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INTRODUCTION

The Black Thor intrusive complex (BTIC) is part of the
Neoarchean “Ring of Fire” Intrusive Suite (RoFIS)
located within the 2.7–2.8 Ga McFaulds Lake green-
stone belt (MLGB) in the James Bay Lowlands of
northern Ontario. The Black Thor chromite deposit,
discovered in 2006, is one of the largest and best-pre-
served chromite deposits in the world. It contains 
~102 Mt of chromite-mineralized material in a zone
measuring up to 3 km in strike length and likely
extends ~15 km to the Big Daddy, Black Creek, Black
Horse, and Blackbird deposits. The bulk ore of the
Black Thor deposit has an aggregate thickness of up to
100 m and an average grade of 31% Cr2O3 (Weston
and Shinkle, 2013).

Previous work in the area includes a M.Sc. thesis on
the nearby Blackbird chromite deposit (Azar, 2010), a
paper on the Eagle’s Nest Ni-Cu-(PGE) deposit
(Mungall et al., 2010), and a Ph.D. thesis on the chem-
istry of chromite from the Black Thor, Black Label,
and Big Daddy chromite deposits in the MLGB Black

Thor chromitite layers (Laarman, 2014). However, the
BTIC as a whole has not been studied in detail and is
characterized only by airborne and ground geophysics
and exploration-scale core logs (Tuchscherer et al.,
2010). The main objective of this research is to estab-
lish the stratigraphy, geochemistry, and petrogenesis of
the BTIC and associated chromium and nickel-copper-
platinum group element (PGE) mineralization. 

METHODOLOGY

Core logging and sampling were completed in May-
June 2012 and June-July 2013 (Fig. 1). One hundred
and twenty-three finely ground slabs from drillhole
BT-11-196 were studied using a binocular microscope;
178 polished thin sections were studied in transmitted
and reflected light using a compound petrographic
microscope. Three hundred and twenty-four whole-
rock samples were analyzed for major, minor, and trace
elements by a combination of wavelength-dispersive
X-ray fluorescence spectrometry, inductively coupled
plasma (ICP) atomic emission spectrometry, and ICP
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ABSTRACT

The Black Thor intrusive complex (BTIC) contains a conduit-hosted, stratiform Cr-Ni-Cu-(PGE) deposit
with a very large amount of chromite for an intrusion of its size. Most conduit-hosted stratiform deposits are
Archean, formed from komatiitic magmas containing approximately 3000 ppm Cr2O3, and are typically sat-
urated in chromite. The fundamental problem in understanding the genesis of the BTIC deposit and other
deposits of this type is explaining how such large quantities of chromite crystalized from a magma that nor-
mally crystallizes only small amounts chromite and normally have a chromite:olivine abundance ratio of
~1:60. Current genetic models, such as in situ crystallization (by oxidation, pressure increase, magma mix-
ing, and/or wholesale assimilation of felsic rocks or iron formation) or physical transportation of chromite
slurries do not provide a wholly satisfactory explanation for the high abundance of chromite in this type of
deposit. We are testing an alternative model: partial assimilation (as opposed to wholesale assimilation) of
local oxide-silicate-facies iron formation by a Cr-rich magma. As low-Mg komatiite is saturated in chromite,
the magma may dissolve the silicate component (quartz/chert and Fe-silicate minerals) of the iron forma-
tion, but would be unable to dissolve the oxide component (magnetite). Through interaction with the high-
temperature (1400°C) Cr-rich magma, the fine-grained magnetite could be upgraded via diffusion to
chromite during transportation within the conduit. This upgrading is similar to the upgrading of barren sul-
phide xenomelts that has been proposed for Ni-Cu-(PGE) deposits.  
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chromite mineralization, McFaulds Lake greenstone belt, Ontario In: Targeted Geoscience Initiative 4: Canadian Nickel-Copper-
Platinum Group Elements-Chromium Ore Systems — Fertility, Pathfinders, New and Revised Models, (ed.) D.E. Ames and M.G. Houlé;
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mass spectrometry. Chromite and associated melt
inclusions and silicate minerals from 13 samples have
been analyzed thus far by a combination of energy-dis-
persive X-ray emission spectrometry (XRES) using a
scanning electron microscope, wavelength-dispersive

XRES using an electron probe microanalyzer, and
laser-ablation ICP-MS. Three-dimensional X-ray
tomographic studies, O, S, Cr-Ni-Fe, Nd, Hf, and Os
isotope analyses, and computer models of the miner-
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Figure 1. Geological map of the Black Thor intrusive complex showing the locations of diamond drillholes (DDH) that were
logged and sampled in the course of this study (modified from Weston and Shinkle, 2013). Diamond drillhole identifications are
given for those mentioned in the text. The first parts of the DDH identifications have been omitted for simplicity, DDH identifi-
cations: BT-08-06, 09; BT-09-67, 68, 69, 70, 76, 80; BT-10-115, 116, 117, 118, 119, 127, 135, 137, 138, 167; BT-11-182, 183,
184, 198, 196; and BT-12-234. MLGB: McFaulds Lake greenstone belt. 



alogical and geochemical data will be done later in

2015.

RESULTS

Geology of the Black Thor Intrusive Complex

The BTIC is a semi-conformable, funnel-shaped intru-

sion that has been structurally rotated into a subvertical

orientation (Fig. 1). It is subdivided into four series

(from stratigraphic base to top; Fig. 2): 1) a lower ultra-

mafic series of interlayered dunite and lherzolite and

minor olivine websterite (Fig. 3a–e); 2) a middle ultra-

mafic series of interlayered dunite, lherzolite, and web-

sterite with a thin lower chromitite zone (Black Label

horizon; Fig. 4a–d) and a thick upper chromitite zone

(Black Thor horizon; Fig. 4e–l ); 3) an upper ultramafic

series composed of lherzolite, websterite, feldspathic
websterite, and olivine websterite (Fig. 3f–h); and 4) a
mafic series consisting of mela-, meso-, and leucogab-
bro with lesser anorthosite (Fig. 3i–l). It was originally
not clear whether the upper mafic series was part of the
BTIC, but gradational contacts with the underlying
ultramafic rocks indicate that it is part of the intrusion.
In places these rocks interfinger with (and are inter-
preted to intrude) overlying mafic volcanic rocks of the
MLGB. 

After accumulation and partial solidification of the
BTIC, a late websterite intrusion (LWI) was emplaced
into the lower and middle ultramafic series rocks and
locally brecciated the Black Label chromitite horizon.
The BTIC was later metamorphosed to lower-green-
schist facies, but most of the rocks contain well pre-
served igneous textures, and relict igneous chromite,
pyroxene, and olivine are variably preserved (Table 1).
The term “meta” will be omitted for simplicity in this
contribution.

Cr and Ni-Cu-(PGE) Mineralization

Chromite mineralization displays a range of textures
that are distinguished based on chromite content: mas-
sive (>90%), semi-massive (90–75%), matrix (75–
50%), net-textured (50–30%), heavily disseminated
(30–10%), and lightly disseminated (<10%). Chromite
is uniformly fine grained (0.1–0.2 mm) and forms net-
works between coarse-grained (<2 cm) altered pyrox-
ene oikocrysts and between fine-grained (~5 mm) ser-
pentinized olivine grains (Fig. 4). The Black Thor
chromitite horizon (this study) and the undisrupted
parts of the Black Label chromitite horizon
(Mehrmanesh et al., 2013) contain thinly laminated to
thickly bedded massive chromitite layers that alternate
with partially continuous layers of serpentinized
dunite. Brecciated parts of Black Label (Spath et al.,
2015) contain angular to amoeboid clasts of chromitite,
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Figure 2. Schematic cross-section through the Black Thor
intrusive complex (modified from Carson et al., 2013).
Abbreviations: Anorth = anorthosite, Bt Gb = biotite gabbro,
Chrt = chromitite, Dnt = dunite, Lherz = lherzolite, LWI = late
websterite intrusion, Mela-Leuco Gb = mela- to leucogabbro,
Ol Webs = olivine websterite, Webs = websterite.
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Abbreviations: Ab = albite; Act = actinolite; Atg/Lz = antigorite/lizardite; 
Chl = chlorite; Chr = chromite; Cpx = clinopyroxene; Czo = clinozoisite; 
Ilm = ilmenite; Iow = iowite; Käm = kämmererite; Mag = magnetite; 
MgHb = magnesiohornblende; Ms = Muscovite; NiClc = Ni-clinochlore; 
Ol = olivine; Opx = orthopyroxene; Plag = plagioclase; Tc = Talc; 
Tr = tremolite; Ttn = titanite.

Table 1. Primary and hydrated mineralogy of the main rock
type of the Black Thor intrusive complex.



chromite-harzburgite, dunite, chromite, and olivine
within a websterite matrix, forming a range of
hybridized lithologies. 

The Black Thor and Black Label chromitite hori-

zons extend over a strike length of more than 3 km and
1.5 km, respectively. However, individual chromitite
layers, particularly in Black Thor and the central parts
of Black Label, are very difficult to follow along strike;

H.J.E. Carson, C.M. Lesher, and M.G. Houlé
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Figure 3. Photographs of drill cores showing typical rock types of the lower ultramafic series (a to e), the upper ultramafic series
(f to h), and the mafic series (i to l) of the Black Thor intrusive complex. a) Basal peridotite (harzburgite); BT-09-70/37.70 m. 
b) Late pyroxenite; BT-11-198/42.00 m. c) Olivine spinifex-textured olivine, BT-09-97/136.09 m. d) Heavily serpentinized dunite;
BT-09-70/98.11 m. e) Serpentinized peridotite, BT-11-196/180.10 m. f) Olivine pyroxenite; BT-10-115/83.85 m. g) Pyroxenite;
BT-12-234/38.05 m. h) Feldspathic pyroxenite; BT-11-194/165.92 m. i) Melagabbro; BT-09-70/244.05 m. j) Mesogabbro; BT-
12-234/211.33 m. k) Leucogabbro; BT-09-80/245.65 m. l) Anorthosite; BT-12-234/198.20 m. Younging direction in all photos is
to the right. For the core shown in (d), (f), (i), (j), (k), and (l), the height (top to bottom) of the photo represents a core width of
4.7 cm; for all other photos, the height (top to bottom) of the photo represents a core width of 2.35 cm.

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)
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Figure 4. Photographs showing chromite textures of the Black Label chromitite horizon (a to d) and the Black Thor chromitite
horizon (e to l) of the middle ultramafic series of the Black Thor intrusive complex. a) Massive chromitite layer with wavy, undu-
lating upper contact against the matrix chromitite layer in serpentinized dunite, grading upwards into a massive chromitite layer;
drill core BT-11-198/198.40 m. b) Blebby, co-mingling chromitite “clasts” hosted within late pyroxenite matrix; dril lcore BT-08-
06/291.50 m. c) Semi-massive chromitite layer; drill core BT-11-198/195.07 m. d) Brecciated, matrix chromitite layer; drill core
BT-11-198/199.00 m. e) Patchy net-textured chromitite, drill core BT-11-198/260.20 m. f) Matrix chromitite; drill core BT-11-
196/548.74 m. g) Semi-massive chromitite; drill core BT-08-09/143.95 m. h) Massive chromitite; drill core BT-10-117/99.40 m. 
i) Mottled, semi-massive chromitite with “floating or suspended” serpentinized and/or pseudomorphed olivine grains; drill core BT-
09-70/177.47 m. j) Massive chromitite layer with sharp upper contact against talc-tremolite-chlorite rock and serpentinized,
pseudomorphed olivine, grading into semi-massive chromitite with a sharp upper contact against matrix chromitite layer; drill core
BT-11-196/538.30 m. k) Matrix chromitite layer containing talc-tremolite-chlorite silicate minerals and serpentinized pseudomor-
phed olivine, with a sutured upper contact against a massive chromitite layer, in turn with a wavy, undulating upper contact against
a matrix chromitite layer; drill core BT-11-196/559.30 m. l) Semi-massive chromitite layers alternating with continuous and semi-
continuous serpentinized pseudomorphed olivine grain layers; drill core BT-10-113/172.17 m. Younging direction in all photo-
graphs is to the right. For the core shown in photographs (b), (d), (i), and (l), the height (top to bottom) of the photo represents a
core width of 4.7 cm; for all other photographs, the height (top to bottom) of the photo represents a core width of 2.35 cm.

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)



they are thicker and lenticular in the central part of the
intrusion near and above the feeder zone and thinner
and sheet-like away from the feeder zone. Pyroxene
oikocrysts are more abundant in the central part of
Black Thor horizon, where massive and semi-massive
chromitite is common. Layers exhibiting normal modal
grading (chromite-rich base and silicate-rich top) are
more abundant in the lateral parts where matrix, net-
textured, and disseminated chromitite is common.
Layers containing intrafolial folds are only rarely
observed.

Ni-Cu-(PGE) mineralization occurs dominantly in
the lower ultramafic series of the BTIC. It includes
multiple types and generations of mineralization
(Farhangi et al., 2013): 1) early-magmatic mineraliza-
tion along the basal contact of the intrusion; 2) inter-
mediate-magmatic, sulphide-poor, PGE-rich, reef-style
mineralization in the chromitite horizons; 3) intermedi-
ate-late-magmatic, sulphide-rich, PGE-poor, reef-style
mineralization in fractionated gabbroic rocks of the
mafic series; 4) late-magmatic, sulphide-rich mineral-
ization associated with brecciation of the BTIC by the
late websterite intrusion; and 5) tectonically/hydrother-
mally mobilized sulphide-rich mineralization within
shear zones in the transition zone between the upper
ultramafic and mafic series. 

Whole-rock Geochemistry

The major element geochemical results reported here
were obtained from drill core BT-11-196, which cuts
through a part of the intrusion undisturbed by the LWI,
and additional drill cores from the feeder zone (BT-09-
67, BT-09-68, BT-09-69, BT-09-76, BT-10-115, BT-
10-116, BT-10-117, BT-10-118, BT-10-119, BT-10-
127, BT-10-135, BT-10-137, BT-10-138, BT-10-167,
BT-1-182, BT-11-183, BT-11-184); these results are
compared with the Cliffs XRF assay results of the
entire deposit (Fig. 5). Three major trends are evident
in MgO variation diagrams:

Mixing trends between olivine (~40% SiO2, 45%1.
MgO, and 8% FeOt, with minor to negligible abun-
dances of other elements — based on mineral ana-
lyzes and stoichiometry) and chromite (10–45%
Cr2O3, 8% Al2O3, ~15% FeOt, and 20–30% MgO,
with minor to negligible abundances of other ele-
ments).

Mixing trends between olivine and orthopyroxene2.
(~52% SiO2, 3% Al2O3, ~10% FeOt, ~30% MgO,
and <5% CaO, with minor to negligible abun-
dances of other elements).

Fractionation trends from the inferred parental3.
magma (~46% SiO2, ~9% Al2O3%, ~11% FeOt,
~22% MgO, and ~8% CaO, with minor to negligi-
ble abundances of other elements — based on
observed mineral assemblages and consistent with

that proposed for Blackbird by Mungall et al.,
2010) toward the leuco-, meso-, and melanogabbro
in the upper part of the BTIC.

The majority of low-Cr samples on the loss-on-igni-
tion (LOI) versus MgO diagram plot between hydrated
websterite (30–35% MgO and 5–20% LOI) and ser-
pentinized lherzolite/dunite ± chromitite (up to 25%
LOI). The majority of high-Cr samples plot at lower
MgO and/or higher LOI, reflecting higher degrees of
carbonatization of the silicate components in chromi-
tite. The cluster at low MgO and LOI represents least-
altered mafic rocks of the upper series, whereas the
cluster at 25–30% MgO and low LOI represents late
websterite samples, which are the least altered rocks
within the BTIC. 

Low-Cr late websterite samples have low Ca and Al
contents, indicating that they are composed primarily
of orthopyroxene with only minor clinopyroxene or
plagioclase (see Spath et al., 2015). High-Cr late web-
sterite samples contain xenolithic and xenocrystic
chromite incorporated from Black Label during
emplacement.

The increase in Cr with decreasing Mg (Fig. 5)
reflects accumulation of chromite with a chromite:
olivine ratio well above the cotectic proportion of
~1:60 (e.g. Lesher and Stone, 1996; Barnes and Roeder,
2001); only a few samples lie on the cotectic (Fig. 6).
This means that superimposed on the very small back-
ground abundance defined by the cotectic, chromite
has been added through either (1) supersaturation (i.e.
consistently precipitating extra chromite beyond the
amount defined by the cotectic), (2) modifying the
location of the cotectic (i.e. consistently precipitating
more chromite with olivine than under normal condi-
tions), or (3) mechanical accumulation of chromite in
addition to that crystallized with olivine. 

Chemostratigraphy 

Lithogeochemistry has been plotted against depth and
correlated with digitized stratigraphic logs to give an
indication of the geochemical changes through the
complex (Fig. 7). The overall trend within the ultra-
mafic portion of the BTIC is one of decreasing Si-Fe-
Mg and increasing Cr-Al-Ti-V. However, superim-
posed on this overall trend are (1) at the base of the
complex, a reversal from Mg-poor olivine websterite to
Mg-rich dunite that is interpreted to reflect more rapid
cooling along the lower contact, which resulted in
lower rates of accumulation of olivine at the base of the
body; (2) many small reversals in the overall trend
associated with chromite horizons and interlayering of
dunite, lherzolite, and websterite; and (3) an abrupt
decrease in Cr-Fe-Al-(Ti)-V and increase in Si-(Na-K)
above the Black Thor chromite horizon, reflecting the
upper mafic portion of the BTIC. Based on petro-
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graphic observations, this is interpreted to reflect a
decreasing abundance of olivine and an increasing
abundance of chromite with increasing stratigraphic
height.

Trace Element Geochemistry

Most rock types exhibit negative Nb-Ta and variable Sr
anomalies relative to Th, La, and LREEs, which is

interpreted to represent addition of an upper continen-
tal crust component. U is enriched in some dunite and
websterite samples, which is interpreted to reflect U
mobility in metamorphic fluids. Positive Sr anomalies
in chromite- and plagioclase-rich samples presumably
reflect mobility of Sr and accumulation of plagioclase,
respectively. Positive Ti anomalies in Cr-rich samples
reflect enrichment in Ti in the minor ulvöspinel com-
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ponent of chromite. Variable MREE/HREE ratios are
interpreted to represent variable degrees of accumula-
tion of olivine and orthopyroxene (Fig. 8). 

Websterite (Fig. 8) also exhibits negative Nb-Ta
anomalies relative to Th, La, and LREEs, but has neg-
ative Sr anomalies in Cr-poor samples and positive Sr
and Ti anomalies in Cr-rich samples. Late websterite

has systematically lower REE abundances and displays
flatter MREE-HREE patterns, whereas BTIC web-
sterite has systematically higher REE abundances, is
more enriched in HILE-LREE relative to MILE, and
displays steeper MREE-HREE patterns. 

Gabbroic rocks exhibit the same negative Nb-Ta
anomalies relative to Th, La, and LREEs, but exhibit
large positive Sr and (for 2 of 3 samples) Eu anomalies,
reflecting accumulation of plagioclase. The similarities
of the trace element patterns of the mafic rocks with the
ultramafic rocks provide further evidence to support
the interpretation that they are co-magmatic.

Chromite Petrography and Chemistry 

The BTIC chromite can be homogenous, or contain
large (0.5–2 mm) spherical inclusions or abundant fine
inclusions. Preliminary ED-XRES analyses of the
coarse and fine inclusions indicate that they are com-
posed of a serpentine-amphibole-chlorite-carbonate
assemblage that, based on their similarity to the miner-
alogy of the interstitial liquid, likely represent melt
inclusions that have been altered during serpentiniza-
tion. 

LA-ICP-MS maps (not shown) indicate that (1)
homogenous chromite displays little or no chemical
variation, however some grains show outward
increases in Ti-V and decreases in Al-Cr, which is
interpreted to represent re-equilibration with trapped
silicate melt; (2) zoned chromite displays outer rims
enriched in Mn-Fe-Co-Ni-Zn, which are interpreted to
be associated with metamorphic overgrowth and mag-
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netite alteration; and (3) inclusions in chromite layers

are composed of serpentine ± chlorite ± amphibole ±

calcite, which are interpreted to be serpentinized melt

inclusions.

GENETIC MODEL

The fundamental problem in the understanding of the

genesis of the BTIC is in inability to explain how such

large quantities of chromite could accumulate from a

magma that would normally crystallize chromite in

only accessory abundances. 

Most stratiform chromite deposits are hosted by

large layered complexes that are interpreted to repre-

sent periodically replenished magma chambers (e.g.

Bushveld Complex, South Africa; Stillwater Complex,

USA). Genetic models for these deposits include (1) in

situ crystallization associated with oxidation (Ulmer,

1969) or pressure increase (Lipin, 1993); (2) contami-

nation and wholesale assimilation of felsic rocks or
iron formation (Irvine, 1975; Rollinson, 1997); (3)
magma mixing (e.g. Irvine, 1977; Campbell and
Murck, 1993); and (4) physical transportation of fine-
grained chromite in magmatic slurries (e.g. Eales,
2000; Mondal and Mathez, 2007; Maier et al., 2013).
However, the Black Thor and Black Label chromitite
deposits as well as several others (e.g. Kemi, Finland;
Inyala and Railway Block, Zimbabwe; Ipueira-
Medrado, Brazil; Sukinda, India; Nkomati, South
Africa) are hosted by smaller intrusions that are inter-
preted to represents flow-through feeder sills and
magma conduits that are stratiform in structure but
lenticular in shape.

The much higher abundances of chromite in the lat-
ter deposits are not easily explained by the above
processes, which has stimulated the development of a
new model that involves partial melting of oxide-sili-
cate-facies iron formation (OXIF) of the type observed
in the footwall rocks (Fig. 1). Complete melting of
OXIF is excluded due to the absence of Fe enrichment
in the host rocks (Azar, 2010; Mungall et al., 2010). In
the new model, silicate components (chert/quartz and
Fe-silicate minerals) are melted and incorporated into
the magma, accounting for the anomalous abundance
of orthopyroxene in systems that should crystallize
only very small amounts of orthopyroxene. However,
magnetite cannot melt, because low-Mg komatiitic
magmas, like the one in the BTIC, are saturated in
chromite and therefore cannot incorporate any addi-
tional oxide. Very fine-grained disaggregated xeno-
crystic magnetite could be upgraded to chromite during
transport, in the same way that barren sulphide
xenomelts are interpreted to have been upgraded to
form Ni-Cu-(PGE) deposits via interaction with
komatiitic magma (see Lesher and Campbell, 1993). 

Cr is one of the slower elements to diffuse in mag-
netite (Fig. 9a). Preliminary calculations indicate that
at 1400°C (assuming komatiitic basalt magma compo-
sition) it would take approximately only 50 years to
homogenize a 0.1 mm diameter magnetite grain and
transform it into chromite. Considering that this is a
dynamic flow-through system and that large mafic
magmatic systems are typically active for 1–5 million
years (e.g. continental flood basalt provinces and other
large igneous provinces), this is more than enough time
to completely re-equilibrate xenocrystic magnetite,
especially if it started out as very fine grains. Mass bal-
ance calculations, using 2500–3500 ppm Cr in the
magma and chromite/magma partition coefficients for
Cr of 100–200, indicate that a magma:chromite ratio (R
factor) as low as 200 is enough to transform magnetite
into chromite (Fig. 9b). This range of R is well within
the range estimated for many komatiite-associated Ni-
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Cu-(PGE) systems (e.g. Kambalda, Perseverance,
Raglan: Lesher and Keays, 2002). 

The trace element geochemical data exhibit consid-
erable scatter because of the very low abundances (near
the detection limits) of such elements in olivine ±
chromite ± pyroxene cumulates, but they suggest con-
tamination by rocks of the upper continental crust. Iron
formations contain low abundances of trace elements
(Figs. 7. 9), indicating that although considerable
amounts of iron formation could be present as a con-
taminant, it cannot be the source of the pronounced
HILE enrichment relative to MILE and HREE. Rocks
of the upper continental crust, such as the footwall
tonalite-granodiorite, are sufficiently enriched in HILE
(relative to MILE-HREE) to be the source of the pro-
nounced enrichment in BTIC rocks, but they are too
enriched in Th relative to Yb and too enriched in Nb
relative to Yb to produce the geochemical signatures of
the olivine – chromite-poor samples. So, a combination
of contaminants is required. The presence of these sig-
natures in all of the rocks suggests contamination at
depth, not in the BTIC itself.

Partial assimilation of OXIF and the upgrading of
magnetite to chromite, in conjunction with contamina-

tion by rocks of the upper continental crust, could be

key to the formation of the BTIC mineralization (and

other conduit-hosted stratiform deposits). In order for

this mechanism to be feasible (Fig. 10), the following

are required: (1) a Cr-rich komatitiic magma, (2) the

presence of sufficient oxide-facies iron formation near

or below the stratigraphic level of the intrusion, and (3)

a flow-through magmatic system with sufficient flux to

transport fine magnetite grains and allow them to inter-

act with the Cr-rich magma. Additional work is

planned to further evaluate this process.

IMPLICATIONS FOR EXPLORATION

The new genetic model proposed in this study has

many important implications that could help target

mineral exploration for this type of chromite deposit.

Exploration should focus on areas where high-Cr,•

low-Mg komatitiic magma is present. Higher Mg

komatiitic magma may be less prospective, as they

are not saturated in chromite. Some prospective

magma is Archean but many are early Proterozoic.

Exploration should focus on areas where oxide-•

facies (rather than sulphide-facies) iron formation

is present.

Exploration should focus on areas where olivine ±•

orthopyroxene cumulates are present (rather than

olivine-only cumulates). 

This study highlights the proposition that small,

Archean, ultramafic-dominated intrusions like the
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BTIC can not only host large chromite deposits but
also contain significant Ni-Cu-(PGE) mineralization. 
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