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INTRODUCTION

Rock physical properties allow integration of geologi-
cal and geophysical data and constitute an essential ele-
ment of Common Earth Models (McGaughey, 2006).
In the geological environment of a hydrothermal ore
system, petrophysical characterization can play a key
role for predicting geophysical methods that will be
useful in mineral exploration.

The goal of this Geological Survey of Canada –
Targeted Geoscience Initiative 4 (TGI-4) study is to
define mutual relationships between physical proper-
ties (density, porosity, magnetic susceptibility and
remanence, electrical resistivity and chargeability) and
the local geological setting (lithology, alteration, struc-
tures, and metamorphism), to integrate data in geolog-
ical models, and to constrain geophysical inversions.
The project also aims to identify which combination of
geophysical methods will give the best exploration
results. This contribution presents a suite of rock prop-
erty measurements from the Canadian Malartic low-
grade, bulk-tonnage gold deposit and discusses impli-

cations for improvements in the use of geophysical
methods in gold exploration.

The Archean Abitibi greenstone belt (700 km by 200
km) is located within the Superior Province and is
known to host world-class gold and base metals
deposits (Fig. 1; Poulsen et al., 1992, 2000; Robert et
al., 2005; Dubé and Gosselin, 2007). The tectonic con-
tact between the Abitibi and Pontiac subprovinces is
marked by the Larder Lake - Cadillac Fault Zone,
which is delineated by highly strained mafic and ultra-
mafic rock slivers belonging to the Piché Group
(Robert, 1989; Card, 1990; Daigneault et al., 2002).
The Canadian Malartic gold deposit, which is located
immediately to the south of the Larder Lake - Cadillac
Fault Zone, is mainly hosted by turbiditic greywacke
and mudstone of the Pontiac Group and by
Timiskaming (2677–2678 Ma) porphyritic quartz mon-
zodiorite with local granodiorite intrusions (Fig. 2;
Sansfaçon and Hubert, 1990; De Souza et al., 2013, in
press; Helt et al., 2014). In the mine area, the Pontiac
Group was metamorphosed to biotite-chlorite facies
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ABSTRACT

The rock physical properties of samples from the Canadian Malartic gold deposit in the Abitibi greenstone
belt of Quebec have been measured to relate lithology and alteration assemblages to physical properties con-
trasts, and to provide geological interpretation of geophysical survey analyses for this type of ore deposit.
Disseminated gold deposits are seldom directly characterized by a clear geophysical signature. However, we
propose that a geophysical characterization of such ore deposits can be achieved by combining cost-effec-
tive geophysical surveys to identify zones of interest for gold exploration. This study has shown that the
metasedimentary rocks and porphyritic intrusions that host the gold mineralization show similar variations
in rock physical properties, probably because both rock types have similar geochemical and mineralogical
compositions. However, the intrusive rocks show both magnetic and non-magnetic phases, and have a
slightly lower density than metasedimentary rocks. Hydrothermal alteration produced continuous trends for
magnetic susceptibility, density, and electric chargeability, but with no apparent variation in magnetic rema-
nence and resistivity. These trends of decreasing density and magnetic susceptibility and increasing charge-
ability are correlated with alteration facies (carbonate saturation index), gold concentration, and proximity
to ore. Based on this correlation, a principal component analysis petrophysical proxy has been established
to represent this gradual hydrothermal mineralization process. This petrophysical proxy is a valid estima-
tion of the variability of the rock physical properties inside the actual pit area of the Canadian Malartic
deposit. Based on composite geophysical surveys (gravity, magnetic, and induced polarization) and inver-
sion of the surface data for rock physical properties at depth, a petrophysical proxy, such as presented here,
could help target zones of interest for orebodies similar to that at Canadian Malartic.
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and has undergone polyphase deformation with a dom-
inant S2 pressure-solution cleavage that is related to the
formation of open to tight F2 folds and is northwest-
striking and north-dipping (Fig. 2; Sansfaçon and
Hubert, 1990; De Souza et al., 2015, in press). The ore-

bodies are characterized by the presence of stockwork
and disseminated gold mineralization. Ore minerals
include disseminated pyrite (~ ≤5%) with traces of tel-
luride, galena, chalcopyrite, sphalerite, and molybden-
ite. The main orebodies define northwest-southeast and
east-west trends that correspond, respectively, to the
orientation of the dominant S2 foliation and to the
Sladen Fault. The latter is a south-dipping brittle-duc-
tile structure that controls the distribution of the east-
west-trending ore (Sansfaçon and Hubert, 1990; De
Souza et al., 2015, in press). The main auriferous
hydrothermal alteration types documented at Canadian
Malartic are widespread carbonate alteration (cal-
cite+ferroan dolomite), albitization, potassic alteration
(biotite+microcline), and local silicification (De Souza
et al., 2015). The least altered sedimentary rocks and
the quartz monzodiorite are composed of biotite-mus-
covite-oligoclase-chlorite ± pyrite-epidote-ilmenite-
pyrrhotite-magnetite and orthoclase-oligoclase-quartz-
biotite-hornblende-epidote-muscovite-magnetite-titan-
ite assemblages, respectively. Distal alteration in the
sedimentary rocks comprises biotite, calcite, mus-
covite, and pyrite, whereas proximal alteration consists
of albite and/or microcline, quartz, carbonate (ferroan
dolomite+calcite), phlogopite, rutile, and pyrite.
Phlogopite is however absent in pervasively altered
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Figure 1. Simplified geological map of the Abitibi greenstone
belt. The Canadian Malartic gold deposit is identified by a red
dot. The inset shows the location of the Abitibi belt within the
Superior Province (red). Map is adapted from Dubé and
Gosselin (2007) and Poulson et al. (2000).
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rocks. Distal and proximal alteration assemblages in
the quartz monzodiorite are composed of albite-K-
feldspar-quartz-biotite-calcite-rutile-magnetite-pyrite-
hematite and microcline-albite-ferroan dolomite- cal-
cite-pyrite-rutile, respectively. Field relationships, the
nature of the various alteration types, and the geometry
of the Au-related veins suggest that gold is largely con-
trolled by syn-D2 structures and by the Sladen Fault
(De Souza et al., 2015, in press). However, the Au-Te-
W±Bi-Ag-Mo-Pb geochemical signature of the ore, the
presence of stockwork-disseminated Au mineraliza-
tion, and molybdenite together with potassic alteration,
suggest that some of the gold might have been intro-
duced during an early phase of magmatic-hydrothermal
alteration that was followed by gold remobilization or
a second-stage of gold introduction during D2 defor-
mation (De Souza et al., 2013, 2015, in press; Helt et
al., 2014).

RESULTS AND DATA ANALYSIS

The physical properties were measured for 179 rock
samples collected for the TGI-4 project from the
Canadian Malartic mine. The collection of core sam-
ples was selected from holes drilled within the open pit
area (Fig. 2) and is representative of the host litholo-
gies, alteration assemblages, and various ore zones.
The rock physical properties summarized in this report

are publically accessible in the Canadian Rock
Physical Property Database, which is published as a
Geological Survey of Canada Open File.

Enkin et al. (2012) describe in detail the measure-
ment protocols and methods. All measurements were
conducted on paleomagnetism-size subsamples (2.5
cm diameter, 2.2 cm long cylinders). Samples were sat-
urated with distilled water under vacuum and saturated
bulk density was then measured by the weight in air-
weight in water method, and porosity was derived from
the difference between the dry and water-saturated
weights. Magnetic susceptibility was measured using a
Sapphire Instruments SI2B susceptibility metre and
magnetic remanence was measured with an Agico JR5-
A spinner magnetometer. Electrical resistivity and
chargeability (Newmont standard time-domain decay)
were derived from the complex impedance spectrum
measured using a Solartron 1260 Frequency Response
Analyser. Gold assays for 139 samples of the collection
are also presented.

Magnetic and Density Properties

Metasedimentary rocks are weakly magnetic, with
magnetic susceptibilities mostly spanning the range
2×10-5 to 5×10-4 SI and density  varies from 2.65 to
2.85 g/cm3 (Fig. 3). Unlike typical ore rocks containing
high concentrations of sulphide and oxide minerals
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with densities well above 3.0 g/cm3, disseminated ore
zones in the Canadian Malartic deposit have densities
that rarely deviate from those of felsic minerals. The
biplot of density against magnetic susceptibility does
not align along the paramagnetic trend (Henkel, 1994)
typical for sedimentary rocks (Fig. 3). Rather, the
lower density samples (<2.7 g/cm3) have magnetic sus-
ceptibilities that are anomalously lower by an order of
magnitude.

The porphyritic intrusive rocks, mostly least altered
quartz monzodiorite or altered quartz monzodiorite,
display the typical bimodal magnetic susceptibility dis-
tribution of rocks belonging to Henkel’s (1994) mag-
netic and paramagnetic trends, around 10-2 and 10-4 SI,
respectively (Fig. 3). The densities have a restricted

range of value of between 2.63 and 2.71 g/cm3. The
porosity was seldom above 1%, which is typical of
metamorphosed environments, but we note that the
median porosity of porphyries, 0.46%, is more than
twice that of the sedimentary rocks, 0.22% (Fig. 4), and
density increases with decreasing porosity.

The samples are unoriented, so we can only describe
the magnitude rather than direction of the magnetic
remanence. The Koenigsberger ratio, KN, which
describes the relative magnitude of magnetic rema-
nence to induced magnetism, is almost always below
unity for the higher susceptibility ferromagnetic-trend
of the intrusive rock samples. The implication is that
the rocks that dominate aeromagnetic survey map
anomalies can be modelled accurately using the mag-
netic susceptibility without regard to the remanence.
For the weakly magnetic paramagnetic-trend samples,
30% have KN above unity but are too weak to
markedly affect aeromagnetic results.

Electrical Properties

While porosity does not contribute much to variations
in density, it does show a clear inverse correlation with
the electrical resistivity (Fig. 4). Such porosity control
indicates that these rocks conduct electricity domi-
nantly by ionic conduction through their porosity-per-
meability rather than by galvanic conduction though
networks of sulphide and oxide minerals.

Measurement of electric chargeability is important
in disseminated ore systems because induced polariza-
tion methods can, in principle, detect the unconnected
sulphide (conductive) and oxide (semi-conductive)
minerals, as they play the role of electric capacitors
interrupting the flow of ions through the rock perme-
ability. In the Canadian Malartic deposit, chargeability
has a unimodal distribution with a rather low median
Newmont chargeability of 5 ms. The 15% of samples
with relatively high chargeability (>10 ms) tend to
have lower magnetic susceptibilities (<4×10-4 SI), but
are otherwise unrelated to the other measured physical
properties (Fig. 5).

DISCUSSION AND MODELS

Linking Rock Physical Properties to
Hydrothermal Alteration

Native gold and sulphide concentrations are low at the
Canadian Malartic deposit and the rock physical prop-
erties of the mineralized zones are largely controlled by
the mineralogy and texture of the auriferous alter-
ations. Geophysical targeting of such disseminated
gold deposits can thus be achieved indirectly by exam-
ining rock physical properties of disseminated sulphide
alteration and ore zones. 

Whole-rock geochemical data give limited informa-
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tion about mineralogy, but can be used to estimate min-
eral and alteration behaviour based on simple geo-
chemical combinations, geochemical ratios, indexes,
and assumptions. We make the initial assumption that
sulphur concentration is dominated by pyrite. Gold in
the Canadian Malartic deposit is hosted as free gold
grains and inclusions in pyrite. Fieldwork and core log-
ging indicate that increasing sulphur and gold contents
follow the alteration pathway, from distal to proximal
alteration zones.

Atypical of most geological environments, both
density and porosity become lower with increasing sul-
phur and gold concentration. The increase in dense
minerals, including pyrite, is apparently offset by an
increase in less dense silicate and carbonate minerals.
Along with the reduction in porosity, there is a slight
increase in electrical resistivity of a factor 2 (Fig. 4). A
small proportion (15%) of samples has Newmont
chargeabilities above 10 ms, a threshold above which
they can usually be imaged using induced polarization
surveys. Most of the high-chargeability samples con-
tain relatively high Au and S concentrations.

The porphyries display a bimodal magnetic suscep-
tibility. The highly magnetic samples show low-sul-
phur content, and therefore pyrite content, and have
chargeabilities mostly below 10 ms (median below 5
ms), which could be due to low pyrite and high mag-
netite content (Fig. 5). The low-magnetic samples con-
tain higher sulphur, and therefore higher pyrite content.
Chargeabilities are medium but trend toward higher
values with increasing sulphur. The trend for magnetic
to non-magnetic samples showing increasing values for
chargeability is most likely linked to the destruction of
primary magnetite and the increasing pyrite content. 

In the sedimentary rocks, the distal to proximal alter-
ation assemblages exhibit a trend from low-chargeabil-
ity + medium-magnetic susceptibility to high-charge-
ability + low-magnetic susceptibility, which is related
to increasing pyrite and gold content. The drop in mag-
netic susceptibility and increase in chargeability is pos-
sibly related to sulphidation, with destruction of mag-
netite and precipitation of pyrite. Further mineralogical
and petrographic analyses should be undertaken to test
this interpretation.

A Physical Properties Proxy for Gold
Concentration and Hydrothermal Alteration

One of the major goals of the petrophysical study of
rocks from a mineral deposit is to delineate rock prop-
erties of the ore zones that can be detected from surface
geophysical surveys. It has long been noted that geo-
physical methods have been unsuccessful in delineat-
ing the Malartic deposit (Wares and Burzynski, 2011).
Indeed the results of the current study reveal that the
petrophysical contrasts in this collection are quite subtle.
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Figure 5. Bivariate diagram of chargeability versus magnetic
susceptibility illustrates that highly auriferous samples have
physical properties of higher chargeability and low magnetic
susceptibility.    



We propose that a more useful petrophysical proxy
for gold mineralization is obtained by combining mul-
tiple physical rock properties, including density, mag-
netic susceptibility, and chargeability, rather than focus-
ing individually on a single rock physical property.

As gold concentration in the metasedimentary rocks
is roughly correlated with the electric chargeability and
anti-correlated to the density and magnetic susceptibil-
ity, we performed principal component analysis (PCA)
on these three physical properties. Since electric resis-
tivity is largely independent of gold concentration, and
there was no advantage to including that extra variable.
Although gold concentrations are not used in the cal-
culation, they will be used to test the validity of the
result. Specifically, we used a robust principal compo-
nent analysis (Campbell, 1980), with a “low outlier
rejection” criterion, as enabled in the geochemical
analysis program ioGAS®, which was developed by
Reflex. Logarithmic transforms were first applied to
the magnetic susceptibility and electric chargeability.
The maximum eigenvector, or first PCA component,
corresponds to the least-squares line that best fits the
data. The proposed proxy is the projection of the meas-
ured (density, LOG(susceptibility), LOG(chargeabil-
ity)) values along that axis:

(1)  PCA = -0.6268*(dens-2.74)-
0.622*LOG(susc/1.64×10-4) +1.26*LOG(chrg/5.42)

where density (dens) is measured in g/cm3, magnetic
susceptibility (susc) in SI units, and Newmont conven-
tion electric chargeability (chrg) in ms.

The plotted LOG (gold concentration) function of
PCA (Fig. 6) shows that the proxy tracks most of the
variation. The correlation coefficient is not strong
(R=0.65), but with the removal of the furthest outliers,
the correlation coefficient jumps to (R=0.84). The cor-
relation with LOG (sulphur concentration) is however,
less pronounced: R=0.62 and increases to R=0.71 after
the furthest outliers are expelled. The suggestion is that
a preliminary zonation of gold concentration can be
accomplished using only surface geophysical measure-
ments to target exploration drilling.

The direct linkage between geochemical, mineralog-
ical and petrophysical data would be the base for inno-
vative direct, remote, cost-effective methods that could
be implemented for gold exploration in greenstone
belts. In fact, the intensity and nature of alteration in
such environments can be monitored by the combina-
tion of the carbonate saturation index (CSI) and the
chlorite-carbonate-pyrite index (total Fe) (CCPI). The
CSI corresponds to the molar ratio of CO2/(CaO+
MgO+FeO) and is calculated as

(2)  CSI=(CO2/44.0095)/ 
(CaO/56.0774+MgO/40.3044+FeO/71.8444)

where C needs to be reported as CO2, Fe can be

expressed either as FeO or Fe2O3 (Kishida and Kerrich,
1987). While, the calculation of CCPI (Large et al.,
2001; Gemmell, 2007) is determined as

(3)  CCPI=100*(MgO+FeO)/(MgO+Na2O+FeO+K2O)

where FeO is total (FeO + Fe2O3) content of the rock.
The alteration indices (CSI and CCPI) and the petro-
physical proxy are completely independent from each
other but their correlations demonstrate that they mon-
itor the same hydrothermal alteration processes related
to gold mineralization. 

Our proposed petrophysical proxy displays a strong
positive correlation with CSI with R=0.71, which
increases to R=0.73 if furthest outliers are removed. It
is, however, negatively correlated with CCPI (R=
-0.52), but would be strongly correlated if we reject the
magnetic porphyry outliers (R=-0.8) (Fig. 7). 

N. El Goumi, S. De Souza, R.J. Enkin, and B. Dubé

134

Sandstone, Au (ppm)  to 5.89  [100.00%]
Sandstone, Au (ppm)  to 2.0  [80.00%]

Sandstone, Au (ppm)  to 0.586  [60.00%]
Sandstone, Au (ppm)  to 0.103  [40.00%]

Sandstone, Au (ppm)  to 0.0090  [20.00%]
Sandstone

Porphyry, Au (ppm)  to 5.89  [100.00%]

Porphyry, Au (ppm)  to 2.0  [80.00%]
Porphyry, Au (ppm)  to 0.586  [60.00%]

Porphyry, Au (ppm)  to 0.103  [40.00%]
Porphyry, Au (ppm)  to 0.0090  [20.00%]

Porphyry
Protolithe, Au (ppm) 5 Equal Ranges

Legend

R=0.65

A
u 

(p
pb

)

PCA

10000

1000

100

10
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

PCA
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

1

0.1

0.01

10

R=0.62

S 
(p

pm
)

Figure 6. Bivariate diagrams of the petrophysical principal
component analysis (CPA) parameter versus (a) gold and (b)
sulphur concentration as a proxy for mineralization.

a)

b)



The implication is that gold and sulphide content are
associated with alteration which lowers the density and
magnetic susceptibility but increases the electric
chargeability.  Although pyrite represents the main ore
mineral, it is usually present in minor amount (≤5%)
and associated with a decrease in Fe of the biotite and
breakdown of magnetite in the proximal alteration
zones.   As a result of hydrothermal alteration and inter-
action with a CO2-rich fluid, biotite/phlogopite, plagio-
clase, epidote, titanite, magnetite, and ilmenite release
Fe, Mg, and/or Ca that contribute in part to the forma-
tion of carbonate minerals and pyrite, which results in
increasing the CSI, whereas increases of K and/or Na
are associated with albite and microcline formation,
which results in lowering the CCPI. This breakdown of
magnetite and Ca-Fe-Mg silicate phases to form pyrite
and less dense carbonate, quartz, and feldspar can be
linked to the decreasing trends of magnetic susceptibil-
ity and density and increasing chargeability in the
auriferous hydrothermally altered rocks.  Thus petro-
physical properties can be used to identify dissemi-
nated sulphide gold mineralization and related alter-
ation.

IMPLICATIONS FOR EXPLORATION

Compilation of rock physical properties in national and
international databases provides an important tool for
mineral exploration. Geological processes that are usu-
ally inferred from difficult and costly chemical and
mineralogical analyses can be derived from rapid, non-
destructive, and inexpensive petrophysical measure-
ments. These measurements contribute to the under-
standing of the physical change of rocks in ore systems
due to alteration, structures, and other geological
changes.

In order to assess the subtle change of physical prop-
erties in the Canadian Malartic deposit area, a tentative
forward modelling of a simple geological model com-
posed of a porphyry body intruded in metasedimentary
rocks has been accomplished using the software pack-
age Potent®, which provides an interactive framework
for 3-D modelling of magnetic and gravity data. A sim-
ple 100 m3 sphere, representing the non-magnetic
quartz monzodiorite mineralized body, has been
assigned typical rock physical properties of mineral-
ized samples (magnetic susceptibility = 10-4 SI and
density =2.65 g/cm3), and the host metasedimentary
rocks have been assigned magnetic susceptibility =
8×10-4 SI and density = 2.75 g/cm3. The forward
model has taken into account parameters of the geo-
magnetic field (intensity=57489 nT; inclination =
75.4°; declination=-18.3°) without including magnetic
remanence. The results shows that a subtle negative
magnetic anomaly of -20 nT and a negative gravity
anomaly of -0.17 mgal is to be expected if the top of the

body occurs at the surface. If the body is buried (100 m
depth), the magnetic anomaly is less than 1 nT and the
gravity anomaly is less than -0.02 mgal (Fig. 8). 

Rock physical properties not only allow one to cor-
relate and integrate geology to geophysics, but also can
also allow one to optimize geophysical exploration for
ore systems by defining the cost-effective geophysical
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methods to implement. For the Canadian Malartic
deposit area, no single geophysical technique, as
demonstrated by forward modelling of gravity and
magnetic surveys, can provide anomalies that are a use-
ful measure of mineralization or gold content.
However, a proxy can be developed through a combi-
nation of gravity, magnetic, and induced polarization
survey results. We recommend this combination to
define exploration targets over low-density, low-mag-
netic, and highly chargeable areas. The relationship
between the PCA proxy and the different styles of
hydrothermal alteration (distal and proximal) with link-
age to gold concentration is presented here. Thus, a
limit has been established between (1) a background
level of gold associated with negative PCA values,
including fresh rocks plus distal alteration and (2) a
mineralized area with elevated gold concentrations
associated with proximal alteration and positive PCA
values. Distal alteration has no positive PCA value;
petrophysically it is similar to fresh rocks, even if min-
eralogical differences exist (Fig. 9). The mineralogical
and petrophysical border between fertile and non-fer-
tile alteration is most likely the existence of hydrother-
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mal biotite, as most of the Fe issued from biotite break-
down is going to be a combined with S to form finely
disseminated pyrite, which is a good indicator of eco-
nomic auriferous zones. A good knowledge of rock
physical properties is important to constrain inversions,
which allows for a better understanding of the correla-
tions between the geological and geophysical data with
fewer misleading results. A frequency-domain spectral
induced polarization survey is recommended in this
setting where time-domain induced polarization fails to
discriminate between different conduction modes
related to alteration types and mineral assemblages
containing gold.

FUTURE WORK

Linking rock physical properties parameters to miner-
alogical data is our next step in order to refine and clar-
ify integrated interpretations based on geochemical
analyses. The integration of mineralogical and petro-
graphic data with rock physical properties could lead to
consistent and strong mineral, geochemical proxies for
rock physical properties. A rock physical proxy for gold
exploration in greenstone belts will also be improved.
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