Recognition of Hydrothermal Alteration Using Airborne Hyperspectral Imagery and Gold Favourability Mapping in the

 Hope Bay Volcanic Belt, Nunavut

 Hope Bay Volcanic Belt, Nunavut}

Dharani Raja Yarra", Jan Peter², Jeff Harris,, Frank Fueten
'Department of Earth Sciences, Brock University, St. Catherines, Ontario; ${ }^{2}$ Geological Survey of Canada, Ottawa, Ontario *Email: yarraraja@gmail.com

Introduction

This study incorporates two increasingly imporant fields in the resource industry: remote sensing (RS) and mineral potential mapping (MPM). Hyperspectral RS is currently being used in arid dry regions of the world such as Australia, Africa, Central However, the techonology is not currently being utilized to the However, the techonology is not currently being uttized to the and overburden cover.
Mineral potential mapping has been a longstanding practice in the resources industry, with the continued increase in computing power allowing for more rapid creation of mineral potential maps. We combine alteration maps of hydrothermally altered rocks gleaned from airborne hyperspectral data with
structural data to produce a mineral potential map.
Our study area is part of the Hope Bay Volcanic Bett (HBVB), an Archean greenstone belt that forms part of the Slave craton. The study area contains the Boston deposit, one of the larger shear zone-hosted orogenic (lode) gold deposit in the HBVB.

Methodology

The following objectives were set for this study:
i) Use pixel-based and sub-pixel-based methods to analyze the hyperspectral data to determine which method results in an optimal classification of hydrothermal alteration minerals.
ii) Accurately identify and delineate zones of hydrothermally altered rocks through identification of
hydrothermal minerals in wallrocks associated with orogenic (shear zone-hosted) gold mineralization
diii) Crmal minerals in wallrocks associated with orogenic (shear zone-hosted) gold mineralization.
iv) Incorporate hydrothermal alteration distribution raster maps with available geological data to produce a Au predictivity map.
The shortwave infrared portion ($2000-2450 \mathrm{~nm}$) of the electromagnetic spectrum was analyzed to identify hydrothermal alteration minerals.

Results

Absorption regions used to identify hydrothermal alteration minerals are as follows: illite, $2180-2228 \mathrm{~nm}$; chlorite, $2235-2255 \mathrm{~nm}$ and at $2320-2355 \mathrm{~nm}$; dolomite at 2140 , $2320-2328 \mathrm{~nm}$; calcite at 2156, 2340-2345nm; kaolinite contains a doublet feature between $2150-2215$ and $2160-2206$; and montmorillonite which has an absorption feature in the same range as kaolinite however the doublet feature is absent leading to a wide absorption trough.

Figure 15 shows favourability criteria of Region A, used to produce the mineral potential maps in Fig 16 (C \& D) these are overlayed onto lithology in Fig 16 A \& B. Favourability criteria
include: hydrothermal alteration mineral distributions, as determined from airborne hyperspectral data using a sub-pixel-based method, faults and lithologic contacts. Data was include: hydrothermal alteration mineral distributions, as determined from airborne hyperspectral data using a sub-pixel-based method, faults and lithologic contacts. Data was combined in two ways; weighted sum with weights derived from literature (Fig $16, \mathrm{~B} / \mathrm{D}$). The other is a fuzzy gamma method with weights derived automatically from a decay function(Fig $16, \mathrm{~A} / \mathrm{C})$. The decay function represents a natural trend. The Fuzzy gamma method shows a much more natural representation of regions of high mineral potential rather
than the weighted sum method which can skew results if improper weights are chosen. However for this study it appears that the weights derived from literature are more accurate in than the weighted sum method which can skew results if improper weights are chosen. However for this study it appears that the weights derived from literature are more accurate in
determining mineralization. Multiclass buffers were used rather than a binary representation of hyperspectral data to represent decreasing strength of alteartion halos extending into determining mineralization
the surrounding regions.

Conclusions and Future Work

-Our study shows that the areal distribution of hydrothermal alteration minerals associated with mineral deposits can be mapped using airborne hyperspectral data (3 m spatial
resolution) in this arctic region by analyzing the shortwave infrared (SWIR) portion of the spectral data. Areas with key hydrothermal alteration minerals can then be the focus of resolution) in this arctic region by analyzing the shortwave infrared (SWR) portion of the spectral data. Areas with key hydrothermal alteration minerals can then be the focus of
follow-up exploration. It should be noted that our study did not include ground-truthing field measurements, and any similar studies using airborne hyperspectral data to identify mineral deposit-related hydrothermal alteration minerals should include such data to validate the results.
-Regions of high favorability in our study correspond well to known Au showing
-Integration of the hydrothermal alteration mineral distribution maps produced from the hyperspectral data together with the Chung and Franklin (2012) mineral potential map of the areas studied produced a better prediction map than the latter alone.
-Use of both the visible part of the electromagnetic spectrum to identify iron rich zones and the infrared part of the spectrum to identify clays would provide a more thorough analysis and give additional information to use in a mineral prospectivity map, as clays are a key hydrothermal alteration mineral species associated with orogenic Au and other hydrothermal mineral deposits.
-Integration of geochemical and geophysical data though a neural network aproach is likely to result in even better prediction maps than those presented here.
-Future method development should focus on spectrally distinguishing carbonate minerals, as they are a prominent part of the hydrothermal alteration mineral suite for orogenic -Future method development should focus on spectrally
gold and a number of other hydrothermal ore deposits.

Acknowledgements

 Program of Natural Resourcesc
Norther Development Canada.

References

Recommended Citation

Yarra, D.R.,., Peter, J., Haris, J., and Fueten, F,, 2014 . Recognition of Hydrothermal Alteration Using
Airborne Hypersectral Nunavut; Geological Survey of Canada, Open File 74770 , 1 poster. doi: $10.4095 / 293727$

Available from

This publicalionis
(http:///geoscan.ess.hrcan.gc.cal).
doi: $10.4095 / 293727$

