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Preface

This open file comprises the programs and documentation submitted by
Dr. W. Scott Dunbar in completion of contract work (DSS File

#06SB.23227-4-0843) entitled: "Three-dimensional Modelling of Crustal
Deformation Aloﬂg a Fault".

The two main programs provided are:

1. DIS3D

This program computes the elastic fields due to rectangular
dislocation planes in an isotropic three-dimensional elastic
halfspace with arbitrary elastic parameters. Combinations of
several dislocation segments can be used to model complex
fault systems. Common parameters calculated for given fault
offsets include stress, strain, displacements, and angle and
line-~length changes.

2. SID3D

Using linear least-squares methods, this program computes the
slip on three-dimensional segmented dislocation models in an
elastic halfspace based on measured changes in horizontal and
vertical positions on the earth's surface. Several dislocation
planes can be defined to derive complex slip distributions.

Both programs currently reside with the Geodynamics Section at the
Pacific Geoscience Centre where the contract originated. At P.G.C.,
the programs have been compiled under aSperry-Univac Fortran processor
and tested with simple dislocation models. Inquiries concerning
access to these programs should be directed to the Geodynamics

Section at the Pacific Geoscience Centre, Sidney, B.C.

H. Dragert
Pacific Geoscience Centre
September, 1984



Résumé

Le présent dossier public comprend les programmes et la documentation
présentds par M. W. Scott Dunbar en ex8cution du marché (dossier MAS
N0 043%.23227-4-0843) intitulé "Three-dimensional Modelling of Crustal
Deformation Along a Fault”.

Les deux principaux programmes sont:

1. DIS3D

Le programme calcule les champs &lastiques dus aux plaans de
dislocation rectangulatlsrz= Jans un demi-espace 2lastique
tridimensionnel isotrope avec des paramétres &lastiques arbitraires.
On peut utiliser des combinalsons de plusieurs segments de dislocation
pour la modélisation de systémes de failles complexes. Les paramé@tres
coanuns calcul8s pour les décalages des failles comprennent la
contrainte, la déformation, les dé&placements et les changemeunts
d'angle et de longueur.

2. SIQ3D

X 1'aide de méthodes lin@aires des moindres carr@s, le prograame
calcula la zlissemznt pour des mod2les tridimensionnels de dislocation
segment&e dans un demi-espace &lastique, en se foadant sur des uesures
des variations dans les positions horizontales et verticales de la
surface de la Terre. On peut définir plusieurs plans de dislocation
afin de calculer des distributions complexes de glissement.

Les deux programmes se trouvent actuellement 3 la Sectioan de 1la
z8odynamique du Centre géoscilentifique du Pactfijue ol le marché& avait 8té&
imparti. On y a compilé les programmes dans un processeur Fortran de
Sperry-Univac et on les a mis 3 1l'essal avec des mod3les simples de
dislocation. Adresser les demandes concernant l'accds aux programmes 3 la
Section de la g8odynamique du Centre géoscientifique du Pacifique A 3idney
{(C.-B.).

H. Dragert

Centre géoscientifique du Pacifique
Septembra 1934
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SECTION 1 - THEORETICAL BACKGROUND

1.1 introduction

Given changes in geodetic data on the earth's surface, SID3D employs
linear least squares methods to compute slip distributions on three dimen-
sional segmented dislocation models in an elastic halfspace. Several dis-
location planes, each with a constant strike and/or dip-slip displacement
discontinuity, can be used to model complex slip distributions.

This manual describes the basic theory and methods used in the program.

A user's manual is also provided together with some examples.



1.2 Representation of Geodetic Data Changes by Dislocation.Models

in order to represent changes in geodetic data on the earth's surface
by means of dislocation models, a means of computing the displacements at
the earth'surface due to such models is required. An equation for the disp-
lacement due to an individual dislocation segment may be derived by means
of the Volterra integral. The geometry of the rectangular dislocation
segment used in SID3D is shown in Figure 1.1,

For constant strike-slip, SS, on a rectangular dislocation segment,

Mansinha and Smylie (1971) derived the following integral for the displace-

ment component ui:
DL (H
u, = G-SS J [(U:’2+U?’1)sin6 - (U:’3+U?’1)c056Jdc1dco (1.1)
-H
For constant dip-slip, DS, on a rectangular segment, the following integral
for the displacement component u; was derived:
OL (H
2

u, = G+DS [(U%’Z-U?’3)sin29 - (Ui
DU /-H

’3+U?’2)cos Ze]dc dc0 (1.2)

1

The variables in these equations are defined below:

G - shear modulus of medium
H - half length of segment

DU - upper depth of segment, measured in the direction <
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RECTANGULAR DISLOCATION SEGMENT GEOMETRY . FIGURE 1.1



DL - lower depth of segment, measured in the direction o
8 - dip of segment, measured positive as shown in Figure 1.1

)

X

Ug(x,c) ~ the displacement in the X, direction at x = (x], Xy

3

due to a point force in the X direction at c = (Cl’ €y c3).

Ué’k denotes the derivative of Ug with respect to -

Mansinha and Smylie (1971) integrated Equations 1.1 and 1.2 to obtain
analytical expressions for the displacements due to a rectangular dislocation
segement in an elastic halfspace of Poisson's ratio 0.25. Converse (1973)
derived similar expressions for a halfspace of Poisson's ratio in the range
0 < v < 0.5. The latter expressions were rewritten for the case x3 = 0 and
are presented in Appendix A.1. Poisson's ratio is assumed to be 0.25 in
SID3D.

A key element in the estimation of slip distributions on faults is an
expression for the change in a geodetic datum due to a unit component of slip.
Such expressions are sometimes called influence coefficients or partial deriv-

atives. In the following sub-sections, the influence coefficients for elev-

ation, angle, and line length changes are derived.

1.2.1 Elevation Changes
The influence coefficients for an elevation datum change are given by

the expressions for vertical displacement due to strike or dip-slip with



1.2.2 Angle Changes

Consider the geometry shown in Figure 1.2a. The original directions
to stations B and C from station A are denoted ¢B and ¢C respectively.
The final directions are denoted ¢é and ¢é. The clockwise angle change

Ao is then given by

hoo = ¢ = ¢g - (0, - ¢p) (1.3)
If the coordinates of station j are denoted x{ and xé (x3 = 0), the orig-
inal directions are given by
AxB Axc
_ - Y4 -1 2
¢B tan |-—= ¢C = tan —F
BxE Ax
1 1
where Ax{ = x{ - x? and Axé = xé - xg. If the horizontal displacements at -
station j due ‘to unit strike or dip-slip are denoted u{ and ué the final
directions are given by
. AxB + AuB . Axc + AuC
2 2 -1 2 2
¢B = tan B B ¢c = tan c C
Ax; + Au Ax; + Au
1 1 1 1
where Au{ =ul - uA and Aud = ul - uA. Substituting these expressions into

Equation 1.3 and expanding in a first order Taylor series about zero disp-

lacement gives

Axc-Auc - AxC'AuC (AxB~AuB - AxB-AuB)
_8X48Y, 2" %Yy ) 2°%Y
Ao = - (1.4)
02 D2
AC AB
2 Q2 j\2
where DAj = (Ax1) + (sz) .



a. Angie Changes

- b. Line Length Changes

GEOMETRY FOR ANGLE AND LINE LENGTH CHANGES FIGURE 1.2



1.2.3 Line Length Changes

Consider the geometry shown in Figure 1.2b. The original line length
is denoted LO. The final line length is denoted L'. Using the same not-
ation as in Section 1.2.2, the line length change AL = Ll - L0 is given by

¥
AL = [(Ax? + Au?)2 + (Axg + Aug)z] - L0

Expanding in a first order Taylor series about zero displacement gives

B B B B
Ax1-Au1 + AxZ-Au2

Y

§
—_
-

.
\Val
~

AL =




1.3 The Linear Least Squares Model

From the results in the preceding section, it is possible to represent
a geodetic datum change, di’ in terms of the strike-slip, SSj, and/or dip-
slip, DSJ, on n/2 dislocation segments as follows:

n/2 n/2
d, = jz1 Fiyss;+ j£1 G;;°0S; * e (1.6)

where Fij and Gij are influence coefficients depending on the type of data di'
Fij is written with displacements due to unit strike-slip; Gij is written with
displacements due to unit dip-slip. (Note that each segment need not have both
components of slip.) The e is an error term introduced to account for errors
in the model. [t is this error that is minimized in the least squares proced-
ure.

Writing Equation 1.6 for m data, 1 < i <m, the following matrix equation

results:
d = Ax + e (1.7)

DS,, SS,, DS )OoA=(F

10 DSqs 3350 D3g0 en 35,50 D30/2 i5°%%;

m by n matrix known as the model matrix, d = (di)’ and e = (ei). The super-

where x = (SS ) is a
script t denotes the transpose.
Two types of least squares model may be defined. They are:
1) Overdetermined - where the number of data, m, exceeds the number of
desired slip parameters, n.
2) Underdetermined - where the number of slip parameters, n, exceeds the

number of data, m.



1.3.1 Maximum Likelihood Estimation

The probability that a given set of data is due to the model given by
Equation 1.7 is assumed to be given by the multivariate Gaussian distribution
(Lindgren, 1968):

f(d) = ————%———; exp{-%(d-Ax)tT-1(d-Ax)] (1.8)
(2m) 7| 7]

T is the covariance of the data, E(ddt), where E denotes the expectation
operator. The superscript t denotes the transpose. Equation 1.8 is sometimes
known as a likelihood function. To maximize it; i.e., to maximize the

probability that d is due to the model, the quadratic form
Q = 4(d-Ax) *T7! (d-Ax)
is minimized. The result of the minimization is
% = (AtT7] )-1AtT;1d (1.9)

which is known as the maximum likelihood estimate of x. It may be seen
that minimizing Q is equivalent to minimizing the weighted squares of the

errors e = d-Ax.



1.3.2 Constrained Estimation

Often it is desireable to place constraints on the estimate of x.

Mathematically, this problem is posed in the following manner:

Minimize %(d-Ax)ET 1(d-Ax)
subject to Bx = ¢ (1.10a)

or Bx > ¢ (1.10b)

where B is a pxn matrix of rank p (i.e., a set of consistent and non-redund-

ant constraints) and ¢ is a vector of length p. The main purpose of such
constraints is to place bounds on an otherwise unbounded solution. However,
a more important application is in the realm of hypothesis testing to invest-

igate the nature of possible solutions allowed by the data.



1.4 Data Covariance Matrices

The calculation of the m by m data covariance matrix T = E(ddt), required
for both unconstrained and constrained estimation is somewhat involved for
geodetic data changes. The reason for this is that the data changes depend
on two independent surveys. In the case of levelling and trilateration,
two measured numbers are required to compute a datum change; in the case of
triangulation, four measured directions are required to compute an angle
change. Thus the techniques of error propagation must be used to compute T

(pavis et al, 1981).

1.4.1 Elevation Changes
The basic idea of error propagation may be demonstrated by means of
the derivation of T for elevation changes. Consider N levelling stations.

At the ith station, the elevation change Azi is given by
Azl =2z, - z. 1<i<N

where z is the elevation determined by adjustment of the more recent survey
and z is the elevation determined by adjustment of the previous survey. For

N levelling stations, the elevation changes may be written as

Az ] [1 -170 O 2]
z1 - 0 z]
Az, ) 0 0 1 -1 z,
= 1

. 0 )
LAZN. 1 -1 J z,
3

2N

ZN.
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or d = Jz. Thus

T = £(dd%) = JE(zz%)4t
1]
[ ]
vitvy '
v, +v O
2+Vy
0 |
_ iy

I
where vi and v, are the variances of z, and z, respectively. These variances

are usually determined by distributing the closure error uniformly over the

network of N levelling stations. The adjusted elevations of each survey are

assumed to be statistically independent. Thus E(zzt) is a diagonal matrix

i.e., zero covariance between all elevations.

1.4.2 Line Length Changes

Consider N observed line length changes observed at a given station.

For each observed station the line length change is given by

AL, = L= L 1<i <N

1
where Li is the line length observed during the more recent survey and Li is
the line length observed during the previous survey. The derivation of T for

line length changes is therefore exactly the same as that for elevation

changes. The result is
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where vi is the variance of Li' The variances of each observed line length

are proportional to the distance over which the observation is made. Thus,
[}

unless there are other sources of error, the variances of Li and Li are

t
likely to be the same i.e., Ve = v Each observed line length is assumed

to be statistically independent.

1.4.3 Angle Changes
Consider N observed directions at a given station. This results in
N-1 independent angles which may be computed. Each (clockwise) angle change

is given by

b= = b - (b - 0) TSP <N

i
where-q;i is the observed direction to station i during the more recent survey
and ¢i is the observed direction to station i during the previous survey.

For N observed directions, the clockwise angle changes may be written as

- - . - - !
By | f 00 =11 T ¢,
- 1

PRSI ¢2

- - ¢

oy ]| L B I
]

¢N

N

or d = J§. Thus
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T = £(dd®) = JE(9o")J"
[0, §
E1 02 0
0
On-2 En-2
EN-2 DN-I ]
' ] ]
where Di = Vi + vi+1 + vi + Vi+1 and Ei = -vi+1 - vi+1. The quantities vi

] t
and v, are the variances of ¢i and ¢i respectively. These variances may be

obtained by various methods. One method is to successively turn angles and
note the error in re-observing a reference station. Another method distri-
butes the error in triangle closures over the directions associated with

each triangle in the network. Thus, in general, each direction would have

a different variance. Each observed direction is assumed to be statistically

independent.
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1.5 Algorithms for Maximum Likelihood Estimation

In this section the numerical algorithms used to solve the unconstrained
least squares problem discussed in Section 1.3.1 are outlined.

The first step in the solution of the unconstrained problem is to
reduce it to a canonical form. Since the data covariance matrix is symmetric.

and positive definite, it may be written

where R is an upper triangular matrix. The inverse of T is therefore

e

Substituting into Equation 1.9, one obtains

2 = (AR TR7ta) Tatr Rty

= (2'2) "'zt (1.11)

where Z = R-tA and w = R_td. This is the desired canonical form.

Note that the units of A are (data units/slip units) and the units of R
are (data units). Thus, the scaling represented by R A and R™%d renders the
problem dimensionless and allows the simultaneous inversion of multiple types
of geodetic data changes. The minimized quantity is then the dimensionless

quadratic- form efr e - (w-Zx)t(w-Zx) where e = d-Ax.
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1.56.1 Calculation of Z and w

If angle changes are used in the estimation, the data covariance matrix
is symmetric, positive definite, and tridiagonal. Such matrices are extremely
easy to factorize into the product RtR where R would be upper bidiagonal.
If the vectors d and e represent the diagonal and super-diagonal of T

respectively, the factorization algorithm is

d]:= sqrt(dl)
For i =2 tom

e,_yi= e;_/d

i-1 i-1

d.:= sqrt(di-ei_1°ei_])

end i

The vectors d and e now contain the diagonal and super-diagonal of R,
respectively.-

The two matrix equations RtZ = A and Rtw = d may be written Rty = b,
where y represents a column of Z or the vector w and b represents a column of
A or the vector d. The solution algorithm for Rty =b is also extremely easy

once the above factorization is performed:

If n=1
then
quit
else
For i =2 tom
bye= (by-e;_yby_y)/d;

end i
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The solution now resides in the vector b. Thus the columns of Z and the vector

w can overwrite the columns of A and the vector d, respectively.

1.5.2 Singular Value Decomposition
A decomposition of the matrix Z, useful in subsequent analysis of the

unconstrained least squares solution, is the singular value decomposition (svD)

z = usvt (1.12)
where U is a m by m orthogonal matrix (UtU = Im), V is a n by n orthogonal
matrix (VtV = In)’ and S is a m by n diagonal matrix whose elements are the

singular values, Si’ of Z. The successive diagonal entries of S can be
arranged to be non-increasing. The algorithm used to compute the SVD is
described in Golub and Reinsch (1971). The program used to compute the SVD

was adapted from that in Forsythe et. al. (1977).
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1.5.3 Rank of Z

The rank, r, of Z is an important concept in the solution and analysis
of the unconstrained problem. The rank of Z is defined as the number of
linearly independent columns of Z. (Thus the rank of A equals the rank of Z.)
Since an orthogonal transformation such as the SVD does not affect the rank,
it may be,seen that the rank of Z is the rank of S in its SVD. Thus a
practical definition of rank is the number of non-zero singular values in S.
However, owing to finite precision in any computer, it may be difficult to
distinguish a small singular value from zero. Therefore, the effective rank
is defined as the number of singular values greater than some prescribed
tolerance which reflects the accuracy of the data.

Generally, for the inverse problems discussed herein, the rank of Z
for an overdetermined problem is n and the rank of Z for an underdetermined

problem is m.
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1.5.4 Solution Algorithm

Substituting Equation 1.12 into 1.11 gives

(vsutusvt) lvsutw

R
visHZvtysutu

vsTutw = 27w

where Z* is known as the generalized inverse of Z. The generalized inverse

of S, S+, is a n by m diagonal matrix whose elements are

ST 1/5%. i <r

[

=0 i >r

The solution algorithm proceeds as follows:

For i =1 tor
For j = 1 tom
9;:= Ujiwj
end j
end i

For i =1 tor

9;:= 9;/s;
end |
For i = 1 ton
For j=1tor
X Y59
end j



|
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1.6 Analysis of Unconstrained Least Squares Solutions

Using the SVD, numerous quantities may be computed which are useful in
the interpretation of an unconstrained least squares solution. These quantities

and the algorithms used to compute them are described below.

1.6.1 Errors

Given the estimate X, estimates of the normalized data and the errors

may be computed according to

= zZ&% = Usv'g

=

A
e =W - W

The errors e = (ei), 1 < i <m are one representation of how well the model

fits the data.

1.6.2 Correlation Coefficient

The total sum of squares, SST, is
SST = wiw

The sum of squares of the errors e, SSE, is

SSE = ete

The difference SSR = SST - SSE represents the portion of SST attributed to
having fitted the model to the data. It is often called the reduction in the

sum of squares. The ratio

RZ = SSR/SST
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is known as a correlation coefficient. R2 is a number between 0 and 1. The

closer R2 is to 1, the better the fit of the model to the data.

1.6.3 Variance of X

Using Equation 1.11, the covariance matrix of the estimate X is given by

¢ = e(x85) = €] (z%2) Tztwwiz(zt2) ]

(zt2) T2 e 't z(282) 7]

From Section 1.5

E(w?®) = E(R™TddtR™T)
= R Ee(dd)r™!
= R RE%RR7T 2
so that
¢ = (ztz)7!

Given the SVD Z = USVt, an element Cij of C is computed according to

r

) 2
Cij = kZ]Viijk/skk

where r is the effective rank of Z. The square root of the ith diagonal
element of C is the standard deviation, O of X. Assuming a normal dist-

ribution of X, the following probability statement may be made:

P(X,-0. < x. < R.+0.) = 0.6827

where P denotes the probability (Searle, 1971, pp. 107-108).
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1.6.4 Resolution Matrix

The resolution matrix, R, is defined in terms of the SVD of Z according
to

7Tw = vsTut

vsTutusytx

v Vtx = Rx
rr

x>
[} [l

where Vr is the matrix composed of the columns of V corresponding to the non-

zero singular values of Z. Two cases may be identified:

1) Rank(Z)

]
3
o

n

2) Rank(Z). <

A
po
=

1]

V.V
r

The resolution matrix is a 'window' or filter through which the true solution
is seen. |If R # 'n’ the solution is a weighted sum of the true solution

(Jackson, 1972).

1.6.5 Information Density Matrix
The information density matrix, H, is defined in terms of the SVD of Z

according to
28 = zvs'utw

usvtusTutu

b3
i [l

U U = Hw
rr

where Ur is the matrix composed of the columns of U corresponding to the non-

zero singular values of Z. Two cases may be identified:



-
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1) Rank(Z)

]
=

A
3
X

1

uut
rr

2) Rank(Z)

[t}
3
ja

1]

The ith diagonal element of H is a number between O and 1 which represents

the importance of the ith datum to the model (Wiggins, 1972).
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1.7 Algorithm for Equality Constrained Estimation

The equality constrained problem defined by Equation 1.10a is solved by
means of an algorithm described in Lawson and Hanson (1974, Chapter 21). The
algorithm, as implemented in SID3D is described below. It is assumed that
the matrix A and the data vector d have been normalized as described in

Section 1.5 so that

where the covariance matrix of the data T = RtR.

The matrices Z and B and vectors w and ¢ are assumed to be partitioned

as shown below:

n-p

B = (Bp, B o’ c)

Z=1(Z, 12 y
( 5 w)

where the subscripts denote the number of columns in the sub-matrix. The

constraint equation Bx = ¢ can be solved for the first p elements of x, xp:

X = B-](c -B x )
P P n-p n<p

Substitution of this expression into w-Zx, the dimensionless error, gives

w-2x=w-228 1( - x )-7 x
P n-p’ n-p n-p n-p
-1 -1
=w-28B ¢- (2Z -2B B )x
PP n-p pp n-p’n-p
=w-2 x
n-p n-p

which is to be minimized to give xn-p' Given xn-p’ xp may be computed from
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).

X = 8_1(c - B x
P p n-p n-p

The above is effected as follows:

1) Using Householder transformations, Qp, the matrix Bp is triangularized.

Qp are also applied to Bn-p and ¢ to give

where Rp is a p by p upper triangular matrix.

2) Solve the triangular system Z R =2 for Z_.

PP P p
3) Compute Z =2 - 728 andw=w - Z c.
n-p n-p p n-p p
4) Compute Householder transformations, Qn-p’ to triangularize Zn-p and

also apply these transformations to w:

R Ww| n-p

0 v| p+m=n

where vtv = SSC, the sum of squares of the errors w-ZIx.

5) Solve the triangular system

b
(se]}
X
O

for x.

In step 1, the columns of B and Z are permuted simultaneously so that the
upper triangular matrix Rp is non-singular. This means that the absolute values
of the diagonal elements of Rp will be greater than a user-supplied tolerance,
TOL. This strategy enables any redundant or inconsistent constraints to be

detected.
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The algorithm requires no two dimensional arrays of storage other than
those required to store Z and B. All computed quantities can overwrite the
original data.

Steps 2 and 3 may be interpreted as Gaussian elimination and are accom-

plished by the following operations:

B..
)/ i 2

| A
—
| A
o

ij iy = ikBkj

N
]
N
t
Il &~70
N
~
o]
pu.
—.
A
.
A
o]

p+l <

all for L <i<m.
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1.8 Hypothesis Tests

The constraints Bx = ¢ may be interpreted as a hypothesis concerning x.

For example, if the kth constraint in B were that the ith and jth slip para-

meters be equal, then the non-zero elements of the kth row of B would be
Bki =] B, . = -1

with ¢, = 0.

K A simple statistic may be used to test such an hypothesis.

Woonacott and Woonacott (1970) and Searle (1971, pp. 188-191) show that

the F statistic can be used to test the hypothesis

against the hypothesis
H1: Bx # ¢

If SSE is the sum of squares of the errors for the unconstrained model and SSC

is that of the constrained model, then the ratio

F o (SSC - SSE)/p
-~ SSE/(m-r)

has an F distribution with p and m-r degrees of freedom, where p is the rank
of B, m is the number of data and r is the rank of A (or Z). When this ratio
is computed, it is compared with tabulated values of F. HO is rejected if

F > tabulated Fp,m—r

where the probability P(F z_Fp m-r) = 0.95. Other probability levels

(e.g., 0.99) are often used for comparison.
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1.9 lInequality Constraints

The inequality constrained probiem defined by Equation 1.10b is character-

ized in thefollowing manner:

q, =0 1< <k

g, >0 k#1 < i <n

where q = BX-c, X being the solution to the unconstrained problem. Thus, either
the inequalities are satisfied (qi > 0) or they are incorporated as equalities.

The solution algorithm for the inequality constrained problem is therefore:

Solve unconstrained problem (Equation 1.9) to give X

k:=0
For i =1 top
For j =1 ton
q;:= BinJ - <,
end j
if q; <0
then
k:= k+1
Bkj:= BlJ
¢ = ¢
else
end i
If k=0
quit
else

Solve constrained problem (Equation 1.10a)
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At the end of the i loop, the unsatisfied inequalities are in the first k
rows of B. The optimum solution is then given by the solution to Equation 1.10a
using the first k rows of B. The interesting question is whether the data will
allow such a solution. This is tested by the method described in Section 1.8.

In the inverse problems described herein, the number of constraints, p,
is small., Therefore, given the unconstrained solution, constraint satisfaction
may be quite easily determined by hand. The remainder of the problem may be

solved by the algorithms available.
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SECTION 2 - DESCRIPTION OF PROGRAM

2.1 Program Structure

SID3D consists of 37 subroutines located in a file named SI1D3D. A short
MAIN program and two subroutines related to input operations are located in
another file named SID3D.USER. SID3D is intended to be at least semi-
permanent in that all of the routines in the file are used as is. SID3D.USER
is more volatile; modifications to it might occur depending on the input needs
of a particular problem. The entire program is listed in Appendix B.

The overall flow diagram of the program is shown in Figure 2.1. The MAIN
program calls subroutine MACRO which controls program flow and storage alloc-
ation depending on commands in the input file. For every run a title and
control parameters are read from the input file and printed. Following this,
dislocation segment parameters and station coordinates are read and the
displacements at each station due to unit strike and/or dip-slip on each
dislocation segment are computed. Given these displacements, the model matrix,
A, is then computed (see Section 1.3). The data and associated variances are
read at the same time A is computed. The desired least squares solution is
then calculated.

The entire program is written in a subset of ANSI FORTRAN 77. No special

data structures or routines are required.
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Program
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2.2 Array Storage

The amount of array storage in the program is controlled by the size of
a master array, A, located in blank COMMON in the MAIN program and in sub-
routine MACRO. Array storage in A is allocated in subroutine MACRO when
the control parameters and the desired type of least squares solution are
known. For an unconstrained least squares problem, the required size of A

must be greater than or equal to

2 «NS + 10-NF + 3+NS+NF-NDF + MDATA-(NF+NDF + 1)

+ max[2<MDATA, NF-NDF-(NF<NDF + 3)]

For a constrained least squares problem, the required size of A must be

greater than or equal to

2+NS + 10°NF + 3°NS<NF+NDF + MDATA+(NF<NDF + 1)

+ max[2<MDATA, 2+NC + NF<NDF+(NC + 3) + MDATA]

where NS is the number of stations, NF is the number of dislocation segments,

NDF

2 if both strike and dip-slip estimates are required on all segments;

NDF

1 otherwise, MDATA is the total number of data, and NC is the number of
constraints.

If the'declared size of A in the MAIN program is too small, an error
message will be printed and the program will stop. The current size of A

is 5000 words. The configuration of storage in A is shown in Figure 2.2.



2°NS 10<NF 3°NS*NF-NDF MDATA-NPAR MDATA

STATION DISLOCATION MODEL X
: DISPLACEMENTS DATA !
COORDINATES | PARAMETERS MATRIX |
2-MDATA
f
I DATA
1
| COVARIANCE
[
_ NPAR-NPAR NPAR NPAR NPAR
1
! SCRATCH
V of SVD S of SVD SOLUTION
! ARRAY UNCONSTRAINED
1
NC*NPAR NC NPAR 2*NPAR+MDATA+NC
; CONSTRAINT| s sotiliFtai MiSC.
co x=c ED
E R i AHRAYS CONSTRAIN

NS - Number of stations

‘NF -« Number of dislocation segments

NDF = 1 for strike or dip-stlip onl.y
‘= 2 for both strike and dip-slip

MDATA « Number of data

..NPAR = NF<NDF

‘NC = Number of constraints

CONFIGURATION OF MASTER ARRAY A FIGURE 2.2
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2.3 SID3D.USER Subroutines

In the file SID3D.USER there are the MAIN program and two user-defined
subroutines, UCOORD and UFPARM. The latter two subroutines define the observ-
ation coordinates and the dislocation segment parameters, respectively,
according to the user's specifications.

Note that the MAIN program, which calls subroutine MACRO, may also be
rewritten so that the user can call the routines in SID3D file in any desired
order. The memory allocations within the master array A (see Section 2.2)

would then have to be included in the MAIN program.

2.4 SID3D Subroutines

The principal subroutines in the file SID3D are TRIANG, TRILAT, and LEVEL
which compute the model matrix, A, for angle change, line length change, and
elevation change data, respectively. The unconstrained least squares solution
procédure is performed by subroutines ULS and SVD. The constrained least
squares solution procedure is performed by subroutines CLS, HTRAN, HTAPP, and
SWAP. Output for ULS and CLS is performed by subroutines ULSOUT and CLSOUT,
respectively.

The other routines in SID3D are used to compute the necessary displacements
(see Appendix A.2) and transform matrices into a form suitable for the least

squares routines.
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SECTION 3 - USER'S MANUAL

3.1 Program Operation

The operation of the program is controlled by means of macro commands
located in the input file. Each macro command denotes a certain sequence of
operations to be performed. For example, the command ULS initiates the
sequence of calculations required to compute the unconstrained least squares
estimate. The advantage of this approach is that operation of the program
can be controlled from the input file and not by means of rewriting and
compiling a driver program.

A complete list of the 15 existing macro commands and their purpose is
given in Table 3.1. Thirty-five macro commands may be specified in sub-
routine MACRO; 20 commands are deliberately ]eft blank for possible future
modifications.

The only restrictions on the sequence of macro commands in the input
file are the following:

1) START must be the first command.

2) CPARM must be the second command.

3) The station coordinates, dislocation segment parameters, displacements,
and the command STRIKE or DIP (if necessary) must be specified or calculated
before the model matrix is computed.

L) To avoid an ungraceful exit from the program, the STOP command must
be given at the end of all calculations.

All macro commands are read as REAL variables in FORMAT (A4). The
commands must be left-justified in the first four columns of the line. Each

command may be abbreviated by its first four characters.
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TABLE 3.1

MACRO COMMANDS

START

CPARM

STRIKE

DIP

UCOORD

co1

UFPARM

FP1

DISPLACE

TRIANG

TRILAT

LEVEL

ULS

CLS

STOP

Read title of model
Read control parameters
Strike-slip model only
Dip-slip model only

Read or generate station coordinates by means of user-defined
subroutine UCOORD located in file SID3D.USER

Read station coordinates individually by means of subroutine CO1
located in file SID3D

Read or generate dislocation segment parameters by means of user-
defined subroutine UFPARM located in file SID3D.USER

Read dislocation segment parameters by means of subroutine FPARMI
located in file SID3D

Compute displacements at all stations due to unit strike and/or
dip-slip on each dislocation segment

Assemble model and data covariance matrices for angle change data

Assemble model and data covariance matrices for line length change
data

Assemble model and data covariance matrices for elevation change
data

Compute and print unconstrained least squares estimate of slip
Compute and print constrained least squares estimate of slip

Stop all computations
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All numerical input data is read in list-directed format. In this type
of format each data item in a line of input data must be separated by a
blank or comma. All data required by the READ statement in the input routine
must be provided. However, a slash in the input record indicates that no
more data is to be read during the current execution of the READ statement.
The data associated with the commands START, CPARM, UFPARM, FP1, UCOORD,
CO1, TRIANG, TRILAT, LEVEL, ULS, and CLS must immediately follow the command.

The format of the data required by the commands START and CPARM is shown below.

START:

This command denotes the beginning of a run. The title of the run is
read in FORMAT (20A4). The title may begin in any column of the 80 column
field. The title is printed at the beginning of each major section of

output.

CPARM:

The control parameters

NS NAC NLLC NEC NF

are read in the order given in list-directed format where

NS - number of stations
NAC - number of angle changes

NLLC

number of line length changes
NEC - number of elevation changes
NF - number of dislocation segemnts

The control parameters are printed on the output file,
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3.2 Units

The units of the input parameters are given below:

Coordinates, Fault dimensions - kilometres
Dip, Strike - degrees
Angle changes - seconds
Line length changes - metres
Elevation changes - metres

Variances - (data units)2
The units of computed quantities are given below:

Displacements - dimensionless
Strike-slip, Dip-slip - metres

Errors, Predicted data, Statistics - dimensionless

3.3 Input Routines

There presently exist two input routines in the file SID3D. These are
FPARM1 and COORD1. Each routine is invoked by macro commands given in Table
3.1. Data required by these routines must follow the macro command. The
purpose of each of the two input routines and the data required by each of

them are given below.

FPARM1 (macro command FP1):
This routine reads the parameters of individual dislocation segments.
Each line of data input to this routine must contain the following eight data

items in the order given:

KHDUDL6¢xC(2:

1 X
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where K is the number of the dislocation segment (1 <K< NF). See Figures

1.1 and A.2 for the definition of the other parameters.

COORD1 (macro command CO1):
This routine reads individual station coordinates one at a time. Each
line of data input to this routine must contain the following data in the

order given:
K X1G X2G

where K is the station number (1 <K j'NS) and where XiG is the ith comp-

onent of the global coordinates of the station (see Figure A.2).

3.4 Model Matrix Routines

The three subroutines TRIANG, TRILAT, and LEVEL assemble the model and
data covariance matrices for angle change, line length change, and elevation
change data, respectively. Each routine is invoked by a macro command of the
same name. Each routine also reads the associated data and variances. The

data required by each of these routines are given below.

TRIANG (macro command TRIANG):
For each station at which angle changes are given, the following data

must be provided:

ISA ND (line 1)
10s, 10S, ... 10S., (line 2)
DA, DA, ... DA, (1ine 3)
V] V2 . .. VND (1ine 4)
VP, VP VP (line 5)

1 2 " ND
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where 1SA is the number of the occupied station (1 < ISA f.NS), ND is the
number of observed stations, IOSi is the number of the ith observed station

(1 E'IOSr_i NS), and DAi is the ith angle change datum. The observed stations
and angle changes must be specified in clockwise order. Vi and VPi are,
respectively, the past and present variances of the ith observed direction.
ND-1 independent angle changes can be specified at each occupied station.

The total number of independent angle changes at all occupied stations must

equal NAC (see Section 3.1).

TRILAT (macro command TRILAT):
For each station at which line length changes are given, the following

data must be provided:

ISA NL (line 1)
10s, 10S, ... 10S, (line 2)
DL, DL, ... DL (tine 3)
V1 V2 e VNL (line &)

where ISA is the number of the occupied station (1 < ISA < NS), NL is the
number of observed line lengths, IOSi is the number of the ith observed station,
(1 < 10s. < NS), and DL, is the ith line length change datum. V. is the
variance of the ith observed line length. The total number of line length

changes must equal NLLC (see Section 3.1).

In both subroutines TRIANG and TRILAT up to 20 observed stations may be
specified at each station. |If more than 20 observed stations are specified,

an error message is printed and the program stops.
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LEVEL (macro command LEVEL):
For each station at which an elevation change is given, the following data

must be provided:
IS DE V VP

where 1S is the number of the occupied station (1_5 IS < NS) and DE is the
elevation change. V and VP are, respectively, the past and present variances
of the elevation at station |S. The total number of elevation changes must
equal NEC (see Section 3.1).

To avoid the possibility of a singular data covariance matrix, the
variances supplied to the routines TRIANG, TRILAT, and LEVEL should be
greater than zero. (i.e., all data have errors, regardless of their origin).

In all problems, two degrees of freedom (strike-slip and dip-slip) are

assumed unless the command STRIKE or DIP is placed in the input stream,
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3.5 Least Squares Routines

Subroutines ULS and CLS perform the unconstrained and constrained least
squares estimation procedures, respectively. The data required for the two

subroutines are given below.

ULS (macro command ULS):
Following this command the tolerance, TOL, to be used in determining the

pseudorank of the model matrix must be provided.

CLS (macro command CLS):

The data required for this routine are given below.

TOL NC (Tine 1)
B” 312 B]N c1 (line 2)
BZ1 B22 ... BZN C2 (1ine 3)
BNC,I BNC,Z ee NNC,N CNC (1ine NC+1)

where NC is the number of rows in the constraint matrix B = (Bij) and C, is the
right hand side of the constraint equation Bx = c¢. TOL is a tolerance used in
determining the pseudorank of B.

Output for ULS and CLS is performed by subroutines ULSOUT and CLSOUT,
respectively. These routines are called automatically after the estimation

procedure is completed.
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SECTION 4 - EXAMPLES

4.1 Test Case

The first example is a test case, the geometry of which is shown in
Figure 4.1. Using program DIS3D (Dunbar, 1984), the angle, line length, and
elevation changes due to the single dislocation segment were computed at
stations 1 through 4. These data were then used as input to SID3D and an
unconstrained (overdetermined) least squares slip estimate was made.

The macro commands and data input for this problem are shown below.

Explanations of some data are given in parentheses.

START

EXAMPLE 1 - TEST CASE
CPARM

L6641 (NS=4, NAC=6, NLLC=6, NEC=L, NF=1)
FP1

11505 70 -45 0 0
co1

1150

2010

3-115

L -5 -12.5

DIsSP

TRIANG

13

234

2.937 -0.750

1.E-6 1.E-6 1.E-6
1.E-6 1.E-6 1.E-6
23

341

-4.831 -1.598
1.E-6 1.E-6 1.E-6
1.E-6 1.E-6 1.E-6
33

234

1.322 3.492

1.E-6 1.E-6 1.E-6
1.E-6 1.E-6 1.E-6
TRILAT

13

234

0.065 -0.024 0.081
1.€-6 1.E-6 1.E-6
2 2

34



1: (15,90)

4: (—5,—-12.5)

0 Skm

EXAMPLE 1 — TEST CASE FIGURE 4.1
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W - O
—_m =
1
[op I
- O

-0.077

1.E-6

LEVEL
12.272E-3 1
2 5.087E-2 1
3 -1.148E-1 1
4 -5.277E-3 1.
ULS

1.E-6

STOP

.E-
.E-

Notice that, even though the angle changes at station 4 are not included, there
is some redundancy in the angle change data in that the sum of the angle changes
in a triangle should equal zero. There is no redundancy in the line length or
elevation change data.

The results are shown in the following pages. The interesting aspect of
these results is the high importance of the angle change data (the first six
data) relative to the other data, particularly the elevation change data (the
last four data). The most important elevation change datum is that at station

3, which is reasonable in that it is closer to the fault.



EXAMPLE 1 -

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

TEST CASE

OF
OF
OF
OF
OF

STATIONS

ANGLE CHANGES

LINE LENGTH CHANGES
ELEVATION CHANGES
DISLOCATION SEGMENTS

- b0 s

Ly



EXAMPLE 1 - TEST CASE
STATION COORDINATES (KILOMETRES)

STATION # X1 X2

1.500E+0t O.0

0.0 1.000E+O1
-1.100E+01 5.000E+00O
-5.000E+Q0 -1.250E+01

HBWN =

h



EXAMPLE 1 - TEST CASE

FAULT PARAMETERS

SEGMENT HALF LENGTH

1 15.000

-~

UPPER DEPTH

0.0

LOWER DEPTH

5.000

DIP

70.000

STRIKE

~45,000

X1C

0.0

0.

X2C

£y



EXAMPLE 1 ~ TEST CASE

MODEL MATRIX FOR TRIANGULATION DATA

STATION # 1
OBSERVED STATIONS: 2 3

ANGLE CHANGES (SECONDS): 2.937

PREVIOUS VARIANCES (SECS**2):

PRESENT VARIANCES (SECS**2):
STATION # 2

OBSERVED STATIONS: 3 4

ANGLE CHANGES (SECONDS): -4.831

PREVIOUS VARIANCES (SECS*=*2):

PRESENT VARIANCES (SECS**2):
STATION # 3

OBSERVED STATIONS: 4 1

ANGLE CHANGES (SECONDS): 1.322
PREVIOUS VARIANCES (SECS**2):

PRESENT VARIANCES (SECS**2):

0.

0.

0.

0.

0.

0.

4

-0.750

100E-05

100E-05

1

-1.598

100E-05

100E-05

3.492

100E -05

100E-05

. 100E-05

. 100E-05

. 100E-05

. 100E-05

. 100E-05

. 100E-05

. 100E-05

. 100E~-05

. 100E-05

. 100E-05

. 100E-05

. 100E-05

hh



EXAMPLE 1 - TEST CASE

MODEL MATRIX FOR TRILATERATION DATA

STATION # 1

OBSERVED STATIONS: 2 3 4

LINE LENGTH CHANGES (M): 0.065 -0O.

DATA VARIANCES (M**2): O.100E-05

STATION # 2

OBSERVED STATIONS: 3 4

LINE LENGTH CHANGES (M): 0.164 0.

DATA VARIANCES (M*%2): O.100E-05

STATION # 3
OBSERVED STATIONS: 4
LINE LENGTH CHANGES (M): -0.077

DATA VARIANCES (M**2): O.100E-05

024 0.081

0. 100E-05 0.100E-05

258

0. 100E-05

Sh



EXAMPLE 1 - TEST CASE

MODEL MATRIX FOR LEVELLING DATA

STATION # 1
ELEVATION CHANGE = 0.227€-02
PREVIOUS VARIANCE = O.100E-05
PRESENT VARIANCE = 0. 100E~-05
STATION # 2
ELEVATION CHANGE = 0.509E-01
PREVIOUS VARIANCE = O.100E-05
PRESENT VARIANCE = 0. 1O0E-05
STATION # 3
ELEVATION CHANGE = ~0.115E+00
PREVIOQUS VARIANCE = 0O.100£-05
PRESENT VARIANCE = 0. 100E-05
STATION # 4
ELEVATION CHANGE = -0.528£E-02
PREVIOUS VARIANCE = O0.100E-05
PRESENT VARIANCE = 0. 100E-05

9%



EXAMPLE 1 - TEST CASE

UNCONSTRAINED LEAST SQUARES ESTIMATION

SINGULAR VALUES

3911.9

1288 .4

TOLERANCE FOR SINGULAR VALUES = 0O.10000E-0S

PSEUDORANK =

SLIP ESTIMATE

2

STRIKE-SLIP(M)

-1.000+- 0.000

STATISTICS, IMPORTANCES
DATA DHAT
O.147E+04 0.147E+04
0.415E+03 0.415E+03
-0.267E+04 -0.266E+04
-0.307E+04 -0.308E+04
-0.166E+04 -0.166E+04
0.885E+03 0.885E+03
0.460E+02 0.461E+02
-0.170E+02 -0.168E+02
0.573E+02 O0.571E+02
O.116E+03 O0.116E+03
O.182E+03 0. 183E+03
-0.544€E+02 -0.545E+02
O0.161E+01 0.161E+401
0.360E+02 0.360E+02
-0.812E+02 -0.811E+02
-0.373E+01 -0.373E+01

SUM OF SQUARED ERRORS (SSE)
TOTAL SUM OF SQUARES (SST)
REDUCTION IN SUM OF SQUARES (SSR)

CORRELATION COEFFICIENT

THE END

DIP-SLIP(M)

1.500+- 0.001

ERROR

0.339E-01
0. 152E+00
-0. 102E+00
0.874E-01
~0.496E-01
-0.188E-0Ot
-0.104E+00
-0. t99E+00
0.221E+00
-0.186E+00
-0.240E+00
0.623E-01
0. 1t14E-03
-0.870E-03
-0.262€E-01
0. 118E-02

IMPORTANCE

. 169E+00
. 140E+Q0
.484E+00
.470E+00
. 122E+00
.584E+00
.162E-03
.101E-OH1
.322E-02
.138E-01
.172€-02
.202E-03
.157E-04
.289E-03
.143E-02
.172E-04

[eNoNeReoNoNoNeoRoNoRoRoRoNeNoRoNo]

0.24135
0.22480E+08
0.22480E+08

1.0000

Iy
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4.2 The Forbidden Plateau Triangulation Network

This network is located in central Vancouver I|sland and overlies the
Beaufort Range fault. The locations of the triangulation stations and the
proposed model of the Beaufort Range fault are shown in Figure 4.2. More
complete descriptions of the network and the Beaufort Range fault may be
found in Sltawson (1978) and Slawson and Savage (1979).

The network was first surveyed in 1935-36 and resurveyed in 1978 by
Stawson (1978). The unadjusted direction lists for each survey were pro-
vided by W. F. Slawson (pers. comm.). These were used to compute 10 angle
changes within the network. Standard deviations of observed directions for
each survey were found by adjusting both surveys for triangle closures
(Stawson, 1978). For the 1935 survey, the average standard deviation of
a direction was found to be 1.2'; for the 1978 survey, the standard
deviation was found to be 1.3'".

A two segment dislocation model was chosen in order to model possible
variation of slip with depth. Each segment was 32 km. long, striking
northwest, and dipping 70° northeast. The first segment extended from
0 to 5 km. depth (along dip); the second from 5 to 10 km.

The macro commands and data input for this problem are shown below.

START

EXAMPLE 2 - FORBIDDEN PLATEAU TRIANGULATION DATA

CPARM

510002

CO1

1 -1.25 6.0

2 -12.25 -4.13

3 1.5 -9.0

4L 8.5 -13.38
59.75 0.5



70

‘Y5 km

10 km

-SECT{ON AB

EXAMPLE 2 — FORBIDDEN PLATEAU
TRIANGULATION NETWORK FIGURE 4.2



4g

FP1

116 05 70 -45 00
21651070 -45 00
DISP

TRIANG

14

2345

-0.03 1.4 -2.4

UL I T DY O 2
.69 1.69 1.69 1.69

87 2.67
b1 hh 1LY
69 1.69 1.69

— = I NN = =2 0OV L O = = NN
. iy T « e .

[
— .
wm
0 £ =
—_

1.E-4

STOP

The results for the unconstrained slip estimate are shown on the following
pages. The large standard deviations of the slip on the deeper segment imply
that the data does not constrain the solution at such a depth. The fit of

the model is also poor in that the correlation coefficient is less than 0.5.



EXAMPLE 2 - FORBIDDEN PLATEAU TRIANGULATION DATA

NUMBER OF STATIONS

NUMBER OF ANGLE CHANGES 1
NUMBER OF LINE LENGTH CHANGES

NUMBER OF ELEVATION CHANGES

NUMBER OF DISLOCATION SEGMENTS

NOOOW!

0S



EXAMPLE 2

FORBIDDEN PLATEAU TRIANGULATION DATA

STATION COORDINATES (KILOMETRES)

STATION #

A WN =~

-1.
-1.
.500E+00
.500E+00
. 750E+00

X1

250E+00
225E+01

-4
-9

X2

.Q00E+00
. 130E+00
.O00E+00
-1,
.O00E-01

338E+01

LS



EXAMPLE 2 - FORBIDDEN PLATEAU TRIANGULATION DATA
FAULT PARAMETERS
SEGMENT HALF LENGTH UPPER DEPTH LOWER DEPTH

1 16.000 0.0 5.000
2 16 .000 5.000 10.000

DIP

70.000
70.000

STRIKE

-45.000
-45.000

[eNe]
[eNe]

X1C

[eNe)
[eNe]

X2C

Zs



EXAMPLE 2 - FORBIDDEN PLATEAU TRIANGULATION DATA

MODEL MATRIX FOR TRIANGULATION DATA

STATION # 1

OBSERVED STATIONS:

ANGLE CHANGES (SECONDS):

2 3

PREVIOUS VARIANCES (SECS**2):

PRESENT VARIANCES

STATION # 2

OBSERVED STATIONS:

(SECS**2):

5 1

ANGLE CHANGES (SECONDS): 1.600
PREVIOUS VARIANCES (SECS**2):

PRESENT VARIANCES

STATION # 3

OBSERVED STATIONS:

(SECS**2):

5 1

ANGLE CHANGES (SECONDS): 0.800
PREVIOUS VARIANCES (SECS**2):

PRESENT VARIANCES

STATION # 4

OBSERVED STATIONS:

{SECS**2):

5 1

ANGLE CHANGES (SECONDS): 0.700

PREVIOUS VARIANCES
PRESENT VARIANCES

STATION # 5

OBSERVED STATIONS:

(SECS**2):
(SECS*¥¥2):

2 3

ANGLE CHANGES (SECONDS): -1.400

PREVIOUS VARIANCES
PRESENT VARIANCES

(SECS**2):
(SECS**2):

-0.030
0.
0.

0.
0.

0.
0.

0.
0.

0.
0.

4 5

1.400
144E+0O 1t
169E+01

144E+01
169E+01

2 4
-7.870
144E+01
169E+01

3
5.200

144E401

t69E+0O1

144E+01
169E+01

-2.400
0. 144E+01
0.169E+01

0. 144E+01
0.169E+01

2.670
0. 144E+01
0. 169E+0O1

0. 144E+01
0.169E+01

0. 144E+01
0. 169E+01

0. 144E+01
0. 169E+01
O.144E+01
O.169E+01
O. t44E+O1
0. 169E+01

0. 144E+01
0. 169E+01

0. 144E+01
0. 169E+01

£



EXAMPLE 2 - FORBIDDEN PLATEAU TRIANGULATION DATA

UNCONSTRAINED LEAST SQUARES ESTIMATION

SINGULAR VALUE

9.1733

TOLERANCE FOR SINGULAR VALUES

PSEUDORANK =

SLIP ESTIMATE

S

1.7979

4

STRIKE-SLIP(M)

-0.763+-
0.840+-

0.
1.

623
520

STATISTICS, IMPORTANCES

DATA

-0.120E-01
0.639E+00
-0.723E+00
0.248E+00
0.616E+00
-0.360E+01
-0.170E+01%
-0.113E+01
0. 178E+01
0.854E+00

-0.
-0.
-0.
.
-0.
-0.
(o
-0.
0.
0.

DHAT

111E+O1
767E+00
500£+00
534€E+00
824E+00
202E+01
687E-01
586E+00
111E+00
905E+00

1.1135

0.
0.
-0.
-0.
0.
-0.
-0.
-0.
0.
-0.

SUM OF SQUARED ERRORS (SSE)

TOTAL SUM OF SQUARES (SST)
REDUCTION IN SUM OF SQUARES (SSR)

CORRELATION COEFFICIENT

THE END

0.54714

= 0.10000E-03

DIP-SLIP(M)

.208+- 0.680
.343+- 1,143

ERROR IMPORTANCE

110E+0O1 0. 190E+00
141E+01 0.243E+00
223E+00 0.892E+00
285E+00 0.324E+00
144E+01 0.572E+00
1S8E+01 0.532E+00
177E+0O1 0.197E+00
544E+00 0.324E+00
167E+0 1 0.406E+00
S09E-01 0.320E+00

= 14,092

= 22.386

=  8.2940

= 0.37050

hS
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The opposite sense of strike-slip on both segments is undesirable.
Suppose it were desired to know whether the data would allow the strike-slip

on segment 1 to be zero. This may be tested by means of the constraint

equation Bx = ¢ where

[ev)
]

(1 000) c = (0)

The macro commands and data for this problem are the same as those of the
unconstrained problem, except that the command ULS must be replaced by CLS.

The data and commands following CLS are:

N = - O

The results of this are shown on the following page.
Using the values of SSE and SSC from the unconstrained and constrained
solutions, respectively, the F statistic
F = (SSC-SSE)/p
SSE/ (m-r)

= (15.591-14.092)/1 = 0.64
14.,092/6

From tables F = 5.99, so that the hypothesis SS, = 0 is acceptable

1,6 1

with a probability of 0.95.



EXAMPLE 2 -~ FORBIDDEN PLATEAU TRIANGULATION
CONSTRAINED LEAST SQUARES ESTIMATE
CONSTRAINT MATRIX
NUMBER OF CONSTRAINTS = 1

0. 100E+01 0.0 0.0 0.0

SLIP ESTIMATE

STRIKE-SLIP(M) DIP-SLIP(M)
0.0 0.919
-0.918 0.601
SUM OF SQUARED ERRORS (SSC) = 15.591
THE END

DATA

n

9s
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APPENDIX A

A.1 Surface Displacements due to Rectangular Dislocations

In the following pages the equations for the surface displacements due to
constant strike or dip-slip on a rectangular dislocation segment in a three
dimensional elastic halfspace are presented. The geometry of the dislocation
segment is shown in Figure 1.1. The displacement in the X, direction is
denoted Us .

Each of the equations is the indefinite integral form of Equations 1.1 or
1.2 and must be evaluated at the four corners of the dislocation segment to
obtain the desired displacement. Thus, if F(co,c1) represents a particular

equation, the displacement is computed according to
F(DL,H) - F(DU,H) - F(DL,-H) + F(DU,-H)

Each of the equations has been programmed as a function subroutine in
SID3D. The routines for the ith component of displacement due to strike
and dip-slip are labelled SUiS and SUiD, respectively. Thus, SU3D evaluates
the u, displacement due to unit dip-slip on a dislocation segment.

3

The notation used in these equations is given below.

v = Poisson's ratio

r2 = xzsunG r3 = xzcose
92 = cocose c:3 = cOSIne

2 2
RE = (x1 c]) + (x2 c,))” + c3
k2 (x,-c )2 + r2



A.2

u, STRIKE-SLIP (Surface)

u r.R
8ﬂ(1‘v)—l-= -14(1-\))tan-1 2
ss (x1-c1) (r3‘c0)
r.(x,-c,) :
L2 1[ T _(3-)
R [R+r3-cO R-r3+c0-

r(k-rzcose)(r3—c0) - k(R+k)sinf

L

+ 4(1-v) (1-2v) tand 2tan8tan-1

(x1-c1)(R+k)cose

xz(x1-c1)

As 6 » m/2, tan6{ } > 5
2(R+c3)



u, STRIKE-SLIP (Surface)

u
2 _ (4. . _ _
8W(1-v);;-— (1 2\))5|n6[ln(R+r3 co) + In(R r3+c0)]

+ +

R R [R+r -c R=-r_+c

2,
4(1-v)r2cose r251n6[ i  (3-kv)
370 370

+ h(l-v)(I-Zv)tane{tane[ln(R+c3) - sineln(R-r3+co)]

) Xy=Cy
R+c3
2
1) 3 X2
As 6 + /2, tan6{ } s + ln(R+c3) t—
R+c3 (R+c3)

A.3



u. STRIKE-SLIP (Surface)

3
u 4(1-v)r25in6
81r(1-\))—3= (1-2v) cosd [ 1n(R+r —co) + In(R-r_+c )] +
2050
. I'ZCOS 1 ) (3_1*\))
R R+r3-c;0 R—r3+c:0

- h(l-v)(]-Zv)tanS[ln(R+c ) - sineln(R—r3+co)

3

X

As 6 = m/2, tanB][ | - 2
R+c

3




u, DIP-SLIP (Surface)

1

’3
87]-(]_\))___ =
DS R

4(1-v)r2

+ L(1-v) (1-2v)4 tand sin6|n(R+c3) - In(R-r +c.)

370

(

xz-cz) sinf

R+c

3

As 6 + /2, { } >0

A.5



A.6

u. DIP-SLIP (Surface)

2

u, _
8m(1-v)—= = -L4(1-v)cosBtan
DS

R(R+x,-c.)

1 rzR h(l-v)rz(xz-cz)
+
(x, 174

-ci)(r3-c0)

(k-rzcose)(r3-c0) - k(R+k)sin®

- 4(1-v)(1-2v)sinB{ 2tanBtan {
(x

1-c1)(R+k)c056

R+c

As 6 » /2, { } >0



u3 DIP=-SLIP (Surface)

u . rZR ) 4(1-v) rzc3
DS

8m(1-v)— = -4(1-v)sinBtan
(x]-c])(rB-co) R(R+x1—c1)

(k-rzcose)(r3-co) - k(R+k)sinb

+ 8(1-v) (1-2v)sinbtan [

(x -c]) (R+k) cos®

1

No singularity as 8 +~ m/2



A.8

A.2 Computation of Displacements

The sequence of computations required to compute the displacement field
is shown in Figure A.1.

The global and local (dislocation segment) coordinate systems in the
g _ 9 9
1 X2 1 and X

axes is measured positive clockwise. Thus, either =180 <9 5_180 or

X plane are shown in Figure A.2. The angle ¢ between the x

0 < ¢ < 360.
The relationship between a vector g = (91, 9y 93) in the global
coordinate system and a vector f = (f1, fz, f3) in the local coordinate

system is given by

9, = f1cos¢ - fzsin¢
g9, = fising + f,cos¢ (A.1)
55° 1

The inverse relationship is given by

f1 = g1cos¢ + gzsin¢

fz = -glsin¢ + g,cos¢ (A.2)
foo=

3793

The above two transformations are embodied in subroutine TRAN12 which is
programmed as shown in Equation A.2. By changing the sign of ¢ and inter-
changing the vectors f and g, the transformation given by Equation A.1 may

be effected.



Control parameters
Station coordinates

Dislocation parameters

(=1 Loop over NS statlo;i coordinates
Uu=¢0 Initialize total displacement field
J=1 Loop ov'ev NF dislocation segments
xg-'x Transform to Jth local coordinate system
CTompute UF UF - Displacements in Jth local coordinate system

UF — UG Transform displacements to global coordinate system

U=U+ UG Add to total displacement field
J=J+ 1
No

Yes

I=14+1

No
1>NS
Yes

COMPUTATION SEQUENCE — DISPLACEMENT FIELD FIGURE A.1



9
X3-X3

GLOBAL AND LOCAL COORDINATE SYSTEMS - FIGURE A.2



APPENDIX B

B.1 Notation
As much as possible, the notation used in the program is the same as
that in this manual. The definitions of some key variables are given below

(in alphabetical order):

A - model matrix (see Equation 1.7)
B - constraint matrix (see Equation 1.10)

C - right hand side of constraint equation Bx = ¢ (see Equation 1.10)

co, C1, €2, C3 - co, ST c3 (seeFigure 1.1 and Appendix A.1)
CP = cosd (see Figure A.2)
CT = cos® (see Figure 1.1)

D - data vector (see Equation 1.7)
-c,), (x

175 27¢)

DL - lower depth of dislocation segment (see Figure 1.1)

D1, D2 - (x

DU - upper depth of dislocation segment (see Figure 1.1)
FACT = 1/8m(1-v)

FP(10,j) - the parameters H, DU, DL, sinf, cos®, tanf, sind, coso,

xS, xS
1’72

(see Figures 1.1 and A.2)

of the jth dislocation segment, 1 < j < NF

H - half length of dislocation segment (see Figure 1.1)
K - k (see Appendix A.1)

NAC - number of angle change data

NEC - number of elevation change data

NF - number of -dislocation segments

NLLC - number of line length changes

NS - number of stations



B.2

PHI - ¢ (see Figure A.2)
R - R (see Appendix A.1)

R2, R3 - r rg (see Appendix A.1)

2’
SP = sin¢ (see Figure A.2)

ST = sinB (see Figure 1.1)

T - data covariance matrix (see Equation 1.8)

TT = tan® (see Figure 1.1)

vV, V1, V2, V3 - constants involving Poisson's ratio

W - normalized data vector (see Section 1.5)

X - solution vector of least squares problem (see Equations 1.9 or 1.10)

X1, X2 = x;, X, (see Figure A.2)

1’
X1C, X2C - x?,

«C
2
S g .
X1G, X2G - x3, X5 (see Figure A.2)

XG(2,i) - global coordinates of ith station, 1 < i <NS

(see Figure A.2)

Z - normalized model matrix (see Section 1.5)



B.3

B.2 Program Listing

A complete listing of the program is given in the following pages. The
first page contains the MAIN program and subroutines located in the file
SID3D.USER. The remaining pages contain the subroutines located in the

file SID3D.



COMMON A(5000)
COMMON /ASIZE/ MAX
C
C MAIN DRIVER FOR SID3D
C
C MAX MUST AGREE WITH DIMENSION OF A
C

MAX = 5000
CALL MACRO
STOP
END

SUBROUTINE UCOORD (XG,NP)
DIMENSION XG(2,NP)

RETURN

END

SUBROUTINE UFPARM (FP,NF)
DIMENSION FP( 10,NF)
RETURN

END

n°e



4

C
C RE
C

SUBROUTINE MACRO
COMMON A(1)

COMMON /ASIZE/ MAX

COMMON /ELAST/ V,V1,V2,V3,FACT

LOGICAL COMP,CPAR,FPAR,DISP

DIMENSION CA(35),.TITLE(20)

DATA NC/35/

INTEGER LIST(1)/1H*/

INTEGER P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14, P15
DATA CA/4HSTAR,4HCPAR,4HSTRI.4HDIP .4H .

1 4HUCOO0, 4HCO1 ,4H . AaH . 4H .
2 4HUFPA ,4HFP 1t L 4H .4H 4H .
3 4HDISP, 4H .44 4H .4H .
4 4HTRIA ,4HTRIL,4HLEVE ., 4H .4H .
5 4HULS ,4HCLS ,4H J4H . 4H '
6 4H J4H .4H 4H .4HSTOP/
CPAR = _FALSE.

FPAR = _FALSE.

DISP = .FALSE.

CALL ZERO (A,MAX)

CONTINUE
READ (5,500) C

FORMAT (A4)
IF (COMP(C,CA(35))) GO TO 350
CONTINUE
DO 3 1 = 31,.NC
Ic = 1
IF (COMP(C,CA(I))) GO TO 4
CONTINUE
CALL ERROR (1,0.C)
GO TO (10,20,30,40,50,60,70,80,90, 100, 110, 120, 130,
1 140, 150, 160, 170, 180, 190,200,210,220,230, 240,
2 250,260,270,280,290,300,310,320,330,340,.350),1C

AD JOB TITLE

10 CONTINUE

S0 1

READ (5,501) TITLE
WRITE (6,600) TITLE
FORMAT (2044)

600 FORMAT (1H1,20A4/)

C
C RE
Cc

20

605

GO 70 1
AD CONTROL PARAMETERS

CONTINUE

READ (5.LIST) NS, NAC,NLLC,NEC,NF

WRITE (6,605) NS,NAC,NLLC,NEC,NF

FORMAT (1H ,5X,36HNUMBER OF STATIONS 15/
1 1H ,5X,36HNUMBER OF ANGLE CHANGES .18/

S°8



2 tH ,5X,36HNUMBER OF LINE LENGTH CHANGES .15/

3 1H ,5X,36HNUMBER OF ELEVATION CHANGES .18/
4 tH ,5X,36HNUMBER OF DISLOCATION SEGMENTS .15)
MDATA = NAC+NLLC+NEC

Iss = 1

IDS = 1

NDF = 2

P2 = 2*NS+1
NPAR = NF*NDF
NNN = NS*NPAR
NROW 0

CPAR .TRUE.

n oo

Cc
C POISSON’S RATIO = 0.25 ASSUMED
C

./ (24, *ATAN(1.0))

C

C STRIKE-SLIP ONLY

C

30 CONTINUE

I0S = O
NDF = 1
NPAR = NF
WRITE (6.610) NPAR

610 FORMAT (47HOSTRIKE-SLIP ONLY. NUMBER OF PARAMETERS (=NF) = ,[IS5)
GO TO 1

C

C DIP-SLIP ONLY

C

40 CONTINUE
1SS o)
NDF 1
NPAR = NF
WRITE (6,611) NPAR
611 FORMAT (44HODIP-SLIP ONLY. NUMBER OF PARAMETERS (=NF) = ,15)

GO TO 1

50 CONTINUE
GO T0 1

C READ STATION COORDINATES - USER DEFINED ROUTINE (UCO0)
Cc
60 CONTINUE
IF (.NOT.CPAR) CALL ERROR (3,0.C)
CALL UCQORD (A, ,NS)
CALL PRINT (A,A(P2).TITLE,NS.NF,1)
GO TO 1
C
C READ STATION COORDINATES - COORD1 ROUTINE (CO01Y)

98



70 CONTINUE
IFf (.NOT.CPAR) CALL ERROR (3,0.,C)
CALL COORD1 (A,NS)
CALL PRINT (A, A(P2),TITLE,NS,NF, )

GO TO 1
C
80 CONTINUE
GO 10 1t
C
90 CONTINUE
GO TO 1
C
100 CONTINUE
GO TO 1
C

C READ FAULT PARAMETERS - USER DEFINED ROUTINE (UFPA)
Cc
110 CONTINUE
CALL UFPARM (A(P2),NF)

FPAR = .FALSE.
CALL PRINT (A,A(P2),TITLE,.NS,NF,2)
GO TO 1

c
C READ FAULT PARAMETERS - FPARM{ ROUTINE (FP1)
c
120 CONTINUE

CALL FPARM1 (A(P2),NF)

FPAR = ,FALSE.

CALL PRINT (A, A(P2),TITLE,NS,NF,2)

GO T0 1

130 CONTINUE
GO TO 1
C
140 CONTINUE
GO TO 1
C
150 CONTINUE
GO TO t
C
C COMPUTE DISPLACEMENTS AT ALL STATIONS (DISP)
C
160 CONTINUE
IF (.NOT.FPAR) CALL FPMOD (A(P2),NF)
FPAR = .TRUE.

P3 = P2+10*NF
P4 = P3+NNN
P5 = P4+NNN

LAST = P5+NNN-1{
IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,C)

CALL DCOEF (A,A(P2),A(P3),A(P4),A(PS5),NS, NF,NDF,ISS,I1DS)

DISP = .TRUE.
GO TO 1

L8



170 CONTINUE
GO TO 1
C
180 CONTINUE
GO 70 1
C
190 CONTINUE
GO TO 1
C
200 CONTINUE
GO TO 1
C
C COMPUTE MODEL MATRIX FOR TRIANGULATION DATA
C
210 CONTINUE
IF (.NOT.DISP) CALL ERROR (4,0.C)

P& = PS5+NNN
P7 = P6+MDATA*NPAR
P8 = P7+MDATA

LAST = PB+MDATA*2-1
IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,C)
CALL TRIANG (A,A(P3),A(P4) A(P6),A(P7),A(PB),TITLE,NAC, NS,

1 MDATA ,NF ,NDF,ISS,1DS,NROW)
GO 70 1
C
C COMPUTE MODEL MATRIX FOR TRILATERATION DATA
C

220 CONTINUE
IF (.NOT.DISP) CALL ERROR (4.,0.C)
P6 = PS+NNN
P7 = PG6+MDATA*NPAR
P8 = P7+MDATA
LAST = P8+MDATA*2-1
IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,.C)
CALL TRILAT (A,A(P3),A(P4),A(PG), A(PT) A(P8), TITLE ,NLLC,NS,

1 MDATA  NF ,NDF , ISS,IDS,NROW)
GO TO 1

C

C COMPUTE MODEL MATRIX FOR LEVELLING DATA

C

230 CONTINUE
IF ( .NOT.DISP) CALL ERROR (4.,0.C)

P6 = PS5+NNN
P7 = P&6+MDATA*NPAR
P8 = P7+MDATA

LAST = P8+MDATA*2-1
IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,C)
CALL LEVEL (A(PS),A(P6),A(P7).,A(P8),TITLE ,NEC,NS MDATA, NF,
1 NDF , 1SS, IDS,NROW)
GO TO 1

C

240 CONTINUE

GO 70O 1

8°8



C
250 CONTINUE

GO TO 1
C
C SOLVE UNCONSTRAINED LEAST SQUARES PROBLEM
c .

260 CONTINUE
WRITE (6,626) TITLE
626 FORMAT (1H1,20A4//39H UNCONSTRAINED LEAST SQUARES ESTIMATION)
READ (5,LIST) TOL
CALL ZWCOMP (A(P6),A(P7),A{P8) MDATA MDATA,NPAR)
P9 = PB8+NPAR*NPAR
P10 PI+NPAR
P11 P {O+NPAR
LAST = P11+NPAR-1
IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,C)
CALL ULS (A(P6),A(P7).A(P8),A(PY), A(PlO) A(P11) .KR,.TOL, MDATA

1 MDATA  NPAR,NPAR)
CALL ULsSOUT (A(PG).A(P7),A(PB).A(P9).A(P10).A(P11).
1 TOL ,KR,MDATA ,MDATA,NPAR,NPAR, ISS,IDS)
GO TO 1

o

C SOLVE CONSTRAINED LEAST SQUARES PROBLEM

(o

270 CONTINUE
WRITE (6,627) TITLE
627 FORMAT (1H1.20A4//35H CONSTRAINED LEAST SQUARES ESTIMATE)
READ (5,LIST) TOL,NC
CALL ZWCOMP (A(P6),A(P7),A(P8),MDATA MDATA,NPAR)
P9 = PB+NC*NPAR

P10 = P9+NC

P11 = P10+NPAR
P12 = P11+NPAR
P13 = P12+NPAR
P14 = P13+MDATA

LAST = P14+NC-1

IF (LAST.GT.MAX) CALL ERROR (2,LAST-MAX,C)

CALL CONMAT (A(P8),A(P9),NC,NPAR)

CALL CLS (A(P6),A(P7),A(PB),A(P9),A(P10).MDATA MDATA,NPAR,
1 NC,NC,A(P11),A(P12) ,A(P13) ,A(P14),TOL,SSC,INFO)
IF (INFO.NE.O) CALL ERROR (9,INFO,C)

CALL CLSOUT (A(P10),SSC.NPAR,ISS.IDS)

GO 70 1
C
280 CONTINUE
GO TO ¢
C
290 CONTINUE
GO TO 1
C
300 CONTINUE
GO TO 1
Cc

310 CONTINUE

6°8



GO TO 1
C
320 CONTINUE
GO TO ¢
C
330 CONTINUE
GO T0 1t
C
340 CONTINUE
GO 70 1
C
C THE END
C
350 CONTINUE
WRITE (6,699)
699 FORMAT (/8H THE END)

RETURN
C

END

LOGICAL FUNCTION COMP (A.B)
C

C TEST EQUALITY OF CHARACTER STRINGS A AND B
C

CoMP = _FALSE.

IF (A.EQ.B) COMP = . TRUE.
RETURN

END

01°4



C
[

C

C

C

C

C

c

SUBROUTINE ERROR (IE,N.,C)
PRINT FATAL ERROR MESSAGES
GO 70 (1,2,3,4.5,6,7,8.9),1E

1 WRITE (6,601) C
601 FORMAT (/15H MACRO COMMAND ,A4,16H DOES NOT EXIST)
sSTOP

2 WRITE (6,602) C,N
602 FORMAT (/1H ,A4,28H ARRAY STORAGE EXCEEDED BY ,15)
STOP

3 WRITE (6,603) C
603 FORMAT (/1H ,A4,40H CANNOT DO THIS. THE CONTROL PARAMETERS,
1 27H HAVE NOT YET BEEN DEFINED.)
STOP

4 WRITE (6,604) C
604 FORMAT (/1H ,A4,39H CANNOT DO THIS. THE DISPLACEMENTS,
t 40H AT EACH STATION HAVE NOT BEEN COMPUTED.)
STOP

5 WRITE (6,605) C,N
605 FORMAT (/1H ,A4,27H MAXIMUM NUMBER OF OBSERVED,
1 26H DIRECTIONS EXCEEDED,ND = ,15)
STOP

6 WRITE (6,606) C.N
606 FORMAT (/1H ,A4,.27H MAXIMUM NUMBER OF OBSERVED,
1 28H LINE LENGTHS EXCEEDED,NL = ,15)
STOP

7 WRITE (6,607) N
607 FORMAT (/33H ULS OR CLS COVARIANCE MATRIX NOT,
1 25H POSITIVE DEFINITE,.ROW # ,IS5)
STOP

8 WRITE (6.,608) C.N
608 FORMAT (/1H ,A4,23H SVD FAILED TO CONVERGE,
1 3H AT, 15, 17HTH SINGULAR VALUE)
STOP

9 WRITE (6,608) C.N
609 FORMAT (/1H ,A4,25H CONSTRAINTS INCONSISTENT,
{1 20H CHECK CONSTRAINT # ,15)
STOP
END

t1°4



[eXeNe]

OO0

SUBROUTINE COORD1 (XG.NS)
DIMENSION XG(2.NS)
INTEGER LIST(1)/1H*/

READ AND PRINT STATION COORDINATES

DO 10 J = 1,NS
READ (5,LIST) K,XG(1.K), XG(2,K)
10 CONTINUE
RETURN

END

SUBROUTINE FPARM1 (FP,NF)
DIMENSION FP(10,NF)
INTEGER LIST(1)/1H*/

READ PARAMETERS OF INDIVIDUAL FAULT SEGMENTS

DO 10 J = 1, ,NF
READ (5,LIST) K,(FP(I,K).I = 1,7)
10 CONTINUE
RETURN
END

[AN"



SUBRQUTINE PRINT (XG,FP,TITLE . NS, NF, ITYPE)
DIMENSION XG(2,NS),FP(1O,NF), TITLE(20)

c
C GENERAL PRINT ROUTINE
c
NLINE = O
IF (ITYPE.EQ.O) RETURN
IF (ITYPE.EQ.2) GO TQ 20
c
10 CONTINUE
DO 19 J = 1,NS
IF (NLINE.GT.0) GO TO 15
WRITE (6,610) TITLE
NLINE = 44
15 CONTINUE .
WRITE (6,611) J,(XG(I,J).I = 1,2)
NLINE = NLINE-1
19 CONTINUE
RETURN
c
20 CONTINUE
DO 29 J = {.NF
IF (NLINE.GT.0) GO TO 25
WRITE (6,620) TITLE
NLINE = 44
25 CONTINUE
WRITE (6,621) J, (FP(I.J},1 = 1,7)
NLINE = NLINE-1
29 CONTINUE
RETURN
c

610 FORMAT (1H1,20A4//33H STATION COORDINATES (KILOMETRES)//
t 11H STATION # ,9X,2HX1,9X,2HX2/)
611 FORMAT (4H ,I10,1PE11.3,E11.3)
620 FORMAT (1H1,20A4//17H FAULT PARAMETERS//
1 1H .5X,7HSEGMENT,3X, 1 1HHALF LENGTH,3X, 1 {HUPPER DEPTH, 3X,
2 {{HLOWER DEPTH,7X,3HDIP,4X ,6HSTRIKE,7X,3HX1C, 7X,3HX2C/)
621 FORMAT (1H ,7X,I5,3F14.3,6F10.3)
c
END
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SUBROUTINE FPMOD (FP,NF)
DIMENSION FP(10,NF)
c
C COMPUTE TRIG FUNCTIONS OF DIP AND STRIKE
C STORE RESULTS IN FP ARRRAY
c
RPD = ATAN(1.0)/45.0
DO 10 J = 1,NF
FP(10.J) = FP(7.4)
FP(9,J) = FP(6.J)
THETA = FP(4,J)*RPD
PHI = FP(5,J)*RPD
SP = SIN(PHI)
CP = COS(PHI)
FP(8,J) = CP
FP(7.4) = SP
ST = SIN(THETA)
CT = COS{THETA)
FP(6.,J) = 90.0
IF (CT.NE.O.0) FP(6,J) = ST/CT
FP(4,J) = ST
FP(5,J) =
10 CONTINUE
C
RETURN
END
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SUBROUTINE DCOEF (XG,.FP,U1G,U2G,U3G,NS,NF NDF,ISS,IDS)
DIMENSION FP(10,NF),XG(2,.NS) ,UtG(NS, NF NDF) U2G(NS.NF , NDF)
DIMENSION U3G(NS,.NF ,NDF),UF(3,2)

C

C COMPUTE DISPLACEMENT COEFFICIENTS AT NS STATIONS FOR NF SEGMENTS

C

DO 30 I = 1,NS
X1G = XG(1,1)
X2G = XG(2,1)

D0 20 J = 1.NF

CALL SETUP (FP(1,J),X1G,X2G,SP,CP)
CALL DISP1 (FP(1,J).FP(2,J).FP(3,U),ISS,IDS,UF)
DO 10 K = §,NDF
CALL TRAN12 (UF(1,K),UF(2.K),-SP,CP . UIG(I,J,K),U2G(1,J,K))
U3G(I,J,K) = UF(3.K)
10 CONTINUE
20 CONTINUE
30 CONTINUE
RETURN

END
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SUBROUTINE DISPt (H,DU,DL,1SS.1IDS,U)
COMMON /GEOM1/ X1,X2,ST,CT,TT,R2,R3,IVERT
COMMON /ELAST/ V,V1,V2 V3 FACT
DIMENSION U(3.2)
C
C COMPUTE DISPLACEMENT COEFFICIENTS FOR SINGLE SEGMEMT
c
CALL ZERO (U.86)
NDF = 1SS+IDS
S = 1.0
C1 = H
DO 40 I = 1,2
CO = DL
DO 30 J = 1.2
CALL RS (c0.Ct)
IF (ISS.EQ.0) GO TO 20
u(1.1) U(1.1)+5*SU1S(CO.CH1)
u(2,1) U(2,1)+5*SU25(CO.C1)
u(3.1) U(3,1)+S*Su3s(co.c1)
20 CONTINUE
IF (IDS.EQ.0) GO TO 25
u(1,NDF) U(1,NDF)+S*SU1D(CO,CH1)
U(2,NDF) U(2,NDF)+5*SU2D(CO.C1)
U(3,NDF) U(3,NDF)+S*SU3D(CO,.C1)
25 CONTINUE
S = -§
CO = DU
30 CONTINUE
S = -S
C1 = -H
40 CONTINUE
CALL SCALE (U,FACT,6)
RETURN

Hon oo

END
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SUBROUTINE SETUP (FP,X1G,X2G,SP.CP)
COMMON /GEOM1/ X1,X2,ST,CT,TT,R2,R3,IVERT
DIMENSION FP(10)

c
C SET UP COMMON BLOCK GEOM1
C
ST = FP(4)
CT = FP(5)
TT = FP(6)
IVERT = O
IF (TT.EQ.90.0) IVERT = 1
SP = FP(7)
CP = FP(8)
X1C = FP(9)
X2C = FP(10)
CALL TRAN12 (X1G-X1C,X2G-X2C,SP.CP,X1,X2)
IF (ABS(X1).LE.1.E-6).X1 = 0.0
IF (ABS(X2).LE.1.E~6) X2 = 0.0
R2 = X2*ST
R3 = X2*CT
c
RETURN
END
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c

SUBROUTINE ZERO (A,N)
DIMENSION A(N)

ZERO ARRAY A

DO 101 = {,N
A(I) = 0.0

10 CONTINUE

RETURN

END

SUBROUTINE SCALE (A,S,N)
DIMENSION A(N)

SCALE ARRAY A BY S

D0 101 = 1,N
A(T) = A(1)*S

10 CONTINUE

RETURN

END

SUBROUTINE TRAN12 (X1,X2,SP,CP,Y1,Y2)

COORDINATE TRANSFORMATION IN X1G-X2G PLANE

Y1 = X1*CP + X2*SP
Y2 = -X1{*SP + X2*CP
RETURN

END

SUBROUTINE RS (CO.CH1)
COMMON /GEOM1/ X1t ,X2,ST,CY,TT,R2,R3,IVERT
COMMON /GEOM2/ D1,D2,C2,C3,R

C COMPUTE DISTANCE R

C

C2 = CO*CT

C3 = CO*ST

bt = X1-C1

D2 = X2-C2

R = SQRT(D1*D1+D2*D2+C3*C3)
RETURN

END
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FUNCTION SU1S (co.Ct)

COMMON /GEOM1/ X1,X2,ST.CT,TT,R2,R3,IVERT
COMMON /GEOM2/ D1.,D2.C2,C3,R

COMMON /ELAST/ V,V1,V2,V3 FACT

REAL K

DISPLACEMENT ON X3 = O STRIKE-SLIP

R3M = R3-CO
IF (ABS(R3M).LE.1.€E-6) R3M = 0.0
FRP = R+R3M
FRM = R-R3M

T1 = -4, *V1*ATAN2(R2*R,D1*R3M)
T2 = R2*D1*(1./FRP-V3/FRM)/R
RPC3 = R+C3

IF (IVERT.EQ.0) GO TO {1

T3 = 2.*V1¥V2*X2*D1/RPC3**2

GO TO 2

K = SQRT(D1*D{1+R2*R2)

RPK R+K

TOP (K-R2*CT ) *R3M-K¥YRPK*ST
BOT D1*RPK*CT

T3 = 4.*VI*V2*TT*(2.*TT*ATAN2(TOP .BOT)-D1/RPC3)

SU1S = T1+T72+4T3

RETURN
END
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FUNCTION SuU2s (CO.Ct)

COMMON /GEOM1/ Xx1,X2,ST,CT,TT,R2,R3,IVERT
COMMON /GEOM2/ D1.,D2.C2,.C3,R

COMMON /ELAST/ V.V1,V2,V3, FACT

U2 DISPLACEMENT ON X3 = O STRIKE-SLIP

R3M = R3-CO
IF (ABS{R3M).LE.1.E~6) R3M = 0.0

FRP = R+R3M

FRM = R-R3M

ALM = ALOG(FRM)

T1 = -V2*ST*(ALOG(FRP)+ALM)

T2 = (4.*VI*R2*CT+R2**2*ST*(1./FRP~-V3/FRM))/R

RPC3 = R+C3
1F (IVERT.EQ.O) GO TO 1
T3 = 2.*V1*V2*(C3/RPC3+ALOG(RPC3)+(X2/RPC3)**2)
GO TO 2
1 T3 = 4. *VI*V2*TT*(TT*(ALOG(RPC3)-ST*ALM)-D2/RPC3)

2 SU2S = T1+T2+73

RETURN
END
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FUNCTION SuU3s (co.ct)

COMMON /GEOM1/ X1,X2,ST,CT.TT,R2,R3,IVERT
COMMON /GEOM2/ D1,D2,C2,C3,R

COMMON /ELAST/ V,V1,V2 V3, ,FACT

DISPLACEMENT ON X3 = O STRIKE-SLIP

R3M = R3-CO
IF (ABS(R3M).LE.1.£-6) R3M = 0.0

FRP = R+R3M
FRM = R-R3M
ALM = ALOG(FRM)

T1 = V2*CT*(ALOG(FRP)+ALM)

T2 = (4.*V{*R2*ST-R2**2*CT*(1./FRP-V3/FRM))}/R
RPC3 = R+C3

IF (IVERT.EQ.0) GO TO 1

T3 = -4.*V{i*V2+X2/RPC3

GO TO 2

T3 = ~4.*Vi*V2+*TT+*(ALOG(RPC3)-ST*ALM)

SU3S = T1+T2+T3

RETURN
END
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FUNCTION SUID (CO,.C1)

COMMON /GEOM1/ X1,X2,ST,.CT,TT,R2,.R3,IVERT
COMMON /GEOM2/ D1,D2,C2,C3,R

COMMON /ELAST/ V,V1,V2,V3,FACT

DISPLACEMENT ON X3 = O DIP-SLIP

T 4.*V{*R2/R

T2 0.0

IF (IVERT.NE.O) GO TO 2

RPC3 = R+C3

T2 = 4.*V1*V2*(TT*(ST*ALOG(RPC3)-ALOG(R-R3+CO))-D2*ST/RPC3)

SUID = T1+T2

RETURN
END
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FUNCTION Su20 (CO,C1)

COMMON /GEOM1/ X1,X2,ST,CT,TT,R2,R3,IVERT
COMMON /GEOM2/ D1,02.C2,C3,R

COMMON /ELAST/ V,V1,V2, V3 FACT

REAL K

DISPLACEMENT ON X3 = O DIP-SLIP

R3M = R3-CO
IF (ABS(R3M).LE.1.E-6) R3IM = 0.0

T1 = -4.*V{*(CT*ATAN2(R2*R,D1*R3M)-R2+D2/(R*(R+D1)))
T2 = 0.0

IF (IVERT.NE.O) GO TO 2

K = SQRT(D1*D4+R2*R2)

RPK = R+K

TOP = (K-R2*CT)*R3M-K*RPK*ST

BOT = DI*RPK*CT

T2 = -4.*V4*V2*ST*(2.*TT“ATAN2(TOP,BOT)-D1/(R+C3))

SU2D = T1+T2

RETURN
END
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FUNCTION SU3D (CO,Ct)

COMMON /GEOM1/ X1,X2,ST,CT,TT,R2,R3,IVERT
COMMON /GEOM2/ D1.D2.C2.C3.R

COMMON /ELAST/ V,V1,V2,V3, FACT

REAL K

DISPLACEMENT ON X3 = O DIP-SLIP

R3M = R3-CO
IF (ABS(R3M).LE.1.E-6) R3M = 0.0

T1 = 4. *V{*(ST*ATAN2(D1*R3M ,R2*R)-R2¥C3/(R*(R+D1)))
K = SQRT(D1*D1+R2*R2)

RPK = R+K

TOP = (K-R2*CT)*R3M-K*RPK*ST
BOT = -D1*RPK=*CT

T2 = -8.*V1*V2*ST*ATAN2(TOP,BOT)

SU3D = T1+T2

RETURN
END
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SUBROUTINE TRIANG (XG,U1G,U2G,A,D. T, TITLE,NAC,NS,MDATA NF NDF,
1 15S.1DS,NR)
DIMENSION XG(2.1) . UIG(NS,NF ,NDF),U2G(NS,NF ,NDF),A(MDATA, 1)
DIMENSION D(1),T(MDATA,2).TITLE(20)
DIMENSION 10S(20),AC(20),V(20),VP(20)
INTEGER LIST(1)/1H*/
c
C ASSEMBLE MODEL AND DATA COVARIANCE MATRICES FOR ANGLE CHANGE DATA
c
SPR = 162.0/ATAN(1.0)
NDAT = O
WRITE (6,600) TITLE
10 CONTINUE
READ (5,LIST) ISA.ND
WRITE (6,601) ISA
IF (ND.GT.20) CALL ERROR (5,.ND,4HTRIA)

READ (5,LIST) (IOS(K),K = 1,ND)
WRITE (6.602) (IOS(K).K = 1.ND}
NDM1 = ND-1

NDAT = NDAT+NDOM1

READ (5,L1ST) (AC(K).K = 1,NDM1)
WRITE (6,603) (AC(K),K = 1,NDM1)
READ (5,LIST) (V(K),K = 1,ND)
WRITE (6,604) (V(K),K = 1,ND)
READ (5,LIST) (VP(K),K = 1.ND)
WRITE (6,605) (VP(K).,K = 1 ,ND)

X1A = XG(1.,1SA)
X2A = XG(2,ISA)
DO 40 J = 2,ND
10SUM1 = 10S(J-1t)
10SJ = 10S(J)

DX1B = XG(1,I0SUMt) - X1A

DX1C = XG(1,I0SJ ) - X1A

DX2B = XG(2,10SuM1) - X2A

DX2C = XG(2,I0SJ ) - X2A

NR = NR+t{ -
D(NR) = AC(uU-1)

T(NR, 1) = V(JI+VP(J)+V(U-1)+VP(U-1)
T(NR,2) = -v(J)-VP(J)
NC = O
DO 30 K = {,NF
IF (ISS.EQ.0) GO TO 25

C

C STRIKE-SLIP

C
DUIB = UIG(IOSUMI K,1) - UIG(ISA . K, 1)
DUIC = UIG(IOSY ,K,1) - UIG(ISA.K,1)
DU2B = U2G(IOSUMI K,1) - U2G(ISA,K,1)
DU2C = U2G(I0OSY K, 1) - U2G(ISA,K,1)
NC = NC+1
A(NR,NC) = DALPHA(DX1B,DX2B,DX1C,DX2C,DU1B,DU2B,DU{IC,DU2C)*SPR

C

C DIP-SLIP

C
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25

CONTINUE
IF (IDS.EQ.O0) GO TO 30

DU1B = U1G(IOSUM1,K,NDF) - U1G(ISA, K, NDF)

DUIC = UIG(IOSY ,K,NDF) -~ UIG(ISA,K.NDF)

DU2B = U2G(IOSJUM1,K,NDF) - U2G(ISA,K,NDF)

DU2C = U2G(10SJ ,K,NDF) - U2G(ISA,K,NDF)

NC = NC+1

A(NR,NC) = DALPHA(DX1B.DX2B.DX1C,DX2C.DU{B,DU2B,DUIC,DU2C)*SPR
CONTINUE
CONT INUE

IF (NDAT.LT.NAC) GO TO 10
T(NR,2) = 0.0
RETURN

FORMAT (1H1,20A4//36H MODEL MATRIX FOR TRIANGULATION DATA)
FORMAT (//11H STATION # ,15)

FORMAT (1HO,5X, 19HOBSERVED STATIONS: ,2015)

FORMAT (1HO,5X,25HANGLE CHANGES (SECONDS): ,10(F6.3,2X))
FORMAT (1HO,SX,30HPREVIOUS VARIANCES (SECS**2): ,10(E10.3,2X))
FORMAT (1HO,S5X.30HPRESENT VARIANCES (SECS**2): ,10(E10.3,2X))

END

FUNCTION DALPHA (DX1B,DX2B.0X1C,DX2C,DU1B,DU2B,DU1C,DU2C)

C COMPUTE ANGLE CHANGE D(<BAC) AT STATION A

c

DAC2 DX1C**2+DX2C**2

DAB2 DX 18**2+DX2B**2

T1 = (DX1C*DU2C-DX2C*DUIC)/DAC2
T2 = (DX1B*DU2B-DX2B*DU1B)/DAB2
DALPHA = T1-T2

nou

RETURN
END
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SUBROUTINE TRILAT (XG,U1G,U2G,A.D,T.TITLE,NLLC, NS ,MDATA, NF, NDF,
1 1SS.IDS,NR)
DIMENSION XG(2,1),U1G(NS,NF ,NDF), U2G(NS,NF ,NDF ), A(MDATA, 1)
DIMENSION D(1),T(MDATA,2),TITLE(20)
DIMENSION 10S(20),0L(20),V{(20)
INTEGER LIST(1)/1H*/
C
C COMPUTE MODEL MATRIX FOR TRILATERATION DATA
c
NDAT = O
WRITE (6,600) TITLE
10 CONTINUE
READ (5,LIST) ISA,NL
WRITE (6,601) ISA
IF (NL.GT.20) CALL ERROR (6,NL,4HTRIL)
READ (5,LIST) (I0S(K).K = 1,NL)
WRITE (6.602) (10S(K).K = 1,NL)
READ (5,LIST) (DL(K),K 1.NL)
WRITE (6,603) (DL(K).,K 1,NL)
READ (5,LIST) (V(K),K = 1,NL)
WRITE (6,604) (V(K),K = 1,NL)
X1A = XG(1,1SA)
X2A = XG(2,I1SA)
NDAT = NDAT+NL
DO 40 J = 1,NL
10SJ = 10S(J)
DX1B = XG(1,I10SJ)-X1A
DX2B = XG{({2,I0SJ)-X2A
NR = NR+1
T(NR,1) = V(J)*2.
T(NR,2) = 0.0
D(NR) = DL(J)
NC = O
DO 30 K = {,NF
IF (ISS.EQ.Q0) GO TO 25
DUIB = UIG(I0SJU.K,1)-UIG(ISA.K, 1)
DU2B = U2G(I10SJ.K,1)}-U2G(ISA.K, 1)
NC = NC+1
A(NR . NC) = DLINE(DX1B,DX2B,DU1B,DU2B)

[}

c

C DIP-SLIP

c

25 CONTINUE

If (IDS.EQ.0) GO TO 30
DU1B = U1G(I0SU.K.NDF)-U1G(ISA K, NDF)
DU2B = U2G(IO0SJU,K,NDF)-U2G(ISA,K ,NDF)
NC = NC+1
A(NR,NC) = DLINE(DX1B,DX2B.DU1B,DU2B)

30 CONTINUE
40 CONTINUE

IF (NDAT.LT.NLLC) GO TO 10
RETURN

JRAR:



C

600
601
602
603
604

FORMAT (1Ht,20A4//36H MODEL MATRIX FOR TRILATERATION DATA)
FORMAT (//%iH STATION # ,I15)

FORMAT (1HO,5X. t9HOBSERVED STATIONS: 2015}

FORMAT ( 1HO,5X,25HLINE LENGTH CHANGES (M): ,10(F6.3,2X))
FORMAT ( {HO,5X,23HDATA VARIANCES (M**2): ,10(E10.3,2X))

END

FUNCTION DLINE (DX1B,DX28,DU1B,DU2B)

C COMPUTE LINE LENGTH CHANGE

C

DAB = SQRT(DX1B*0OX1B+DX28*DX2B)
DLINE = (DX1B*DU1B+DX2B8*DU2B)/DAB
RETURN

END
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SUBROUTINE LEVEL(U3G,A,D.T,TITLE . NEC NS MDATA ,NF NDF,ISS,IDS,NR)
DIMENSION U3G{NS ,NF ,NDF) ,A(MDATA,1) .D(1) T(MDATA,2),TITLE(20)
INTEGER LIST(1)/tH*/

C
C MODEL MATRIX FOR LEVELLING DATA
C
NDAT = O
WRITE (6.600) TITLE
5 CONTINUE
READ (5,LIST) IS.DE,V.VP
WRITE (6,601) 1S,DE,V,VP
NR = NR+1
NDAT = NDAT+1
T(NR.1) = V+VvP
T(NR,2) = 0.0
D(NR) = DE
NC = O
DO 20 J = 1,NF
IF (ISS.EQ.0) GO TO 10
NC = NC+1
A(NR,NC) = U3G(IS,J,1)
C
10 CONTINUE
IF (IDS.EQ.O) GO TO 20
NC = NC+1
A(NR,NC) = U3G(IS.J,NDF)
Cc

20 CONTINUE
IF (NDAT.LT.NEC) GO TO 5
RETURN

600 FORMAT (1H1,20A4//32H MODEL MATRIX FOR LEVELLING DATA)
601 FORMAT (//11H STATION # ,15/

1 1HO.5X ,20HELEVATION CHANGE = ,E10.3/
2 1H ,5X.20HPREVIOUS VARIANCE = .E£10.3/
3 1H ,5X.20HPRESENT VARIANCE = ,E10.3)

END
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SUBROUTINE ZWCOMP (A,D,T,.MDIM,M,N)
DIMENSION A(MDIM,1).D(1),T(MDIM, 2}

CALL TRIFA (T(1,1).7T(1,2).M,INFO)
IF (INFO.NE.Q) CALL ERROR (6,INF0,0)
DO 10 J = 1,N
CALL TRISOL (T(14,1),T(1,2),A(1,U).M)
CONTINUE
CALL TRISOL (T(1,1),T(1.2).0.M)
RETURN
END

SUBROUTINE TRIFA (D.E,N,INFO)
DIMENSION D(1),E(1)

INFO = 1

IF (D(1).LT.0.0) RETURN

D(1) = SQRT(D(1))

INFO = O

DO 101 =
IM1 = I-
EIMt = E(IM1)/D(IM1)
E(IM1) = EIM1
S = D(I)-EIMI*EIM}
INFO = 1
IF (S.LT.0.0) RETURN
D(I) = SQRT(S)
INFO = O

CONT INUE

RETURN

2,N
1
(

END

SUBROUTINE TRISOL (D,E.B,N)
DIMENSION D(1),E(1),.B(1)

B(1) = B(1)/D(1)
IF (N.EQ.1) RETURN
D0 101 = 2,N
IM1 = I-1
B(I) = (B(I)-E(IM1)*B(IM1))/D(1)
CONTINUE
RETURN

END
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SUBROUTINE ULS (A,D,V,S,X,G,KR,TOL ,MDIM,M ,NDIM,N)
DIMENSION A(MDIM,1),D(1),VINDIM, 1),G(1),X(1),5(1)
LOGICAL MATU,MATV

SOLVE LEAST SQUARES PROBLEM USING SVD

MATU
MATV

.TRUE.
.TRUE .

[ 3

CALL SVD (MDIM,M,NDIM,N,A,S,MATU,A ,MATV,V, IERR,G)
IF (1ERR.GT.0) CALL ERROR (8,IERR,4HULS )

DETERMINE EFFECTIVE RANK-
DO 101 = {,N
IF (S(I).LT.TOL) GO TO 15
KR = I
10 CONTINUE

15 CONTINUE

DO 30 K = 1,KR
SUM = 0.0
DO 201 = 1,M

SUM = SUM+A(I,K)*D(1)
20 CONTINUE

G(K) = SUM/S(K)
30 CONTINUE

DO 50 J = 1,N
SUM = 0.0
DO 40 K = 1,KR
SUM = SUM+V(J,K)*G(K)
40 CONTINUE
X(J) = SUM
50 CONTINUE
RETURN
END
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SUBROUTINE ULSOUT (U,D,V,S,X,G,TOL,KR,MDIM,M NDIM,N,IS5,1DS),
DIMENSION U(MDIM, 1),S(N),V(NDIM, 1) ,X(N),D(M),G(N)

PRINT SINGULAR VALUES

WRITE (6,601) (S(I).I = 1,N)
WRITE (6.602) TOL,.KR

COMPUTE SOLUTION VARIANCE

10

20

DO 20 I = 1{1,N
SUM = 0.0
DO 10 K = 1{,KR
SUM = SUM+(V(I K)/S(K))**2
CONTINUE
G(I) = SUM
CONT INUE

PRINT SOLUTION

30

35

40

45

50

55

60

IF (ISS.EQ.1 .AND. IDS.EQ.1) GO TO 30
If (ISS.EQ.1 .AND. IDS.EQ.O) GO TO 40
IF (ISS.EQ.O .AND. IDS.EQ.1) GO TO 50

WRITE (6,630)
DO 35 I = {,N,2
SI = SQRT(G(1))
SIP1 = SQRT(G(I+1))
WRITE (6,605) X(I).SI,X(1+1),S1iP1
CONTINUE
GO TO 60

WRITE (6,640)
DO 45 1 = 1,N
SI = SQRT(G(1))
WRITE (6,605) X(1),SI
CONTINUE
GO TO 60

WRITE (6,650)
DO 55 I = {,N
SI = SQRT(G(I))
WRITE (6,605) X(1),S1

CONTINUE
CONTINUE
WRITE (6,620)
SST = 0.0
SSE = 0.0
DO 10O I = .M
SUM = 0.0
DO 70 K = 1,KR
SUM = SUM+U(I,K)**2

G(K) = U(I.K)*S(K)

TAR:



C

c

70 CONTINUE

DIMP = SUM
SUM = 0.0
DO 80 J = {,N
Al = 0.0
B0 75 K = 1,KR
AIJ = ATJ+G(K)*V(J,K)

75 CONTINU
SUM = SUM+ATJ*X(J)
80 CONTINUE
DHAT = SUM
R = D(I)-DHAT
WRITE (6,625) D(I),DHAT,R,DIMP
SST = SST+D(1)**2
SSE = SSE+R**2
100 CONTINUE
SSR = SST-SSE
CC = SSR/SST
WRITE (6.626) SSE,SST,SSR,.CC

IF (KR.EQ.N) GO TO 150
WRITE (6,670)

D0 130 1 = {1,N
D0 120 J = {,N
SUM = 0.0

DO 110 K = 1 _KR
SUM = SUM+V(I ,K)*V(J,K)
110 CONTINUE
G(J) = SUM
120 CONTINUE
WRITE (6,675) (G(J),J = {,N)
130 CONTINUE

150 RETURN

601 FORMAT (/16H SINGULAR VALUES//1H ,10G12.5)
602 FORMAT (33HOTOLERANCE FOR SINGULAR VALUES = ,G12.5/
1 14H PSEUDORANK = ,I5)
620 FORMAT (/24H STATISTICS, IMPORTANCES//
1 1H ,8X,4HDATA,8X,4HDHAT,7X,5HERROR, 2X, 1OHIMPORTANCE/)
625 FORMAT (4H ,4E12.3)

626 FORMAT (/36H SUM OF SQUARED ERRORS (SSE) = ,G12.5/
1 36H TOTAL SUM OF SQUARES (SST) = ,G12.5/
2 36H REDUCTION IN SUM OF SQUARES (SSR) = ,G12.5/
3 36H CORRELATION COEFFICIENT = ,G12.5)

630 FORMAT (/14H SLIP ESTIMATE//

1 1H ,6X, 14HSTRIKE-SLIP(M),9X, 1 {HDIP-SLIP(M)/)
640 FORMAT (/14H SLIP ESTIMATE//1H ,6X,14HSTRIKE-SLIP(M)/)
650 FORMAT (/14H SLIP ESTIMATE//1H ,9X,11HDIP-SLIP(M)/)
605 FORMAT (1H ,2(S5X,F7.3,2H+-,F6.3))
670 FORMAT (18HORESOLUTION MATRIX/)
675 FORMAT (1H ,16G8.4)

END
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SUBROUTINE SVD (MDIM,M,NDIM,N,A,W,MATU,U,MATV,V, IERR,RV1)
REAL A(MDIM_N),W(N),U(MDIM,N) ,V(NDIM,N) ,RVI(N)
LOGICAL MATU,MATV
c
C COMPUTE SINGULAR VALUE DECOMPOSTTION OF MATRIX A
c
1ERR = O
DO 100 I
DO 100 J
u(1,d)
100 CONTINUE

H 0"

) SN

G = O.
SCALE
ANORM

[ )

0.0
0.0

DO 300 I = 1,N
L o= I+1
RVI(I) = SCALE*G
G = 0.0
SCALE = 0.0
S = 0.0
IF (I1.GT.M) GO TO 210

DO 120 K = I M
120 SCALE = SCALE+ABS(U(K,1))

IF (SCALE.EQ.0.0) GO TO 210

DO 130 K = I .M
U(K,I) = U(K,1)/SCALE
S = S+U(K,I)*=*2
130 CONTINUE

c
F = U(I,1)
G = -SIGN(SQRT(S).F)
H = F*G-S
U(I1,1) = F-G
IF (1.EQ.N) GO TO 190
c
DO 150 J = L.N
S = 0.0
c

DO 140 K = I M
S = S+U(K,I)*U(K,J)
140 CONTINUE

C
F = S/H
c
DO 150 K = I,M
U(K,J) = U(K,J)+F*U(K,1)
150 CONTINUE
c

180 DO 200 K

I.M
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200

210

220

230

240

250

260

270

280

290

300

U(K,TI) = SCALE*U(K.I)
CONTINUE

) = SCALE*G
= 0.0
IF (1.GT.M .0R. 1.EQ.N) GO TO 290

DO 220 K = L, N
SCALE = SCALE+ABS(U(I,K))

IF (SCALE.EQ.0.0) GO TO 280

DO 230 K L.N
U(I.K) U(I,K)/SCALE
S = S+U(I . K)*+*2
CONTINUE

F = U(L.,L)

G = -SIGN(SQRT(S),F)
H = F*G-$S

U(I.L) = r-G

DO 240 K = L,N

RVI(K) = U(I,K)/H
IF (1.EQ.M) GO TO 270

DO 260 J = L. M
S = 0.0

DO 250 K = L, ,N
S = S+U(U,K)*U(I,K)

CONTINUE
DO 260 K = L,N

U(J.K) = U(J.K)+S*RV1(K)
CONTINUE
DO 280 K = L,N

U(I.K) = SCALE*U(I,K)
CONTINUE

ANORM = AMAX1(ANORM,ABS(W(I))+ABS(RVI(I)))
CONT INUE
IF (.NOT.MATV) GO TO 410
DO 400 II = 1,N
I = N+1-11

IF (1.EQ.N) GO TO 390
IF (G.EQ.0.0) GO TO 360
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320

340

350

360

380

390

400

410

420

430

440

450

460
470

DO 320 J = L.N
V(J.I) = (U(1.J)/U(I,L)}/G
CONTINUE

DO 350 J = L,N
S = 0.0

DO 340 K = L,N
S = S+U(I.K)*V(K,J)

CONT INUE
DO 350 K = L,N
V(K,J) = V(K,J)+S*V(K, 1)
CONTINUE
DO 380 J = L.N
v(I,J) = 0.0
v(Jy,1) = 0.0
CONT INUE
v(r,1) = 1.0
G = RVI(1)
L =1
CONT INUE

IF (.NOT.MATU) GO TO 510
MN = N

IF (M.LT.N) MN = M

DO 500 I1 = { ,MN

MN+1-T11

I+1

w(I)

F (1.EQ.N) GO TO 430

# o

1
L
G
I

L.N

DO 420 J =
= 0.0

u(r,dJ)

IF (G.EQ.0.0) GO TO 475
IF (1.EQ.MN) GO TO 460

DO 450 U = L.N
S = 0.0

DO 440 K = L.,M

S = SHU(K.I)*U(K.J)

F = (s/u(1.1))/G6

DO 450 K = I M
U(K,J) = U(K,J)+F*U(K,I)
CONTINUE
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DO 470 U = I.M
U(J. 1) = Uy, 1)/6



475
480

430
500

510

520

530

540

5§50

560

565

GO TO 490

DO 480 U = I.M
u(J,1) = 0.0

U(I,1) = W(I,1)+1.0
CONTINUE

DO 700 KK = 1,N
K1 = N-KK
K = K1+1
ITS = O

DO %30 LL = 1.,K
L1 = K-LL
L = Li+1
IF (ABS(RV1(L))+ANORM EQ.ANORM) GO TO 565

IF (ABS(W(L1))+ANORM.EQ.ANORM) GO TO 540
CONTINUE

0.0

C
S 1.0

DO 560 I = L.,K
F = S*RVI(I)
RVI(1) = C*RV1(1)
IF (ABS(F)+ANORM.EQ.ANORM) GO TO 565

G = W(I)

H = SQRT(F*F+G*G)

w(I) = H

C = G/H

S = -F/H

IF (.NOT.MATU) GO TO 560

DO S50 J = 1,M
Y = u(J.L1)
Z = Uu(u,1)
U(J,L1) = Y*C+Z*S
U(J,I) = -Y*S+Z2*C
CONTINUE

CONTINUE

Z = W(K)

IF (L.EQ.K) GO TO 650

IF (ITS.EQ.30) GO TO 1000
ITS = ITS+4

X = W(L)

Y = W(K1)

G = RVI(KI)

H = RV1(K)

F = ((Y-2)*(Y+Z) + (G-H)*(G+H))/(2.0*H*Y)
G = SQRT(F*F+1.0)
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570

575

580

590

600

650

F o= ((X=Z)*(X+Z)+H*(Y/(F+SIGN(G,F))-H))/X
cC=1.0
S = 1.0
DO 600 IV = L ,K1
I = [1+1
G = RVI(1)
Y = w(l)
H = S+*G
G = C*G
Z = SQRT{(F¥F+H*H)
RVI(It) = 2
C = F/2
S = H/Z
F = X*C+G*S
G = -X*S+G*C
H = Y*S§
Y = ¥Y*C
IF (.NOT.MATV) GO TO 575
DO 570 J = 1,N
X = v(J,11)
Z = V(J,1)
V(J,.I1) = X*C+Z+S
V(J,1) = -X*¥$+Z+*C
CONT INUE
Z = SQRT(F*F+H*H)
W(It1) = 2
IF (2.EQ.0.0) GO TO 580
C = F/2
S = H/Z
F = C*G+S*Y
X = ~S*G+C*Y
IF (.NOT.MATU) GO TO 600
DO 590 J = 1., M
Y = U(u.,I1)
Z = U(J,1)
U(J,I1) = Y*C+Z+*S
U(J.1) = -v*s532Z+C
CONTINUE
CONTINUE
RVI(L) = 0.0 .
RVI(K) = F
W(K) = X
GO TO 520

If (Z.GE.0.0) GD TO 700
W(K) = -2
IF (.NOT.MATV) GO TO 700
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DO 690 U = {.N
690 V(J,K) = -V(J,K)
C
700 CONTINUE
C
C SORT SINGULAR VALUES
C

KR = MINO(M,N)
KRM1 = KR-1
DO 740 K = 1,KRM{
T=-1.0
DO 710 I = K,KR
IF (W(I).LT.T) GO TO 710
T = wW(I)
L= 1
710 CONTINUE
IF (L.EQ.K) GO TO 740
W(L) = W(K)
W(K) = T
IF (.NOT.MATV .OR. K.GT.N) GO TO 725
po 720 1 = 1,N

T = v(I,L)
V(I.L) = V(I.K)
vV(I.K) =T

720 CONTINUE

725 CONTINUE
IF (.NOT.MATU .OR. K.GT.M) GO TO 740
DO 730 1 = t,M

T = U({I,L)
u(r,.L) = u(I,k)
U(I,K) = 7

730 CONTINUE
740 CONTINUE

GO T0O 1001
1000 IERR = K
1001 RETURN
END
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SUBROUTINE CONMAT (8,C.NC,N)

DIMENSION B(NC,N),C(NC)

INTEGER LIST(1)/1H*/
c
C READ CONSTRAINTS FOR CONSTRAINED LEAST SQUARES ESTIMATE
c

WRITE (6,600) NC

DO 101 = 1,NC

READ (5,LIST) (B(I,J),J = 1,N),C(I1)
WRITE (6,605) (B(I,J),d = 1,N),C(I)
10 CONTINUE
RETURN
C
600 FORMAT (/18H CONSTRAINT MATRIX//
1 25H NUMBER OF CONSTRAINTS = ,I15/)
605 FORMAT (1H ,11€12.3)
c
END
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SUBROUTINE CLS (A,D,B,C.X,MDIM,M,N,PDIM,P,JyP ,RHO,UA, UB,

1 TOL,SSC,INFO)

INTEGER P,PDIM,PP1

DIMENSION A(MDIM,N),B(PDIM,N) ,D(M),C(P),JP(N),RHO(N) UA(M),

1 X(N) ., UB(P)
c
C SOLVE CONSTRAINED LEAST SQUARES PROBLEM
c
PP1 = P+1
DO 20 J = 1.N
JP(J) =dJ
SUM = 0.0

DO 101 = 1,pP
SUM = SUM+B(I,yu)**2
10 CONTINUE
RHO(J) = SUM
20 CONTINUE
c
INFO = O
DO 60 K = 1,P
RHOMAX = 0.0
JUMAX = K
DO 30 J = K,N
IF (RHO(J).LE.RHOMAX) GO TO 30
RHOMAX = RHO(J)
JMAX = J
30 CONTINUE
IF (JMAX.EQ.K) GO TO 40
IF (RHOMAX.LE.TOL) GO TO 55
CALL SWAP (P.B(1,K).B(1,UMAX))
CALL SWAP (M,A(1,K),A(1,uMAX))
H = RHO(K)
RHO(K) = RHO(JMAX)
RHO(UMAX) = H
IH = JUP(K)
JP(K) = JP(JMAX)
JP(JMAX) = IH
(o
C APPLY HOUSEHOLDER TRANSFORMATIONS TO B AND C
c
40 CONTINUE
CALL HTRAN (B(1,K),UB,ALPHA BETA .K,P)
B(K,K) = -ALPHA
IF (K.EQ.N) GO TO 60
KPt = K+1
DO 50 J = KP1,N
CALL HTAPP (B(1,J).UB,BETA .K,P)
RHO(J) = RHO(UJ)-B(K,J)**2
50 CONTINUE
CALL HTAPP (C,UB.BETA ,K.P)
GO TO 60
c
C CONSTRAINTS INCONSISTENT OR REDUNDANT
c
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55 INFO = K

c
60 CONTINUE
c
IF (INFO.NE.O) RETURN
c
DO 130 I = 1. M
(o
A(I, 1) = A(I,1)/B(1,1)
IF (P.LE.1) GD TO 95
DQ 90 J = 2,P
SUM = A(1.,4)
M1 = J-1
DO 80 K = 1,UM1
SUM = SUM-A(I,K)*B(K,J)
80 CONTINUE
A(I,J) = SUM/B(J,J)
80 CONTINUE
c

95 CONTINUE
DO 110 J = PP1{,N
SUM = A(I,J)
DO 100 K = 1,P
SUM = SUM-A(I .K)*B(K,J)
100 CONTINUE
A(I,J) = SUM
110 CONTINUE

Sum = D(I)
DO 120 K = {,P
SUM = SUM-A(I,K)*C(K)
120 CONTINUE
D(1) = SuMm
o}
130 CONTINUE
o}
C APPLY HOUSEHOLDER TRANSFORMATION TO A(N-P)
[
DO 160 K = PP{,N
CALL HTRAN (A(1,K),UA,ALPHA ,BETA K-P,M)
A(K-P,K) = -ALPHA
CALL HTAPP (D,UA,BETA,K-P.,M)
IF (K.EQ.N) GO TO 160
KP1 = K+1
DO 150 J = KPI,N
CALL HTAPP (A(1,J).UA ,BETA ,K-P,M)
150 CONTINUE
160 CONTINUE
C
C SOLVE FOR X
Cc
NMP = N-P
NMP1 = NMP+1
§SC = 0.0
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DO 165 I = NMP1{ M
SSC = SSC+D(I)*+2
165 CONTINUE
00 190 JB = 1 ,NMP
J = NMP+1{-UB

X(U+P) = D(J)/A(U.U+P)

XJ = X(J+P)
IF (JV.EQ.1) GO TO 175
JdMi1 = J-1

DO 170 1 = 1,UM{

D(I) = D(I)-A(I,J+P)*XJ

170 CONTINUE
175 b0 180 I = {,P

C(I) = C(I)-B(I.J+P)*Xy

180 CONTINUE
190 CONTINUE

DO 200 JB = {,P
J = P+1-UB
X(J) = C(J)/B(U,J)
IF (J.EQ.1) GO TO 200
XJ = X(J)
UM1 = U-d
DO 195 I = 4,JUMi
C(1) = C(1)-B(I,J)*Xd
195 CONTINUE
200 CONTINUE
C
C UNSCRAMBLE SOLUTION VECTOR
c
DO 210 J = 1,N
IF (JP(J).EQ.J) GO TO

K = JP(J)
JP(K) = K
H = X(J).
X(J) = X(K)
X(K) = H
210 CONTINUE
c
RETURN
END

210
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SUBROUTINE HTRAN (A,U,ALPHA BETA,IP M)

DIMENSION A(M), U(M)

C COMPUTE HOUSEHOLDER TRANSFORMATION

C

ALPHA = 0.0
DO 101 = IP,M

u(r) = A(I)
ALPHA = ALPHA+U(I)**2
CONT INUE

ALPHA = SQRT(ALPHA)

IF (UCIP).LT.0.0) ALPHA = -ALPHA
U(IP) = U(IP)+ALPHA

BETA = ALPHA*U(IP)

RETURN

-END
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SUBROUTINE HTAPP (B,U,BETA,.IP,M)
DIMENSION B(M),U(M)
c
C APPLY HOUSEHOLDER TRANSFORMATION TO VECTOR B
c
IF (BETA.EQ.0.0) RETURN
GAMMA = 0.0
DO 101 = IP,M
GAMMA = GAMMA+U(I1)*B(1)
10 CONTINUE
GAMMA = GAMMA/BETA
DO 20 1 = IP,M
B(I) = B(I)-GAMMA*U(I)
20 CONTINUE

RETURN
END
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SUBROUTINE SWAP (N,X,Y)

DIMENSION X(N),Y(N)
c
C INTERCHANGE CONTENTS OF VECTORS X AND Y
c

IF (N.LE.O) RETURN

M = MOD(N,3)

IF (M.EQ.0) GO TO 20

DO 101 = 1,M -

T = x(1)
X(1) = v(I)
Y(ry = 7

1O CONTINUE

IF (N.LT.3) RETURN
20 MP1 = M+

DO 30 I = MP1,N,3

30 CONTINUE
C
RETURN
END
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SUBROUTINE CLSOUT (X,SSC,N,ISS,IDS)
DIMENSION X(N)

PRINT CONSTRAINED SOLUTION

IF (ISS.EQ.1 _AND. IDS.EQ.1) GO TO 30
IF (ISS.EQ.1 .AND. IDS.EQ.O) GO TO 40
IF (ISS.EQ.0 .AND. IDS.EQ.1) GO TO 50

30 WRITE (6,630)
DO 35 I = 1,N,2
WRITE (6,605) X(I),X(I+1)
35 CONTINUE
GO TO 60

40 WRITE (6,640)
DO 45 I = {,N
WRITE (6,605) X(I)
45 CONTINUE
GO TO 60

50 WRITE (6,650)
DO 55 I = 1,N
WRITE (6,605) X(I)
55 CONTINUE

60 WRITE (6.620) SSC
RETURN

630 FORMAT (/14H SLIP ESTIMATE//

1 1H ,6X, 14HSTRIKE-SLIP(M),8X, 11HDIP-SLIP(M)/)
640 FORMAT (/14H SLIP ESTIMATE//1H .6X,14HSTRIKE-SLIP(M)/)
650 FORMAT (/14H SLIP ESTIMATE//1H ,9X,1tHDIP-SLIP(M)/)
605 FORMAT (1H ,2(13X,F7.3))
620 FORMAT (/30H SUM OF SQUARED ERRORS (SSC) = ,G12.5)

END
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