their combinations can be a guide when
selecting which tensor components should be used in
an interpretation. GG data can provide a high-resolu-
tion gravity signal that, combined with co-located mag-
netic data, can provide an essential tool in Ni-Cu-PGE,
Cr-PGE, and Fe-Ti-V exploration by identifying mafic
and ultramafic prospective units within poorly exposed
regions and also constitute important constraints in the
modelling of individual geophysical anomalies directly
related to magmatic ore deposits. 
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