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Abstract: Over a number of years, lidar has become one of the major elevation-data acquisition technol-
ogies. However, the management of lidar data is extremely complex due to the phenomenal amount of data 
generated by this technology. To facilitate lidar-data management, this article proposes a GeoHashTree, 
which is a multiresolution data structure for managing different types of point clouds. The GeoHashTree 
is a hierarchical structure which can present data of regular or irregular distribution with various levels 
of abstraction. In addition to facilitating the management of point clouds, this structure reduces data 
storage space considerably, while also facilitating data access and handling. This article introduces the 
GeoHashTree and describes a prototype based on it.

Résumé : Depuis un certain nombre d’années, le lidar est devenu une des importantes technologies 
d’acquisition des données altimétriques. Cependant, la gestion des données lidar est très complexe, 
compte tenu de la quantité phénoménale de données que génère cette technologie. Pour faciliter la ges-
tion des données lidar, cet article propose le GeoHashTree, une structure de données qui permet de gérer 
différents types de nuages de points, à de multiples résolutions. Le GeoHashTree est une structure hiérar-
chique qui permet de présenter les données de distribution régulière ou irrégulière sous différents niveaux 
d’abstraction. En plus de faciliter la gestion des nuages de points, cette structure permet de réduire con-
sidérablement l’espace de stockage de données tout en facilitant l’accès à ces données, ainsi que leur 
manipulation. Cet article présente le GeoHashTree, ainsi qu’un prototype basé sur cette structure.
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INTRODUCTION

The ever growing popularity of elevation data and the use 
of these data in many fields demonstrate the need for a good 
knowledge of topography. In several countries, elevation data 
are among the data in greatest demand. This is the case in 
Canada, where elevation data account for 73% of all data down-
loads from the GeoBase portal (http://www.geobase.ca/). This 
growing popularity of elevation data is largely attributable to 
the impressive number of applications requiring this type of 
data. Nowadays, many applications used in flood-risk man-
agement, telecommunications, regional and urban planning, 
and various other fields cannot function without elevation 
data. We can also foresee a greater need in the future. For 
example, road-elevation data will soon be incorporated into 
intelligent-transportation and automobile-driving–assistance 
systems to reduce fuel consumption and greenhouse-gas 
emissions by 4 to 12% (L. Sugarbaker, G. Snyder, and 
D. Maune, 2012, presentation titled ‘Results of the National 
Enhanced Elevation Assessment (NEEA)’, given at the 12th 
International LiDAR Mapping Forum, Denver, Colorado, 
January 23–25, 2012).

In many organizations, elevation data from various 
sources, of varying degrees of precision, and from various 
eras coexist. There are data gathered several decades ago 
using conventional methods, and more recent and precise 
data gathered by means of modern-day technologies, such 
as lidar. Even if, at first glance, it might seem that only the 
most recent and most precise data should be kept, the real-
ity is very different. In many regions and countries around 
the world, elevation-data coverage is often a patchwork of 
data of varying degrees of resolution and quality, gathered in 
various eras. Moreover, even where the coverage is complete 
and homogeneous, there is always a need for a variety of ele-
vation models (e.g. surface models, terrain models, canopy 
models, etc.) and resolutions, because of the wide range of 
applications. This is because, for one thing, some applica-
tions do not need very high-resolution data; and for another, 
there is a growing demand for historical data, especially in 
the climate-change field. This coexistence of data from vari-
ous sources leads to major integration problems, especially 
since in most applications, these data must be integrated 
with data other than elevation data (e.g. land-cover data).

In fact, the need for elevation data continues to grow and 
become more specialized, and the acquisition technologies 
for this type of data are becoming more and more numer-
ous and accessible, as well as better performing. Although 
technological development in the past few years has resulted 
in new sensors that can gather very high-precision and 
high-resolution data, the generated data are becoming so 
increasingly voluminous and complex that serious prob-
lems are arising in terms of management and utilization of 
the data. For example, the current lidar sensors are able to 
acquire up to one million points in a single second, with cen-
timetric vertical and horizontal precision. With one million 
points per second, one can imagine the quantity of data that 

can be gathered during major acquisition campaigns such 
as country-wide campaigns. The management and utiliza-
tion of such a large quantity of data requires tools other than 
those traditionally used to manage vector and raster data.

To facilitate the management, utilization, and integration 
of elevation data of various types and resolutions, we propose 
in this article a new data structure called the GeoHashTree 
(GHT). The GHT is a multiresolution hierarchical structure 
that can manage regularly and irregularly distributed data 
(e.g. lidar data) at various levels of abstraction. Moreover, 
given its capacity to index all of the data, this structure can 
easily be integrated into database-management systems.

This paper provides an introduction to lidar data and their 
management, followed by a description of this new struc-
ture and the presentation of a functional prototype based on 
it. Test results are presented and discussed before the final 
conclusions.

LIDAR DATA AND THEIR 
MANAGEMENT

Lidar data

In the past few decades, lidar (light detection and rang-
ing) is one of the technologies that have radically changed 
the method used to acquire elevation data. Although it 
dates back to the 1960s, lidar technology is developing at 
breakneck speed. The types of utilization of lidar data are 
increasingly numerous and the sensors are becoming increas-
ingly better performing, which continually gives rise to new 
challenges in terms of management and utilization of these 
data. Unlike traditional photogrammetry, where the elevation 
must be extracted from stereoscopic models, lidar provides 
the elevation directly, thus saving time. In fact, lidar is more 
than about elevation, because some of its attributes are used 
for purposes other than elevation. For example, through the 
use of lidargrammetry, some topographic features, such as 
infrastructure, can be extracted by using pseudostereo pairs 
created from intensity images and elevation.

Although on the one hand, this technology makes it 
possible to acquire very high-precision data, the storage, 
management, and utilization of these data nonetheless 
present considerable challenges because of their irregular 
distribution, their density, and the quantity of information 
they contain. Unlike raster data, lidar data are irregularly dis-
tributed data in the form of point clouds that are not organized 
logically, thus making it impossible to create a mathematical 
function like that of the raster grid that can predict the co-
ordinates of the points. On the other hand, lidar produces a 
phenomenal quantity of points, each one of which has no 
fewer than a dozen attributes, often in different formats. For 
example, the time required to acquire one million points has 
decreased from more than 15 years (using surveying tech-
niques) to a few seconds using lidar technology (S. Daniel, 
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2011, notes for the course ‘LiDAR terrestre et aéroporté : 
principes et applications’ given at Laval University, Québec, 
Quebec, on November 21, 2011). In addition, lidar is a mix 
of several models (e.g. surface and terrain models) owing 
to the multiplicity of returns. Although most often, two 
main models are managed (i.e. surface and terrain models), 
it should be taken into consideration that each return may 
represent a model that may be used for other applications. 
As mentioned above, the volume of data generated by these 
technologies, combined with the complexity of these types 
of data, make management and utilization of the data very 
difficult.

For a long time, a file-management approach has been 
used for storing and managing lidar data. However, a new 
approach has emerged over a number of years that makes 
it possible to manage lidar data in a database-management 
system. In the next sections, we will discuss the two main 
approaches to lidar-data management.

Lidar-data management using files

As stated above, lidar data are very complex because of 
the many attributes they have and the huge volume of data 
generated by this technology. Because their complexity 
makes them difficult to manage and manipulate, lidar data 
are usually managed differently depending on the users. For 
example, companies that conduct the surveys manage the 
data in the form of point clouds, while the end users often 
make do with digital elevation models that are an interpola-
tion of the point clouds. The two types of data, i.e. point 
clouds and digital models, are usually managed by using 
files of different formats.

To store point clouds, ASCII or LAS file formats are gen-
erally used (ASPRS, 2012; Huber, 2011). The advantage of 
the ASCII format is that people can read it, that it can be 
read and edited by any text editor, and that it presents fewer 
problems of compatibility between platforms. However, this 
format is very voluminous and nonperforming when data are 
manipulated, which makes it sometimes unusable. Given the 
astronomical volume of point clouds, the use of the ASCII 
format is becoming less attractive as a method of managing 
a large quantity of data, which is why binary formats such as 
LAS have made their appearance.

Over a number of years, LAS has become the de facto 
standard for storing point clouds. LAS is a binary format that 
uses a predetermined set of fixed-size attributes. It is a high-
performance format for data exchanges; unfortunately, in 
native LAS format, the points are not ordered, which makes 
arbitrary access to the data impossible (Graham, 2009). But 
arbitrary access to data is vitally important in the utilization 
of elevation data (e.g. to easily find the elevation of a point). 
The LAS format is therefore a compromise between efficient 
transmission of point clouds and flexibility (Graham, 2009). 

So, in order to fully utilize point clouds by means of spa-
tial and attribute queries, they have to be indexed in order to 
facilitate arbitrary access.

Although some software editors offer their own indexing 
system, this approach poses serious problems.For one thing, 
the indexing of billions of points may require a huge amount 
of storage space, and for another, the index must be updated 
each time a change is made to the data. With respect to LAS 
format, the current specification does not allow the addition 
of new attributes to an existing file, because the format has 
a standard, fixed-size attribute structure intended solely for 
lidar-data management, which makes it less flexible, if not 
unusable, for the integration of data of various types and 
sources.

Furthermore, the LAS format does not have any data-
generalization mechanism. The capacity to generalize lidar 
data is crucial for data visualization. Without this capacity, 
all of the data must be displayed regardless of the visual-
ization scale, which is unimaginable for a vast spatial area 
(e.g. country-wide or region-wide scale), given the quantity 
of points to be displayed. For all of these reasons, although 
the LAS format performs well for production operations and 
in terms of its level of compression, it is not well suited to 
the data analysis and utilization process in circumstances 
where the data must be arbitrarily accessed, integrated, and 
updated.

The difficulty in managing and utilizing point clouds in 
ASCII or LAS format has often prompted some organiza-
tions to convert lidar points into regularly distributed data 
(e.g. raster data) in the form of digital models in order to 
facilitate their manipulation. Although regularly distributed 
data have their place in elevation-data management, such 
conversions are irreversible and do not allow the richness 
of the lidar data (i.e. precision and range of attributes) to 
be retained. In fact, the digital models only take elevation 
into account and leave out all of the other lidar attributes, 
despite their usefulness in other applications (e.g. RGB for 
visualization or intensity for the extraction of topographic 
features).

In brief, the current methods for storing lidar data in 
files have serious limitations in terms of managing, integrat-
ing, and utilizing various types of data. With a file method, 
it would be very difficult to set up an effective system for 
managing data covering a large territory because, on the one 
hand, many operating systems are limited in terms of the 
size of files and, on the other hand, partitioning the data into 
several files would require setting up a system that would be 
able to index the data, ensure continuity and integrity of the 
data, avoid data overlap, provide multiple, concurrent access 
to data, and so on.

To facilitate the management and utilization of point 
clouds and their integration with other types of data, one 
solution is to store them in a database-management system. 
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Modern databases already integrate the main types of spatial 
data (vector and raster), which would facilitate the integra-
tion and interaction of point clouds with these types of data.

Lidar-data management in a database-
management system

In the past few years, considerable effort has gone into 
making it easier to integrate point clouds into a database in 
the same way as other types of existing data, such as vector 
and raster data, which are currently managed in a variety 
of databases (Nandigam et al., 2010; Arias Prado, 2011; 
Ott, 2012). There are several advantages to managing point 
clouds in a database: (1) the benefits that a database provides 
in terms of security, concurrent access, user management, 
scalability, management of updates, quick access through 
high-performance indexing and partitioning systems, cloud 
computing, and version control; (2) easier utilization due to 
the SQL language; (3) easier interaction with other types 
of data already stored in databases (e.g. vector and raster 
data); and (4) seamless integration between disparate data 
sets, combined with the possible use of an abundant range 
of operating tools (Graham, 2009). The use of files to man-
age point clouds is viable for projects that involve limited 
space coverage. However, in the case of large-scale cover-
age on a regional or national scale (for example, Canada’s 
landmass of more than 10 million km2), the use of a database 
is more appropriate, given the above-mentioned flexibility 
and advantages, and also considering that modern-day data-
bases already provide the basic infrastructure to facilitate  
large-scale coverage (e.g. extension mechanisms).

To store point clouds in a database, three principal 
methods may be considered: the single-point method, the 
multipoint method and the tile method.

The single-point method consists of storing each point 
in vector form (i.e. one record per point) and indexing 
them. Each point attribute constitutes a separate field. 
This is a very easy solution to implement because the 
point type and the tools capable of manipulating it are 
found in the majority of database-management systems. 
However, this method has serious limitations: the index-
ing of billions of points requires a commensurate amount 
of storage space, and updating of the index after changes 
are made is time-consuming.

The multipoint method consists of storing sets of points in 
blocks (in the form of binary large objects, or BLOBs) 
instead of storing each point individually. With this 
method, attributes and geometries are stored in differ-
ent fields: a field for storing the geometries of the set of 
points in the block, in addition to as many fields as there 
are attributes. This method may be considered an opti-
mization of the single-point method because it requires 
fewer saving operations and is consequently easier to 
index, resulting in better performance and enhanced stor-
age space. However, this method requires the addition of 

a spatial-extent field to each block. This field makes it 
possible to spatially index the blocks in order to facili-
tate spatial queries. Moreover, the fact that the attributes 
are in blocks and dissociated from the geometry can 
make some operations more difficult, such as a spatial 
query combined with an attribute query. Since the points 
inside a block are not indexed, arbitrary access to the 
points inside a block is impossible, which may create  
performance problems in the case of large-size blocks.

The tile method is used to subdivide data into smaller size 
tiles and to store each tile in BLOB form. Unlike in the 
preceding method, the attributes and geometry form a 
whole. The tiles can be stored by making partial or com-
plete use of an existing structure or format (e.g. LAS) 
in order to encompass the points and their attributes. To 
facilitate access to the data, the extent of each tile can 
be spatially indexed. This method has more advantages 
in terms of storage than the preceding two; however, it 
inherits all of the advantages and deficiencies of the tile 
format. For example, in the case of a native LAS format, 
although the tiles can be indexed, the points inside the 
tiles will not be indexed. Therefore, in order to facilitate 
access to the data, the size of the tiles must be kept to a 
strict minimum, and consequently there is an increase in 
the number of tiles, which brings us back to the problem 
of indexing.

Technically, some existing database-management sys-
tems have mechanisms for adding new types of data with 
which it is possible to interact directly. A good method of 
storing point-cloud data in a database should include the  
following features:

 • allow easy updating of existing data;

 • allow the integration of disparate data (different sources, 
resolutions, models, etc.);

 • allow arbitrary access to data through spatial and attri-
bute queries;

 • facilitate analysis and utilization without incurring exces-
sive cost in terms of storage and performance;

 • allow data to be presented at several levels of abstraction 
(several resolutions). This characteristic is very impor-
tant when visualizing huge volumes of data, such as lidar 
data;

 • facilitate the conversion of one type to another (e.g.  
convert point clouds into raster data and vice-versa).

Data-file management is one method that can accommo-
date a situation where the area covered by the data is quite 
small and interaction is limited. To manage data covering 
a large expanse where there is much interaction and many 
operating constraints (e.g. multiple access), a database- 
management method is more appropriate. However, given 
the nature of lidar data and the need to integrate them with 
other types of data (which may have lower resolution and 
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precision), the current database-management methods 
are limited (an indexing problem can result from the high 
number of points, there is no data structure facilitating data 
integration, etc.); hence the need to develop a more suitable 
data structure.

To facilitate the management and utilization of point 
clouds of various types and resolutions (including lidar data), 
we developed a new structure called the GeoHashTree.

GEOHASHTREE (GHT) STRUCTURE

The GeoHashTree (GHT) is a generic data structure that 
is used to store, access, and manipulate point clouds, as well 
as to integrate data of various types (irregularly distributed 
data, such as point clouds, and regularly distributed data, 
such as raster data) and various resolutions into the same 
structure, and allow interaction between these data. The 
GHT is based on the Geohash (Wikipedia, 2012), a com-
prehensive geocoding system in the public domain based 
on a hashing function that subdivides the Earth’s surface 
into a hierarchical grid. It is used to encode the co-ordinates 
(longitude, latitude) into a chain of characters. The GHT 
therefore provides a geospatial-data structure to which can 
be attached an unlimited number of attributes from various 
types of data with different resolutions without duplicating 
the co-ordinates of each source. For example, lidar data can 
be integrated with other elevation data that have lower reso-
lution. This can be done without adding undue extra load 
because, although the two types of data are different, only 
the co-ordinates of the higher resolution data are retained 
in Geohash format, whereas in the case of the lower resolu-
tion data, only the attributes are used. So regardless of the 
types of data that are mixed together, a single geospatial-data 
structure in Geohash format is used, which results in a huge 
gain in terms of storage space when several types of data 
are integrated. Geohashes are generated only where there are 
data. Moreover, because the geocoding in Geohash format is 
also a spatial index, no spatial index for the data is required, 
while arbitrary access to all of the points is permitted.

One of the great advantages of the GHT is its flexibil-
ity. It makes it possible to convert point clouds or any other 
‘XY-attribute’ type of data into a hierarchical structure 
where each point is indexed as a result of the GHT’s tree 
structure and is presented in a multilevel format. The number 
of levels varies according to the density of the information 
and the precision of the co-ordinates to be stored. Thus, even 
irregularly distributed data such as lidar data are represented 
in pyramid format, similar to that of raster data. This pyra-
mid representation of the data combined with the indexing 
of all the points of a GHT helps to facilitate the interpola-
tion of the point clouds in order to convert them into raster 
data. The graphic in Figure 1 is a multilevel representation 
of a single attribute with variable resolution in a GHT (each 
attribute of a GHT can be multiresolution and represented 

in a multilevel format). In general, three main steps are 
required to convert points into raster data: (1) creation of the 
grid; (2) selection of points inside each cell; and (3) gener-
alization of the selected data within each cell by applying 
a mathematical function (e.g. inverse distance weighting). 
However, in a GHT, the structure itself is a grid and we know 
all of the points within each cell. Furthermore, in each node 
of a GHT, several statistics related to each attribute, such as 
minimum, maximum, and average values, are present. And 
these statistics are often the same as those used to generalize 
the values of a cell during interpolation of the lidar data.

Moreover, this same pyramidal GHT structure will help 
make it easier to visualize point clouds. Given the phenom-
enal number of points in lidar data, being able to visualize 
all of the points at all scales cannot be considered in the case 
of a large area. With the GHT, it is possible to envision dis-
playing point clouds at the most appropriate structure level 
for each scale. Thus, at smaller scales, generalized data 
(e.g. minimum, maximum, or average) will be shown and 
as the user zooms into the data, more detailed levels will be 
displayed.

There are four main stages in storing data in a database 
in GHT format: encoding of the co-ordinates, creation of the 
tree, optimization of the tree, and storage of the tree in a 
database.

Encoding of co-ordinates in Geohash

The first stage in creating a GHT starts with the encod-
ing of the geographic co-ordinates (longitude and latitude) 
of the points as Geohash. To create the Geohash for a point 
(e.g. −73.5, 45.4), the space is subdivided iteratively and 
bits are allocated in accordance with the quadrant in which 
the point is located. The subdividing begins with the plan-
etary co-ordinates ([−180, 180] and [−90, 90]). For example, 
the result for the first subdivision of our point will be 01, 

Figure 1. Multilevel representation of a variable-resolution  
attribute in a GeoHashTree.
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because it is located in the upper-left quadrant (see Fig. 2). 
The result of encoding our point in binary code will be 
0111000010001010110010111. This number is then con-
verted into a decimal number, which, in turn, is converted 
into characters by using a base 32 conversion table. Thus the 
final result will be f25dr. 

Geohash is a comprehensive system that uses arbitrary 
precision mechanisms. The number of characters determines 
the precision of the co-ordinates, and the gradual elimination 
of characters from the end of the character chain allows the 
precision to be reduced (e.g. 6gkzwgjzn820 for −25.382708, 
−49.265506 and 6gkzwgjz for −25.383, −49.266). The 
precision of such an encoding system can be greater than 
a femtometre (10-15 m). The lidar data can be amply repre-
sented by a Geohash with 15 character resolution, which 
corresponds to a metric precision of about 10−7 m.

Usually, in a Geohash-based system, the more the 
Geohash prefixes for two locations resemble one another, 
the more they are spatially close to each other; for example, 
6gkzwgjz (−25.383, −49.266) and 6gkzmg1w (−25.427, 
−49.315). This property makes it possible to use the 
Geohash itself as a spatial-data indexing system (simple 
sort). However, this property is not always complied with 
(two spatially close points located on either side of a sub-
division line during the hashing process can have different 
Geohashes); so it is necessary to implement neighbourhood-
based strategies to support the selection of Geohashes. 
Thus, the specific selection must always be based on nine 
Geohashes, i.e. the Geohash concerned and the eight  
others around it. This strategy is easy to implement,  
especially when it is known that the Geohash sort in  
alphabetical order follows a Z pattern.

There are other similar encoding systems, such as the 
HHCode (Helical Hyperspatial Code) developed by the 
Canadian Hydrographic Service, which is used to encode 
data in binary form (Varma et al., 1990). Geohash was 
selected because it is in the public domain and has already 
been implemented in several databases (e.g. PostgreSQL 
and MySQL) and Open Source libraries in various exist-
ing languages (C, Java, Python, JavaScript, etc.). Although 
Geohash is a system in which the co-ordinates themselves 
can be used as an index, several disadvantages result when 
it is used that way, such as high storage costs and poor per-
formance. To minimize these disadvantages and obtain other 
advantages, such as the multilevel aspect or the capacity to 
integrate several attributes in a multisource data structure, 
we developed the GeoHashTree (GHT) from Geohash.

GeoHashTree construction

The GHT is an inverted tree in which all of the children 
of a node share the same Geohash prefix and the leaves 
contain a list of attributes (Fig. 3). Thus, the points that are 
spatially close to one another will share the same parent. The 
GHT is created from Geohash generated in the preceding 

step. Statistics such as the minimum, average, and maximum 
of certain relevant attributes can be attached to each node, as 
necessary. The tree structure supplemented by these statis-
tics gives the GHT a multiresolution character (comparable 
to raster-data pyramids). When a new point is inserted into 
the structure, the Geohash of the new point is compared with 
the Geohashes of the existing points. Based on the result of 
this comparison (proximity), the new point is inserted in the 
right location in the structure. In a GHT, each attribute has a 
name and a type, which allows an almost unlimited number 
of attributes for each point. For example, several elevations 
from various sources can be stored on the same point (e.g. 
lidar, SRTM (Shuttle Radar Topography Mission), spot 
elevations, etc.), and data other than elevation (e.g. rain-
fall, multiband imagery) can even be inserted into the same 
structure.

When a point with lower resolution is added to a GHT, 
it inserts at a level in the tree corresponding to its resolu-
tion (which depends on the length of its Geohash string), 
because each level of a GHT corresponds to a given resolu-
tion. The correlation between the length of a Geohash string 
and the resolution is attributable to the fact that the longer 
the Geohash string, the greater the number of subdivisions 
made to create it. Therefore, the choice of the length of the 
Geohash string of a point determines the resolution at which 
it is stored. For example, a Geohash string 15 characters 
long for a point located at the Equator represents a resolu-
tion of about 1 mm, while for a point 10 characters long, the  
resolution is about 1 m.

GeoHashTree optimization

Although the preceding step involves a certain degree of 
optimization because of the tree structure that allows partial 
sharing of Geohash prefixes, the amount of storage space is 
still high, so it is necessary to optimize further. To do that, 
the attributes of each point are restructured. When freshly 
created, each GHT leaf has all of the attributes of the point; 
however, it is clear that within a GHT, some attributes are 
recurring and others are stored in unreasonably sized types 
(e.g. 123.5 stored in double precision). These two situations 
are used during optimization. Depending on the attributes, 
two types of optimization are applied (the two methods are 
not exclusive): migration of attributes and change of type.

 • Migration of attributes is a form of optimization applied 
to recurring attributes, such as the number of returns 
or the classification, in the case of lidar data. When the 
value for a given attribute in a node is the same for all of 
the child nodes, this attribute is stored solely at the level 
of the parent node. For example, when all of the leaves of 
a GHT have the same value for an attribute, this attribute 
will not be stored in the leaves. It will be represented at 
the level of the parents or perhaps even at the root level. 
In the specific case of lidar data, many attributes lend 
themselves well to this form of optimization.
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Figure 2. Geohash coding.

Figure 3. GeoHashTree structuring.
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 • Change of type is a form of optimization applied to attri-
butes stored in large-size data types (e.g. floating point, 
double precision, etc.). This optimization makes it pos-
sible to change an attribute type in order to minimize 
the amount of storage space it takes up, if necessary. 
For floating-point–type attributes, a resolution is used to 
convert them into integers. For each attribute, a single 
resolution is used for all points in the GHT. (For exam-
ple, the value of 123.56 will be 12356, using a resolution 
of 0.01.) Then, for each attribute to be optimized, mini-
mums and maximums are calculated. For each point, the 
difference between the value of its attribute and the mini-
mum for this attribute is calculated. By analyzing this 
difference, the most appropriate type for representing the 
attribute for this point is determined. For example, if the 
value of an attribute of a point is 123.56 in double preci-
sion, and if the resolution of this attribute is 0.01 and the 
minimum value for this attribute is 122.35, the interval 
will be (123.56 – 122.35)/0.01 = 121. In this case, the 
interval may be stored as an unsigned-character–type 
attribute that can take on a value of 0 to 255 and has a 
size of one byte. Therefore, this attribute will be stored 
in the form of one byte instead of eight for the initial 
data in double precision. The initial type and statistics 
(minimum and maximum) of an attribute are stored at the 
level of the tree — therefore only once — and used for all 
points in the GHT. The use of the resolution also makes 
it possible to control the degree of optimization where 
a high degree of precision is not required (optimization 
with loss). Figure 4 demonstrates the principle of GHT 
optimization.

Storage of GeoHashTrees in a database

Once created and optimized, the GHT can be stored in 
a binary-string field in a database, in which case it must be 
serialized beforehand. When storing the GHT in a database, 
the root Geohash can be used as a spatial index. Thus, an 
additional field may be added to receive the root Geohash 
of each GHT in order to avoid searching unnecessarily in 
the binary fields during queries. Because of the Geohash 
property according to which the more the prefixes in the 
index for two locations resemble one another, the closer 
they are spatially, this column can become the spatial index 
of the table once the content is sorted. Moreover, this same 
Geohash property is used to partition the database when 
necessary (horizontal partitioning). To facilitate queries, the 
root of each GHT contains general statistics for each attri-
bute (minimum and maximum). When attribute queries are 
made, these statistics help to decide whether or not the GHT 
should be considered and deserialized.

PROTOTYPE

Prototype architecture

Based on the structure outlined above, a functional pro-
totype was developed in C++. This prototype can be used to 
create GHTs from data in various formats and to store them 
in a PostgreSQL database (PostgreSQL, 2012). This proto-
type has three main components: a ‘reader/writer’ module, a 
GHT-creation module, and a ‘dumper/loader’ module.

 • The ‘reader/writer’ module serves as the interface 
between the GHT creation module and the existing 
data formats (e.g. LAS and CSV) that is used to read 
and write in those formats. It therefore makes it possible 
to manipulate lidar data (in LAS format), raster data (in 
any format supported by the Geospatial Data Abstraction 
Library (GDAL)), and any XY-attribute–type data in 
text format. The ‘reader’ imports the data to be used to 
create GHTs, and the ‘writer’ exports GHTs in LAS or 
CSV format. The ‘reader/writer’ module uses the libLAS 
libraries (libLAS, 2012) to read and write LAS format, 
and GDAL for raster data format.

 • The GHT-creation module is used to take data imported 
from the ‘reader’, reproject them if necessary, convert 
the XY co-ordinates of each point into Geohash, sort 
the points on the basis of the Geohash, and create the 
GeoHashTrees. The sorting groups the points together 
spatially in order to make point packets. Each packet will 
make up a GeoHashTree. To create the Geohashes, the 
Geohash library developed by Kato (2012) under an MIT 
licence was used. In addition to making it possible to 
encode and decode the Geohashes, this library is used to 
create the neighbourhood of any Geohash, thus making it 
easier to implement a data-selection strategy.

 • The ‘dumper/loader’ module serves as the interface 
between the GHT-creation module and the database. It 
is used on the one hand to serialize GHTs created using 
the above module and to store them in the database, and 
on the other hand to select GHTs stored in the data-
base (in response to a user query) and deserialize them. 
During the selection process, it uses an SQL query spec-
ifying both the extent of the area and the attributes to 
be selected. This module is based on the Libpq library 
included in PostgreSQL. Libpq is a C library used as an 
interface for the PostgreSQL database. A client program 
can thus use this library to connect to the database and 
submit SQL queries.

In addition to creating GHTs from point clouds and 
storing them in a PostgreSQL database, the prototype also 
makes it possible to interact with this database using spatial 
and attribute queries. For example, users can select all of 
the points included in a bounding box that have an elevation 
greater than 150 m, and store the XY co-ordinates, the eleva-
tion, and the number of returns in a CSV file. Of course, 
the attribute query can be made for any attribute of the data 
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and the result may contain any attribute requested by the 
user. The simplified architecture of the prototype is shown 
in Figure 5.

Test data and materials

To test the prototype, lidar data in LAS format from the 
state of Indiana (U.S.A.) were used. The test data covered 
an area of about 23 km2 (based on the bounding box) and 
contained 21 364 937 points in a 570.5 MB LAS file. Each 
point in the data set had 11 attributes. These data were con-
verted into a GHT and stored in the PostgreSQL database. 
To make it easier to create the GHTs — in order to avoid a 
memory problem — the LAS file was split into six smaller 
files (about 100 MB each). All of the tests were conducted 
on a computer equipped with an i5-3570@CPU3.4GHz  
processor and a random access memory of 8 GB in Windows.

Selecting the size of GHTs and  
creating GHTs

In each LAS file, the XY co-ordinates of each point were 
converted into Geohash strings 14 characters long. This 
length made it possible to guarantee precision to the milli-
metre, which is amply sufficient because the initial lidar data 
had a centimetric precision. The result at this stage was a 
list in which each item was composed of the Geohash and 
all of the attributes of a point. Based on this list, we created 
a GeoHashTree for each set of points sharing the first seven 
Geohash characters (the prefix). The length of the prefix has 

a big impact on the number and size of the GHTs created, as 
well as on the GHT compression rate and performance. The 
choice of a prefix seven characters in length was based on the 
tests outlined in the graph in Figure 6. Based on these tests, 
it may be said that prefixes with a length of seven characters 
or less provide the best compression rate. It can also be said, 
based on the graph in Figure 7, that when the prefix is too 
short, the size of the GHT increases drastically, resulting in 
considerable use of memory (high memory footprint) that can 
lead to memory problems. However, when the GHT size is 
too small, a deterioration in the compression rate has been 
observed, because the optimization that was used was based 
on the sharing of attributes between various points, and there-
fore it is effective only where the number of points in a GHT is 
relatively high. For all of these reasons, we decided to choose 
a seven-character prefix. Of course, the prefix length and the 
number of Geohash characters are specific to our test data. 
For each type of data and type of use, these parameters must 
be selected on the basis of the data resolution and the desired 
performance and compression rate.

Because the initial data are in UTM co-ordinates, the 
procedure for creating GHTs also includes a previous conver-
sion of the UTM co-ordinates into geographic co-ordinates, 
while preserving the same reference system (WGS84). Thus, 
1687 GHTs were created and stored in the 9.0.1 PostgreSQL 
database, in bytea format, in the GHT column of the table. 
In addition, for each GHT, the root Geohash (seven charac-
ters long) was stored in a second field of the same record in 
order to facilitate spatial queries. The average time required 
to create, optimize, serialize, and store the 1687 GHTs in the 
database was about four minutes. This included the network 

Figure 4. GeoHashTree optimization.
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transfer time. Once stored in the database, the newly created 
GHTs took up only 321 MB, for a compression rate of 44% 
compared with the initial LAS file. As stated above, GHTs 
are not only a means to store lidar data; they can also be 
used to store point clouds of various types and resolutions 
and to have data at several levels of abstraction within the 
same structure. In such a structure, each point is indexed, 
thus facilitating arbitrary access to the data.

Operating tests

To test the utilization of GHTs stored in the database, 
spatial and attribute queries were made. Two spatial queries 
were used: (1) selection of data included in a large spa-
tial extent (100% of the test data) and (2) selection of data 
included in a limited spatial extent (covering about 3% of 
the test data). Subsequently, each spatial query was com-
bined with the attribute queries (number of returns R = 2 and 
elevation Z ≥ 309). For each combined query, the selected 
GHTs were converted into points and stored in a CSV file 
in X,Y,Z format. Table 1 shows the results of the tests. For 
example, the amount of time required to select and convert 
all the points with a number of returns equal to 2 into a CSV 
file (X,Y,Z) was 17 seconds. This is a shorter amount of 
time than that required to make the same query for a LAS 
file stored in the same network using the las2las application 
(27 seconds to select the data using las2las plus 5 seconds to 
convert selected points into CSV using the las2txt applica-
tion). The objective of these tests was not to compare the 
performance of GHTs in relation to LAS; it was simply to 
obtain an idea of GHT performance.

CONCLUSIONS AND DISCUSSION

In this article, we have described the GeoHashTree, an 
innovative structure for multiresolution and multisource 
data that makes it possible to store point clouds or any other 
type of point data in a database, while making it easier to 
manage and utilize them and to integrate them with other 
types of data. Although the key characteristic sought dur-
ing the development of this structure was flexibility, the 
GeoHashTree also optimizes storage space and performs 
very well when interacting with the database. The current 
set-up is a compromise between storage-space optimization, 
performance optimization and structure flexibility. Despite 
this compromise, GHTs provide acceptable performance 
and compression rates, especially since a large quantity of 
data must transit through the network with the usual latency. 
One of the advantages of this approach is the flexibility and 
versatility of the solution. This flexibility helps to manage 
data from various sources within the same structure.

Given the results of the tests and the performance of 
existing systems for storing point clouds in files (e.g. LAS 
files), we believe that the developed method provides excel-
lent performance, especially given that this method (in terms 

Figure 5. Simplified architecture of the prototype.



11Technical Note 4 N. Sabo et al.

Figure 6. Compression rate (relative to LAS) versus prefix length in a GeoHashTree.

Figure 7. Average number of points in a GeoHashTree.
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of storage and access speed) can still be improved. In fact, 
in the way it is currently implemented, the database is only 
used to store data. There is no mechanism for prefiltering 
data attributes when submitting queries because the GHTs 
are not integrated as a type in the database. The conse-
quence of such a situation is that for each combined spatial 
and attribute query, all of the GHTs included in the selec-
tion area must be transferred to the client side, even if many 
of these GHTs do not meet the attribute criteria and if the 
GHTs have header metadata that help us determine whether 
or not they meet the selection condition without their having 
to be completely deserialized. For example, for the selection 
of data included in a vast spatial extent (100% of the test 
data) where elevation Z ≥ 309, all of the GHTs (1687) had 
to be transferred to the client side even if, in reality, only 
four of them contained points responding to the attribute 
query. Storage improvements are still possible because a 
base 32 table is currently used to encode GeoHashes, which 
results in an overall cost of 3 bits per Geohash character, or 
up to 37% per Geohash of a point. This overall cost can be 
minimized by encoding the Geohashes using a base 64 table 
or by storing them in binary form (without converting into 
characters). In addition to improving storage capacity, this 
approach would also improve performance.

Currently, the prototype uses only data expressed using 
geographic co-ordinates. However, the Geohash encoding 
principle may be viewed as a quadtree, which would make 
it possible to easily use nongeographic co-ordinates. To do 
this, all that would be necessary would be to store in each 
GHT or in a separate table some metadata concerning the 
limits of the spatial extent of the mapped territory (e.g. xmin, 
xmax, ymin, ymax of the UTM zone). To facilitate inter-
action between various GHTs, they should be in the same 
system, which means that their Geohashes must be gener-
ated from the same spatial extent. Because GHTs present the 
data in a multiresolution, multilevel grid format in which all 
of the points are indexed, this structure would make it possi-
ble to facilitate the conversion of irregularly distributed data 
into regularly distributed data (e.g. raster data). Moreover, 
this multilevel aspect of GHTs could make it easier to visu-
alize point clouds. An M.Sc. thesis project is underway 
in collaboration with Laval University to develop such a 
capacity to visualize GHTs by making use of the structure’s 
multilevel aspect. The GHT structure code is currently avail-
able in OpenSource (https://github.com/pramsey/libght) and 
in pointcloud (https://github.com/pramsey/pointcloud), a 
PostgreSQL extension for the management of point clouds.
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Table 1. Results of performance tests

Select data included in whole 
data set 

Select data included in small 
area

‘Where’ 
condition

Number of 
points

Processing 
time (s)

‘Where’ 
condition

Number 
of points

Processing 
time (s)

All 21 364 937 73 All 580 150 2.1
R = 2 617 214 17 R = 2 5 079 0.4
Z³309 1 072 20 Z³309 2 0.3
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