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INTRODUCTION 

Volcanogenic massive sulphide (VMS) deposits are a
significant exploration target in Canada. These deposits
account for 27% of Cu, 49% of Zn, 20% of Pb, 40% of
Ag, and 3% of Au production in Canada (Drake, 2011).
Over 97% of Canada’s land mass was covered by gla-
ciers during the Quaternary (Nichol and Bjorklund,
1973) which eroded bedrock and deposited glacial sed-
iments over large regions. As a result of glaciation, till
geochemistry is an important exploration method for
VMS deposits in Canada. The application of till geo-
chemical methods to VMS exploration in Canada has a
>50 year history (e.g. Ermengen 1957; Dreimanis
1958, 1960; Fortescue and Hughes 1965; Shilts, 1975;
Kaszycki et al., 1996; Parkhill and Doiron, 2003). This
report provides an overview of this history as well as
an analysis of best practices, including recommenda-
tions on appropriate size fractions of till to analyze,
analytical techniques, and pathfinder elements. Till
geochemistry case studies of VMS deposits from min-
ing camps across Canada are highlighted, including
Buchans, Bathurst, Timmins, Noranda, Manitouwadge,
Flin Flon, Finlayson Lake, Hackett River and Izok
Lake (Fig. 1). This review considers the numerous pub-
lished reports and scientific papers that describe surfi-
cial geochemical studies around VMS deposits in
Canada. Many of the earlier case studies are listed in
the Exploration 77, 87, and 97 conference proceedings
(Bolviken and Gleeson, 1979; Coker and DiLabio,
1989; McClenaghan et al., 1997, 2000) as well as
exploration geochemistry reviews by Shilts (1975),
Bradshaw (1975), and Brummer et al. (1987). The ear-
liest soil and till geochemical case studies in Canada
from the 1950s to 1970s were carried out before the
VMS deposit genetic and exploration models were

fully developed, as modern black smoker seafloor sul-
phide deposits were only discovered in 1979. 

Table 1 summarizes and compares the pertinent infor-
mation about the detailed surveys around VMS deposits
that are described in this paper, including deposit loca-
tion, pathfinder elements, sample media, size fraction
analyzed, and analytical method. Some explanation of
analytical methods used to extract metals from glacial
sediments and soils is required before presentation and
discussion of the case studies listed in Table 1. 

The earliest determinations of the base metal content
of till relied on “cold-extraction” techniques (abbrevi-
ated as cx, cx-THM, CxCu) that determine the content
of readily soluble metal, or metals present as free ions
or loosely bound ions on the surface of grains (Rose et
al., 1979; Levinson, 1980). Cold extractions commonly
use buffer solutions and dilute acids, such as nitric,
hydrochloric, acetic, or Ethylenediaminetetraacetic
(EDTA), and are commonly analyzed by colourimetric
methods. These methods can be easily used in the field
because no preliminary treatment, such as drying or
sieving, is required.

One example of cold-extraction techniques widely
used in the glaciated terrain of Canada in the 1950s and
1960s is that developed by Bloom (1955). This method
extracts heavy metals (Cu, Zn, Pb, Co, Ni) in cold
ammonium citrate in the presence of dithizone dis-
solved in xylene. The xylene floats on an aqueous sur-
face and after a vigorous shake, the xyelene above the
aqueous phase changes to a colour that reflects its
metal content. Colours vary from green, blue, purple,
red, to brown. If the colour is purple or red, more
xylene-dithozone solution is added until the colour
changes to a neutral blue-grey colour (referred to as the
“endpoint”). Results are reported as milliliters of

TILL GEOCHEMICAL SIGNATURES OF VOLCANOGENIC MASSIVE 
SULPHIDE DEPOSITS IN GLACIATED TERRAIN: 

A SUMMARY OF CANADIAN EXAMPLES

M.B. McClenaghan and J.M. Peter

Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8

ABSTRACT

Volcanogenic massive sulphide deposits are a significant source of Cu, Pb, Zn, and Ag in Canada. In the
glaciated landscape of Canada, till geochemistry is an important exploration method for VMS deposits. This
open file report provides an overview of the >50 year history of the application of till geochemical methods
to VMS exploration in Canada, and also summarizes appropriate size fractions of till to analyze, analytical
techniques, and pathfinder elements. Geochemical methods are now well developed and widely used, most
commonly employing the <0.063 mm till fraction and an extensive suite of VMS pathfinder elements,
including Cu, Pb and Zn, Ag, Au, Tl, Sn, Se, Hg, In, Cd, Bi, As, Sb, and Ge. In order to detect the clastic
glacial dispersal signal down-ice of a VMS deposit, collection and analysis of unoxidized to weakly oxi-
dized till is optimal, whereas B-horizon soil is not. Case studies and examples of glacial dispersal patterns
associated with VMS deposits from major mining camps and deposits across Canada are highlighted,
including Buchans, Bathurst, Timmins, Noranda, Manitouwadge, Flin Flon, Finlayson Lake, Hackett River,
and Izok Lake.



0.001% dithizone in xylene solution required to titrate
to the blue-grey endpoint conditions. High metal con-
tents are reflected in greater volumes of solution being
added. Examples of its application to soils and glacial
sediments are given by Byers (1956), Ermengen
(1957), and Dreimanis (1960).

“Hot-extraction” techniques involve the use of one of
more acid solutions at temperatures >60ºC and are per-
formed in an analytical laboratory. The sample is dried
and sieved prior to analysis. The main advantage of using
hot acids is that more metal is extracted than with cold-
extraction techniques. Early versions of hot extractions
included the nitric acid method of Bloom and Crowe
(1953) and the perchloric method used by Garrett (1971).
Today, digestions can be “partial”, such as those deter-
mined by aqua regia, or ”near total”, such as 3- or 4-acid
digestions that include some combination of nitric, per-
chloric, hydrochloric, or hydrofluoric acids. Borate
fusion followed by nitric acid digestion is a widely used
total digestion method for determining the bulk compo-
sition of till (e.g. McClenaghan et al., in press).

BATHURST MINING CAMP

The Bathurst Mining Camp (BMC) in northern New
Brunswick, Canada (Fig. 1) hosts 46 VMS deposits

with known tonnage and grade data, as well as 95
occurrences. The BMC hosts some of the world’s
largest Zn deposits at Brunswick Number 12, Heath
Steele B, and Caribou (Goodfellow and McCutcheon,
2003; Fig. 2). In the BMC, VMS mineralization has
been weathered and oxidized prior to glaciation to form
gold-rich gossans in some deposits and metal-rich sec-
ondary minerals such as beudantite and jarosite (Boyle,
2003).

Base metal mining in the camp commenced in 1965
at Brunswick Number 12, and this deposit and others
(e.g. Halfmile Lake) are still being mined today. More
than 99% of the BMC is covered by glacial and post-
glacial deposits that are >3 m thick (Parkhill and
Doiron, 2003). The first VMS deposits were discov-
ered here in the 1930s by tracing mineralized boulders
up-ice to what is now known as the Orvan Brook Zn-
Pb-Ag-Au VMS deposit (Fig. 2) (Lundberg, 1948;
Dreimanis, 1958; Tupper, 1969).

The earliest geochemical surveys of properties and
orientation studies around VMS deposits in the BMC
were carried out using soil as the sample medium. Soil
is developed on till in the BMC, and therefore “soil
sampling” can be used here to effectively detect ele-
ments mechanically dispersed by glaciers as well as

M.B. McClenaghan and J.M. Peter
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Figure 1. Location of volcanogenic massive sulphide camps and deposits in Canada that are discussed in this paper.



those subsequently dispersed by hydromorphic

processes. Morris (1966) was one of the first to test soil

geochemical methods as an exploration tool in the

BMC. He demonstrated that compositional analyses of

soil using both Cx-THM and total Zn, Cu, and Pb out-

lined the area of mineralization on a property that later

became known as the Stratmat Zn-Pb-Ag-Cu VMS
deposit (Fig. 2).

Klassen’s (2003) study of metal partitioning in till
from around nine VMS deposits in the BMC concluded
that mineralized bedrock is reflected in till by elevated
contents of Cu, Pb, Zn, Ag, Bi, As, Cd, Co, Hg, Sb, and

Till Geochemical Signatures of VMS Deposits in Glaciated Terrain: A Summary of Canadian Examples

3

Deposit/Occurrence Location Ore Elements Pathfinder Elements Size Fraction 
Analyzed

Analytical Method Source of Information

Halfmile Lake deposit, Bathurst, NB Bathurst Mining Camp Zn-Pb-Cu Cu, Pb, In, Sn, Ag, As, 
Au, Sb, Bi,

<0.063 mm INAA + 4 acid/
ICP-ES,MS

Parkhill and Doiron (2003)

Halfmile Lake deposit, Bathurst, NB Bathurst Mining Camp Zn-Pb-Cu Cu, Pb, Zn, Ag, As, 
Au, Bi, Hg, Sb, Se, Sn

<0.063 mm aqua regia + borate 
fusion/ICP-MS,ES

Budulan et al. (2012)

Restigouche Deposit Bathurst Mining Camp Zn-Pb-Cu-Ag Cu, Pb, Zn, In, Sn, As, 
Au, Sb, Bi 

<0.063 mm INAA + 4 acid/
ICP-ES,MS

Parkhill and Doiron (2003)

Mount Fronsac deposit, Bathurst, NB Bathurst Mining Camp Zn-Pb-Cu-Ag Pb, Ag, Cu, Hg, Cd <0.063 mm Aqua regia/ICP-MS
+ cold vapour AAS

Campbell (2009)

Bog deposit, Bathurst, NB Bathurst Mining Camp Pb-Zn-Cu-Ag Cu, Pb, Zn, Ag, As, 
Sb, Cd

not reported not reported Hoffman and Woods (1991)

CNE deposit, Bathurst, NB Bathurst Mining Camp Zn-Pb-Cu-Ag Pb, Zn,Cu,  Ag, Au, 
As, Sb, Hg 

<0.063 mm 4 acid/ICP-ES + 
INAA + CV-AAS

Parkhill and Doiron (1995, 2003)

Buchans, Oriental, Lucky Strike, NL Bathurst Mining Camp Zn-Pb-Cu Pb, Zn <0.002 mm LeForte/ICP-AES Klassen and Murton (1996)
Buchans, Oriental, Lucky Strike, NL Bathurst Mining Camp Zn-Pb-Cu  Zn <0.177 mm nitric acid digestion James and Perkins (1981)
New Bay Pond, NL central Newfoundland Cu-Zn Cu, Zn, As, Hg <0.063 mm;

0.063-0.297 mm 
HMC (SG >2.96)

NHNO3+HCl/AAS,
HNO3+HClO4/AAS,

CV-AAS

Hornbrook et al. (1975)

Kidd Creek deposit, Timmins, ON Timmins Mining Camp
Kidd Creek deposit, Timmins, ON Timmins Mining Camp Zn-Cu-Pb-Ag Zn, Cu <0.0177 mm total digestion Fortescue and Hornbrook (1969); 

Hornbrook (1975a)
Kidd Creek deposit, Timmins, ON Timmins Mining Camp Zn-Cu-Pb-Ag Zn, Cu, As <1.7 mm HMC

(SG >3.3)
aqua regia/ICP-ES McClenaghan et al. (1998)

Kam Kotia deposit, Timmins, ON Timmins Mining Camp Cu-Zn Cu, Zn, Ag, Cd, Sb, 
Se, Ga, Tl, V

<0.002 mm; <0.063 
mm HMC (SG> 

3 3)

aqua regia/ICP-MS & 
ES

 Smith (1990, 1992)

Kam Kotia deposit, Timmins, ON Timmins Mining 
Camp

Cu-Zn Cu-Zn <0.063 mm; <0.25-
0.063 mm HMC 

(SG >3.3)

not reported Skinner (1972a); Shilts (1976)

Jameland despoit, Tmmins, ON Timmins Mining 
Camp

Cu-Zn-Au-Ag Cu-Zn <0.063 mm;
<0.25-0.063 mm 
HMC (SG >3.3)

not reported Skinner (1972a); Shilts (1976)

Horne deposit, Noranda, QC Noranda Mining Camp Cu-Au-Ag Cu, Zn, Pb <0.0177 mm not reported Dreimanis (1958, 1960)
MacDonald deposit, Noranda, QC 
(Gallen)

Noranda Mining Camp Zn-Cu-Au-Ag Cu, Zn, Pb <0.177 mm not reported Dreimanis (1958, 1960)

Magusi River deposit, Noranda, QC Noranda Mining Camp Zn-Cu Cu, Zn, Ag, Hg whole till; >0.177 
mm  HMC (SG 

>2.96); <0.177 mm

not reported Gleeson (1975b)

Mogador (Vendome), Val d'Or, QC Val d'Or Mining Camp Zn-Cu-Pb-Ag-Au Cu, Zn, Ag <0.177 mm;
>0.177 mm HMC

not reported Dreimanis (1958); 
Gleeson (1975a)

Louvem deposit, Val D'Or, QC Val d'Or Mining Camp Zn-Cu-Ag-Au Cu, Zn <0.177 mm;
>0.177 mm HMC 

(SG >2.96)

not reported Gleeson and Cormier (1971)

Louvem deposit, Val D'Or, QC Val d'Or Mining Camp Zn-Cu-Ag-Au Cu, Zn <0.177 mm;
0.064-0.177 mm 
HMC (SG >3.3)

pyrosulphate fusion
+ colourimetry

Garrett (1969a,1971)

Geco, Willroy, Nama Creek deposits, 
Manitouwadge, ON

Manitouwadge Mining 
Camp

Zn-Cu-Ag Cu, Zn, Ag <0.063 mm aqua regia Kettles et al. (1998)

Chisel Lake, Lost Lake, Ghost Lake 
deposits, Snow Lake, MB

Snow Lake Mining 
Camp

Zn-Cu Cu, Hg, Pb, As, Au, Sb <0.002 mm;
<0.063 mm 

INAA + aqua regia 
AAS and ICP-ES

Kaszycki et al. (1996)

Kudz Ze Kayah deposit, Finlayson 
Lake, YU

Canadian Cordillera Zn-Pb-Cu-Ag-Au Zn, Pb, Ag, Au <0.063 mm aqua regia/ ICP-MS Bond and Plouffe (2002)

Broken Ridge occurrence, Adams 
Lake, BC 

Canadian Cordillera Cu-Pb-Zn-Ag Cu, Hg, Bi <0.063 mm aqua regia/ICP-ES + 
INAA

Lett et al. (1998)

Harper occurrence,           Adams 
Lake, BC

Canadian Cordillera Cu-Pb-Zn-Ag-Au Cu, Au, Bi, Hg, Se <0.063 mm aqua regia/ICP-ES + 
INAA

Lett et al. (1998)

Samatosum and Rea deposits, Adams 
Lake, BC

Canadian Cordillera Ag-Pb-Zn-Cu Pb, Zn, As, Hg, Sb, Au <0.063 mm aqua regia/ICP-ES + 
INAA

Bobrowksy et al. (1997); Lett 
(2001); Paulen (2001)

Lynx, Myra, H-W, Prince deposits, 
Myra Fall, BC

Canadian Cordillera Cu-Zn-Pb-Au-Ag-
Cd

Cu, Pb, Zn <0.002 mm total digestion/AAS Hicock (1986)

Yava (Agricola Lake) deposit, NU Canadian Arctic Zn-Cu-Pb-Ag-Au     Cu, Pb, Zn, Ag, 
Au, Hg

<0.177 mm HNO3 + HCl/AAS + 
CV- AAS+ FA-AAS

Cameron and Durham (1975); 
Cameron (1977)

Hackett River deposit, NU Canadian Arctic Zn-Pb-Cu-Ag Pb <0.177 mm HNO3 + HClO4 + HCl 
/AAS

Miller (1979)

Spi Lake occurrence, NU Canadian Arctic Zn, Pb,Cu Cu, Zn <0.002 mm HCl-HNO3/AAS Shilts (1975)
Izok Lake deposit, NU Canadian Arctic Zn-Cu-Pb-Ag Zn, Cu, Pb, Fe, Ag, Cd

Cd, Sb, Bi, Hg, Se, In, Tl
<0.063 mm aqua regia/ICP-Ms + 

borate fusion/ICP-MS
Hicken et al. (2012)

Zn-Cu-Pb-Ag Zn, Cu <0.0177 mm 3 acid/colourimetric Fortescue and Hughes (1965)

Table 1. Survey details for VMS deposits discussed in this paper.



Sn that are elevated above background. He demon-
strated that metal contents are highest in the clay
(<0.002 mm) fraction of till, but that clay-sized material
is a minor component (<4%) of local BMC till. He also
observed that glacial transport of metal-rich debris in the
BMC was short (<1 km); therefore, glacial comminu-
tion of ore minerals to the finest, clay-sized fraction was
limited. Because of these factors, Klassen (2003) con-
cluded that analyzing the slightly coarser silt + clay
(<0.063 mm) fraction of till for base metal exploration
in the BMC is effective for detecting glacial dispersal.

In addition to comparing size fractions, Klassen
(2003) also compared Pb, Zn, and Ag contents in till as
determined by 4-acid (total) versus aqua regia diges-
tions. Both digestion methods display similar abun-
dances of base metals, indicating that the elements
occur in mineral forms that are readily soluble in aqua
regia (i.e. sulphides). Bismuth, Co, Sb, and Sn were
reliably detected in metal-rich till only by use of a total
digestion, indicating that these elements occur in refrac-
tory minerals such as cassiterite (Sn) and tetrahedrite
(Sb), or within minerals such as pyrite (Co), galena
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(Bi), and bismuthinite (Bi) that were incompletely dis-
solved by digestions other than 4-acid. In addition to
Klassen’s (2003) general studies of base metal glacial
dispersal in the BMC, several deposit-specific studies
have been carried out over the past 30 years. Highlights
from these case studies are described below.

Halfmile Lake Deposit

The Halfmile Lake Zn-Pb-Cu deposit, in the western-
most part of the BMC (Fig. 2), was discovered in 1952
using soil geochemical and geophysical surveys
(Adair, 1992; Parkhill and Doiron, 2003). The deposit
is capped by a preglacial massive sulphide gossan that
is enriched in Pb, Cu, In, Au, Ag, Sn, As, Sb, Bi, and Se
(Boyle, 2003). A well developed, ribbon-shaped glacial
dispersal train extending up to 1 km down-ice (east-
northeast to east-southeast) is best defined by Cu, Sn
(Fig. 3), Pb, In, Ag, As, Au, Sb, and Bi in the <0.063
mm till fraction. Although Zn is the most abundant

base metal in the deposit, it is not a pathfinder element
in till immediately down-ice. The low Zn contents in
till down-ice likely reflect the Zn depletion of the gos-
san cap (Parkhill and Doiron, 2003). Budulan et al. (in
press) collected additional till samples around the
Halfmile Lake deposit to document the indicator min-
eral signatures in till down-ice. This additional sam-
pling confirms the till geochemical dispersal patterns in
the <0.063 mm till fraction first identified by Parkhill
and Doiron (2003) and identifies a similar suite of
pathfinder elements, including Cu, Pb, Zn, Ag, As, Au,
Bi, Hg, Sb, Se, and Sn. Both of these studies of till dis-
persal around the Halfmile Lake deposit demonstrate
the broad multi-element signature of this VMS deposit,
which likely reflects mainly the subcropping gossan
cap.

Certain VMS deposits can contain Pb (as galena)
whose Pb isotopic composition can be distinctly differ-
ent from that of the surrounding country rocks (e.g.
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Sangster et al., 2000). This difference in compositions
allows for isotopic fingerprinting of Pb in the deposits
(e.g. Bell and Murton, 1995). A relatively recent appli-
cation of Pb isotopic analysis is its determination in
glacial sediments to identify signatures that may be
indicative of VMS mineralization in source rocks up-
ice. One example of this application is the analysis of
till down-ice of the Halfmile Lake deposit using Pb iso-
topic ratios and Pb abundance in the till matrix (<0.063
mm fraction). Hussein et al. (2003) determined Pb iso-
tope compositions of surface till up to 1600 m down-
ice of the Halfmile Lake deposit and demonstrated that
Pb isotope compositions could be used to map out the
dispersal train for at least 600 m (Fig. 4). In vertical till
sections down-ice from the deposit, the Pb isotopic sig-
nature of the ore is generally found in the lowest part of
the section, overlying bedrock (Fig. 5).

Restigouche, C-4, and C-5 Deposits

The discovery holes for the Restigouche Zn-Pb-Cu
VMS deposit and nearby C-4 and C-5 VMS deposits
(Fig. 2) were drilled in 1958 to follow-up a soil geo-
chemical anomaly (Parkhill and Doiron, 2003). Similar
to the Halfmile Lake deposit, the Restigouche deposit
is, in part, capped by preglacial gossan. This gossan is
likely preserved because the deposit is on the lee side
(down-ice side) of a hill. The C4 and C5 zones, which
outcrop and subcrop on the top of a hill, are not cov-
ered by gossan. Till around the three deposits has ele-
vated contents of Cu, Pb, Zn, In, Sn, As, (Fig. 6), Au,
Sb, and Bi in the <0.063 mm fraction up to 2 km down-
ice. Dispersal patterns for Pb and As (Fig. 6a,d) reveal
there are separate trains sourced from the Restigouche
deposit and from the C-4 and C-5 zones trending north-
east. Glacial dispersal patterns associated with the C-4
and C-5 zones are at least 3 km down-ice, 750 m wide,
and are best defined by Pb, In, Sn, and As. The C-4 and
C-5 zones consist of unweathered sulphides outcrop-
ping on topographic highs. As a result, the deposits
have been deeply eroded and thus material dispersed
from these deposits extends farther down-ice than that
from the main Restigouche deposit.

In addition to till samples, humus and B-horizon soil
samples were collected over the Restigouche deposit in
the 1990s. Comparison of these samples to underlying
till samples indicates that where anomalous metal con-
tents are present in B-horizon soil, they are also gener-
ally present in the underlying till upon which the soil
has formed (Hall et al., 2003; Parkhill and Doiron,
2003). Copper, Pb, and Zn anomalies in the <0.063 mm
fraction of till cover a much larger area than anomalous
B-horizon soil (<0.177 mm), indicating that till pro-
vides a larger exploration target than the soil, and that
soil developed on till can reflect clastic glacial disper-
sal signals. These observations demonstrate that old
soil geochemical surveys conducted in the BMC
between 1950 and the 1980s likely reflect underlying
till compositions and thus soils around VMS deposits
reflect clastic dispersal signals derived from erosion of
base metal mineralization.

Mount Fronsac North Deposit

The Mount Fronsac North Zn-Pb-Cu-Ag-Au VMS
deposit is the most recently discovered (1999) VMS
deposit in the BMC (Fig. 2). It was discovered by dia-
mond drilling after a reassessment of geophysical data
in the area led to the discovery of a previously unknown
gossan outcrop. Similar to some of the other BMC
deposits, it is covered in places by a preglacial gossan
(Walker and Graves, 2007). Glacial dispersal from the
thin till-covered deposit and its gossan cap is best
defined by Pb, Ag, Au, Cu, As, Sb, and Bi in the <0.063
mm fraction of till (Campbell, 2009). Distribution pat-
terns in till reflect glacial dispersal to the east-northeast,
together with post-glacial weathering and hydromor-
phic remobilization of some elements. 

BOG Deposit

Hoffman and Woods (1991) have documented the role
of till sampling in the discovery of the BOG Pb-Zn-Cu-
Ag VMS deposit, 3 km northwest of the Wedge Cu-Pb-
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Zn-Ag VMS deposit in the central part of BMC (Fig.
2). One of first indications of the presence of the Bog
deposit was the elevated metal contents in surface [A-
horizon?] soil reported in the 1960s. Hoffman (1985,
1986, 1989) outlines the reasons why earlier explo-
ration of the property, as far back as the 1950s, failed to

discover the BOG zone. The early geochemical surveys
collected soil developed on alluvium and till, as well as
organic matter in bogs. The genesis and geochemical
characteristics of these early soil surveys were not
taken into account when interpreting the data. In 1982,
resampling the soils over part of the earlier soil survey
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grid, with renewed focus on soils developed on till and
sufficient sample depth (consistent B-horizon sam-
pling), identified elevated contents of Cu, Pb, and Zn in
samples from parts of the grid area. The deposit was
subsequently discovered in 1983 through the use of
geophysics and deep overburden drilling to sample till
and bedrock. Hoffman and Woods (1991) reported that
till overlying the deposit is enriched in Cu, Pb, Zn, Ag,
As, Sb, and Cd and this suite of metals in the till is
likely also represented in the bulk soil compositions.
Thus, soils formed on the metal-rich till also record gla-
cial dispersal of mineralization from the deposit. 

CNE Deposit

The CNE Zn-Pb-Cu-Ag VMS deposit (Fig. 2) in the
southern part of the BMC was discovered in 1978
using stream sediment geochemistry (Whaley, 1992).
The deposit is relatively small (331,000 tonnes), but
was open pit mined in the early 1990s; reserves remain
and there are current goals to recommence mining.
Parkill and Doiron (1995, 2003) carried out detailed till
sampling around the deposit and found elevated of Pb,
Zn, Cu, Ag, Au, As, Sb, and Hg contents in the <0.063
mm fraction of till up to 1000 m down-ice. Dispersal
distances from this deposit are short because it is situ-
ated in a topographic depression and was protected
from multiple ice-flow events by a thick (up to 5 m)
cover of till deposited by early east-flowing ice (Parkill
and Doiron, 1995, 2003).

BUCHANS MINING CAMP

The Buchans Zn-Pb-Cu VMS deposits in central
Newfoundland (Fig. 1) were discovered in the early
1900s (Neary, 1981) and were some of the richest and
most productive VMS deposits in Canada, with aver-
age grades of 14.5% Zn, 7.6% Pb, and 1.3% Cu (Klassen
and Murton, 1996). Till and soil sampling, in combina-
tion with geological mapping and geophysical surveys,
were used by the Buchans Mine exploration staff to
identify several sulphide deposits in the area (James
and Perkins, 1981). They identified an area of elevated
Zn in soil developed on till southwest of the Oriental,
Lucky Strike, and Buchans VMS deposits (Fig. 7), in
concert with mapping the distribution of massive sul-
phide, massive barite, and stockwork boulders that
were glacially dispersed from the deposits (Fig. 8).

Klassen and Murton (1996) documented the com-
plex ice-flow history of the Buchans area, which
includes four phases of flow: north, south, northeast,
and southwest. These varied ice-flow events are
responsible for the distribution of mineralized boulders
both southwest and northeast of the deposits, as shown
in Figure 8. The area is covered by thick glacial sedi-
ments. In places, the till is covered by >40 m of glacio-
lacustrine clay and silt. Similar to the Abitibi
Greenstone Belt (described below), till in this area is
best sampled by overburden drilling below the glacio-
lacustrine and glaciofluvial deposits. Klassen and
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Murton (1996) identified a Pb-Zn dispersal train in till
extending up to 10 km from the deposits in a southwest
direction, which coincides with the dispersal train first
documented by James and Perkins (1981) (Fig. 7).
They concluded that the geochemical dispersal pattern
for the Buchans deposits reflects both southwest glacial
transport and later redistribution of mineralized debris
within debris-flows and glaciolacustrine deposits.

A second example of the application of Pb isotopes
to till geochemistry and glacial dispersal is documented
by Bell and Murton (1995), who studied till samples
adjacent to the Oriental and Lucky Strike deposits at
Buchans. They demonstrated that Pb derived from the
VMS deposits can be differentiated from Pb derived
from country rocks down-ice of the two deposits on the
basis of radiogenic Pb isotopic compositions. 

NEW BAY POND VMS DEPOSIT

In the mid-1970s, Hornbrook et al. (1975) conducted a
multimedia surficial geochemical study of the undis-
turbed New Bay Pond Cu-Zn VMS deposit 40 km
north of Grand Falls, in north-central Newfoundland
(Fig. 1). The deposit, discovered in 1971, is a bimodal
felsic-type deposit hosted by rhyolite that contains 18.1
Mt grading 2 wt.% Zn and 0.5 wt.% Cu. The study
included till, B- and C- horizon soil developed on till,
stream sediments, and lake sediments. Both the 0.063-
0.297 mm heavy mineral concentrate (HMC) (SG >
2.96) and the <0.063 mm fractions of “basal” till sam-
pled at depths below the weathering and soil develop-
ment were analyzed. The two fractions were found to
contain elevated Zn (Fig. 9), Cu, As, and Hg at least
500 m down-ice (northeast and east) dispersed in a fan
shape that appears to reflect redistribution by both
phases of ice flow. The metal contents in the HMC
fraction are greater than in the <0.063 mm fraction. 

The authors assumed that the geochemical composi-
tion of the HMC fraction of till reflects clastic disper-
sal, whereas the <0.063 mm fraction of till reflects
clastic as well as some hydromorphic dispersion via
groundwater. Metal contents in both fractions reflect
the underlying mineralized bedrock (Fig. 9), although
elevated values in the HMC fraction extend farther
down-ice than values for the <0.063 mm fraction.
Based on these assumptions and observations, the
authors concluded that the HMC fraction of unweath-
ered till is better suited to till geochemical surveys in
support of base metal deposit exploration.

NORANDA MINING CAMP

The Abitibi Greenstone Belt (AGB) in western Quebec
and eastern Ontario is one of the largest greenstone
belts in the world, covering an area approximately 300
x 700 km (Fig. 1). It hosts several world-class VMS
deposits (Fig. 10): the Horne VMS deposit in the

Noranda Mining Camp, as well as Bousquet-LaRonde
in the Doyon-Bousquet-LaRonde mining camp and the
giant Kidd Creek VMS deposit in the Timmins mining
camp. The challenges of exploring the AGB, compared
to other VMS mining camps in glaciated terrain, are the
thick deposits of till (up to 10 m) and, in places, even
thicker (up to 40 m) overlying glaciolacustrine clay and
silt that cover prospective rocks and hinder geophysi-
cal surveys and till sampling. The Abitibi region is also
referred to as the ‘Clay Belt” because of the thick cover
of glaciolacustrine silt and clay.

Bischoff (1954), Ermengen (1957), and Dreimanis
(1958, 1960) carried out some of the earliest case stud-
ies around VMS deposits in the AGB, sampling around
deposits in the Noranda, Timmins, and Chibougamau
regions (Fig. 10). They tested the metal content of soils
using both cold and hot acid extraction methods. In this
early work, the authors recognized the glacially trans-
ported nature of the material (i.e. till) on which the soil
was developed and the importance of understanding
ice-flow direction(s) for the interpretation of geochem-
ical patterns.

The Horne Cu-Au VMS deposit, discovered in
1923, underlies the City of Rouyn-Noranda in the cen-
tral AGB (Fig. 10). It is the second largest VMS deposit
(after Kidd Creek) and one of the largest Au deposits in
the AGB. Using extensive surface till sampling and
mapping of the locations of mineralized pebbles and
cobbles down-ice (south to southwest) of the Horne
deposit (Fig. 11), Dreimanis (1958, 1960) demon-
strated that the Horne deposit has a well defined glacial
dispersal train that extends at least 2400 m down-ice
and that till geochemical sampling and analysis (Cu
and Zn) was an effective exploration tool.

A second case study was carried out in the Noranda
Mining Camp, at the MacDonald (Gallen) Cu-Zn-Au
VMS deposit located 6 km northeast of Rouyn-
Noranda (Fig. 10). Here Dreimanis (1958, 1960) col-
lected surface till samples and mapped the location of
mineralized pebbles and cobbles to document the pres-
ence of Cu- and Zn-mineralized clasts or debris up to
900 m down-ice (Fig. 12). From his early studies,
Dreimanis (1958, 1960) concluded that because
Canada is a glaciated landscape, the application of till
geochemical and boulder tracing methods, in combina-
tion with geophysical and other prospecting methods,
would lead to new discoveries of ore deposits.

At the Magusi Cu-Zn-Ag-Au VMS deposit, 32 km
northwest of Rouyn-Noranda (Fig. 10), three overbur-
den holes were drilled above and up- and down-ice of
the deposit to test the geochemical signatures in three
size fractions of till; whole till, >0.177 heavy mineral
concentrate (HMC), and <0.177 mm (Gleeson, 1975a).
Metal-rich till over the deposit was found to contain
metal contents elevated above background in all three

Till Geochemical Signatures of VMS Deposits in Glaciated Terrain: A Summary of Canadian Examples
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size fractions, but only the HMC fraction in till 30 m
down-ice contained elevated metal contents. Gleeson
(1975b) concluded that this example demonstrated the
importance of analyzing the HMC fraction for detect-
ing base metal mineralization. 

VAL D’OR MINING CAMP

Tracing of Pb-Zn sulphide boulders in the late 1930s
and onward contributed to the discovery in the 1950s of
the Mogador (Vendome) Cu-Pb-Zn-Au-Ag VMS
deposit (Dreimanis, 1958) (Fig. 10), 40 km northeast of
city of Val d’Or, in the Val d’Or mining camp. This was
one of the first examples of the application of drift
prospecting to VMS exploration in the AGB.
Subsequent sampling of till overlying the Mogador
deposit by Gleeson (1975b) included analysis of the
<0.177 mm and the <0.177 HMC fractions of till. The
HMC fraction of the till contained elevated Cu (1600
ppm), Zn (612 ppm), and Ag (3.7 ppm) contents, but the
strong geochemical signature is confined to a localized
area immediately above the mineralization (Fig. 13).

Other early studies to document till geochemical
signatures of VMS deposits in the AGB include those
of Garrett (1969a, 1971) and Gleeson and Cormier
(1971) around the Louvem Zn-Cu-Ag-Au VMS
deposit in the central AGB, east of Val d’Or (Fig. 10).

The study by Gleeson and Cormier (1971) was one of
the first to demonstrate that till samples could be col-
lected by drilling at depth. They analyzed the <0.177
mm and >0.177 mm HMC (SG = 2.96) fractions of till.
Both till fractions display elevated Cu and Zn contents
in samples collected over the deposit as well as down-
ice from it (Fig.14); however, the greatest contrast
between background and anomalous values is in the
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HMC fraction. Garrett (1969a, 1971) sampled till in 34
overburden holes drilled up to 200 m down-ice of the
Louvem deposit and analyzed both the <0.177 mm
fraction and the 0.063-0.177 mm HMC fraction (SG =
3.3). Both size fractions of till reflect dispersal of
metal-rich till at least 200 m down-ice (southwest) of
the deposit; however, the contrast between background
and anomalous contents is much greater for the HMC
fraction (Fig. 15). Garrett (1971) recommended the use
of the HMC for future till geochemical sampling pro-
grams. Base metal-rich till immediately down-ice of
the deposit is at the bedrock surface and occurs strati-
graphically higher in the till section with increasing
distance down-ice (Fig. 16). Garrett’s (1971) work is
one of the first studies by a government geological sur-
vey on the geochemical signatures of VMS deposits.

TIMMINS MINING CAMP

Kidd Creek Deposit

In the 1960s, till geochemical methods for base metal
exploration were still being developed. One important
test site was the giant Kidd Creek Zn-Cu-Pb-Ag
deposit, in the Timmins mining camp of the western
AGB, 25 km north of Timmins (Fig. 10) (Fortescue and
Hughes, 1965; Fortescue and Hornbrook, 1969;

Hornbrook, 1975a). These studies aimed to determine if
till geochemistry was useful in the evaluation of geo-
physical anomalies in the “Clay Belt”. These Kidd
Creek case studies by the GSC were among the first to
demonstrate the value of deep (20-40 m) overburden
drilling to collect till samples in an area of thick till and
clay (Brummer et al., 1987). The first study by
Fortescue and Hughes (1965) made use of till samples
collected for civil engineering investigations of the
mine property. Their analysis of the <0.177 mm fraction
of lower till resting on bedrock showed that the VMS
deposit imparted a strong Cu-Zn signature to the till.

Subsequently, Fortescue and Hornbrook (1969) con-
ducted one of the first tests using reverse circulation
(RC) overburden drilling to collect till samples for
mineral exploration. Since their study, tens of thou-
sands of RC overburden holes have been drilled across
the AGB to collect till samples in the search for base
metal and gold deposits. Fortescue and Hornbrook’s
(1969) RC drilling showed that elevated Cu (up to
1000 ppm) and Zn (up to 2000 ppm) contents in the
<0.177 mm fraction of till outline a south-trending dis-
persal fan more than 2 km down-ice (Fig. 17) from the
deposit (Fortescue and Hornbrook,1969; Hornbrook,
1975a). Skinner (1972a,b) conducted additional RC
drilling farther down-ice of the Kidd Creek deposit to
further document the dispersal of metal-rich till. Till
south of the deposit has high Cu (up to 4300 ppm) and
Zn (up to 13,000 ppm) contents in the sand-sized heavy
mineral (SG > 3.3 gm/cc) fraction of till at least 8 km
down-ice (Fig. 18).

More recently, McClenaghan et al. (1998) con-
ducted a regional surface till sampling survey of the
western part of the Timmins mining camp, which

Till Geochemical Signatures of VMS Deposits in Glaciated Terrain: A Summary of Canadian Examples
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encompassed the Kidd Creek deposit area and several
gold deposits. Some of the highest Cu and Zn contents
in the heavy mineral fraction (SG > 3.3) fraction of
their 138 surface till samples are adjacent to the Kidd
Creek open pit. Two other till samples in their regional
survey display Cu and Pb contents of similar magni-
tude and these overlie felsic volcanic rocks (the host
rocks to the deposit), indicating the potential of such a
survey to locate additional VMS-type mineralization in
the region.

Kam Kotia Deposit

Dreimanis (1960) was the first to collect and analyze
till samples from around VMS deposits in the Timmins
mining camp. He sampled till in five sections around
the edges of the open pit at the Kam Kotia Cu-Zn-Au-
Ag VMS deposit, 25 km northwest of Timmins (Fig.
10). Using both cold extractable heavy metal methods
in the field and lab-based quantitative methods for Cu,
Zn, and Pb, he documented elevated Cu and Zn con-
tents in till at least 270 m down-ice of the deposit.
Subsequently, Skinner (1973) documented glacial dis-
persal patterns for till geochemical data from samples
collected from 92 RC holes drilled up to 5 km south of
the deposit. Shilts (1976) summarized the results from
Skinner’s drilling program and described the dispersal
pattern as “sheet-like zones of high Cu concentrations

down ice” in the sand-sized heavy mineral (SG > 3.3)
fraction of till (Fig. 19). Contents are close to those in
the bedrock surface immediately down-ice and
increase stratigraphically upward through the till
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sequence with increasing down-ice distance. More
recently, Smith (1990, 1992) reported on the metal con-
tents of 14 closely spaced overburden holes drilled to
collect till immediately down-ice (southwest and
southeast) of the Kam Kotia deposit. Raw geochemical
data published by Smith (1990) reveal a broad suite of
VMS pathfinder elements. For example, till samples in
drillhole 53, 1 km down-ice (southwest) of the Kam
Kotia open pit, contain elevated contents of Cu (359
ppm) and Zn (371 ppm), as well as Fe, Co, Cd, Sb, Se,
Ga, Tl, and V in the <0.002 mm fraction.

Jameland Deposit

Skinner (1973) also reported on 21 RC holes drilled
around the Jameland Cu-Zn VMS deposit, approxi-
mately 1 km southeast of the Kam Kotia deposit (Fig.
10). Shilts (1976) also summarized the results from
Skinner’s (1973) drilling program around this deposit
(Fig. 19). Elevated Cu and Zn contents were reported
in the sand-sized heavy mineral (SG > 3.3) fraction of

till. This case study demonstrated that the highest con-
tents in till are not universally restricted to immediately
down-ice of the deposit. Instead they are displaced 45
to 75 m down-ice and have been sheared upwards. 

MANITOUWADGE MINING CAMP

The Manitouwadge mining camp, 330 km east of
Thunder Bay (Fig. 1) in northwestern Ontario, was dis-
covered in 1932 and contains four deposits: Geco,
Willroy, Big Nama Creek, and Lun-Echo. Morris
(1966) first reported elevated metal contents in soil in
the Lun-Echo property in the Manitouwadge area (Fig.
1). He sampled C-horizon soil developed on till, deter-
mined cold extractable heavy metal contents, and
found that the strongest anomalies (300 ppm total
heavy metals) overlie mineralized zones. Garrett
(1969b) and Hornbrook (1975b) subsequently reported
geochemical data for till collected around the Geco and
Big Nama Creek Zn-Cu-Ag VMS deposits in the camp.
Here, calcareous, metal-poor till derived from
Paleozoic carbonate rocks 100 km to the northeast
overlies the bedrock and, in places, can mask the sig-
nature of the underlying bedrock.

A regional till sampling survey was carried out
across the Manitouwadge mining camp by the GSC in
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the 1990s, with more closely spaced till samples col-
lected near the Geco and Willroy VMS deposits
(Kettles et al., 1998). They reported that the till imme-
diately overlying mineralization is metal-rich despite
the presence of distally derived carbonate till. In par-
ticular, the <0.063 mm fraction of till near the Geco
and Willroy deposits has elevated Cu, Zn, Ag, Fe, Mn,
As, Ba, V, Sc, and Ti contents. In addition to reporting
the regional till survey data, Kettles et al. (1998) re-
analyzed and reported data for Garrett’s (1969b) origi-
nal till samples collected in 1960s around the Nama
Creek deposit. They reported elevated Cu (up to 1215
ppm) and Zn (up to 2780 ppm) contents in till overly-
ing mineralization and up to 30 m down-ice from it,
reflecting the strong but local base metal signature in
till.

Simonetti et al. (1996) tested the use of Pb isotopic
analysis of selective leachates from two near-surface
till samples collected down-ice of the Geco and
Willroy VMS deposits. They found that Pb isotopic
signatures in the <0.063 mm fraction of till are similar
to those of ore galena within the nearby deposits. They
concluded that the Pb in the till is of a secondary origin
and was probably scavenged and redeposited in the till
after destruction of original sulphide minerals during
post-glacial weathering of the till.

FLIN FLON MINING CAMP

The Flin Flon greenstone belt in central Canada (Fig. 1)
hosts more than 30 VMS deposits in the largest
Paleoproterozoic VMS district in the world (Syme and
Bailes, 1993). It is the richest greenstone belt in
Canada per square kilometre (Franklin, 1995). Initial
surficial geochemical studies in the Flin Flon mining
camp were carried out by Byers (1956). He tested
Bloom’s (1955) cold extractable metals method on soil
overlying and down-ice of the Coronation Cu-Zn VMS
deposit and determined that metal contents in soil are
highest at least 120 m southeast of deposit in the direc-
tion of ice flow. Subsequent soil studies by Scott and
Byers (1964) determined that Cu and Zn are effective
pathfinders for underlying Cu-Zn mineralization. 

Another early study of the applicability of soil geo-
chemical analysis for exploration in the Flin Flon min-
ing camp is that of Bradshaw et al. (1973). Based on
results from limited A-, B-, and C-horizon soil sam-
pling over the Keg Lake VMS deposit near Flin Flon,
they concluded that the Hg content of the organic-rich
soil was the best indicator of underlying base metal
mineralization. However, given the paucity of details
provided, it is not known if the soil was developed on
till or some other glacial sediment, how thick the gla-
cial sediment cover is, or the direction of ice flow rela-
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tive to sample locations. A more thorough till sampling
program in this area may indeed reflect the underlying
mineralization.

McMartin et al. (1996, 2012) carried out a large
regional-scale till sampling program across a 375,000
km2 area, which includes the major mining camps of
Flin Flon and Snow Lake (Fig. 1), to provide a better
understanding of the Quaternary history and glacial
dispersal patterns of the region as well as provide till
geochemical data in underexplored areas to help assess
its mineral potential and assist explorationists. They
analyzed the <0.002 mm fraction of till for a broad
suite of elements and reported elevated contents of one
or more of Zn, Cu, Cd, and Hg in till near VMS
deposits in the Flin Flon and Snow Lake areas. In addi-
tion to anomalous metal contents in areas of known
VMS mineralization, they also identified metal-rich till
in areas with no known VMS deposits that warrant fur-
ther investigation. 

Till sampling in support of VMS exploration in the
Flin Flon region must take into consideration the fall-
out from the Flin Flon base metal smelter, which has
contaminated the upper 0.5 m of soil and oxidized till.
Detailed soil profile and till studies at varying distance
from the smelter have shown that at sites >3 km from
the smelter, till collected at depths of >0.5 m reflects

natural compositions derived from erosion of underly-
ing bedrock, and not smelter emissions (Henderson et
al.,1998; McMartin et al., 1999) and is thus a suitable
exploration medium. 

SNOW LAKE MINING CAMP

In the Snow Lake mining camp (Fig. 1) 70 km east of
Flin Flon, detailed till sampling was carried out in the
early 1990s to document glacial dispersal patterns
associated with VMS deposits and evaluate the efficacy
of various surficial media, including humus, and B-
and C-horizon soils developed on till, as well as ana-
lytical techniques best suited to VMS exploration in
this glaciated region. Around the Chisel Lake, Lost,
and Ghost Cu-Zn VMS deposits, Kaszycki et al. (1996)
documented well defined south-southwest-trending
dispersal fans defined by Cu and Zn in two fractions of
C-horizon soil developed on till. The authors con-
cluded that the contrast between background and
anomalous Cu and Zn contents is greatest for the
<0.002 mm fraction of till, compared to the <0.063 mm
fraction. Furthermore, glacial dispersal of these metals
is detectable up to 1 km down-ice from the deposit
(Fig. 20). Areas of anomalous metal contents in the B
horizon developed on till are smaller in areal extent and
the anomalies are smaller, indicating that the B horizon
contains less metals than the C horizon in this area. 
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Kaszycki et al. (1996) also identified a Cu, Hg, Pb,
As, Au, and Sb multi-element anomaly in till north of
Chisel Lake, an area where the Photo Lake Cu-Zn-Au
VMS deposit was later developed. In addition to docu-
menting the multi-element signatures of till down-ice
of the VMS deposits, they compared Cu/Zn ratios in till
to those of underlying source rocks. They found that
high Cu/Zn ratios in till closely match those in under-
lying felsic rocks that host Cu-rich VMS deposits and
that high Zn/Cu ratios in till closely reflect underlying
mafic rocks with Zn-rich deposits (Fig. 21).

Bell and Franklin (1993) reported the first published
Pb isotopic analyses of till around VMS deposits in
samples collected down-ice of the Chisel Lake, Lost,
and Ghost deposits. They found that the Pb isotopic
composition of the <0.002 mm fraction of till clearly
reflects the presence of the up-ice VMS deposits. Bell
and Murton (1995) subsequently carried out additional
Pb isotopic analyses of till samples from the Chisel
Lake area and, again, demonstrated that VMS-derived
Pb can be differentiated from Pb derived from country
rocks in till down-ice of the deposits. Simonetti et al.
(1996) subsequently tested the use of Pb isotopic ratios
on selective leachates from four near-surface till sam-
ples collected close to the Chisel Lake deposit. The
results for these till samples, similar to those for their
Manitouwadge test site, indicate that Pb isotopic signa-

tures in the <0.063 mm fraction of till are similar to
those from galena within the nearby deposit. 

LYNN LAKE MINING CAMP

Neilsen and Conley (1991) sampled till around the Lar
Cu-Zn VMS deposit, 55 km southwest of Lynn Lake,
northern Manitoba (Fig. 1), to document the geochem-
ical signature of this VMS deposit and determine if the
deposit extended farther west. Their research builds on
the earlier work in the region of Kaszycki et al. (1988).
Copper, Pb, and Zn contents of the <0.002 mm fraction
of till demarcate a short dispersal train extending up to
400 m down-ice (southwest) from the deposit (Fig. 22);
metal contents of the <0.063 mm fraction outline a
smaller dispersal train with a length of only 100 m. They
also documented the vertical distribution of base metals
in till profiles at selected sites and concluded that metal
contents are highest in unweathered till (C-horizon)
below approximately 1 m depth, compared to similar
material from more shallow depths or in B-horizon soil
developed on till. More recently, re-analysis of archived
till samples from the Lynne Lake-Leaf Rapids area by
the Manitoba Geological Survey identified multi-ele-
ment geochemical patterns likely related to yet uniden-
tified VMS mineralization (McMartin et al., in press).

CANADIAN CORDILLERA

The topographically rugged and geologically complex
terrain of the Cordillera in western Canada offers dif-
ferent challenges for VMS exploration than the
Canadian Shield. First is the greater potential for
hydromorphic dispersion of metals downslope from
anomalous metal-rich till or bedrock (Paulen, 2001;
Lett and Jackaman, 2002). This movement can alter
clastic glacial dispersal patterns, either through dilution
or enrichment of the geochemical signature in till, and
widen or lengthen dispersal trains (e.g. Paulen, 2001).
Second, down-slope movement of material can form
colluvium. Where colluvium is derived from till, dif-
ferentiating between both sediment types can be chal-
lenging. Levson (2001a,b) has outlined the criteria for
differentiating till from colluvium. 

Adams Lake Area

Deposit-scale till, soil, and vegetation sampling carried
out around VMS occurrences and deposits 80 km north
of Kamloops in the Adams Lake area of south-central
British Columbia (Fig. 1) has been reported by Lett et
al. (1998), Lett (2001), and Paulen (2001). The
Samatosum and Rea Ag-Pb-Zn-Cu VMS deposits are
located in the Adams Lake area of south-central British
Columbia. These relatively small (each <1 Mt)
deposits occur in highly deformed and metamorphosed
mafic volcanic and argillaceous sedimentary rocks of
the Eagle Bay Assemblage (Bailey et al., 2000). Till
and B-horizon soil developed on till around and down-
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ice of the deposits have elevated Pb, Ag, As, Hg (Fig.
23), Sb, Au, and Zn contents in the <0.063 mm fraction
of surface till (Lett, 2001; Paulen, 2001). Maximum
metal contents of till occur 1.8 km down-ice (south-
east); however, the surface till anomalies can be traced
up to 10 km down-ice (Bobrowksy et al., 1997).
Elsewhere in the Adams Lake region, Lett et al. (1998)
and Lett (2001) reported elevated Bi, Pb, Hg, and Se

contents in the <0.063 mm fraction of till proximal to
mineralized rocks on the Harper Creek property. Till
around the Broken Ridge Cu-Pb-Zn-Ag VMS occur-
rence contains anomalous base metal contents near the
deposit, and Cu is detected only up to 2 km down-ice

of mineralization (Lett, 2001).

Lett and Jackaman (2002) subsequently compiled
data and observations from the numerous published
reports of surficial (stream sediments, soils, till) geo-
chemical data around VMS deposits and occurrences in
the Adams Lake region. From the compiled data, they
presented a series of three-dimensional exploration
models to assist in the design and interpretation of till
geochemical surveys for VMS exploration that takes
into account the nature and thickness of glacial deposits,
as well as topography and surface drainage. Their mod-
els build on the general conceptual models first pro-
posed by Bradshaw (1975) for mineral exploration in the
Canadian Cordillera. The model of Lett and Jackaman
(2002) is heuristic and identifies key pathfinder ele-
ments in till and derivative B-horizon soils, and pre-
dicts the shape and trend of geochemical anomalies.
The authors noted that base metal contents are higher
in till (C horizon) than in B-horizon soil developed on
till because the former is less weathered, and thus more
directly reflects the composition of the bedrock source.

Ward et al. (2011) carried out regional-scale till sam-
pling in the Interior Plateau, 50 km northwest of Prince
George, British Columbia (Fig. 1). Though they did not
specifically sample around known base metal mineral-
ization, they appreciated the potential of the local rocks
to host VMS deposits and the extensive suite of
pathfinder elements that can be routinely determined.
They documented elevated Zn, Cd, Bi, and Tl contents
in the <0.002 mm fraction of till, which may indicate
the presence of Pb-poor VMS style mineralization in
the eastern part of their study area.

Myra Falls

The Myra Falls Cu-Zn-Pb-Au-Ag-Cd VMS deposits
(Lynx, Myra, Price, HW) on Vancouver Island (Fig. 1)
were discovered in the early to mid-1960s based on fol-
low-up drilling of outcropping mineralization. The
deposits occur in a host sequence of basaltic andesite,
rhyolitic volcaniclastic and black mudstone (Barrett
and Sherlock, 1996). Hicock (1986, 1995) collected till
samples down-ice and down-valley of the VMS
deposits and analyzed the <0.002 mm fraction of till.
He reported elevated Cu, Pb, and Zn contents that are
highest 1 km down-ice from the deposits, but can be
traced up to 20 km down-ice and down-valley. 

Finlayson Lake Camp

The first VMS deposit discovered in the Finlayson
Lake area (FLA) (Fig. 1) was the Fyre Lake deposit in
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1960 during follow-up investigations to locate the
source of massive sulphide float boulders (Peter et al.,
2007). Exploration in the FLA was sporadic through-
out the 1970s and 1980s, and it was not until 1993 to
1995 that renewed exploration (based on application of
the VMS genetic model) led to the discovery of the
Wolverine and Kudz Ze Kayah deposits (Peter et al.,
2007), creating the largest staking rush in Yukon’s his-
tory. The camp hosts several mid-sized Zn-Pb-Cu-Ag-
Au VMS deposits. Stream sediments are the optimal
sample medium in this mountainous region where
relief and drainage density are high. However, in lower
relief terrain in this area where drainage density is low,
till is the optimal sampling medium for VMS explo-
ration (Bond and Plouffe, 2002). Regional and closely
spaced till samples collected around the largest of the
VMS deposits in the camp, the Kudz Ze Kayah and
Wolverine deposits and the Argus property, indicate

that till geochemistry is an effective exploration tool in
the region. Till contains high Zn, Pb, Ag, and Au con-
tents in the <0.063 mm fraction at least 500 m down-
ice (northwest) of the Kudz Ze Kayah deposit. Other
nearby anomalies in till indicate the potential for fur-
ther discoveries.

CANADIAN ARCTIC

The Canadian Arctic is challenging for base metal
exploration because the region is remote. To date, no
VMS deposits in the Arctic have been mined. Another
challenge is the permanently frozen ground, with the
exception of the uppermost 0.5 to 2.0 m that thaws dur-
ing the summer months. 

Kaminak Lake 

Ridler and Shilts (1974a,b) and Shilts (1974a, 1977)
provide guidelines for base metal deposit exploration
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in permafrost terrain, based on their regional surveys
and case studies in the Kaminak greenstone belt (Fig.
1). Through their regional sampling over the green-
stone belt, they introduced the concept of mudboils to
mineral explorationists and demonstrated how to take
advantage of the summer permafrost thaw cycle to eas-
ily collect fresh till at shallow depths from mudboils
(Shilts, 1977, 1978). Closely spaced sampling of till
near the Spi Lake VMS prospect (Miller and Tella,
1995) in the western part of the belt led to the discov-
ery of sphalerite- and galena-rich boulders and a 4 km
long till dispersal train that indicates the mineralized
bedrock source lies beneath Spi Lake (Ridler, 1974;
Shilts 1974a,b). To assist mineral exploration in the
region, Shilts and Wyatt (1989) reanalyzed the till sam-
ples collected between 1970 and 1975 for a broader
suite of elements.

Hackett River Deposit

In the 1970s, Miller (1979) sampled soil and other sur-
ficial media (organic material, lake sediments) and
waters (snow-melt runoff, seepage pits, lakes) in the
permafrost terrain around the Bathurst Norsemines
base metal occurrence (Fig. 1). Today this Zn-Pb-Cu-
Ag deposit is known as the Hackett River “Main
Zone”. There are also three other significant deposits
(East Cleaver, Boot Lake, Jo Zone) and showings along
a 6.6 km long strike length of the Hackett River
Greenstone Belt (HRGB) (PEG Mining Consultants,
2010). The Main Zone is one of the most Ag-rich VMS
deposits in the world (Grant, 2009). Miller (1979) sam-
pled what he referred to as “soil layer 2” from between
0.3-0.6 m depth, which in most cases is developed on
till. Samples were collected from around what is now
known as the Main Zone between Banana and Camp
lakes (Fig. 24). Lead in the <0.177 mm fraction of soil
is dispersed at least 600 m down-ice (west) of the
deposit, and Ag and Fe in soil show similar patterns to
Pb. Miller suggested the low Cu and Zn contents of till
down-ice of the A Zone were due to post-glacial weath-
ering of till and mobilization of these elements out of
this area.

Yava Deposit

Cameron and Durham (1975) sampled soil in stony
mudboils in the permafrost terrain around the Agricola
Lake massive sulphide occurrence, which is now
known as the Yava Zn-Pb-Cu-Ag VMS deposit. The
deposit is located 50 km south of the Hackett River
deposits within the HRGB (Fig. 1). Because the sam-
ples are described as being collected from stony mud-
boils, they are assumed to be till and thus are included
in this review. Surface soil samples collected proximal
to the deposit have high Pb, Ag, Hg, and Au contents in
the <0.177 mm fraction, which reflect glacial dispersal
from the deposit towards the northwest (Fig. 25).

Copper and As have been hydromorphically dispersed
down-drainage.

This study is noteworthy because it is one of the first
to report the usefulness of sampling from mudboils for
base metal exploration and it provides analyses of
what, at the time, was a broad suite (12) of trace ele-
ments. Cameron (1977) reported up to 9700 ppb Hg,
13,000 ppm Pb, 1500 ppm Cu and Zn, and 2200 ppb
Au in soil near the deposit. Further analysis of some
samples using aqua regia digestion reported up to 237
ppm Ag. Size-partitioning studies of metal-rich soil
showed that the <0.002 mm (clay) and the 0.6 to 1.2
mm (coarse to very coarse sand) fractions have the
highest metal contents. Based on the spatial distribu-
tion patterns for the 12 elements, Cameron (1977) con-
cluded that the geochemical signature around the VMS
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deposit is the net result of glacial dispersal, solifluc-
tion, and hydromorphic dispersion (Fig. 26), all of
which are important processes that require considera-
tion when exploring in permafrost terrain.

Izok Lake Deposit

The Izok Lake Zn-Cu-Pb-Ag VMS deposit, 360 km
north of Yellowknife (Fig. 1), is one of the largest
undeveloped Zn-Cu resources in North America
(Morrison, 2004). The deposit was discovered by fol-
lowing up mineralized boulders first found along the
west shore of Izok Lake in the 1970s. As part of an
indicator mineral study of this deposit, Hicken et al.
(2012) collected closely spaced till samples from mud-
boils around the deposit; which were found to contain
accessory gahnite (Zn spinel). They documented ele-
vated Zn (339 ppm), Cu (308 ppm), Pb (458 ppm), Ag
(168 ppm), Cd (1.28 ppm), and Bi (4.08 ppm) and to a
lesser extent Sb, Hg, Se, In, and Tl contents in the
<0.063 mm fraction of till overlying the deposit and
down-ice (northwest) from it. Mudboils closest to the
deposit (<400 m down-ice) are oxidized and have an
orange-brown colour, in contrast to the typical grey
colour of metal-poor till, indicating the breakdown of
(formerly) abundant sulphide minerals (Fig. 27). Till
geochemical surveys show glacial dispersal up to 6 km
down-ice (northwest) from the deposit (Fig. 28).

DISCUSSION

Dispersal Patterns

The maximum transport distance (i.e. long-axis length)
of base metal-rich (e.g. Cu, Pb, Zn) dispersal trains
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Figure 26. Schematic model of dispersal and dispersion
processes affecting the soil geochemical signature of the
Yava VMS deposit (modified from Cameron, 1977).    

Figure 27. Photograph looking east from the west shore of
Izok Lake at (foreground) oxidized, orangey brown mudboils
500 m down-ice (west) of the Izok Lake VMS deposit. The
orangey brown colour of these metal-rich mudboils is in con-
trast to metal-poor grey mudboils that are typical of the
region. (Background) Drill rig on an island in Izok Lake. 



documented down-ice of Canadian VMS deposits
varies from a few 100 metres (e.g. BOG, Halfmile
Lake, Hackett River Main) to a few kilometres (e.g.
Horne, Restigouche, Samatosum, Izok Lake, Buchans).
Factors that can influence the tenor of the base metal
enrichment suite in till and the maximum distance it is
transported include the size, morphology, and erodibil-
ity (hardness) of the sulphide body; depth below the
bedrock surface; surface topography (DiLabio, 1990;
Shilts, 1996); the presence or absence of pre-glacial
metal-rich gossan (readily eroded and dispersed down-
ice); the geochemical contrast between the deposit and
the surrounding host rocks; and the complexity of ice
flow.

These base metal-rich dispersal trains from VMS
deposits are significantly shorter than indicator mineral
trains documented for deposits such as kimberlite, for
which trains are commonly >50 km (e.g. McClenaghan
and Kjarsgaard, 2007). Trains are longer because kim-
berlite indicator minerals (KIM) are physically robust

and survive glacial transport over long distances.
Gahnite is one of the more physically robust (hardness
= 8) VMS deposit indicator minerals, (Spry and Scott,
1986; Heimann et al., 2005) and thus can be detected
much further down-ice from deposits such as Izok
Lake (McClenaghan et al. 2012) than geochemical
indicators in the <0.063 mm fraction of till.

Glacial dispersal trains in till down-ice of VMS
deposits: 1) are areally larger than the deposits them-
selves, providing a larger exploration target area; 2) are
relatively short (hundreds to thousands of metres)
compared to dispersal trains defined by oxide and sili-
cate indicator minerals (e.g. kimberlite indicator min-
eral dispersal trains), thus requiring more closely
spaced till sampling; and 3) contain pathfinder ele-
ments of VMS deposits that reflect the mineralogy of
the deposit (i.e. Cu/Zn ratios, Au-rich, Ag-rich), which
provide sound indications of the mineralogy of the
massive sulphide mass (or part thereof) that was
eroded and dispersed.

Till Geochemical Signatures of VMS Deposits in Glaciated Terrain: A Summary of Canadian Examples

23

<50%

50-75%

75-90%

90-95%

95-98%

>98%

Cu ppm (Aqua Regia 30 g)
<0.063 mm

WIZ Showing

Iznogoudh Lake

<0.063 mm

WIZ Showing

Iznogoudh Lake

Itchen Lake

Itchen Lake

Iznogoudh Lake

WIZ Showing

<50%

50-75%

75-90%

90-95%

95-98%

>98%

Ag ppb (Aqua Regia 30 g)
<0.063 mm

<50%
50-75%

75-90%
90-95%

95-98%

.063 mm

WIZ Showing

Iznogoudh Lake

WIZ Showing

WIZ Show WIZ Showin

1

2

3
4

1

2

3
4

1

2

3
4

1

2

3
4

Itchen Lake

Itchen Lake

WIZ Show

Izok Lake
Deposit

9.4 10.0

0.02

ice flow

ice flow

ice flow

Izok Lake
Deposit

Izok Lake
Deposit

Izok Lake
Deposit

kilometres

kilometres kilometres

kilometres

Cu ppm (Aqua Regia 30 g)
(<0.063 mm)

9.4-17.58
17.59-22.70
22.71-28.67
28.68-56.65
56.66-106.25

106.26-307.83

<50%
50-75%
75-90%
90-95%
95-98%

>98%

<50%

50-75%

75-90%

90-95%

95-98%

>98%

Cu ppm (Aqua Regia 30 g)

9.4

Ag ppb (Aqua Regia 30 g)
<0.063 mm)

10.0-15.00
15.01-19.00
19.01-26.00
26.01-137.00
137.01-351.00

351.01-1677.00

<50%
50-75%
75-90%
90-95%
95-98%

>98%

Cd ppm (Aqua Regia 30 g)
<0.063 mm)

0.02-0.05
0.06-0.07
0.08-0.11
0.12-0.21
0.22-0.40

0.41-1.28

<50%
50-75%
75-90%
90-95%
95-98%

>98%

Zn ppm (Aqua Regia 30 g)
<0.063 mm)

16.9-23.20
23.21-31.70
31.71-52.50
52.61-84.50
84.51-153.20

153.21-339.00

<50%
50-75%
75-90%
90-95%
95-98%

>98%

65˚50’00”N
11

3˚
22

’3
0”

W

11
1˚

47
’3

0”
W

65˚20’30”N

Figure 28. Distribution of (a) Cu, (b) Ag, (c) Zn, and (d) Cd in the <0.063 mm fraction of till around the Izok Lake VMS deposit,
Nunavut (modified from Hicken et al., 2012) with the glacial dispersal outlined in green shading. Black stars indicates location
of mineralization. Ice-flow directions and their relative ages (1=oldest) are indicated in the bottom right corner.

a)

c)

b)

d)



Effects of Post-Glacial Weathering on 
Till Geochemical Signal 

Shilts (1973, 1974a,b, 1975) recognized that base
metal contents were higher in the <0.002 mm fraction
than in the <0.063 mm fraction of the same till samples
from areas around VMS deposits. He attributed the
higher contents in the <0.002 mm fraction to weather-
ing of sulphides in the till. He suggested that metals
released during weathering of sulphide minerals are
hosted in amorphous oxides or hydroxides or are bound
to surfaces of phyllosilicate minerals. This seems plau-
sible where the till is weathered and the material being
sampled is B-horizon soil developed on till (e.g. early
soil surveys in BMC, Yava deposit).

Nielsen and Conley (1991) investigated the clay
mineralogy of selected metal-rich till samples around
the Lar VMS deposit to document the mineral hosts of
high Cu, Pb, and Zn contents in the <0.002 mm frac-
tion. Since no sulphide minerals were detected, they
concluded that the hosts of the metals were either
amorphous oxide or hydroxide minerals or that the ele-
ments were bound to surfaces of silicate minerals
(although no phyllosilicates minerals were found to be
present). The authors detected jarosite in the clay frac-
tion and concluded that the base metals bound to the
surface of the jarosite accounted for the higher base
metal contents in the <0.002 mm fraction for this site.

For unweathered till, a more plausible explanation
for the high metal contents in the clay-sized fraction is
that the ore minerals themselves are clay-sized, and/or
the primary clay-sized minerals in the VMS deposits,
such as chlorite, also host Cu, Pb, and Zn (Frondel and
Einaudi, 1969; Rule and Radke, 1988). 

Sample Media (till not soil) 

The earliest surficial geochemical investigations
around VMS deposits in Canada were made using
“soil” rather than till samples. Soil sampling is still
used by some exploration companies instead of till
sampling in the rugged terrain of the Canadian
Cordillera (e.g. Kerr and Levson, 1995; Levson and
Giles, 1995). Soil formation destroys labile minerals,
such as sulphides, and, therefore, the geochemical sig-
natures in soils formed on till are the result of a combi-
nation of clastic glacial dispersal and elements dis-
persed by aqueous and other processes. As a result,
base metal contents are typically lower in weathered
till (B horizon) than in fresh till (C horizon), and dis-
persal patterns may be more difficult to interpret and
follow-up to find the bedrock source (e.g. Hoffman and
Woods, 1991; Kaszycki et al., 1996; Lett and
Jackaman, 2002 Hall et al., 2003). In glaciated terrain,
soil can be developed on a variety of substrates that
have different depositional histories, including till,
glaciofluvial sand, or glaciolacustrine silt and clay. Soil

sampling could potentially include any of these differ-
ent glacial sediment types, making interpretation of
geochemical patterns difficult. 

To obtain an unimpeded signal of first-order glacial
dispersal, unoxidized till is the target medium. Till
sampling strategies to obtain the optimal till sample for
mineral exploration in the glaciated terrain of Canada
have been summarized by Plouffe (1995), Levson
(2001 a,b), McMartin and McClenaghan (2001),
McMartin and Campbell (2009), Spirito et al. (2011),
and most recently, McClenaghan et al. (in press).

In areas of permafrost, the ability to sample till at
depth is typically restricted by the thickness of the
active layer. This layer commonly thaws to a depth of
up to 1 m during the maximum summer thaw period
(McMartin and Campbell, 2009). In these areas, fresh
till can be sampled from active mudboils (Shilts, 1973,
1977; Cameron, 1977; McMartin and McClenaghan,
2001; Hicken et al., 2012). In areas free of permafrost
that are covered by thin till or where till occurs at sur-
face, samples can be collected from holes dug using a
hand-held shovel or backhoe excavator, or from sec-
tions along rivers, lakes, or roadcuts. Samples should
be collected between 0.5 and 1.0 m depth and below
the B-horizon, as the surface part of the till can contain
material from a broader area than till at depth. In local-
and property-scale surveys, till sampling close to the
bedrock surface is most effective because the composi-
tion of the till closely resembles that of the underlying
bedrock. Where glacial sediments are thicker than ~5
m, drilling is required to reach locally derived till and
effectively characterize the till stratigraphy, as well as
to determine lateral and vertical variations in till geo-
chemical compositions (Coker and DiLabio, 1989).
Drilling methods for collecting till samples are
described in detail by McMartin and McClenaghan
(2001) and Paulen (2009). When sampling for VMS
exploration by drilling, it is  important to take into con-
sideration that drilling grease can contaminate the till
matrix with Zn and Pb (Averill, 1990). 

Size Fractions 

Because the main VMS ore minerals chalcopyrite
(hardness = 3.5), sphalerite (hardness = 3.5-4.0), and
galena (hardness = 2.5) are soft, they are readily com-
minuted during glacial transport to the finest fraction of
till (silt + clay) over short distances (Kauranne, 1959;
Salminen, 1980; Nevalainen, 1989; Hicock, 1995).
Thus, the geochemical compositions of the silt + clay
(<0.063 mm) or the clay (<0.002 mm) fraction of till
are ideal for detecting glacial dispersal from VMS
deposits. The advantage of geochemically analyzing
the <0.002 mm fraction of till is the high contrast
between background and anomalously high metal con-
tents (e.g. Shilts 1974a, 1975). The disadvantages of
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using the <0.002 mm fraction include 1) the costly and
time-consuming clay separation process required to
isolate the <0.002 mm fraction and the large volume of
material (~1 kg) needed to recover sufficient clay-sized
material for analysis (Lindsay and Shilts, 1995;
Klassen, 2003); 2) the low (<2%) clay content of typi-
cal Canadian tills; and 3) the fine fraction’s suscepti-
bility to false anomalies produced by hydromorphic
dispersion of metals not necessarily related to base
metal mineralization in bedrock (Pronk, 1987). The
scavenging capacity of the <0.002 mm fraction is vari-
able and depends on pH, clay mineralogy, and hydro-
morphic conditions. Analysis of only the clay fraction,
particularly in areas where surface till samples have
been collected, provides information about weathering
and hydromorphic dispersion effects (Gunton and
Nichol, 1974; Pronk, 1987).

The <0.063 mm fraction of till is the most com-
monly analyzed size fraction for base metal exploration
(Table 1) because: 1) it is readily and quickly recovered
by sieving, especially in till samples with only minor
(<2%) clay; 2) it provides reasonable contrast between
background and anomalous metal contents; and 3) it is
less susceptible to hydromorphic dispersion effects
(Pronk, 1987).

Geochemical analyses of a coarser size fraction of
till, such as the -80 mesh fraction (<0.177 mm), is not
recommended because this fraction consists mainly of
fine sand. The fine sand component contains abundant
quartz and feldspar (Fig. 29) (Dreimanis and Vagners,
1972; Klassen, 2003) that will dilute metal contents
and thus decrease the geochemical indications of a
nearby VMS deposit.

Less commonly, a split of the heavy mineral fraction
(SG >2.9 or >3.3) of till is geochemically analyzed 
for base metals as this has been shown to enhance the
contrast between background and anomalous values
(e.g. Garrett, 1971; Skinner, 1972a,b; Smith, 1990;
McClenaghan et al., 1998). Initially, till heavy mineral
concentrates were pulverized and geochemically ana-
lyzed because the commercial service did not exist to
systematically visually examine and identify indicator
minerals for VMS and other base metal deposits. A
suite of VMS indicator minerals is now recognized and
the minerals can be identified and counted in the sand-
sized (0.25-2.0 mm) heavy mineral fraction of till (e.g.
Averill, 2001; Hicken et al., in press). Today, if geo-
chemical analysis of the heavy mineral fraction is war-
ranted, it is carried out on a split of the <0.25 mm
heavy mineral fraction in order to preserve the coarser
fraction (>0.25 mm) for visual examination and identi-
fication of VMS indicator minerals. Till geochemical
surveys for VMS exploration should include initial ori-
entation studies to determine the optimal size fraction
of till for geochemical analysis. 

Analytical Methods

Till and soil geochemical studies conducted in the
1950s through 1980s typically only determined Cu, Pb,
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and Zn contents, as these are the main economic met-
als in VMS deposits and analyses for these elements
could be readily carried out in a cost effective manner.
At this time,  analysis of additional elements was time
consuming and expensive. Piercey (2010) observed
that one of the key advances in VMS exploration was
the development of inductively coupled plasma-mass
spectrometry (ICP-MS) in 1980s and 1990s, as it
allows for determination of a broad suite of trace ele-
ments, facilitating the application of lithogeochemistry
to VMS exploration. The development of ICP-MS
techniques has had a similar impact on the application
of till geochemistry to VMS exploration. Commencing
in the 1980s, till geochemical surveys used of a broader
suite of elements, which could now be determined cost
effectively. In more recent studies (1990s onward),
extensive suites of pathfinder elements in till have been
determined, including Zn, Cu, Pb, Ag, and Au, as well
as Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, Ge, As, Sb, and
Hg. It is now possible to recognize the multi-element
signatures of VMS deposits in till down-ice from the
deposit and even  determine if the eroded VMS miner-
alization is enriched in salable (Au, Ag, In) or deleteri-
ous trace elements (Se).

In VMS deposits, pathfinder elements can occur as
discrete sulphide minerals or as stoichiometric or non-
stoichiometric lattice substitutions (and as inclusions)
within sulphide, sulphosalt, and native minerals. For
example, Cd, In, Hg, Ag, Sn, Ge, and Ga can be impor-
tant trace elements in sphalerite (Cook et al., 2009;
Pfaff et al., 2011). Tin is a major constituent of cassi-
terite; a mineral which is present in some VMS
deposits (e.g. Boyle, 1997; Goodfellow and
McCutcheon, 2003; Relvas et al., 2006). Gold in VMS
deposits can be present as native gold, electrum, tel-
lurides, or as “invisible” or refractory gold in pyrite and
arsenopyrite (McClenaghan et al., 2004, 2009;
Mercier-Langevin et al., 2011a). Native gold may con-
tain Hg as well as Ag (e.g. Morrison et al., 1991; Cabri,
1992). Silver may be present in galena (e.g. Sharp and
Buseck, 1993; Renock and Becker, 2011), in sulphos-
alts (e.g. Grant, 2009), or in other sulphide minerals
(e.g. Harris et al., 1984a). Selenium in VMS mineral-
ization is present within sulphide and sulphosalt miner-
als (e.g. Huston et al., 1995; Layton-Matthews et al.,
2008). Antimony and Bi in VMS deposits occur in
sulphosalt minerals (e.g. Harris et al., 1984b). Arsenic
occurs within arsenopyrite or arsenian pyrite (e.g.
McClenaghan et al., 2009; Mercier-Langevin et al.,
2011a).

Most current exploration programs that utilize geo-
chemical analysis of regional tills employ a strong par-
tial digestion, such as aqua regia, to determine the con-
tents of the major ore elements Cu, Pb, and Zn, as well
as other pathfinder elements Hg, Ag, V, Sb, As, Bi, Cd,

and Tl. Total digestion techniques, such as borate
fusion or 4-acid digestion followed by ICP-MS meas-
urement, or instrumental neutron activation analysis
(INAA), are used to determine the contents of other
pathfinder elements, such as In, Sn, Se, and Au. Use of
both partial and total digestions allows for exploration
for a broad range of deposit types, such as magmatic
Ni-Cu-PGE, orogenic Au, porphyry Cu, iron oxide-
copper-gold (IOCG), gold, kimberlite (e.g. Lahtinen et
al., 1993; McClenaghan et al., 2011; McMartin et al.,
2011), not just VMS deposits.

Pb Isotopes

The four Pb isotopic studies of till reported here (Bell
and Franklin, 1993; Bell and Murton, 1995; Simonetti
et al., 1996; Hussein et al., 2003) clearly show that the
Pb isotopic signatures in the <0.063 mm fraction of till
reflect the Pb isotopic signature of the nearby VMS
mineralization. At the time these papers were pub-
lished, Pb isotopic analyses of the fine fraction of till
were conducted by thermal ionization mass spectrome-
try; the application was predicted to be a “new”
approach to mineral exploration for massive sulphide
deposits (VMS) in glaciated terrain. Since then, there
has been much progress in the application of ICP-MS
for Pb isotopic analysis (e.g. Meffre et al., 2008), and
this may yet be what brings rapid and affordable analy-
ses to the explorationist. The technique is best applied
to Pb-rich till samples that display a VMS signature
(Cu-Pb-Zn) in areas prospective for VMS mineraliza-
tion.

Future Analytical Methods

In the 2000s, analytical techniques such as laser abla-
tion (LA) ICP-MS have become widely available that
provide bulk compositional or isotopic data for indi-
vidual sulphide grains (or spots within them) from till.
These methods can be used to determine Pb isotopes in
a single galena or sphalerite grain (e.g. Paulen et al.,
2011) or Cu isotopes in chalcopyrite grains (e.g.
Mathur et al., 2009) from till. The advantages of LA
ICP-MS over conventional isotopic techniques that use
the bulk till matrix are that it does not require the costly
and time-consuming leaching of the till matrix prior to
isotopic analysis, does not require a minimum element
content of a till sample, and does not require the source
of the element to be clearly known (e.g. Pb in a galena
grain). 

Portable x-ray fluorescence spectrometry (pXRF) is
increasingly being used for soil geochemical surveys;
the method also shows great promise for determining
metal contents of till in the field, which can actively
guide till sampling, allowing for follow-up of anom-
alies in the same field season. Metal contents deter-
mined by pXRF also can be used to prioritize till sam-
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ples for lab-based geochemical analyses (Peter et al.,
2010; Hall and McClenaghan, 2013; McClenaghan,
2013; Sarala, in press).

CONCLUSIONS AND IMPLICATIONS FOR
EXPLORATION

Over 50 years ago, Dreimanis (1958, 1960) predicted
that till geochemistry and boulder-tracing methods,
when combined with geophysical and other prospect-
ing methods, would lead to new discoveries of ore
deposits. Since his pioneering work around VMS
deposits in the BMC and AGB, the use of till geo-
chemistry has indeed contributed to the discovery of
VMS deposits,  some of which have been described
here (BOG, Photo Lake). These case studies provide
important information about till geochemical methods
for VMS exploration. The methods, which most com-
monly employing the <0.063 mm fraction, are now
well developed and widely used. Analysis of the HMC
can also be useful. The development of ICP-MS ana-
lytical instruments allows the determination of an
extensive suite of VMS pathfinder elements, which
includes Cu, Pb, Zn, Ag, Au, Tl, Sn, Se, Hg, In, Cd, Bi,
As, Sb, and Ge. In order to detect the true clastic gla-
cial dispersal signal down-ice of a deposit, collection
and analysis of unoxidized to weakly oxidized till is
optimal. Soil sampling is not recommended, as soil
geochemical signals are weaker and this sampling
medium includes soil developed on till, as well as
glaciofluvial sand, glaciolacustrine silt or clay, and/or
alluvium and reflects not only clastic dispersal, but also
hydromorphic dispersion. Glacial erosion and incorpo-
ration of preglacial gossans developed on VMS
deposits may result in stronger geochemical signals in
till down-ice, as gossans are softer than underlying host
rocks, and thus easier to erode. Although this paper
only describes examples from the glaciated terrain of
Canada, till geochemistry is also used for VMS explo-
ration in the glaciated terrain of Fennoscandia, Russia,
the USA (e.g. Woodruff et al., 2004), and even
Tasmania (e.g. Reid and Meares, 1981). 
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