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CONCLUSIONS
Quantifying historical contamination and natural variability are identified as challenges to environmental risk as-
sessment of metal mining (e.g., EC, 2012b). The building blocks for environmental risk assessment include: (1) an 
understanding of natural background and natural processes, (2) the current environmental reference state or base-
line, (3) sources, (4) spatial extent, (5) duration and (6) timing of perturbations, and (7) degradation or recovery of 
environmental conditions. Sediment grab sampling can contribute to building blocks 2, 3, 4 and perhaps 7. Sedi-
ment coring can contribute to all seven and is a practical option for more thorough investigation of environmental 
risk assessment when warranted.

DISCUSSION
Results from both grab sampling and the shallow sediment cores (0-10 cm) generally confirm the inferred surface 
water flow path from the Aldermac site to Rivière Arnoux, Lac Arnoux and northern Lac Dasserat (Figures 1, 5). Ele-
vated Zn concentrations in southern Lac Dasserat (Stations 111 in Baie Renault and 112) could result from surface 
water flow reversals controlled by damming (MRN, pers.comm., 2013).  In Lac Berthemet (Station 114), the slightly 
elevated Zn concentrations in surface sediments may be attributable to higher lake usage, traffic and erosion (mari-
nas, boats, waterfront cottages, houses and roads).   
Zinc concentrations deeper in the cores (30-35 cm) are consistently lower than the CCME guidelines for sediment 
quality (CCME, 2007) and show little variation within and among cores (Figures 4, 5, 6 and Table 1). If a typical sedi-
mentation rate of approximately 1 mm/yr is assumed for Canadian shield lakes, then sediments deeper than about 
10 cm represent pre-industrial time and can provide estimates for the range of natural background concentrations, 
barring post-depositional metal mobility (Figure 6). 
Baie Perdue (Station 101) is not in the major flow direction of effluent from the Aldermac site. However, its shallow 
sediments are slightly elevated in Zn and higher than natural background (Figure 6). They may represent baseline 
conditions of cumulative effects over a significant period of industrialization. In this case, without other local con-
taminant sources, cumulative effects are likely caused by atmospheric transport from smelting in Rouyn-Noranda 
or Sudbury. 
Although the general spatial patterns of metal distributions are demonstrated in both grab samples and shallow 
core sediments (Figures 4, 5), grab samples can serve as approximations which are less precise than sediment cores 
sectioned at high resolution.  Capabilities of grab sampling and sediment coring are summarized in Table 2.

RESULTS
In both surface grab samples and shallow cored sediments (0-10 cm averaged), higher Zn concentrations are re-
corded at proximal sites to the Aldermac property (over 2000 ppm) and decrease with distance (to 118 ppm; Fig-
ures 4, 5, 6). Deeper in the cores (30-35 cm), lower Zn concentrations remain relatively invariant (86.4-120.0 ppm; 
SD=7.8; Figures 4, 5, 6 and Table 1).  Detailed core profiles confirm elevated Zn concentrations at the surface and 
concentrations that decrease both with distance and depth (Figure 6). Of note, the lower 10th percentile of Zn con-
centrations in shallow sediments exceeded CCME guidelines for sediment quality (Figures 4, 5, 6 and Table 1).
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Table 2. Capabilities of grab sampling versus coring of aquatic sediments for environ-
mental risk assessment.

Cores
(0 - 10 cm)

Cores
(30-35 cm)

Number of sites 32 32

Mean 806.6 103.5

Standard Deviation 710.2 7.8

Minimum 118.3 86.4

10 percentile 130.3 90.0

25 percentile 144.6 100.6

50 percentile 770.4 103.0

75 percentile 1,445.1 109.5

90 percentile 1,966.9 111.7

95 percentile 2,161.2 117.8

Maximum 2,187.5 120.0

CCME Guideline 123 123

Zinc (ppm)

Table 1. Summary statistiscs of zinc concentrations (ppm) in shallow (0-10 cm) and 
deeper (30-35 cm) sediment core intervals.
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Figure 6. Zinc concentration profiles with depth in four sediment cores subsampled at 1.0 cm intervals.
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Figure 5. Map of zinc concentrations in recent (0-10 cm) and pre-industrial sediments (30-35 cm) from bulk sediment grab sampling and sediment coring. 
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Figure 4A) X-Y plot of zinc concentrations in grab versus core (0-10 cm) samples  
B) Cumulative frequency plot of zinc concentrations in cores (0-10 cm).  C) Cumu-
lative frequency plot of zinc concentrations in cores (30-35 cm).  Colour coding of 
stations was assigned based on the separation in the cumulative frequency plot 
and was included in Figure 1.

~10 cm

Figure 2. Petite Ponar® 
grab sampler with up to 10 
cm penetration depth into 
the sediments.

Figure 3.  Modified 10 cm 
diameter gravity corer.  A 
threaded adapter was mount-
ed on top of the head assem-
bly to allow extension rods to 
be added (up to ~15 m water 
depth).  A perforated disk was 
mounted on the outside of 
the coring assembly to control 
the penetration depth into 
the sediments.
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METHODS
Selection of sampling stations was based on their regional distribution (minimum of one station per 2 km2 sampling 
grid), water depth, geochemical gradients and proximity to the primary contaminant source (Figure 1).
Surface sediment samples were taken by a Petite Ponar® grab sampler (6” X 6”) at 32 sites with a penetration depth 
of up to 10 cm, depending on sediment stiffness (Figure 2). Sediment cores were either taken by divers (4 sites in 
2011) or by a modified gravity corer (2011-13) at the same stations as the grab samples. A 10-cm diameter gravity 
corer was modified with threaded rod extensions on the head assembly to allow hand-taken cores from the water 
surface that match the preservation of the nepheloid layer achieved by diver coring (Figure 3). Depth penetration 
of the core tube into the sediments was controlled by a perforated disk mounted on the outside of the coring as-
sembly (Figure 3). Cores were extruded on site and sectioned at 0.5 to 5.0 cm depth intervals. Sediments from five 
stations were sectioned at 1.0 cm intervals for detailed study. Sediments cored in this study were either organ-
ic-rich (Lac Arnoux gyjtta or dy) or mixed glaciolacustrine clays from glacial Lake Barlow-Ojibway. 
All sediment samples were freeze-dried and sieved (<177 µm) before a modified aqua-regia digestion  after which, 
major and minor trace elements were analysed by ICP-MS and -ES at ACME Labs (McNeil et al., in prep). Zn concen-
trations are demonstrated here as an example.

INTRODUCTION
The mining industry and environmental consultants routinely use 
dredge or grab sampling of surface sediments for environmental 
risk assessment. Sediment coring is recommended when further 
investigation warrants (e.g., EC, 2012a; US EPA, 2001) and can help 
fulfill the increasing requirement for cumulative effects assess-
ment. 
In this study, geochemical results from grab sampling of surface 
lake sediments and sediment coring are compared for risk assess-
ment of metal mining based on findings downstream of a common 
mineral deposit with a legacy of metal contamination (Goulet & 
Couillard, 2009).
The Aldermac mine (Cu, Zn, Au and Ag), 25 km west of 
Rouyn-Noranda in Abitibi, Quebec, produced an estimated 1.5 Mt 
of mine tailings that discharged acid mine drainage to the adjacent 
Rivière Abitibi watershed which includes Lac Arnoux and Lac Das-
serat (1932-1943; Figure 1). The Quebec government led an envi-
ronmental restoration (2008-11) and follow-up monitoring (2013) 
of the former mining property that coincided with this comple-
mentary aquatic sediment study (2011-13) downstream. In addi-
tion to historical mining activities, the region remains a target for 
active exploration (massive sulphides, gold) that could lead to 
future development and necessitate further environmental risk as-
sessment. 
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Figure 1. Sample location map of regional coring sites 
in the vicinity of the Aldermac site.

ABSTRACT
Current practices for baseline studies of sites to be developed for mining include surface grab sampling of sediments in 
aquatic receiving environments. In contrast, vertical sediment coring is a universal tool of paleolimnological research. This 
study evaluates the effectiveness of sediment grab sampling versus sediment coring for environmental risk assessment of 
metal mining. The former Aldermac mine (Cu, Zn, Au and Ag), 25 km west of Rouyn-Noranda in Abitibi, Quebec, operated 
from 1932-1943 and discharged acid mine drainage to the watershed downstream. The study site is representative of both 
a common mineral deposit and the legacy of historical mining practices. Contamination and adverse effects on aquatic habi-
tats were demonstrated to the point where the government of Quebec led an environmental restoration of the Aldermac 
property (2008-11). Further mining development is foreseeable in the watershed. Surveys of sediment grab samples 
(2011-13) were done by Petite Ponar® with a penetration depth of approximately 5-10 cm at 32 sites. Co-located sediment 
coring surveys were conducted using a 10-cm diameter gravity corer, modified with extension rods, to a sediment depth of 
30-45 cm. Cores were sub-sampled at discrete depth intervals in two exercises: one survey with a larger regional distribution 
and thicker sediment slices (32 sites) and the other at 1-cm interval sections at 5 sites for detailed study. Grab sampling gen-
erated rapid results that permitted estimates of the current environmental reference state (baseline before new develop-
ment), metal contaminant sources, and the spatial extent of metal contamination. Sediment coring produced estimates of 
naturally-occurring metal concentrations (pre-industrial background), the current baseline metal concentrations, metal con-
taminant sources, the duration of contamination, and its spatial extent. Although surveys of surface sediment grabs are 
faster and simpler and provide more sample material, they are imprecise snapshots without temporal scales. Sediment 
coring offers chronology of metal contaminant deposition, more precision, and potential for more targeted data (e.g., to fin-
gerprint metal contaminant sources, assess diagenetic metal mobility, determine stability of metal-bearing phases). Cores 
can be taken in a reasonably rapid and simple manner, but less efficiently than grab sampling with less sample material for 
each core slice if sub-sampled at high resolution. Grab sampling offers a first approximation that may be sufficient for an ini-
tial environmental risk assessment. However, when further investigation is warranted, sediment coring can be optimized for 
efficiency and provide insight into accumulated metal contamination over time and an estimate of the range of metal levels 
in a naturally mineralized region (natural background).

Heterogeneity of grab sample in collec-
tion bag.

Lake sediment core collection using a 
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Lake sedi-
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Grab sample collection using Petite 
Ponar®.

Fe-precipitates forming along the rocky 
shores of Lac Arnoux

Tailings-rich river banks of Rivière 
Arnoux just upstream of the mouth of 
Lac Arnoux.

Accessing surrounding lakes as part of the 
regional study.

View of Baie Arnoux.
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