
Geomatics Canada

2014

The GeoHashTree: a multiresolution data
structure for the management of point clouds

N. Sabo, A. Beaulieu, D. Bélanger, Y. Belzile, and B. Piché

Technical Note 4

Technical Note 4

Geomatics Canada

The GeoHashTree: a multiresolution data
structure for the management of point clouds

N. Sabo, A. Beaulieu, D. Bélanger, Y. Belzile, and B. Piché

2014

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural
Resources Canada, 2014

ISSN 1914-4229
Catalogue No. M103-1/4-2014E-PDF
ISBN 978-1-100-23098-6
doi:10.4095/293383

A copy of this publication is also available for reference in depository
libraries across Canada through access to the Depository Services Program’s
Web site at http://dsp-psd.pwgsc.gc.ca

This publication is available for free download through GEOSCAN
(http://geoscan.ess.nrcan.gc.ca).

Cette publication est aussi disponible en français.

Recommended citation
Sabo, N., Beaulieu, A., Bélanger, D., Belzile, Y., and Piché, B., 2014. The GeoHashTree: a

multiresolution data structure for the management of point clouds; Geomatics Canada, Technical
Note 4, 12 p. doi:10.4095/293383

Critical reviewer
J. Brodeur

Authors
N. Sabo (Nouri.Sabo@RNCan-NRCan.gc.ca)
A. Beaulieu (Alexandre.Beaulieu@RNCan-NRCan.gc.ca)
D. Bélanger (David.Belanger@RNCan-NRCan.gc.ca)
Y. Belzile (Yves.Belzile@RNCan-NRCan.gc.ca)
B. Piché (Benoit.Piche@RNCan-NRCan.gc.ca)
Centre for Topographic Information – Sherbrooke
2144, rue King Ouest
Sherbrooke, Quebec
J1J 2E8

Correction date:

All requests for permission to reproduce this work, in whole or in part, for
purposes of commercial use, resale, or redistribution shall be addressed
to: Earth Sciences Sector Copyright Information Officer, Room
622C, 615 Booth Street, Ottawa, Ontario K1A 0E9.
E-mail: ESSCopyright@NRCan.gc.ca

1Technical Note 4 N. Sabo et al.

The GeoHashTree: a multiresolution data
structure for the management of point clouds

N. Sabo, A. Beaulieu, D. Bélanger, Y. Belzile, and B. Piché

Sabo, N., Beaulieu, A., Bélanger, D., Belzile, Y., and Piché, B., 2014. The GeoHashTree: a multiresolution
data structure for the management of point clouds; Geomatics Canada, Technical Note 4, 12 p.
doi:10.4095/293383

Abstract: Over a number of years, lidar has become one of the major elevation-data acquisition technol-
ogies. However, the management of lidar data is extremely complex due to the phenomenal amount of data
generated by this technology. To facilitate lidar-data management, this article proposes a GeoHashTree,
which is a multiresolution data structure for managing different types of point clouds. The GeoHashTree
is a hierarchical structure which can present data of regular or irregular distribution with various levels
of abstraction. In addition to facilitating the management of point clouds, this structure reduces data
storage space considerably, while also facilitating data access and handling. This article introduces the
GeoHashTree and describes a prototype based on it.

Résumé : Depuis un certain nombre d’années, le lidar est devenu une des importantes technologies
d’acquisition des données altimétriques. Cependant, la gestion des données lidar est très complexe,
compte tenu de la quantité phénoménale de données que génère cette technologie. Pour faciliter la ges-
tion des données lidar, cet article propose le GeoHashTree, une structure de données qui permet de gérer
différents types de nuages de points, à de multiples résolutions. Le GeoHashTree est une structure hiérar-
chique qui permet de présenter les données de distribution régulière ou irrégulière sous différents niveaux
d’abstraction. En plus de faciliter la gestion des nuages de points, cette structure permet de réduire con-
sidérablement l’espace de stockage de données tout en facilitant l’accès à ces données, ainsi que leur
manipulation. Cet article présente le GeoHashTree, ainsi qu’un prototype basé sur cette structure.

2 N. Sabo et al.Technical Note 4

INTRODUCTION

The ever growing popularity of elevation data and the use
of these data in many fields demonstrate the need for a good
knowledge of topography. In several countries, elevation data
are among the data in greatest demand. This is the case in
Canada, where elevation data account for 73% of all data down-
loads from the GeoBase portal (http://www.geobase.ca/). This
growing popularity of elevation data is largely attributable to
the impressive number of applications requiring this type of
data. Nowadays, many applications used in flood-risk man-
agement, telecommunications, regional and urban planning,
and various other fields cannot function without elevation
data. We can also foresee a greater need in the future. For
example, road-elevation data will soon be incorporated into
intelligent-transportation and automobile-driving–assistance
systems to reduce fuel consumption and greenhouse-gas
emissions by 4 to 12% (L. Sugarbaker, G. Snyder, and
D. Maune, 2012, presentation titled ‘Results of the National
Enhanced Elevation Assessment (NEEA)’, given at the 12th
International LiDAR Mapping Forum, Denver, Colorado,
January 23–25, 2012).

In many organizations, elevation data from various
sources, of varying degrees of precision, and from various
eras coexist. There are data gathered several decades ago
using conventional methods, and more recent and precise
data gathered by means of modern-day technologies, such
as lidar. Even if, at first glance, it might seem that only the
most recent and most precise data should be kept, the real-
ity is very different. In many regions and countries around
the world, elevation-data coverage is often a patchwork of
data of varying degrees of resolution and quality, gathered in
various eras. Moreover, even where the coverage is complete
and homogeneous, there is always a need for a variety of ele-
vation models (e.g. surface models, terrain models, canopy
models, etc.) and resolutions, because of the wide range of
applications. This is because, for one thing, some applica-
tions do not need very high-resolution data; and for another,
there is a growing demand for historical data, especially in
the climate-change field. This coexistence of data from vari-
ous sources leads to major integration problems, especially
since in most applications, these data must be integrated
with data other than elevation data (e.g. land-cover data).

In fact, the need for elevation data continues to grow and
become more specialized, and the acquisition technologies
for this type of data are becoming more and more numer-
ous and accessible, as well as better performing. Although
technological development in the past few years has resulted
in new sensors that can gather very high-precision and
high-resolution data, the generated data are becoming so
increasingly voluminous and complex that serious prob-
lems are arising in terms of management and utilization of
the data. For example, the current lidar sensors are able to
acquire up to one million points in a single second, with cen-
timetric vertical and horizontal precision. With one million
points per second, one can imagine the quantity of data that

can be gathered during major acquisition campaigns such
as country-wide campaigns. The management and utiliza-
tion of such a large quantity of data requires tools other than
those traditionally used to manage vector and raster data.

To facilitate the management, utilization, and integration
of elevation data of various types and resolutions, we propose
in this article a new data structure called the GeoHashTree
(GHT). The GHT is a multiresolution hierarchical structure
that can manage regularly and irregularly distributed data
(e.g. lidar data) at various levels of abstraction. Moreover,
given its capacity to index all of the data, this structure can
easily be integrated into database-management systems.

This paper provides an introduction to lidar data and their
management, followed by a description of this new struc-
ture and the presentation of a functional prototype based on
it. Test results are presented and discussed before the final
conclusions.

LIDAR DATA AND THEIR
MANAGEMENT

Lidar data

In the past few decades, lidar (light detection and rang-
ing) is one of the technologies that have radically changed
the method used to acquire elevation data. Although it
dates back to the 1960s, lidar technology is developing at
breakneck speed. The types of utilization of lidar data are
increasingly numerous and the sensors are becoming increas-
ingly better performing, which continually gives rise to new
challenges in terms of management and utilization of these
data. Unlike traditional photogrammetry, where the elevation
must be extracted from stereoscopic models, lidar provides
the elevation directly, thus saving time. In fact, lidar is more
than about elevation, because some of its attributes are used
for purposes other than elevation. For example, through the
use of lidargrammetry, some topographic features, such as
infrastructure, can be extracted by using pseudostereo pairs
created from intensity images and elevation.

Although on the one hand, this technology makes it
possible to acquire very high-precision data, the storage,
management, and utilization of these data nonetheless
present considerable challenges because of their irregular
distribution, their density, and the quantity of information
they contain. Unlike raster data, lidar data are irregularly dis-
tributed data in the form of point clouds that are not organized
logically, thus making it impossible to create a mathematical
function like that of the raster grid that can predict the co-
ordinates of the points. On the other hand, lidar produces a
phenomenal quantity of points, each one of which has no
fewer than a dozen attributes, often in different formats. For
example, the time required to acquire one million points has
decreased from more than 15 years (using surveying tech-
niques) to a few seconds using lidar technology (S. Daniel,

3Technical Note 4 N. Sabo et al.

2011, notes for the course ‘LiDAR terrestre et aéroporté :
principes et applications’ given at Laval University, Québec,
Quebec, on November 21, 2011). In addition, lidar is a mix
of several models (e.g. surface and terrain models) owing
to the multiplicity of returns. Although most often, two
main models are managed (i.e. surface and terrain models),
it should be taken into consideration that each return may
represent a model that may be used for other applications.
As mentioned above, the volume of data generated by these
technologies, combined with the complexity of these types
of data, make management and utilization of the data very
difficult.

For a long time, a file-management approach has been
used for storing and managing lidar data. However, a new
approach has emerged over a number of years that makes
it possible to manage lidar data in a database-management
system. In the next sections, we will discuss the two main
approaches to lidar-data management.

Lidar-data management using files

As stated above, lidar data are very complex because of
the many attributes they have and the huge volume of data
generated by this technology. Because their complexity
makes them difficult to manage and manipulate, lidar data
are usually managed differently depending on the users. For
example, companies that conduct the surveys manage the
data in the form of point clouds, while the end users often
make do with digital elevation models that are an interpola-
tion of the point clouds. The two types of data, i.e. point
clouds and digital models, are usually managed by using
files of different formats.

To store point clouds, ASCII or LAS file formats are gen-
erally used (ASPRS, 2012; Huber, 2011). The advantage of
the ASCII format is that people can read it, that it can be
read and edited by any text editor, and that it presents fewer
problems of compatibility between platforms. However, this
format is very voluminous and nonperforming when data are
manipulated, which makes it sometimes unusable. Given the
astronomical volume of point clouds, the use of the ASCII
format is becoming less attractive as a method of managing
a large quantity of data, which is why binary formats such as
LAS have made their appearance.

Over a number of years, LAS has become the de facto
standard for storing point clouds. LAS is a binary format that
uses a predetermined set of fixed-size attributes. It is a high-
performance format for data exchanges; unfortunately, in
native LAS format, the points are not ordered, which makes
arbitrary access to the data impossible (Graham, 2009). But
arbitrary access to data is vitally important in the utilization
of elevation data (e.g. to easily find the elevation of a point).
The LAS format is therefore a compromise between efficient
transmission of point clouds and flexibility (Graham, 2009).

So, in order to fully utilize point clouds by means of spa-
tial and attribute queries, they have to be indexed in order to
facilitate arbitrary access.

Although some software editors offer their own indexing
system, this approach poses serious problems.For one thing,
the indexing of billions of points may require a huge amount
of storage space, and for another, the index must be updated
each time a change is made to the data. With respect to LAS
format, the current specification does not allow the addition
of new attributes to an existing file, because the format has
a standard, fixed-size attribute structure intended solely for
lidar-data management, which makes it less flexible, if not
unusable, for the integration of data of various types and
sources.

Furthermore, the LAS format does not have any data-
generalization mechanism. The capacity to generalize lidar
data is crucial for data visualization. Without this capacity,
all of the data must be displayed regardless of the visual-
ization scale, which is unimaginable for a vast spatial area
(e.g. country-wide or region-wide scale), given the quantity
of points to be displayed. For all of these reasons, although
the LAS format performs well for production operations and
in terms of its level of compression, it is not well suited to
the data analysis and utilization process in circumstances
where the data must be arbitrarily accessed, integrated, and
updated.

The difficulty in managing and utilizing point clouds in
ASCII or LAS format has often prompted some organiza-
tions to convert lidar points into regularly distributed data
(e.g. raster data) in the form of digital models in order to
facilitate their manipulation. Although regularly distributed
data have their place in elevation-data management, such
conversions are irreversible and do not allow the richness
of the lidar data (i.e. precision and range of attributes) to
be retained. In fact, the digital models only take elevation
into account and leave out all of the other lidar attributes,
despite their usefulness in other applications (e.g. RGB for
visualization or intensity for the extraction of topographic
features).

In brief, the current methods for storing lidar data in
files have serious limitations in terms of managing, integrat-
ing, and utilizing various types of data. With a file method,
it would be very difficult to set up an effective system for
managing data covering a large territory because, on the one
hand, many operating systems are limited in terms of the
size of files and, on the other hand, partitioning the data into
several files would require setting up a system that would be
able to index the data, ensure continuity and integrity of the
data, avoid data overlap, provide multiple, concurrent access
to data, and so on.

To facilitate the management and utilization of point
clouds and their integration with other types of data, one
solution is to store them in a database-management system.

4 N. Sabo et al.Technical Note 4

Modern databases already integrate the main types of spatial
data (vector and raster), which would facilitate the integra-
tion and interaction of point clouds with these types of data.

Lidar-data management in a database-
management system

In the past few years, considerable effort has gone into
making it easier to integrate point clouds into a database in
the same way as other types of existing data, such as vector
and raster data, which are currently managed in a variety
of databases (Nandigam et al., 2010; Arias Prado, 2011;
Ott, 2012). There are several advantages to managing point
clouds in a database: (1) the benefits that a database provides
in terms of security, concurrent access, user management,
scalability, management of updates, quick access through
high-performance indexing and partitioning systems, cloud
computing, and version control; (2) easier utilization due to
the SQL language; (3) easier interaction with other types
of data already stored in databases (e.g. vector and raster
data); and (4) seamless integration between disparate data
sets, combined with the possible use of an abundant range
of operating tools (Graham, 2009). The use of files to man-
age point clouds is viable for projects that involve limited
space coverage. However, in the case of large-scale cover-
age on a regional or national scale (for example, Canada’s
landmass of more than 10 million km2), the use of a database
is more appropriate, given the above-mentioned flexibility
and advantages, and also considering that modern-day data-
bases already provide the basic infrastructure to facilitate
large-scale coverage (e.g. extension mechanisms).

To store point clouds in a database, three principal
methods may be considered: the single-point method, the
multipoint method and the tile method.

The single-point method consists of storing each point
in vector form (i.e. one record per point) and indexing
them. Each point attribute constitutes a separate field.
This is a very easy solution to implement because the
point type and the tools capable of manipulating it are
found in the majority of database-management systems.
However, this method has serious limitations: the index-
ing of billions of points requires a commensurate amount
of storage space, and updating of the index after changes
are made is time-consuming.

The multipoint method consists of storing sets of points in
blocks (in the form of binary large objects, or BLOBs)
instead of storing each point individually. With this
method, attributes and geometries are stored in differ-
ent fields: a field for storing the geometries of the set of
points in the block, in addition to as many fields as there
are attributes. This method may be considered an opti-
mization of the single-point method because it requires
fewer saving operations and is consequently easier to
index, resulting in better performance and enhanced stor-
age space. However, this method requires the addition of

a spatial-extent field to each block. This field makes it
possible to spatially index the blocks in order to facili-
tate spatial queries. Moreover, the fact that the attributes
are in blocks and dissociated from the geometry can
make some operations more difficult, such as a spatial
query combined with an attribute query. Since the points
inside a block are not indexed, arbitrary access to the
points inside a block is impossible, which may create
performance problems in the case of large-size blocks.

The tile method is used to subdivide data into smaller size
tiles and to store each tile in BLOB form. Unlike in the
preceding method, the attributes and geometry form a
whole. The tiles can be stored by making partial or com-
plete use of an existing structure or format (e.g. LAS)
in order to encompass the points and their attributes. To
facilitate access to the data, the extent of each tile can
be spatially indexed. This method has more advantages
in terms of storage than the preceding two; however, it
inherits all of the advantages and deficiencies of the tile
format. For example, in the case of a native LAS format,
although the tiles can be indexed, the points inside the
tiles will not be indexed. Therefore, in order to facilitate
access to the data, the size of the tiles must be kept to a
strict minimum, and consequently there is an increase in
the number of tiles, which brings us back to the problem
of indexing.

Technically, some existing database-management sys-
tems have mechanisms for adding new types of data with
which it is possible to interact directly. A good method of
storing point-cloud data in a database should include the
following features:

 • allow easy updating of existing data;

 • allow the integration of disparate data (different sources,
resolutions, models, etc.);

 • allow arbitrary access to data through spatial and attri-
bute queries;

 • facilitate analysis and utilization without incurring exces-
sive cost in terms of storage and performance;

 • allow data to be presented at several levels of abstraction
(several resolutions). This characteristic is very impor-
tant when visualizing huge volumes of data, such as lidar
data;

 • facilitate the conversion of one type to another (e.g.
convert point clouds into raster data and vice-versa).

Data-file management is one method that can accommo-
date a situation where the area covered by the data is quite
small and interaction is limited. To manage data covering
a large expanse where there is much interaction and many
operating constraints (e.g. multiple access), a database-
management method is more appropriate. However, given
the nature of lidar data and the need to integrate them with
other types of data (which may have lower resolution and

5Technical Note 4 N. Sabo et al.

precision), the current database-management methods
are limited (an indexing problem can result from the high
number of points, there is no data structure facilitating data
integration, etc.); hence the need to develop a more suitable
data structure.

To facilitate the management and utilization of point
clouds of various types and resolutions (including lidar data),
we developed a new structure called the GeoHashTree.

GEOHASHTREE (GHT) STRUCTURE

The GeoHashTree (GHT) is a generic data structure that
is used to store, access, and manipulate point clouds, as well
as to integrate data of various types (irregularly distributed
data, such as point clouds, and regularly distributed data,
such as raster data) and various resolutions into the same
structure, and allow interaction between these data. The
GHT is based on the Geohash (Wikipedia, 2012), a com-
prehensive geocoding system in the public domain based
on a hashing function that subdivides the Earth’s surface
into a hierarchical grid. It is used to encode the co-ordinates
(longitude, latitude) into a chain of characters. The GHT
therefore provides a geospatial-data structure to which can
be attached an unlimited number of attributes from various
types of data with different resolutions without duplicating
the co-ordinates of each source. For example, lidar data can
be integrated with other elevation data that have lower reso-
lution. This can be done without adding undue extra load
because, although the two types of data are different, only
the co-ordinates of the higher resolution data are retained
in Geohash format, whereas in the case of the lower resolu-
tion data, only the attributes are used. So regardless of the
types of data that are mixed together, a single geospatial-data
structure in Geohash format is used, which results in a huge
gain in terms of storage space when several types of data
are integrated. Geohashes are generated only where there are
data. Moreover, because the geocoding in Geohash format is
also a spatial index, no spatial index for the data is required,
while arbitrary access to all of the points is permitted.

One of the great advantages of the GHT is its flexibil-
ity. It makes it possible to convert point clouds or any other
‘XY-attribute’ type of data into a hierarchical structure
where each point is indexed as a result of the GHT’s tree
structure and is presented in a multilevel format. The number
of levels varies according to the density of the information
and the precision of the co-ordinates to be stored. Thus, even
irregularly distributed data such as lidar data are represented
in pyramid format, similar to that of raster data. This pyra-
mid representation of the data combined with the indexing
of all the points of a GHT helps to facilitate the interpola-
tion of the point clouds in order to convert them into raster
data. The graphic in Figure 1 is a multilevel representation
of a single attribute with variable resolution in a GHT (each
attribute of a GHT can be multiresolution and represented

in a multilevel format). In general, three main steps are
required to convert points into raster data: (1) creation of the
grid; (2) selection of points inside each cell; and (3) gener-
alization of the selected data within each cell by applying
a mathematical function (e.g. inverse distance weighting).
However, in a GHT, the structure itself is a grid and we know
all of the points within each cell. Furthermore, in each node
of a GHT, several statistics related to each attribute, such as
minimum, maximum, and average values, are present. And
these statistics are often the same as those used to generalize
the values of a cell during interpolation of the lidar data.

Moreover, this same pyramidal GHT structure will help
make it easier to visualize point clouds. Given the phenom-
enal number of points in lidar data, being able to visualize
all of the points at all scales cannot be considered in the case
of a large area. With the GHT, it is possible to envision dis-
playing point clouds at the most appropriate structure level
for each scale. Thus, at smaller scales, generalized data
(e.g. minimum, maximum, or average) will be shown and
as the user zooms into the data, more detailed levels will be
displayed.

There are four main stages in storing data in a database
in GHT format: encoding of the co-ordinates, creation of the
tree, optimization of the tree, and storage of the tree in a
database.

Encoding of co-ordinates in Geohash

The first stage in creating a GHT starts with the encod-
ing of the geographic co-ordinates (longitude and latitude)
of the points as Geohash. To create the Geohash for a point
(e.g. −73.5, 45.4), the space is subdivided iteratively and
bits are allocated in accordance with the quadrant in which
the point is located. The subdividing begins with the plan-
etary co-ordinates ([−180, 180] and [−90, 90]). For example,
the result for the first subdivision of our point will be 01,

Figure 1. Multilevel representation of a variable-resolution
attribute in a GeoHashTree.

6 N. Sabo et al.Technical Note 4

because it is located in the upper-left quadrant (see Fig. 2).
The result of encoding our point in binary code will be
0111000010001010110010111. This number is then con-
verted into a decimal number, which, in turn, is converted
into characters by using a base 32 conversion table. Thus the
final result will be f25dr.

Geohash is a comprehensive system that uses arbitrary
precision mechanisms. The number of characters determines
the precision of the co-ordinates, and the gradual elimination
of characters from the end of the character chain allows the
precision to be reduced (e.g. 6gkzwgjzn820 for −25.382708,
−49.265506 and 6gkzwgjz for −25.383, −49.266). The
precision of such an encoding system can be greater than
a femtometre (10-15 m). The lidar data can be amply repre-
sented by a Geohash with 15 character resolution, which
corresponds to a metric precision of about 10−7 m.

Usually, in a Geohash-based system, the more the
Geohash prefixes for two locations resemble one another,
the more they are spatially close to each other; for example,
6gkzwgjz (−25.383, −49.266) and 6gkzmg1w (−25.427,
−49.315). This property makes it possible to use the
Geohash itself as a spatial-data indexing system (simple
sort). However, this property is not always complied with
(two spatially close points located on either side of a sub-
division line during the hashing process can have different
Geohashes); so it is necessary to implement neighbourhood-
based strategies to support the selection of Geohashes.
Thus, the specific selection must always be based on nine
Geohashes, i.e. the Geohash concerned and the eight
others around it. This strategy is easy to implement,
especially when it is known that the Geohash sort in
alphabetical order follows a Z pattern.

There are other similar encoding systems, such as the
HHCode (Helical Hyperspatial Code) developed by the
Canadian Hydrographic Service, which is used to encode
data in binary form (Varma et al., 1990). Geohash was
selected because it is in the public domain and has already
been implemented in several databases (e.g. PostgreSQL
and MySQL) and Open Source libraries in various exist-
ing languages (C, Java, Python, JavaScript, etc.). Although
Geohash is a system in which the co-ordinates themselves
can be used as an index, several disadvantages result when
it is used that way, such as high storage costs and poor per-
formance. To minimize these disadvantages and obtain other
advantages, such as the multilevel aspect or the capacity to
integrate several attributes in a multisource data structure,
we developed the GeoHashTree (GHT) from Geohash.

GeoHashTree construction

The GHT is an inverted tree in which all of the children
of a node share the same Geohash prefix and the leaves
contain a list of attributes (Fig. 3). Thus, the points that are
spatially close to one another will share the same parent. The
GHT is created from Geohash generated in the preceding

step. Statistics such as the minimum, average, and maximum
of certain relevant attributes can be attached to each node, as
necessary. The tree structure supplemented by these statis-
tics gives the GHT a multiresolution character (comparable
to raster-data pyramids). When a new point is inserted into
the structure, the Geohash of the new point is compared with
the Geohashes of the existing points. Based on the result of
this comparison (proximity), the new point is inserted in the
right location in the structure. In a GHT, each attribute has a
name and a type, which allows an almost unlimited number
of attributes for each point. For example, several elevations
from various sources can be stored on the same point (e.g.
lidar, SRTM (Shuttle Radar Topography Mission), spot
elevations, etc.), and data other than elevation (e.g. rain-
fall, multiband imagery) can even be inserted into the same
structure.

When a point with lower resolution is added to a GHT,
it inserts at a level in the tree corresponding to its resolu-
tion (which depends on the length of its Geohash string),
because each level of a GHT corresponds to a given resolu-
tion. The correlation between the length of a Geohash string
and the resolution is attributable to the fact that the longer
the Geohash string, the greater the number of subdivisions
made to create it. Therefore, the choice of the length of the
Geohash string of a point determines the resolution at which
it is stored. For example, a Geohash string 15 characters
long for a point located at the Equator represents a resolu-
tion of about 1 mm, while for a point 10 characters long, the
resolution is about 1 m.

GeoHashTree optimization

Although the preceding step involves a certain degree of
optimization because of the tree structure that allows partial
sharing of Geohash prefixes, the amount of storage space is
still high, so it is necessary to optimize further. To do that,
the attributes of each point are restructured. When freshly
created, each GHT leaf has all of the attributes of the point;
however, it is clear that within a GHT, some attributes are
recurring and others are stored in unreasonably sized types
(e.g. 123.5 stored in double precision). These two situations
are used during optimization. Depending on the attributes,
two types of optimization are applied (the two methods are
not exclusive): migration of attributes and change of type.

 • Migration of attributes is a form of optimization applied
to recurring attributes, such as the number of returns
or the classification, in the case of lidar data. When the
value for a given attribute in a node is the same for all of
the child nodes, this attribute is stored solely at the level
of the parent node. For example, when all of the leaves of
a GHT have the same value for an attribute, this attribute
will not be stored in the leaves. It will be represented at
the level of the parents or perhaps even at the root level.
In the specific case of lidar data, many attributes lend
themselves well to this form of optimization.

7Technical Note 4 N. Sabo et al.

Figure 2. Geohash coding.

Figure 3. GeoHashTree structuring.

8 N. Sabo et al.Technical Note 4

 • Change of type is a form of optimization applied to attri-
butes stored in large-size data types (e.g. floating point,
double precision, etc.). This optimization makes it pos-
sible to change an attribute type in order to minimize
the amount of storage space it takes up, if necessary.
For floating-point–type attributes, a resolution is used to
convert them into integers. For each attribute, a single
resolution is used for all points in the GHT. (For exam-
ple, the value of 123.56 will be 12356, using a resolution
of 0.01.) Then, for each attribute to be optimized, mini-
mums and maximums are calculated. For each point, the
difference between the value of its attribute and the mini-
mum for this attribute is calculated. By analyzing this
difference, the most appropriate type for representing the
attribute for this point is determined. For example, if the
value of an attribute of a point is 123.56 in double preci-
sion, and if the resolution of this attribute is 0.01 and the
minimum value for this attribute is 122.35, the interval
will be (123.56 – 122.35)/0.01 = 121. In this case, the
interval may be stored as an unsigned-character–type
attribute that can take on a value of 0 to 255 and has a
size of one byte. Therefore, this attribute will be stored
in the form of one byte instead of eight for the initial
data in double precision. The initial type and statistics
(minimum and maximum) of an attribute are stored at the
level of the tree — therefore only once — and used for all
points in the GHT. The use of the resolution also makes
it possible to control the degree of optimization where
a high degree of precision is not required (optimization
with loss). Figure 4 demonstrates the principle of GHT
optimization.

Storage of GeoHashTrees in a database

Once created and optimized, the GHT can be stored in
a binary-string field in a database, in which case it must be
serialized beforehand. When storing the GHT in a database,
the root Geohash can be used as a spatial index. Thus, an
additional field may be added to receive the root Geohash
of each GHT in order to avoid searching unnecessarily in
the binary fields during queries. Because of the Geohash
property according to which the more the prefixes in the
index for two locations resemble one another, the closer
they are spatially, this column can become the spatial index
of the table once the content is sorted. Moreover, this same
Geohash property is used to partition the database when
necessary (horizontal partitioning). To facilitate queries, the
root of each GHT contains general statistics for each attri-
bute (minimum and maximum). When attribute queries are
made, these statistics help to decide whether or not the GHT
should be considered and deserialized.

PROTOTYPE

Prototype architecture

Based on the structure outlined above, a functional pro-
totype was developed in C++. This prototype can be used to
create GHTs from data in various formats and to store them
in a PostgreSQL database (PostgreSQL, 2012). This proto-
type has three main components: a ‘reader/writer’ module, a
GHT-creation module, and a ‘dumper/loader’ module.

 • The ‘reader/writer’ module serves as the interface
between the GHT creation module and the existing
data formats (e.g. LAS and CSV) that is used to read
and write in those formats. It therefore makes it possible
to manipulate lidar data (in LAS format), raster data (in
any format supported by the Geospatial Data Abstraction
Library (GDAL)), and any XY-attribute–type data in
text format. The ‘reader’ imports the data to be used to
create GHTs, and the ‘writer’ exports GHTs in LAS or
CSV format. The ‘reader/writer’ module uses the libLAS
libraries (libLAS, 2012) to read and write LAS format,
and GDAL for raster data format.

 • The GHT-creation module is used to take data imported
from the ‘reader’, reproject them if necessary, convert
the XY co-ordinates of each point into Geohash, sort
the points on the basis of the Geohash, and create the
GeoHashTrees. The sorting groups the points together
spatially in order to make point packets. Each packet will
make up a GeoHashTree. To create the Geohashes, the
Geohash library developed by Kato (2012) under an MIT
licence was used. In addition to making it possible to
encode and decode the Geohashes, this library is used to
create the neighbourhood of any Geohash, thus making it
easier to implement a data-selection strategy.

 • The ‘dumper/loader’ module serves as the interface
between the GHT-creation module and the database. It
is used on the one hand to serialize GHTs created using
the above module and to store them in the database, and
on the other hand to select GHTs stored in the data-
base (in response to a user query) and deserialize them.
During the selection process, it uses an SQL query spec-
ifying both the extent of the area and the attributes to
be selected. This module is based on the Libpq library
included in PostgreSQL. Libpq is a C library used as an
interface for the PostgreSQL database. A client program
can thus use this library to connect to the database and
submit SQL queries.

In addition to creating GHTs from point clouds and
storing them in a PostgreSQL database, the prototype also
makes it possible to interact with this database using spatial
and attribute queries. For example, users can select all of
the points included in a bounding box that have an elevation
greater than 150 m, and store the XY co-ordinates, the eleva-
tion, and the number of returns in a CSV file. Of course,
the attribute query can be made for any attribute of the data

9Technical Note 4 N. Sabo et al.

and the result may contain any attribute requested by the
user. The simplified architecture of the prototype is shown
in Figure 5.

Test data and materials

To test the prototype, lidar data in LAS format from the
state of Indiana (U.S.A.) were used. The test data covered
an area of about 23 km2 (based on the bounding box) and
contained 21 364 937 points in a 570.5 MB LAS file. Each
point in the data set had 11 attributes. These data were con-
verted into a GHT and stored in the PostgreSQL database.
To make it easier to create the GHTs — in order to avoid a
memory problem — the LAS file was split into six smaller
files (about 100 MB each). All of the tests were conducted
on a computer equipped with an i5-3570@CPU3.4GHz
processor and a random access memory of 8 GB in Windows.

Selecting the size of GHTs and
creating GHTs

In each LAS file, the XY co-ordinates of each point were
converted into Geohash strings 14 characters long. This
length made it possible to guarantee precision to the milli-
metre, which is amply sufficient because the initial lidar data
had a centimetric precision. The result at this stage was a
list in which each item was composed of the Geohash and
all of the attributes of a point. Based on this list, we created
a GeoHashTree for each set of points sharing the first seven
Geohash characters (the prefix). The length of the prefix has

a big impact on the number and size of the GHTs created, as
well as on the GHT compression rate and performance. The
choice of a prefix seven characters in length was based on the
tests outlined in the graph in Figure 6. Based on these tests,
it may be said that prefixes with a length of seven characters
or less provide the best compression rate. It can also be said,
based on the graph in Figure 7, that when the prefix is too
short, the size of the GHT increases drastically, resulting in
considerable use of memory (high memory footprint) that can
lead to memory problems. However, when the GHT size is
too small, a deterioration in the compression rate has been
observed, because the optimization that was used was based
on the sharing of attributes between various points, and there-
fore it is effective only where the number of points in a GHT is
relatively high. For all of these reasons, we decided to choose
a seven-character prefix. Of course, the prefix length and the
number of Geohash characters are specific to our test data.
For each type of data and type of use, these parameters must
be selected on the basis of the data resolution and the desired
performance and compression rate.

Because the initial data are in UTM co-ordinates, the
procedure for creating GHTs also includes a previous conver-
sion of the UTM co-ordinates into geographic co-ordinates,
while preserving the same reference system (WGS84). Thus,
1687 GHTs were created and stored in the 9.0.1 PostgreSQL
database, in bytea format, in the GHT column of the table.
In addition, for each GHT, the root Geohash (seven charac-
ters long) was stored in a second field of the same record in
order to facilitate spatial queries. The average time required
to create, optimize, serialize, and store the 1687 GHTs in the
database was about four minutes. This included the network

Figure 4. GeoHashTree optimization.

10 N. Sabo et al.Technical Note 4

transfer time. Once stored in the database, the newly created
GHTs took up only 321 MB, for a compression rate of 44%
compared with the initial LAS file. As stated above, GHTs
are not only a means to store lidar data; they can also be
used to store point clouds of various types and resolutions
and to have data at several levels of abstraction within the
same structure. In such a structure, each point is indexed,
thus facilitating arbitrary access to the data.

Operating tests

To test the utilization of GHTs stored in the database,
spatial and attribute queries were made. Two spatial queries
were used: (1) selection of data included in a large spa-
tial extent (100% of the test data) and (2) selection of data
included in a limited spatial extent (covering about 3% of
the test data). Subsequently, each spatial query was com-
bined with the attribute queries (number of returns R = 2 and
elevation Z ≥ 309). For each combined query, the selected
GHTs were converted into points and stored in a CSV file
in X,Y,Z format. Table 1 shows the results of the tests. For
example, the amount of time required to select and convert
all the points with a number of returns equal to 2 into a CSV
file (X,Y,Z) was 17 seconds. This is a shorter amount of
time than that required to make the same query for a LAS
file stored in the same network using the las2las application
(27 seconds to select the data using las2las plus 5 seconds to
convert selected points into CSV using the las2txt applica-
tion). The objective of these tests was not to compare the
performance of GHTs in relation to LAS; it was simply to
obtain an idea of GHT performance.

CONCLUSIONS AND DISCUSSION

In this article, we have described the GeoHashTree, an
innovative structure for multiresolution and multisource
data that makes it possible to store point clouds or any other
type of point data in a database, while making it easier to
manage and utilize them and to integrate them with other
types of data. Although the key characteristic sought dur-
ing the development of this structure was flexibility, the
GeoHashTree also optimizes storage space and performs
very well when interacting with the database. The current
set-up is a compromise between storage-space optimization,
performance optimization and structure flexibility. Despite
this compromise, GHTs provide acceptable performance
and compression rates, especially since a large quantity of
data must transit through the network with the usual latency.
One of the advantages of this approach is the flexibility and
versatility of the solution. This flexibility helps to manage
data from various sources within the same structure.

Given the results of the tests and the performance of
existing systems for storing point clouds in files (e.g. LAS
files), we believe that the developed method provides excel-
lent performance, especially given that this method (in terms

Figure 5. Simplified architecture of the prototype.

11Technical Note 4 N. Sabo et al.

Figure 6. Compression rate (relative to LAS) versus prefix length in a GeoHashTree.

Figure 7. Average number of points in a GeoHashTree.

12 N. Sabo et al.Technical Note 4

of storage and access speed) can still be improved. In fact,
in the way it is currently implemented, the database is only
used to store data. There is no mechanism for prefiltering
data attributes when submitting queries because the GHTs
are not integrated as a type in the database. The conse-
quence of such a situation is that for each combined spatial
and attribute query, all of the GHTs included in the selec-
tion area must be transferred to the client side, even if many
of these GHTs do not meet the attribute criteria and if the
GHTs have header metadata that help us determine whether
or not they meet the selection condition without their having
to be completely deserialized. For example, for the selection
of data included in a vast spatial extent (100% of the test
data) where elevation Z ≥ 309, all of the GHTs (1687) had
to be transferred to the client side even if, in reality, only
four of them contained points responding to the attribute
query. Storage improvements are still possible because a
base 32 table is currently used to encode GeoHashes, which
results in an overall cost of 3 bits per Geohash character, or
up to 37% per Geohash of a point. This overall cost can be
minimized by encoding the Geohashes using a base 64 table
or by storing them in binary form (without converting into
characters). In addition to improving storage capacity, this
approach would also improve performance.

Currently, the prototype uses only data expressed using
geographic co-ordinates. However, the Geohash encoding
principle may be viewed as a quadtree, which would make
it possible to easily use nongeographic co-ordinates. To do
this, all that would be necessary would be to store in each
GHT or in a separate table some metadata concerning the
limits of the spatial extent of the mapped territory (e.g. xmin,
xmax, ymin, ymax of the UTM zone). To facilitate inter-
action between various GHTs, they should be in the same
system, which means that their Geohashes must be gener-
ated from the same spatial extent. Because GHTs present the
data in a multiresolution, multilevel grid format in which all
of the points are indexed, this structure would make it possi-
ble to facilitate the conversion of irregularly distributed data
into regularly distributed data (e.g. raster data). Moreover,
this multilevel aspect of GHTs could make it easier to visu-
alize point clouds. An M.Sc. thesis project is underway
in collaboration with Laval University to develop such a
capacity to visualize GHTs by making use of the structure’s
multilevel aspect. The GHT structure code is currently avail-
able in OpenSource (https://github.com/pramsey/libght) and
in pointcloud (https://github.com/pramsey/pointcloud), a
PostgreSQL extension for the management of point clouds.

ACKNOWLEDGMENTS

The authors wish to thank the GeoConnections program
for its support of the National Elevation Project, within which
the GeoHashTree structure was developed. The authors
would also like to thank Herman Varma, formerly with the
Canadian Hydrographic Service, for his wise advice.

REFERENCES

Arias Prado, D.A., 2011. Efficient LiDAR data bulk load in a
PostGIS database; <http://ariasprado.name/2011/02/06/lidar-
bulk-data-load.html> [accessed May 20, 2013].

ASPRS, 2012. LAS Specification, version 1.4–R12; available at
<http://www.asprs.org/Committee-General/LASer-LAS-File-
Format-Exchange-Activities.html> [accessed May 15, 2013].

Graham, L., 2009. Management of LiDAR data; Chapter 10 in
Topographic laser ranging and scanning: principles and pro-
cessing, (ed.) J. Shan and C.K. Toth; CRC Press, Florida,
p. 295–306.

Huber, D., 2011. The ASTM E57 file format for 3D imaging data
exchange; in Proceedings, SPIE 7864, Three-dimensional
imaging, interaction, and measurement, 78640A, January 27,
2011. doi:10.1117/12.876555

Kato, L., 2012. Geohash library; <https://github.com/lyokato/
objc-geohash> [accessed May 16, 2013].

libLAS, 2012. <http://www.liblas.org> [accessed May 16, 2013].

Nandigam, V., Baru, C., and Crosby, C., 2010. Database design
for high-resolution LIDAR topography data; in Proceedings,
Scientific and statistical database management, 22nd
International Conference, SSDBM 2010, (ed.) M. Gertz and
B. Ludäscher; Lecture notes in Computer Science, v. 6187,
p. 151–159. doi:10.1007/978-3-642-13818-8_12

Ott, M., 2012. Towards storing point clouds in PostgreSQL; HSR
Hochschule für Technik Rapperswil, Rapperswil, Switzerland,
29 p.

PostgreSQL, 2012. <http://www.postgresql.org> [accessed
May 15, 2013].

Varma, H., Boudreau, H., and Prime, W., 1990. A data structure
for spatio-temporal databases; International Hydrographic
Review, Monaco, v. 67, p. 71–92.

Wikipedia, 2012. Geohash; <http://en.wikipedia.org/wiki/
Geohash> [accessed May 14, 2013].

Geomatics Canada Project 362304NP23

Table 1. Results of performance tests

Select data included in whole
data set

Select data included in small
area

‘Where’
condition

Number of
points

Processing
time (s)

‘Where’
condition

Number
of points

Processing
time (s)

All 21 364 937 73 All 580 150 2.1
R = 2 617 214 17 R = 2 5 079 0.4
Z³309 1 072 20 Z³309 2 0.3

http://dx.doi.org/doi:10.1117/12.876555
http://dx.doi.org/doi:10.1007/978-3-642-13818-8_12

	Abstract
	Résumé
	INTRODUCTION
	LIDAR DATA AND THEIR MANAGEMENT
	Lidar data
	Lidar-data management using files
	Lidar-data management in a database-management system

	GEOHASHTREE (GHT) STRUCTURE
	Encoding of co-ordinates in Geohash
	GeoHashTree construction
	GeoHashTree optimization
	Storage of GeoHashTrees in a database

	PROTOTYPE
	Prototype architecture
	Test data and materials
	Selecting the size of GHTs and
creating GHTs
	Operating tests

	CONCLUSIONS AND DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
	Illustrations
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

	Table
	Table 1

