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ABSTRACT

The Musselwhite world-class Au deposit is hosted in polydeformed amphibolite-facies banded iron forma-
tion of the Opapimiskan-Markop metavolcanic assemblage, part of the Mesoarchean North Caribou green-
stone belt (northwestern Superior Province). The deposit is located approximately 2 km west of the tectonic
boundary with the gneissic Island Lake Domain. Major and trace element geochemical data show that the
South Rim and Opapimiskan-Markop metavolcanic assemblages have variable magmatic affinities and
diverse normalized rare earth element patterns. The bulk of the Au at Musselwhite is hosted in silicate-rich
banded iron formation and occurs in association with stratabound pyrrhotite replacements and associated sil-
ica flooding, with local discordant quartz±pyrrhotite veins. The ore zones are associated with D2 high-strain
zones that are preferentially developed along hinges and strongly attenuated fold limbs of tight F2 folds. The
layered anisotropy induced by the presence of competent banded iron formation layers in mafic and ultra-
mafic volcanic rocks has clearly influenced the rheological response to deformation at all scales, and hence
played an important role in Au-bearing fluid flow and ore formation and distribution. A new U-Pb prelimi-
nary age of 2666 Ma on late-M2 monazite provides a minimum age constraint for the regional D2 meta-
morphic/deformation event to which most of the Au mineralization at Musselwhite is associated.
Reappraisal of stratigraphic relationships, supported by U-Pb geochronology, indicates that the mine stratig-
raphy is inverted and is part of the overturned limb of a kilometre-scale F1 syncline, which is in agreement
with multiple occurrences of mesoscopic refolded F1 folds. Previously unrecognized regional F1 folding,
which is strongly overprinted by the dominant D2 deformation, has influenced the distribution and geome-
try of the banded iron formation, which hosts the bulk of the Au at Musselwhite, and provides new vectors
for regional exploration. Future work will focus on additional documentation of mineral chemistry and
microscopic textural relationships, as well as further analyses of lithogeochemical data in order to ultimately
define key exploration vectors for iron formation-hosted Au deposits in other Precambrian terranes.

Oswald, W., Castonguay, S., Dubé, B., McNicoll, V.J., Biczok, J., Malo, M., and Mercier-Langevin, P., 2015. Geological setting of the
world-class Musselwhite gold mine, Superior Province, northwestern Ontario: implications for exploration, In: Targeted Geoscience
Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, (ed.) B. Dubé
and P. Mercier-Langevin; Geological Survey of Canada, Open File 7582, p. 69–84.

INTRODUCTION

The Goldcorp Musselwhite mine is located near

Opapimiskan Lake, 475 km north of Thunder Bay,

within the North Caribou greenstone belt, which is part

of the North Caribou Terrane of the western Superior

Province (Thurston et al., 1991; Fig. 1). Production

started in 1997 and had reached over 4 Moz of gold

with total proven and probable reserves of 1.85 Moz as

of December 31, 2013 (www.goldcorp.com).

This research project at Musselwhite, a component

of the Targeted Geoscience Initiative 4 (TGI-4) Lode

Gold project of Natural Resources Canada, is con-
ducted in collaboration with Goldcorp Inc., the Ontario
Geological Survey and the University of Ottawa. It
aims at understanding the structural, lithological, and
geochemical controls on the formation and distribution
of the banded iron formation-hosted Au mineralization.
Another objective is to define the geochemical foot-
print of the hydrothermal system in order to develop
improved geological and exploration models for simi-
lar deposit types in the North Caribou greenstone belt
and elsewhere in Precambrian terranes (Dubé et al.,
2011).
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This report presents a brief summary of the current

status of the ongoing multidisciplinary research being

conducted at Musselwhite. Our investigation of the dis-

tal and proximal settings of Au mineralization and of

the relative and absolute chronology of events at

Musselwhite comprises a major surface, underground,

and drill-core mapping component, including sampling

for petrographic and geochemical analyses. The study

of the Musselwhite deposit (Oswald et al., 2014a,b),

which builds on previous studies at deposit scale (e.g.

Hall and Rigg, 1986; Couture, 1995; Isaac, 2008;

Moran, 2008), also includes targeted geochronology

across most of the Opapimiskan Lake area (McNicoll

et al., 2013, submitted) to establish the age of the host-

rock successions and the major structural and meta-

morphic episodes, to put our work into a regional con-

text, and to address key questions that cannot be read-

ily resolved at deposit scale. Other specific ongoing

research activities at Musselwhite or its vicinity (e.g.

Kalbfleisch, 2012; Van Lankvelt et al., 2013; Duff,

2014; Gourcerol et al., 2015) involve geochronology,
structural mapping, metamorphic petrology, and litho-
geochemistry, which will collectively contribute to a
better understanding of the evolution of the North
Caribou greenstone belt and its bounding structures
and assemblages.

REGIONAL AND LOCAL 
GEOLOGICAL SETTING

The North Caribou greenstone belt is located south-
southwest of the Island Lake domain (Fig. 1), in the
central part of the North Caribou Terrane, which is con-
sidered the core of the western Superior Province
(Percival et al., 2007). Regional-scale mapping pro-
grams and studies (Breaks et al., 1985; Piroshco et al.,
1989; Breaks and Barlett, 1991; Breaks et al., 1991,
2001; Thurston et al., 1991) have defined various
lithostratigraphic assemblages in the North Caribou
greenstone belt (from northwest to southeast; Fig. 1a):
the Agutua Arm metavolcanic assemblage; the
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metasedimentary and metavolcanic rocks of the

Keeyask metavolcanic assemblage; the metasedimen-

tary rocks of the Eyapamikama assemblage; the North

Rim metavolcanic assemblage; the South Rim meta-

volcanic assemblage; the Opapimiskan-Markop

metavolcanic assemblage (OMA); the Zeemel-Heaton

metasedimentary assemblage (ZHA); and the Forester-

Neawagank metavolcanic assemblage. The greenstone

belt is surrounded by the tonalite-trondhjemite-gran-

odiorite (TTG)-type batholiths of the North Caribou

pluton (NCP) and the Schade Lake gneissic complex

(SLGC), both comprising several intrusive phases

dated between 2.87 and 2.84 Ga, and by the smaller,

composite, ca. 2730–2723 Ma Southern batholith (Fig.

1; Biczok et al., 2012).

The Musselwhite deposit host succession consists of

the South Rim metavolcanic assemblage and the under-

lying OMA, which structurally overlies the ZHA (Fig.

2a). The whole succession is folded by a northwest-

trending, F2 synform-antiform pair (i.e. East Bay

Synform and West Antiform). The OMA comprises

two main iron formations, i.e., the Northern iron for-

mation (NIF) and Southern iron formation (SIF), both

intercalated with, from structural top to bottom, calc-

alkaline, felsic to intermediate volcanic rocks, tholei-

itic, mafic volcanic and subvolcanic rocks, and tholei-

itic, komatiitic basalt and ultramafic volcanic rocks.

The structurally uppermost iron formation sequence

(NIF) hosts the bulk of the economic Au mineralization

(Fig. 2b).
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Three main phases of regional deformation have
been documented (Breaks et al., 1985, 1991; Piroshco
and Shields, 1985) The earliest event, D1, consists of
tight to isoclinal mesoscopic folds, associated with a
penetrative S1 foliation, which is commonly subparal-
lel to bedding or layering (Breaks et al., 2001). D2, the
dominant regional phase of deformation, consists of
open to isoclinal shallowly northwest-plunging folds,
coupled with a steeply dipping axial-planar foliation
(S2), commonly obliterating D1 fabrics. In the project
area, rocks are affected by strong, eastward-increasing
D2 deformation that culminates in a major fault zone at
the contact with the Schade Lake gneissic complex
(Fig. 2a). D3 deformation structures are heteroge-
neously developed and consist of asymmetric broad
open or chevron folds, locally accompanied by a steep
southwest-trending S3 crenulation cleavage. Major,
probably long-lived or reactivated fault or shear zones
commonly mark lithostratigraphic boundaries in the
greenstone belt and overprint contacts with surround-
ing batholiths (Figs. 1, 2; Breaks et al., 2001).

The regional metamorphic grade varies from middle
to upper greenschist facies in the northern part of the
belt, near Eyapamikama Lake (Breaks and Bartlett,
1991), to middle amphibolite facies around
Opapimiskan Lake and further east (Breaks et al.,
1985). According to Hall and Rigg (1986), peak
regional metamorphism occurred during the later
stages of D2.

RESULTS

Methodology

Detailed geological and structural mapping was carried
out using a high-resolution GPS (AshTech Promark
800) on a selection of five stripped exposures, which
allowed for increased speed of data collection as well
as overcoming the challenge of structural measure-
ments on iron formations. This latter issue was
resolved during underground mapping by measuring
fabrics and structures with respect to the surveyed ori-
entation of mine workings. Systematic logging and
sampling of drill core has also been completed on a set
of sections across the deposit to link geological and
structural mapping information with petrographic data,
mineral chemistry, and whole-rock lithogeochemistry.

Mine Stratigraphy

Geological mapping (Fig. 3; see also Oswald et al.,
2014a,b), description of drill core, and lithogeochemi-
cal data have refined the stratigraphy of the deposit
(Fig 4). Previously defined units of the Opapimiskan
metavolcanic assemblage (Fig. 4a; Hollings and
Kerrich, 1999) have been geochemically characterized.
Volcanic rocks from the “Avol” are dominantly dacitic
with a calc-alkaline affinity (Fig. 4b,c). The “Bvol”

package comprises tholeiitic mafic rocks with three
contrasting rare earth element (REE) signatures: one
with light REE enrichment and two flat-profile groups
with different REE enrichment relative to primitive
mantle values (Fig. 4d). The “Basement Basalts” con-
tain ultramafic rocks with a transitional to calc-alkaline
affinity and light REE enrichment, intercalated with
ultramafic rocks of tholeiitic affinity and flat normal-
ized REE patterns, calc-alkaline intermediate rocks
showing strong light REE enrichment, and tholeiitic to
slightly calc-alkaline mafic rocks showing various
degrees of light REE enrichment. Four samples of
basalt and komatiitic basalt of the lowermost section of
the OMA were collected close to the boundary with the
ZHA (Fig. 2a); they have tholeiitic affinity and exhibit
flat normalized REE patterns.

The NIF comprises garnet amphibolite and garnet-
biotite schist (unit 4E and 4F, Fig. 4a), which, although
not banded iron formation sensu stricto, contain over
15 wt% total Fe2O3 (Fig. 4d) and are thereby consid-
ered iron formation (James, 1954). Unit 4F includes a
thin quartz-feldspar-biotite volcaniclastic interval (unit
6). These units structurally overlie the more typical
banded iron formation, including a silicate (i.e. garnet-
grunerite) facies (unit 4EA), a clastic chert-magnetite
facies (unit 4Bc), a chert-magnetite facies (unit 4B),
and a chert-grunerite facies (unit 4A). A sulphide-rich
meta-argillite (unit 4H) forms the structural base of the
NIF sequence (Fig. 4a). The Al2O3 content of samples
is used in ternary projections (Fig. 4e) as a proxy for
detrital input (Klein, 2005); the hydrothermal input is
mainly defined by a positive Eu anomaly, whereas a
weakly to strongly positive Y anomaly characterizes
the seawater input (Fig. 4f). Following Moran (2008),
REE+Y data was chondrite (C1)-normalized and was
also normalized to the mudstone of Queensland (MUQ;
Kamber et al., 2005; Fig. 4f) to minimize the detrital
REE signature and to emphasize potential hydrother-
mal and seawater inputs (Baldwin, 2011).

The study of the chert component of the iron forma-
tions at Musselwhite and in other BIF-hosted deposits
(e.g. Meadowbank Mine, and Meliadine district,
Nunavut) by Gourcerol et al. (2014, 2015), which is
complementary to our work, aims to establish if there
is specific geochemical signature for BIF that contains
Au mineralization and whether a hydrothermal foot-
print can be detected.

Structure

Complementing the work of Hall and Rigg (1986) 2 to
3 km west of the Musselwhite Mine, our surface and
underground mapping has documented structures and
fabrics related to the three phases of regional deforma-
tion and provides comprehensive insights about
polyphase structural styles and geometric relationships
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and their significance for gold mineralization (Oswald
et al., 2014a,b,c). The West Antiform Trench 1, Esker
Docks exposure, and Trench 4 are located in a domain
of lower intensity D2 deformation, which provides a
favourable context to document earlier structures that
include penetrative, northeast-southwest-trending, S1
foliation (Fig. 5a), refolded F1 folds (Fig. 5b), and
locally, evidence of soft-sediment deformation.

Shallowly northwest-plunging upright F2 folds have
deformed D1 structures and produced type 3 F1/ F2 fold
interference pattern in the West Antiform area. The
expression of the axial-planar northwest-trending S2
foliation is lithology-dependent (Fig. 5c). In a rela-
tively low-intensity D2 deformation domain, it is
developed as a spaced cleavage in igneous rocks and as
a more penetrative foliation in iron formation. In areas

Geological setting of the Musselwhite gold mine, northwestern Ontario: implications for exploration
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linear structural data.
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of strong D2 overprint, S2 is penetrative in all rock
types and is associated with boudinaged beds in chert-
magnetite iron formation. Strain features suggest that
D2 deformation in the mine area was dominated by
flattening and minor shearing with dextral and east-
side-up components of motion. D3 deformation mostly
consists of open or chevron-type folds. Two possibly
conjugate sets of S3 crenulation cleavage are oriented
ENE-WSW and NNE-SSW. Field evidence reveals that
S3 cleavage is unevenly developed in the BIF units,
and it is preferentially developed near and within high-
strain zones in volcanic rocks.

Mineralization and Alteration

The crosscutting relationships of multiple vein genera-
tions are documented here. The earliest vein type

includes barren, glassy, white to grey, quartz veins,
which are thought to be early-D1 (Fig. 5c). Three vein
types are associated with D2 structures: 1) grey, quartz-
dominated, pyrrhotite- and carbonate-bearing, aurifer-
ous veins with a variably developed calc-silicate alter-
ation halo; 2) milky white quartz-carbonate veins that
can be auriferous or barren; and 3) barren, sugary-tex-
tured, calcite-dominated, quartz-carbonate late-D2
veins. D3-related veins, which are usually barren, white
to greyish, and quartz-dominated, remobilized Au and
sulphides locally where they cut pre-existing mineral-
ized structures.

Characteristics of the mineralized zones have been
documented by logging of drill core and underground
mapping (Oswald et al., 2014a). As previously pro-
posed for the West Antiform zone by Hall and Rigg
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Figure 4 (opposite page). a) Detailed stratigraphic column of the mine sequence (geochronological data from McNicoll et al.
(2013)). b) Left plot: magmatic affinity diagram from Ross and Bédard (2009) using Zr/Y versus Th/Yb, and right plot: fraction-
ation trends after McLean and Barrett (1993) using Zr versus TiO2 for the least altered drill-core samples. c) Rare earth ele-
ment (REE) profile envelopes of igneous rocks samples from the mine sequence (normalized to primitive mantle from Sun and
McDonough, 1989). d) Average values for major elements of the least altered drill-core samples of each Northern Iron
Formation (NIF) facies. e) Ternary projection of NIF drill-core samples showing the relative importance of detrital input
(Al2O3/(A2O3+total Fe2O3)x15), hydrothermal input (Eu anomaly), and seawater input (Y anomaly) for each facies. Black arrow
shows the overall trend. f) Mudstone of Queensland (MUQ)-normalized REE+Y profile envelopes of the least altered drill-core
samples of each NIF facies (normalized to MUQ from Kamber et al., 2005). See Figure 4e for colour legend.
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Figure 5. Photographs of representative structural features. a) Close-up view of the S1 foliation in a garnet-biotite band along
a F2 fold hinge (Esker Docks exposure). b) F1/F2 fold interference pattern (type 3) in cherty garnet-biotite schist (Esker Docks
exposure). c) Part of the West Antiform exposure illustrating the contrast in the development of the S1 foliation in the chert-
magnetite iron formation and the adjacent ultramafic rocks, overprinted by F2 folds.
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(1986), the mineralized zones at Musselwhite show
close spatial relationship with the D2 deformation-
related high-strain zones and adjacent lower pressure
areas, such as F2 fold hinge zones, supporting the syn-
D2 timing of Au mineralization, in association with sul-
phides such as pyrrhotite. Two end-members of ore can
be distinguished: quartz-flooded zones with over 50%
quartz and zones of strong pyrrhotite replacement (up
to 40% pyrrhotite).

The 11780N Crosscut on level 770 exposes one of
the PQD ore zones (Figs. 2b, 6a), which represents typ-
ical high-grade ore in the 4EA facies and its relation-
ships with D2 structures. A D2 strain gradient, similar
to that mapped at kilometre-scale between the West
Antiform area and the mine area, is documented at
decametre-scale underground and in drill core, where
Au mineralization mainly occurs in high-strain zones,
but likewise in adjacent low-pressure areas, such as
fold hinges (Fig. 6a,b). Lithological control on sul-
phide precipitation and associated Au deposition is also
evidenced by the contrast in intensity of pyrrhotite
replacement and/or quartz-flooding between the gar-
net-grunerite facies (unit 4EA) and the chert-magnetite
facies (unit 4B) of the iron formation (Fig. 6c). Ore-
grade mineralization in chert-magnetite iron formation
only occurs in zones of high strain, intense transposi-
tion, and that contain numerous fault-fill laminated
quartz-pyrrhotite veins.

Typical Au ore in the garnet-grunerite iron forma-
tion (Fig. 6d) mainly comprises smoky grey to black
quartz veins and/or quartz flooding with pyrrhotite and
iron carbonate. Pyrrhotite is the dominant sulphide
associated with Au mineralization. Chalcopyrite is very
rarely present in hand samples. Arsenopyrite is also
only locally present, and does not correlate with ele-
vated Au grades. In garnet-grunerite layers, pyrrhotite
occurs as very fine-grained aggregates along foliation
planes and in pressure shadows and filling fractures of
coarse-grained dark red almandine porphyroblasts.
Boudinaged chert bands, quartz veins, or quartz-flooded
layers contain dark green, fine-grained amphibole,
biotite, and local clinopyroxene, likely hedenbergite. 

Silicate minerals, such as garnet, grunerite or ferro-
tschermakite, and biotite are found in both regional
metamorphic and ore-related mineral assemblages.
Documentation of the different mineral textural rela-
tionships is critical to understanding the series of event
that occurred. In this regard, garnet is a particularly
important phase, as it is present in many lithologies and
in various textural contexts (Fig. 7a). Differences
between proximal and distal Au mineralization are
partly illustrated in garnet textures. For example, the
distal, least altered 4EA facies (Fig. 6e) comprises
anhedral to subhedral almandine garnet, whereas typi-

cal ore contains coarse-grained, subhedral to euhedral,
red almandine garnets (Fig. 6d). 

Geostatistical analysis of the lithogeochemical data
(e.g. binary and ternary plots, principal component
analysis (PCA), correlation coefficient calculations)
shows that Au is associated with Ag, Se, Te, and Cu, in
addition to total-sulfur and loss-on-ignition compo-
nents (Fig. 7b,c). The weaker correlation of CaO and
CO2, compared to an average greenstone-hosted oro-
genic deposit (Dubé and Gosselin, 2007), may denote
the overprint of Au-bearing structures by calcite-rich
structures, which were documented in underground
mapping and in drill-core analyses. As proposed by
Davies et al. (1982), CO2/CaO and CO2/CaO+MgO
molar ratios will be used to investigate the carbonate-
alteration intensity, as these ratios take into account the
availability of Ca and Mg in the altered rock protolith.
The absence of As (as well as Sb, Bi, and Pb) in the
trace metals associated with Au is noteworthy as it is
usually abundant in orogenic Au deposits (Pitcairn et
al., 2006; Dubé and Gosselin, 2007). The distinct, iso-
lated signature of SiO2 suggests that multiple parame-
ters have influenced its distribution in the iron forma-
tion (primary chert, barren early quartz vein, Au-bear-
ing silica-flooding, etc.).

DISCUSSION

Stratigraphy and Structure

Detailed surface mapping in the Musselwhite area
reveals that early (D1) deformation had a major influ-
ence on the geometry and regional distribution of
prospective BIF horizons. Tight to isoclinal F1 folds
are refolded, and locally obliterated by D2 folds and
fabrics, which dominate the regional structural pattern.
The presence of local metric to decametric F1 folds
suggests they occur at regional-scale. New U-Pb
geochronology (Fig. 4; McNicoll et al., 2013) indicates
that unit 6 and unit 4F of the Northern BIF are both
<2967 Ma, and the structurally overlying felsic tuff
(Avol unit) of the South Rim assemblage yielded an
age of 2978.7 Ma. Coupled with regional geological
data, this data confirms that the mine sequence is over-
turned and occurs along the northern overturned limb
of a kilometre-scale F1 fold, with an inferred axial
plane located along Zeemel Lake (Fig. 2a). New U-Pb
isotope dilution thermal ionization mass spectrometry
(ID-TIMS) geochronology results have also uncovered
a ca. 60 to 110 Ma age difference between the OMA
(<2967 to >2909.4 Ma) and the adjacent ZHA (<2853
Ma) in the mine stratigraphic succession (Fig. 4;
McNicoll et al., 2013, submitted). Drill-core descrip-
tions show this major gap or boundary is marked by
increased strain intensity and carbonate alteration.
Regional mapping (Fig. 2) suggests that this sheared
contact likely delineates an early, D1 thrust fault, which
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may have reactivated a pre-existing unconformity.

The D2 deformation is younger than 2846 Ma, which
is the maximum age of the deformed ZHA (McNicoll
et al., 2013). The D2 deformation also deforms the mar-
gins of the 2870–2850 Ma North Caribou pluton and
the 2860–2840 Ma Schade Lake gneissic complex
(Breaks et al., 2001; Fig. 1). Competency contrast with
the enclosed supracrustal rocks have induced strain

partitioning during D2 deformation and, thus, influ-
enced the distribution and geometry of the BIF units
during Au mineralization.

Recent geochronological work along the major
shear zones of the area (Kelly et al., 2015) suggests that
major faulting at ca. 2.75 to 2.71 Ga was followed by
transpressive shear at ca. 2.60 to 2.56 Ga, and by late
reactivation of pre-existing fault zones (e.g. Markop
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Figure 7. a) Photograph of drill-core sample containing three types of garnet (Gt): fine-grained, anhedral to subhedral, pale pur-
ple almandine distributed along the main foliation; coarse, subhedral, red almandine associated with pyrrhotite (po) in a quartz-
dominated vein; and coarse, anhedral, pink to orange almandine associated with a calcite-rich veinlet. b). Principal component
analysis (PCA) diagram for major elements and trace metals in the garnet-grunerite iron formation samples (4EA) using fac-
tors 1 and 2. c) Close-up of (b) showing the distinct association of trace metals with Au and S. d) Microphotograph of a garnet
porphyroblast with a core containing folded inclusion trails marking an early fabric. e) Microprobe map of CaO content (percent)
of the same garnet porphyroblast, note the halos of CaO enrichment concomitant with changes in orientation of inclusion trails.

a)

b)
c)

d) e)



shear zone: Fig. 1), occurring as late as 2.45 Ga. Field
observations suggest this late reactivation event could
correspond to the D3 features that have been mapped in
the present study area.

Mineralization and Alteration

Iron formations are extremely reactive to S-bearing flu-
ids, thus Fe and S tend to combine to form pyrrhotite,
which is the most abundant Au-associated sulphide at
Musselwhite. The abundance of ore-related pyrrhotite
at Musselwhite may originate from the metamorphic
recrystallization of pyrite to pyrrhotite (Tomkins,
2010) or, more likely, because increasing metamorphic
conditions favoured the crystallization of pyrrhotite
during Au mineralization. Given the empirical correla-
tion between pyrrhotite content and Au grade (1%
pyrrhotite ≈ 1 ppm Au; W. McLeod, pers. comm.,
2011) and the high Pearson correlation coefficient
between Au and S in preliminary geochemical data
(0.5–0.8), Au was most probably transported as
thiocomplexes (Au(HS)2‾ or AuHS0; e.g. McCuaig and
Kerrich, 1998), and released during pyrrhotite crystal-
lization. In the silicate facies of the iron formation (unit
4EA), Fe is thought to have been derived from the
breakdown of grunerite into Ca-amphibole, likely
ferro-tschermakite and actinolite, which contain less
Fe. In the adjacent clastic chert-magnetite facies of the
iron formation (unit 4Bc), the large amount of mag-
netite provides a significant source of Fe to form
pyrrhotite along with Fe-carbonate, especially ankerite.
These replacements are interpreted to reflect the CaO
enrichment usually associated with the alteration halo
of orogenic Au mineralization (Dubé and Gosselin,
2007 and references therein).

The successive development of grunerite, alman-
dine, and clinopyroxene indicate lower to mid-amphi-
bolite-facies metamorphic conditions in iron formation
(Klein, 2005). Relative timing of mineralization is best
constrained by relationships with the structure and
metamorphic paragenesis. Euhedral garnet porphyrob-
lasts, e.g., at the Esker Docks exposure, have cores
indicating a pre-existing foliation (S1 or early S2; Fig.
7d), and are characterized by an intermediate corona
that recorded a subsequent progressive deformation,
probably D2, associated with increased Ca content
(Fig. 7e). Euhedral outer rims that overprint the main
S2 foliation indicate late to post-D2 growth and suggest
that peak metamorphic temperature occurred during
the latter stages of D2 deformation. In high-grade
zones, Au is present as inclusions and as fracture-fill-
ing in garnet porphyroblasts or in pressure-shadows
developed along garnet crystals, suggesting that Au
mineralization, or its local remobilization, occurred
after the initiation of garnet porphyroblast crystalliza-
tion during active D2 deformation.

Stable isotope data (Isaac, 2008), coupled with the
trace element signature of Au mineralization (e.g. Ag,
Cu, Se, Te; Fig. 7b,c), suggest that the Musselwhite
deposit is compatible with the metamorphic end-mem-
ber of the greenstone-hosted Au deposit group (i.e. ore-
fluids that are mainly of metamorphic origin; cf. Dubé
and Gosselin, 2007). Syn-D2 major compression (flat-
tening-dominated) of rheologically contrasting units in
the mine area induced the development of discrete sub-
vertical high-strain zones in the iron formation, along
with intense folding. Preliminary interpretations of our
observations and data suggest that Au-bearing fluids
were channelled into the high-strain zones and also
migrated into adjacent F2 fold hinge zones, which con-
stituted areas of lower pressure suitable for trapping
gold mineralization. Moreover, the Fe-rich, highly
reactive 4EA NIF unit caused the destabilization of the
Au-transporting agents and facilitated Au precipitation
(a chemical trap). So, the rheological contrasts between
the NIF and the surrounding igneous rocks (lithologi-
cal/stratigraphic trap), at amphibolite-facies condi-
tions, and its high-iron content (a chemical trap)
explains the preferential deposition of Au in the iron
formation at Musselwhite.

Biczok et al. (2012) published Sm-Nd isotopic
analyses on several euhedral, red, almandine garnets
spatially associated with Au that yielded a preferred
age of 2690 ± 9 Ma, which is interpreted as the age of
Au mineralization at Musselwhite. Newly acquired U-
Pb SHRIMP (Sensitive High Resolution Ion
Microprobe) in situ analyses of monazite grains in the
garnet-biotite schist (unit 4F), conducted within this
project, give a preliminary age of 2666 ± 6 Ma, which
is interpreted to represent the timing of peak metamor-
phism. Analyzed monazite grains were located in the
biotite matrix and in inclusion-poor outer rims of gar-
net porphyroblasts that appear to have grown during
late- to slightly post-D2 deformation, similar to the out-
ermost rim of the garnet in Figure 6d. Given this rela-
tionship and the strong link between metamorphic par-
agenesis and mineralization, this monazite age is inter-
preted as a minimum age for the main Au mineraliza-
tion event. As the D2 deformation is younger than 2846
Ma, the bulk of the gold mineralization is bracketed
between 2846 and 2666 Ma.

IMPLICATIONS FOR EXPLORATION

The interpretation of kilometre-scale F1 folding in the
Opapimiskan Lake area has implications for the loca-
tion and geometry of prospective iron formation hori-
zons and may thus provide new regional exploration
targets. A strong D2 strain gradient is documented in
supracrustal rocks of the North Caribou greenstone
belt, increasing northeastward toward the tight F2 fold
hosting the Musselwhite deposit and culminating at the
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tectonic contact with the Shade Lake gneissic complex
of the Island Lake Domain. This major first-order tec-
tonic boundary, the early stage unconformity and/or
thrust fault at the contact between the Opapimiskan-
Markop and the adjacent Zeemel-Heaton assemblages,
and the recently documented presence of polymictic
conglomerate in the upper stratigraphic sequence (Fig.
1) are all critical features typically found in greenstone-
hosted orogenic Au districts (e.g. Goldfarb et al., 2005;
Robert et al., 2005; Dubé and Gosselin, 2007, Bleeker,
2012 and references therein). They provide targets for
exploration throughout the greenstone belt, especially
where associated with second-order D2 structures
affecting highly reactive BIF.

FUTURE WORK

Variations in mineral assemblages and chemistry
between distal (barren) and proximal (mineralized)
iron formation facies characterize the hydrothermal
footprint of the deposit. Garnet porphyroblasts are
present in various lithologies (Fig. 4a) and display mul-
tiple growth phases (Fig. 7d,e). Future work will
include additional petrographic description to investi-
gate relationships and timing of mineral growth.
Mineral chemistry will also be used to better under-
stand individual element variations in whole rock lith-
ogeochemical data, such as the decoupling between
Mn that is contained in the garnet cores, and thus iso-
lated from subsequent hydrothermal events, and Mg
that is contained in the matrix amphibole.

Ongoing spatial analysis and integration of the lith-
ogeochemical database will allow characterization of
the distribution and relative timing of the various types
of alteration present at Musselwhite. Targeted LA-ICP-
MS elemental mapping of sulphide minerals (cf. Cabri
and Jackson, 2011) from samples of the ZHA will also
document the evolution and distribution of trace metals
during metamorphism and deformation, as was com-
pleted previously on pyrite nodules from an argillite
unit of the West Antiform area (Jackson et al., 2013).

Multiple occurrences of polymictic conglomerates
within the ZHA have been recently documented and
subsequently sampled for geochronology study. The
results will need to be interpreted in light of the geo-
logical setting of each outcrop and will likely impact
the current stratigraphic model in the Opapimiskan
Lake area.
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