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INTRODUCTION

Although volcanogenic massive sulphide (VMS)
deposits with precious metal enrichment have been
studied globally (e.g. Huston, 2000; Dubé et al., 2007;
Mercier-Langevin et al., 2011), precious metal-bearing
VMS deposits in the Newfoundland Appalachians are
not well-documented and the cause(s) of enrichment in
these deposits is poorly understood. The source(s) of
precious metals, the environmental and physiochemi-
cal conditions that persist during the formation of a
VMS deposit can all influence the degree to which a
deposit is enriched in metal, including Au and Ag
(Poulsen and Hannington, 1995; Hannington et al.,
1999; Huston, 2000; Dubé et al., 2007). The Central
Mobile Belt in Newfoundland hosts a large number of
VMS deposits, including past and presently producing
mines, and non-producing deposits and prospects that
range from Cu-rich to polymetallic (Swinden and
Kean, 1988; Piercey and Hinchey, 2012); a number of
these deposits are also precious metal-enriched (e.g.
Santaguida and Hannington, 1993, 1996; Pilote and

Piercey, 2013; Pilote et al., 2014; Brueckner et al.,
2014). The Zn-Pb-Cu-Ag-Au Lemarchant VMS
deposit is located in the Tally Pond volcanic belt,
together with the currently producing (yet precious
metal-poor) Duck Pond and Boundary VMS deposits
(Evans and Kean, 2002; McNicoll et al., 2010; Piercey
et al., 2014). Lemarchant contains well-preserved sul-
phide mineral textures and presents an ideal subject for
investigating mechanisms of precious metal enrich-
ment in Newfoundland VMS deposits.

The Lemarchant deposit was discovered in 1983,
and contains an indicated mineral resource of 1.24 mil-
lion tonnes grading 5.38 wt% Zn, 0.58 wt% Cu, 1.19
wt% Pb, 1.01 g/t Au, and 59.17 g/t Ag and an inferred
mineral resource of 1.34 million tonnes grading 3.70
wt% Zn, 0.41 wt% Cu, 0.86 wt% Pb, 1.00 g/t Au, and
50.41 g/t Ag (Fraser et al., 2012). Herein, we present
detailed petrographic and in situ trace and isotope min-
eral chemical data for the Lemarchant deposit collected
using a combination of scanning electron microscopy
(SEM), electron microprobe (EMPA), laser ablation
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ABSTRACT

The Lemarchant deposit is a Cambrian volcanogenic massive sulphide (VMS) deposit located in the Central
Mobile Belt of the Newfoundland Appalachians. Unlike other polymetallic VMS deposits in the bimodal
felsic Tally Pond group, Lemarchant is enriched in precious metals. The deposit is composed of contrasting
styles of sulphide mineralization, and formed in three discrete stages: Stage 1: barite-rich, low-temperature
(<250ºC) VMS mineralization; Stage 2: 150 to 250ºC intermediate- to high-sulphidation epithermal-style
mineralization; and Stage 3: polymetallic, high-temperature (>300ºC) VMS mineralization. Sulphur iso-
topes suggest that S is derived from three sources: thermochemically reduced seawater sulphate, leached
igneous basement rock, and magmatic SO2. Lead isotopes indicate that Pb is primarily derived from evolved
crustal material, with some input from juvenile volcanic rock (i.e. arc-rift). Precious metals associated with
epithermal-style mineralization are consistent with a magmatic contribution to the hydrothermal fluid.
Precious metals were precipitated from intermittently boiled fluids, at relatively shallow (<1500 m) water
depth.
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inductively coupled plasma (LA-ICP-MS), and sec-
ondary ion mass spectrometry (SIMS). The goal of this
project is to provide a model for the mineralogical and
metallogenic evolution of the Zn-Pb-Cu-Ag-Au
Lemarchant deposit. We present here a summary of the
work completed to date, and a genetic model for the
Lemarchant deposit (and similar deposits elsewhere)
that explains the enrichment of precious metals in
VMS deposits.

GEOLOGICAL SETTING

Most VMS deposits in the Newfoundland
Appalachians are situated within the Dunnage Zone,
the central tectonostratigraphic zone of the
Newfoundland Appalachians. The Dunnage Zone hosts
a suture zone (Red Indian Line, Fig. 1 inset) between
volcanic arc sequences of Laurentian and Gondwanan
affinity that merged during the Silurian closure of the
Iapetus Ocean (Williams, 1979; van Staal et al., 1998;
van Staal and Barr, 2012). The eastern, peri-

Gondwanan portion of the Dunnage Zone, the Exploits

subzone, consists of a series of nascent to mature vol-

canic arc rocks that include the Victoria Lake

Supergroup (Fig. 1; Rogers et al., 2006; Zagorevski et

al., 2007). The oldest sequence in the Victoria Lake

Supergroup is the 513–509 Ma Cambrian Tally Pond

group (Pollock, 2004; Rogers et al., 2006; McNicoll et

al., 2010), which is composed of the mafic volcanic-

dominated Lake Ambrose formation and the felsic vol-

canic-dominated Bindons Pond formation (Dunning et

al., 1991; Evans and Kean, 2002; Squires and Moore,

2004; Rogers et al., 2006).

The volcanic rocks hosting VMS mineralization in

the Tally Pond group are predominantly felsic (Fig. 2a;

McNicoll et al., 2010); the Lemarchant VMS deposit,

in particular, has been well preserved despite regional

greenschist facies metamorphism, folding, and local

normal and thrust faulting (Squires and Moore, 2004;

Copeland et al., 2008a,b; Fraser et al., 2012). Footwall
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host rocks at Lemarchant consist of calc-alkaline
aphyric rhyolite breccias and flows that are interbedded
with tuff breccias and lapilli tuffs containing devitrified
volcanic glass shards (hyaloclastite). Hanging wall
rocks consist of basalt and basaltic andesite flows and
pillow flows that are variably intercalated with pyritic
to graphitic mudstone that has a significant exhalative
(chemical sedimentary) component (Lode et al., 2014;
Fig. 2b). Two types of mafic dykes, a synvolcanic,
pyroxene-porphyritic type and an undeformed gabbroic
type, as well as an undeformed felsic dyke, crosscut the
Lemarchant host rock and mineralization (Copeland et
al., 2008a,b; Fraser et al., 2012). Thrust faulting at
Lemarchant has resulted in local repetition of the vol-
canic stratigraphy (Fig. 2b).

Hydrothermal alteration is manifested by quartz-
sericite±chlorite-albite in the footwall host rock, and
by weak quartz-chlorite±epidote in the hanging wall
(Copeland et al., 2008a,b). Synvolcanic mafic dykes
contain rare fuchsite. Late carbonate alteration, con-
sisting of calcite, ankerite, and dolomite, is present in
all lithologies, and crosscutting quartz-carbonate vein-
lets are common throughout the deposit.

SULPHIDE MINERALOGY

The elongate Lemarchant deposit is (at ~200 m depth)
350 m long, <20 m thick, and strikes north-northwest
(Fig. 2). The upper stratigraphic stratiform zone con-
tains abundant barite mineralization and is dominated
by Zn-Pb sulphides, whereas the lower stratigraphic
stringer zone is mostly composed of Cu-rich sulphides.
However, the Lemarchant thrust fault (Fig. 2b) has
truncated the stringer zone and translocated a portion
of the deposit to the northwest (Fig. 2a). The main sul-
phide minerals are sphalerite, pyrite, galena, and chal-
copyrite (see Table 1). Minor sulphide and sulphosalt
minerals include the tetrahedrite group minerals, bor-
nite, marcasite, stromeyerite, colusite group minerals,

pyrrhotite and arsenopyrite. Trace minerals include
electrum, covellite, bournonite, polybasite, miargyrite,
sulvanite, and reinerite, as well as unknown silver tel-
lurides and nickel sulphides.

There are five types of mineralization, based on sul-
phide mineral textures and crosscutting relationships.
The type 1 mineral assemblage is composed of semi-
massive granular barite-white to honey sphalerite-
colloform pyrite-galena±chalcopyrite-tetrahedrite group
minerals (Fig. 3a–c). Type 2A and type 2B mineral
assemblages crosscut the type 1 mineral assemblage;
type 2A mineralization consists of bornite-galena-chal-
copyrite±stromeyerite-covellite-NiS stringers (Fig. 3d,
e), and type 2B mineralization contains disseminated

Mineral phase Formula
Barite BaSO4
Sphalerite (Zn,Fe)S
Pyrite FeS2

Galena PbS
Chalcopyrite CuFeS2
Tetrahedrite group minerals (Cu,Ag)10 (Fe,Zn)2(As,Sb)4S13

Bornite Cu5FeS4
Marcasite FeS2
Stromeyerite AgCuS
Colusite group minerals Cu26V2(As,Ge,Sb,Sn)6S32
Pyrrhotite Fe1-xS
Arsenopyrite FeAsS
Covellite CuS
Electrum (Au,Ag)
Bournonite PbCuSbS3
Polybasite [(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Miargyrite AgSbS2
Silver telluride -----
Sulvanite Cu3(V,Fe)S4
Reinerite (Cu,Fe)22(Ge4-xAsx)Fe8S32
Nickel sulphide -----

Table 1. Ore-related minerals present in the Lemarchant
deposit, with mineral formulas (where applicable), in order of
decreasing relative abundance.  

Figure 3 opposite. Drillcore photographs, reflected and transmitted light thin section photomicrographs and back-scatter electron
(BSE) images of the type mineral assemblages at Lemarchant. Type 1: a) Granular barite with semi-massive white sphalerite,
pyrite, and galena in drillcore (drillhole LM11-64 at 218.8 m depth). b) White sphalerite with chalcopyrite disease in transmitted light
(sample CNF29959 in drillhole LM11-59 at 207.7 m). c) Colloform pyrite with sphalerite and galena in reflected light (sample
CNF29960 in drillhole LM11-59 at 216 m). Type 2A: d) Bornite-galena-chalcopyrite stringers crosscutting type 1 mineralization in
drillcore (drillhole LM11-62 at 259.6 m). e) Chalcopyrite infilling fractures in bornite, with galena and diagenetic covellite in reflected
light (sample CNF14279 in drillhole LM08-33 at 230.8 m). Type 2B: f) Recrystallized fine-grained pyrite with growth zones of higher
As, visible only in back-scatter electron (BSE) image (lighter grey bands; sample CNF25134 in drillhole LM11-56 at 158.7 m).
g) Coarse barite-dark grey tetrahedrite-galena-white sphalerite stringers crosscutting type 1 mineralization in drillcore (drillhole
LM11-52 at 212.3 m). h) Myrmekitic intergrowth of galena-colusite-sphalerite in reflected light (sample CNF14279 in drillhole LM08-
33 at 230.8 m). i) Electrum associated with galena and massive tetrahedrite in reflected light (sample CNF25121 in drillhole LM11-
52 at 212.3 m). j) Zoned tetrahedrite-tennantite crystal, highlighting increase in silver content and visible in BSE image (lighter grey
bands; sample CNF14293 in drillhole LM11-65 at 161.75 m). Type 3: k) Massive red sphalerite-euhedral pyrite-galena in drillcore
(drillhole LM11-65 at 158.7 m). l) Subhedral pyrite atoll with chalcopyrite-galena-sphalerite in reflected light (sample CNF14290 in
drillhole LM11-65 at 158.7 m). m) Massive red sphalerite with scalloped galena in transmitted light (sample CNF29959 from drill-
hole LM11-59 at 207.72 m). Type 4: n) Chalcopyrite-pyrite stringers in rhyolite breccia in drillcore (drillhole LM07-14 at 207.4 m).
o) Subhedral and euhedral atoll pyrite-chalcopyrite stringers with sphalerite in reflected light (sample CNF29971 in drillhole LM11-
63 at 224.7 m). Abbreviations: Ag-Trt = silver-rich tetrahedrite; Ant = anatase; Bn = bornite; Brt = barite; Ccp = chalcopyrite; Col =
colusite; Cv = covellite; Elec = electrum; Gn = galena; Py = pyrite; Sp = sphalerite; Tnn = tennantite; Trt = tetrahedrite.
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tetrahedrite group minerals-galena-bladed barite-white
sphalerite-recrystallized pyrite±electrum-colusite group
minerals-Ag-tetrahedrite-polybasite-miargyrite-
bournonite-AgTe (Fig. 3f–j). Type 3 massive honey-
brown to red sphalerite-subhedral to euhedral pyrite-
galena-chalcopyrite± pyrrhotite-arsenopyrite over-
prints the type 1 assemblage in the uppermost portion
of the stratiform zone (Fig. 3k–m). The type 4 mineral
assemblage occurs in the stringer zone as chalcopyrite-
euhedral pyrite± orange sphalerite-galena stringers
(Fig. 3n, o).

MINERAL CHEMISTRY

Samples of representative mineral species and sulphide
textures were analyzed using a scanning electron
microprobe (SEM) equipped with an energy dispersive
X-ray (EDX) detector, and quantitative compositions
of sulphide and sulphosalt phases (see Table 1) were
obtained by wavelength dispersive spectroscopy
(WDS) using electron microprobe analysis (EMPA).
Elemental precision for major elements is <1% (1σ);
minor element (<1 wt%) precision is lower, with detec-
tion limits between 100–500 ppm (3σ). Semi-quantita-
tive determinations of trace elements in sulphide and
sulphosalt grains >50 μm were obtained via laser abla-
tion inductively-coupled plasma mass spectrometry
(LA-ICP-MS), on a 193 nm Excimer laser and
quadropole mass spectrometer following the methods
outlined by Longerich et al. (1996) and Eggins et al.
(1998). Internal calibration was performed using
USGS standards (to R >0.95) and compared to recom-
mended values for the external standard (less than 20%
error for trace elements <10 ppm).

Minor and Trace Element Geochemistry

Microprobe results reveal variations in minor element
and precious metal contents in sphalerite, pyrite, tetra-
hedrite group minerals, bornite, and electrum phases.
Iron contents of sphalerite range from below detection
limit to 8.4 wt% (7.4 mol%), and correspond to varia-
tions in sphalerite colour—white to honey sphalerite
(Fig. 3b) from type 1, 2A, and 2B assemblages contains
Fe <2.6 wt% (<2.3 mol%), whereas honey brown to
red sphalerite (Fig. 3m) from the type 3 and 4 assem-
blages has 2.7–8.4 wt% Fe (2.4–7.4 mol%) (Fig. 4).
Arsenic contents in zoned pyrite (Fig. 3f) range up to
3.6 wt%. Tetrahedrite group minerals range from end-
member tennantite to end-member tetrahedrite, and Ag
is positively correlated with Sb, which is consistent
with the fractional crystallization model of Hackbarth
and Petersen (1984) and Huston et al. (1996) for tetra-
hedrite. Silver-tetrahedrite (i.e. friebergite) is distinct
from tetrahedrite and is significantly enriched in Ag
(15–28 wt%; see Fig. 3j). Silver also occurs in
stromeyerite, electrum, polybasite, miargyrite, and

AgTe, and in trace amounts in bornite (<1.5 wt%).
Gold occurs primarily in electrum, which is predomi-
nant in the centre of the deposit as Au-rich electrum
(Au:Ag > 0.7). Ag-bearing minerals and Ag-rich elec-
trum (Au:Ag = 0.4 to 0.7) are more abundant toward
the edges of mineralization.

Laser ablation ICP-MS analyses reveal distinct vari-
ations in trace element contents between the five type
mineral assemblages (e.g. Au, Bi, In, Sn; Fig. 5). The
type 1 mineral assemblage is enriched in As, Mo, and
Tl relative to the other mineral assemblages. The type
2A mineral assemblage is enriched in Ag, Ge, and Sn,
and the type 2B mineral assemblage is enriched in V,
In, Au, and Sb; both assemblages contain elevated Bi,
Cr, Co, In, Ni, and Ti. The type 3 assemblage is also
enriched in Ni. The type 4 assemblage has low trace
element contents relative to the other assemblages,
with the exception of Sn.

ISOTOPE GEOCHEMISTRY

Offcuts from thin sections analyzed by SEM, EMPA,
and LA-ICP-MS were mounted in epoxy and gold-
coated for in situ isotope analyses by secondary ion
mass spectrometry. Grains with unblemished spots 
>10 μm were chosen (where possible) in galena, pyrite,
and chalcopyrite that were representative of the five
types of mineralization. Precision, based on an internal
galena standard for radiogenic isotope ratios
(204Pb/206Pb, 207Pb/206Pb, and 208Pb/206Pb), is better
than 0.05–0.10% (1σ). Repeated analyses on galena
standards indicate accuracy is better than 0.10–0.15%
(1σ). Internal precision of δ34S analyses on pyrite,
galena, and chalcopyrite standards is ±0.3‰ (1σ), and
accuracy of repeated standard analyses is better than
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Figure 4. Compositional variation in iron contents (mol%
FeS) of sphalerite from sphalerite-bearing mineral assem-
blages in the Lemarchant deposit (data from electron micro-
probe analyses).
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±0.35–0.45‰ (1σ).

Lead Isotope Geochemistry

Lead isotope compositions of galena from Lemarchant
form a linear array on a 207Pb/204Pb versus
206Pb/204Pb plot (Fig. 6; n=42). Model ages and μ val-
ues calculated using the two-stage growth model of
Stacey and Kramers (1975) give Pb-Pb ages that are
much younger than Cambrian (509–513 Ma, as deter-
mined by U-Pb dating of the Lemarchant host rocks;
Pollock, 2004; Rogers et al., 2006; McNicoll et al.,
2010) and an average μ of 9.63. These μ values are very
similar to the μ value for young upper crust at 500 Ma
(μ=9.66; Kramers and Tolstikhin, 1997), which is con-
sistent with the volcanic and intrusive Neoproterozoic
basement rock that has a dominant continental arc
signature (εNdt<0; Rogers et al., 2006; McNicoll et al.,
2010) and immediately underlies the Tally Pond group.
However, the spread of data, which lie mostly below
the young upper crust growth curve (Fig. 6), suggest
that an additional source with low-μ values (i.e. juve-
nile Pb from mafic rocks of the lower Neoproterozoic
basement or Lake Ambrose formation; Rogers et al.,
2006; McNicoll et al., 2010) must have contributed to
the Pb isotope signature at Lemarchant.

Sulphur Isotope Geochemistry

Sulphur isotope compositions of Lemarchant sulphides
reveal a relatively wide range of δ34S values between -
6.4 and +15.1‰ (avg. +5.0 ± 3.3 ‰, n = 119). Sulphur
isotope values ~0‰ occur in type 2A pyrite (+1.4 
± 2.2‰), type 2B galena (+4.4 ± 4‰), and type 3
galena (+4.5 ± 6.6‰), whereas the highest δ34S values
are from galena in the type 3 (<+15.1‰) and type 4
(+7.2 ± 4.2‰) assemblages (Fig. 7).
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SUMMARY

The Lemarchant VMS deposit is composed of con-
trasting styles of mineralization, which were deposited
in three discrete paragenetic stages (Fig. 8). The type 1
mineral assemblage was deposited during stage 1 of
paragenesis and contains fine-grained barite and fine-
grained polymetallic sulphides, such as low-Fe spha-
lerite and colloform pyrite that are indicative of trans-
port by low-temperature (200-300ºC), oxidized
hydrothermal fluids (Large, 1977; Barton and Skinner,
1979; Ohmoto et al., 1983; Pisutha-Arnond and
Ohmoto, 1983; Ohmoto, 1996). The type 1 assemblage
was crosscut by the type 2A and 2B mineral assem-
blages during stage 2 paragenesis, which contain low-
Fe sphalerite and abundant sulphosalts, precious met-
als, and precious metal-bearing sulphides atypical of
polymetallic VMS deposits (c.f. Hannington and Scott,
1989; Sillitoe et al., 1996; Dubé et al., 2007); rather, the

type 2A and 2B assemblages resemble an intermediate-
to high-sulphidation epithermal suite of minerals that
were deposited from low-temperature (150–250ºC),
oxidized, near neutral (pH ~5) hydrothermal fluids
with high sulphur activity (Scott and Barnes, 1971;
Czamanske, 1974; Barton and Skinner, 1979; Pisutha-
Arnond and Ohmoto, 1983; Hannington and Scott,
1989; Huston and Large, 1989). Paragenetic stage 3
resulted in the overprinting of type 1, 2A, and 2B
assemblages in the stratiform zone by the type 3 assem-
blage, and the formation of a stringer sulphide zone
with the type 4 assemblage. The high-Fe sphalerite,
high Cu-content, and lack of precious and trace metals
in the type 3 and 4 assemblages suggests that these
polymetallic, Kuroko-style VMS assemblages were
deposited from higher temperature (>300ºC), less oxi-
dized hydrothermal fluids with low sulphur activity
(Scott and Barnes, 1971; Barton and Skinner, 1979;
Eldridge et al., 1983; Pisutha-Arnond and Ohmoto,
1983; Ohmoto, 1996).

The intermediate- to high-sulphidation epithermal
suite of minerals (i.e. tetrahedrite group minerals, bor-
nite, colusite group minerals, electrum, covellite) and
epithermal trace element suite (i.e. Au, As, Bi, Co, Cr,
In, Mo, Ni, Sb, Se, Te) that characterize the type 2A
and 2B assemblages suggest that direct contribution of
magmatic fluid to the hydrothermal fluid occurred dur-
ing the formation of the Lemarchant deposit
(Hedenquist and Lowenstern, 1994; Poulsen and
Hannington, 1995; White and Hedenquist, 1995;
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Lydon, 1996; Sillitoe et al., 1996; Hannington et al.,
1999). Magmatic fluids are consistent with the pres-
ence of anomalous Au in the deposit, which would
have been efficiently transported by the low-tempera-
ture, highly oxidized, near neutral and S-rich fluids of
stage 1 and 2 paragenesis (Hannington and Scott, 1989;
Huston and Large, 1989; Lydon, 1996). Further evi-
dence for a magmatic contribution to the hydrothermal
fluid comes from the S isotope signature of the
Lemarchant sulphides (Fig. 7; Gill, 2015). Positive
δ34S values (>4‰) indicate that some S at Lemarchant
was derived from thermochemical sulphate reduction
(TSR; Sakai and Dickson, 1978; Ohmoto and Rye,
1979; Shanks, 2001; Seal, 2006); however, δ34S values
of ~0 suggest that leaching of igneous basement rock
and/or magmatic fluids also contributed to the overall
S isotope signature at Lemarchant (Sakai et al., 1984;
Ueda and Sakai, 1984; Huston, 1999; Franklin et al.,
2005). The epithermal mineral and trace element suite,
abundance of precious metals, and oxidized state of the
type 1, 2A, and 2B assemblages are consistent with a
magmatic contribution of S (in the form of SO2;
Ohmoto and Rye, 1979; Seal, 2006) during paragenetic
stages 1 and 2. The more ‘normal’ VMS mineralization
of the type 3 and 4 assemblages indicate that magmatic
fluids were not as prevalent during paragenetic stage 3,
so the very low δ34S values of the type 3 assemblage
must be attributed to leaching of igneous rocks. 

Precious metal enrichment of the Lemarchant
deposit occurred during stage 2 paragenesis, with
transport and precipitation from low-temperature, oxi-
dized, near neutral and S-rich fluids. The association of
electrum, bladed barite, and euhedral albite in the type
2B assemblage provides further evidence that Au and
Ag were precipitated from hydrothermal fluids that
intermittently boiled at or very near the seafloor
(Sillitoe et al., 1996; Huston et al., 2000; Dubé et al.,
2007; Hannington and Monecke, 2009). Boiling of
low-temperature fluids at the seafloor requires that
Lemarchant formed in relatively shallow water (<1500
m depth) during Au-Ag deposition (Bischoff and
Rosenbauer, 1984; Butterfield et al., 1990; Hannington
et al., 1999; Hannington and Monecke, 2009; Monecke
et al., 2014). However, the Cu-rich, high-temperature
mineral assemblages deposited during paragenetic
stage 3 show no evidence for boiling. Furthermore,
fluid temperatures >250ºC require confining pressures
at >1500 m depth to suppress boiling (and concomitant
precious metal deposition), suggesting deposition of
the type 3 and 4 assemblages occurred at depths greater
than 1500 m (Bischoff and Rosenbauer, 1984;
Butterfield et al., 1990; Hannington et al., 1995;
Hannington et al., 2005). A change in water depth dur-
ing deposition of mineralization is consistent with the
rifted arc environment in which Lemarchant formed

(Fig. 6; Squires and Moore, 2004; Copeland et al.,
2008a,b; McNicoll et al., 2010; Monecke et al., 2014;
Piercey et al., 2014), where extension of the arc during
deposit formation resulted in greater depths of water
for the latter stages of mineralization.

Lemarchant is a precious-metal-bearing VMS
deposit that contains polymetallic, Kuroko-style miner-
alization, and intermediate- to high-sulphidation
epithermal-style mineralization that is atypical of ‘nor-
mal’ VMS systems that lack precious metal enrich-
ment. Precious metals were likely derived directly
from a magmatic fluid; however, precipitation and con-
centration of Au occurred during boiling of the
hydrothermal fluid, which could have occurred only at
shallow depths. The precious metal deposition at
Lemarchant likely occurred in an extensional tectonic
environment, consistent with the rifted arc setting. 
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