
1. Introduction
The Athabasca basin is known for its 
rich uranium deposits that are 
located at or near the unconformity 
between the Proterozoic siliciclastic 
rocks and Archean to 
Paleoproterozoic basement rocks. 
The formation of such deposits 
requires the circulation of enormous 
volumes of saline fluids, most of 
which are interpreted to be basinal 
brines (e.g. Hoeve and Sibbald, 1978; 
Wallis et al., 1983; Wilson and Kyser, 
1987; Kyser et al., 2000; Jefferson et 
al., 2007; Mercadier et al., 2012). 
Therefore, it is important to 
understand the background 
hydrodynamic conditions of the 
Athabasca basin, in order to 
decipher the mechanisms of fluid 
flow responsible for uranium 
mineralization. 

In this study, we document numerical 
modeling results of fluid pressure in 
the basin (including those related to 
sediment compaction and 
hydrocarbon generation) and fluid 
convection patterns due to 
geothermal gradients. The fluid flow 
modeling results are further used to 
interpret some geochemical patterns 
observed in sedimentary rocks of the 
Athabasca basin. 
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Fig. 1. (a) Location and regional geologic framework of the Athabasca basin 
(modified from Card et al., 2007); (b) Geological map of the Athabasca basin 
(modified from Ramaekers et al., 2007). Dashed line a–b indicates the location 
of the cross section shown in Fig. 2.

2. Geologic setting

Fig. 2. East-West cross section of the Athabasca basin (modified from 
Ramaekers et al., 2007), with location shown in Fig. 1. FP — Fair Point; S — 
Smart; RD — Read; MF — Manitou Falls; LZ — Lazenby Lake; W— Wolverine 
Point; LL — Locker Lake; O — Otherside; D — Douglas; C — Carswell; Q — 
Quaternary.
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3. Fluid pressure regime

As shown in 3Fig. , results of numerical 
modeling the development of fluid on 
overpressure due to disequilibrium sediment 
compaction suggest that no significant fluid 
overpressure was developed in the basin 
during , ca. 1740 – 1541 Ma sedimentation
(Rainbird et al., 2007; Creaser and Stasiuk, 
2007).  Fluid flow related to sediment 
compaction was very slow and the 
temperature profile was undisturbed, 
implying that if compaction-driven flow was 
responsible for mineralization, the sites of 
mineralization would not record thermal 
anomalies ( ). Chi et al., 2013
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Fig. . Numerical 3
modeling results 
showing the fluid 
pressure–depth profile 
in the central part of 
the basin at the end of 
sedimentation 
(includes ca. 5 km of 
eroded strata; 
modified from Chi et 
al., 2013).
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5. Geochemical characteristics of sedimentary
rocks and relation to fluid flow

It has been shown that some of the hydrocarbons in the uranium deposits were derived from 
the Douglas Formation (Wilson et al., 2007). Numerical modeling involving hydrocarbon 
generation (Fig ) aims to evaluate how oil and gas generation processes in the Douglas . 4
Formation  which contains total organic carbon (TOC) of up to 3.56 wt.%  have affected , , may
fluid overpressure development in the basin. , if moderate As reported in Chi et al., (2014)
permeabilities are used in the modeling for each lithology (known as the base model), oil and 
gas generation processes contribute little to the development of fluid overpressure, and fluid 
pressure in the basin is close to hydrostatic regardless of whether or not hydrocarbon 
generation in the Douglas Formation is included in the modeling. However, if permeabilities 
are assigned values one order of magnitude lower than in the base model, significant fluid 
overpressures are developed in the eroded strata in the upper part of the model. In the base 
model, oil generated in the Douglas Formation may migrate downward, driven by an 
overpressure zone situated above the Douglas Formation, but gas migrates upward. In the 
low-permeability model, however, the overpressures developed above the Douglas 
Formation are so high that both oil and gas generated in the Douglas Formation migrate  
downward. The numerical modeling results thus indicate that it is hydrodynamically possible 
for oil and gas generated in the Douglas Formation to migrate to the base of the ca. 1541 Ma 
basin and reach the sites of the unconformity-related uranium deposits that formed at ca. 
1600 - 1500 Ma and 1460 - 1350 Ma, with significant remobilization events at ca. 1176 Ma, 900 
Ma, and 300 Ma (Hoeve and Quirt, 1984; Cumming and Krstic 1992; McGill et al., 1993; Fayek 
et al., 2002; Alexandre et al., 2003; Jefferson et al., 2007; Creaser and Stasiuk, 2007).

6. Summary

Fig. . Numerical modeling results 4
showing the time intervals of oil and 
gas generation in the Douglas 
Formation in the basin centre, and 
the evolution of fluid overpressure in 
the Douglas Formation in the basin 
centre, as compared to a model with 
0.1 wt.% TOC ( Chi et modified from 
al., 2014).

7. Acknowledgements

4. Fluid convection due to geothermal gradient

Fig. . Sectional view of the geometric model for numerical 5
modeling derived from Fig. . Dash lines show the location 2
of Figure .6
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Numerical experiments suggest 
thermal convection cells may have 
developed in the lower part of the 
basin, particularly below the 
Wolverine Point Formation, as well as 
in the upper part of the basin (if high 
permeability lithologies are assumed 
for the strata now eroded) at 
geothermal gradients of 25 to 35 
°C/km.  The results suggest that the 
largest convection cells formed above 
the 1644 ± 13 Ma Wolverine Point 
Formation, i.e. possibly post-dating 
the primary uranium event that 
predated 1630 ± 9 Ma (Davis et al., 
2011). Changes to the assumed 
geothermal gradient do not modify the 
fluid flow patterns at the basin scale. 

Fig. .  Modelling results showing part of the basin (area outlined by the dash lines in Fig. ).  Temperatures 6 5
are indicated by colour-coded isotherms. Fluid-flow patterns are shown by streamlines, with arrows indicating 
fluid-flow directions and the size of the arrows reflecting intensity of fluid flow.
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Fig. . Diagrams showing variation of CaO, 7
Al O , K O, MgO, U, Cu, Pb, U /Th and Y /Th 2 3 2

2 2

with depth of drill core DV10-001 (Bosman 
and Card, 2012). Formation contacts are also 
shown ( Chu et al., ).modified from 2015
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The overall decrease in U, Cu, Pb and REE concentrations from the Wolverine Point Formation to the Lazenby Lake and 
Manitou Falls ormations (Figs.  and ) probably reflect that more of these elements have been leached from the lower F 7 8
part of the basin (Chu et al. ). A distinct but locally stratabound hydrothermal signature in the  , 2015   (U /Th and Y /Th) 2 2

Wolverine Point Formation Figs.  and 1 is  and ( 7, 9 0) here interpreted as broadly contemporaneous with possibly 
genetically related to focused  uranium deposition elsewhere in the Athabasca Basin Wright and Potter, 2014 ., primary  ( )

Fig. . Chondrite-normalized 8
REE distribution patterns of 
samples from different 
formations of drill core DV10-001 
( Chu et al. ). Modified from , 2015
REE distribution pattern of 
average crustal sandstone is  
also presented for comparison 
(Turekian and Wedepohl, 1961).
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Fig. . Both enrichment of uranium relative to thorium and 9 (A) 
hydrothermal alteration indicated by high Y /Th value   2 s (B) are
observed in the Wolverine Point Formation, as indicated by the 
mean and median values (Wright and Potter, 2014).
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Fig. 1 . Regional geochemical signatures interpreted 0
from units of the Athabasca Group (Wright siliciclastic 
and Potter, 2014 and references therein).
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It is demonstrated that the fluid pressure remained near 
hydrostatic values throughout the deposition history of the basin, 
and that thermal convection cells may have been well developed 
in the lower part of the basin, particularly below the Wolverine 
Point Formation, as well as in the upper part of the basin (if high 
permeability is assumed for the strata now eroded). 
These results, when compared with basin-wide geochemical data 
that indicate significant differences in chemical compositions 
between the Wolverine Point Formation and the underlying strata, 
suggest that the highly permeable lower part of the Athabasca 
basin experienced extensive chemical changes due to large-scale 
fluid circulation, which may have provided some of the chemical 
components found in the ore-forming fluids in the uranium 
deposits, including uranium and calcium.
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