

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7370

Geological setting of banded iron formation-hosted gold mineralization in the Geraldton area, Northern Ontario: preliminary results

Z. Tòth, B. Lafrance, B. Dubé, P. Mercier-Langevin, and V. McNicoll

2013

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7370

Geological setting of banded iron formation-hosted gold mineralization in the Geraldton area, Northern Ontario: preliminary results

Z. Tòth¹, B. Lafrance¹, B. Dubé², P. Mercier-Langevin², and V. McNicoll³

¹ Laurentian University, 933 Ramsey Road, Sudbury ON P3E 2C6

² Geological Survey of Canada, 490 rue de la Couronne, Québec QC G1K 9A9

³ Geological Survey of Canada, 601 Booth Street, Ottawa ON K1A 0E8

2013

©Her Majesty the Queen in Right of Canada 2013

doi:10.4095/292558

This publication is available for free download through GEOSCAN (http://geoscan.ess.nrcan.gc.ca/).

Recommended citation

Tòth, Z., Lafrance, B., Dubé, B., Mercier-Langevin, P., and McNicoll, V., 2013. Geological setting of banded iron formation-hosted gold mineralization in the Geraldton area, Northern Ontario: preliminary results; Geological Survey of Canada, Open File 7370, 54 p. doi:10.4095/292558

Publications in this series have not been edited; they are released as submitted by the author

Open File Report

Targeted Geoscience Initiative 4. Lode Gold Deposits in Ancient Deformed and Metamorphosed Terranes

Geological Setting of Banded Iron Formation–Hosted Gold Mineralization in the Geraldton Area, Northern Ontario: Preliminary Results

Z. Tòth, B. Lafrance, B. Dubé, P. Mercier-Langevin, and V. McNicoll

General Introduction

The characterization of banded iron formation (BIF)-hosted gold ore systems is one of the main theme of the Targeted Geoscience Initiative-4 Lode Gold project of the Geological Survey of Canada (Dubé et al. 2011). The Geraldton area was selected as one of four areas to study these systems because of the excellent exposure, easy accessibility, and availability of new exploration data and drill cores. This project started on July 15th, 2012 and is carried out as a collaboration between the Geological Survey of Canada, the Ontario Geological Survey, and Premier Gold Mines Limited.

The report is divided in four sections. The first section summarizes the results of the summer's field work and describes the relationships between structural features, rock types, and mineralization. The second section presents observations from four drill holes that intersected the F Zone and North Zone, which are the main mineralized zones in the Geraldton area. The detailed drill logs are included in Appendix. The third section describes the petrography of four thin sections from the F Zone and North Zone. The fourth section reports preliminary results on the geochemistry of the alteration envelopes surrounding the mineralized zones. The last section summarizes the results of the study.

<u>Structural and Lithological Controls on Banded Iron Formation–Hosted Gold</u> <u>Mineralization in the Geraldton Area, northern Ontario</u>

Introduction

Banded iron formation-hosted deposits in the Geraldton area have been described by Pye (1952), Horwood and Pye (1955) and Macdonald (1988). Since then, extensive exploration activities have produced numerous new exposures as well as multiple new drill hole sections across the deposits. The project began during the summer 2012 with detailed mapping of two new large stripped outcrops, the Portal stripping and the Tombill Bankfield Fault stripping. The preliminary results of the mapping are presented in this report and in the Summary of Field Work and Other Activities 2012 volume of the Ontario Geological Survey (Lafrance et al. 2012).

Figure 1: Simplified geological map of the Geraldton area after Horwood and Pye (1955) and Pye (1952) with modifications by authors. UTM coordinates are based on North American Datum 1927, Zone 16. Inset map shows the location of Geraldton.

Background

The Geraldton area is located east of Lake Nipigon in the eastern part of the Beardmore-Geraldton Belt (BGB) along the southern margin of the Wabigoon Subprovince of the Archean Superior Province (Figure 1). The BGB comprises three metasedimentary rock panels (southern, central, and northern sedimentary units) that are fault-bounded and interleaved with three volcanic rock panels (southern, central, and northern volcanic units). The southern volcanic unit has MORB geochemical affinity and it represents ocean floor crust that formed south of an oceanic island arc (central volcanic unit) and back-arc basin (northern volcanic unit) (Tomlinson et al. 1986). A felsic flow and a synvolcanic dike in the central and northern volcanic units, respectively, have U-Pb zircon crystallization ages of 2724.9±1.2 Ma (Hart et al. 2002). Thus, these two volcanic units stood 2725 Ma ago as an island arc and back-arc system outboard and south of the Wabigoon. The three volcanic units collided and were accreted to the southern margin of the Wabigoon prior to the deposition of the sedimentary units at ca. 2696 Ma to ca. 2691 Ma (Lafrance et al. 2004). From north to south, the sedimentary units record progressively deeper depositional environments. They were emplaced unconformably above the volcanic units as fluvial to alluvial fan deposits (northern sedimentary unit), deltaic to subaqueous fan deposits (central sedimentary unit), and deeper water turbidite deposits (southern sedimentary unit) (Devaney and Williams 1989). They represent a southward prograding clastic wedge that was fed by the erosion of the uplifted Wabigoon (Devaney and Williams 1989).

Thrust imbrications of the volcanic and sedimentary units began shortly after deposition of the sedimentary units during an early D_1 deformation event (Devaney and Williams 1989; Lafrance et al. 2004). Rare isoclinal F_1 folds are the only manifestation of D_1 as structural contacts and possible thrust faults between volcanic and sedimentary units were later reactivated as transcurrent shear zones. During D_2 north-south compression, the southern sedimentary unit was regionally folded into tight to isoclinal, E-striking, F_2 folds with an axial planar S_2 cleavage (Lafrance et al. 2004). S_2 is oriented at high angle to bedding in F_2 fold hinges and is generally parallel to bedding along the limbs of the folds. S_2 is expressed by the flattening of clasts and pillows in the volcanic units and by a bedding-parallel cleavage in the central and northern sedimentary units. Late, regional, D_3 dextral transpression, produced most penetrative structures

in the belt. During D_3 , F_2 and S_2 were folded by outcrop- to map-scale, west-plunging, Z-shaped F_3 folds. The D_2 structures were overprinted by a regional S_3 cleavage oriented anticlockwise to bedding, and they were transected by east-trending, dextral, transcurrent D_3 shear zones (Lafrance et al. 2004). F_3 and S_3 are in turn overprinted by Z-shaped F_3 ' folds and associated S_3 ' cleavage, which formed during the same progressive D_3 deformation event (Lafrance et al. 2004). Felsic porphyry dikes and sills with a U-Pb crystallization age of 2691 +3/-2 Ma (Anglin 1987; Anglin et al. 1987) are folded by F_2 and overprinted by S_3 , providing a maximum deformation age of ca. 2691 Ma for both D_2 and D_3 .

All past-producing gold mines in the Geraldton area (e.g. Little Long Lac, Hardrock, MacLeod-Cockshutt, Consolidated Mosher, Magnet, Bankfield) are in the southern sedimentary unit. Most ore zones are hosted in a 1 km-wide high-strain zone, called the Tombill-Bankfield deformation zone (Figure 1.), located close to the contact between the southern sedimentary unit and the Quetico sedimentary rocks to the South (Lafrance et al. 2004). A discrete fault zone defined by brecciated rocks known as the Tombill-Bankfield fault, occurs within the wider, more ductile, deformation zone. The deposits hosted by the deformation zone collectively produced 2.36 million ounces of gold (Mason and White 1986). Gold occurs in sulphide-rich replacement lenses and quartz-carbonate veins in the hinge of F₂ and F₃ folded iron formation (e.g. North Zone). It also occurs in quartz veins and associated sericitic selvages in folded porphyry bodies and in wacke near or at the contact with porphyry (e.g. F Zone) (Horwood and Pye 1955). It is further found in quartz stringer zones within wacke and diorite (Horwood and Pye 1955). Gold mineralization is interpreted to be syn-D₃ and to have been emplaced in faults, shear zones, and fractures that formed along sheared contacts and across the hinge of F2 and F3 folds (Anglin 1987; Macdonald 1988; Lafrance et al. 2004). A stripped outcrop exposing the Tombill-Bankfield fault, and a second larger stripped outcrop, informally named the Portal stripping, showing excellent overprinting relationships between structures and mineralization along the Tombill-Bankfield deformation zone, provide new key information and were mapped in details in 2012 through the current TGI-4 project. They are described below.

Portal stripping

The Portal stripping is a 60 m by 90 m stripped outcrop located along the south limb of the Hard Rock anticline, 300 metres south of the MacLeod-Cockshutt headframe (Figure 1). A feldspar porphyry body takes up more than half of the outcrop (Figure 2). It is pinkish white on outcrop surface, pinkish grey on fresh surface, and it consists of 40 vol. % feldspar phenocryst (1-4 mm in size) and 10 vol. % quartz phenocryst (1-1.5 mm in size) within a fine-grained homogeneous matrix. It contains rare xenoliths of iron formation and altered mafic rock, and it is in intrusive contact with surrounding wacke, iron formation, and green mudstone. The wacke is greenish grey on outcrop and fresh surfaces, and it consists of ≤ 15 cm thick sandstone beds interlayered with, <1 to 3 cm thick, mudstone beds. Excellent, normal grading, top indicators are observed in the sandstone beds. Iron formation consists of ≤ 20 cm thick, finely laminated, black cherty magnetite beds, interspersed within thickly bedded (≤ 25 cm) wacke similar to that described above. Millimeter scale to 2.5 cm thick, iron formation beds are further associated with laminated to thinly bedded (0.5-2.5 cm) mudstone, varying in color from dark greenish grey on fresh and outcrop surfaces to dark green on outcrop surface. A polymictic pebbly sandstone or conglomerate occupies the southern part of the outcrop. It is brownish light grey to dark grey on outcrop and fresh surfaces, respectively, and it contains strongly deformed, elongate clasts of mafic to intermediate volcanic rocks and sandstone, as well as more spherical clasts of granitic composition. The percentage of clasts is difficult to estimate due to the strong deformation and gradational contacts between clasts and the sandy matrix. Another porphyry, which contains more quartz (10-15 vol. %) and less feldspar (30 vol. %) phenocrysts than the main feldspar porphyry, was emplaced into the green mudstone and wacke with iron formation beds. Numerous, greenish grey to dark brown, gabbroic to ultramafic dikes are roughly parallel to bedding in all rock types. The dikes vary in thickness from a few centimetres to 2 m. They are strongly chloritic, commonly iron-carbonatized and they contains elongate white streaks of carbonatized feldspar(?).

The Portal stripping displays excellent structural overprinting relationships that allow to ascribe ductile structures observed on outcrop to three generations of structures. The oldest generation of structures is represented by an isoclinal synform that occupies the entire width of the wacke panel north of the main feldspar porphyry body (Figure 2). The synform is defined by

folded bedding-parallel mafic dikes and by folded sandstone beds that young away from the core of the fold (Figure 3A). The synform youngs downward, thus it has the younging characteristic of a downward-facing synform or synformal anticline. It has a subvertical, west-striking, penetrative axial plane cleavage, and a shallowly $(15^{\circ}-20^{\circ})$, west-plunging, fold axis. The latter is parallel to a strong mineral stretching lineation defined by stretched amygdales and discontinuous dark green chlorite and white carbonatized feldspar in mafic dikes. The cleavage is parallel to the contact between the wacke and the main feldspar porphyry, where it is expressed as a strong sericitic foliation that is penetrative throughout the porphyry. Because early F₁ folds in Geraldton typically lack an axial plane cleavage and because S₂ is the oldest cleavage observed in folded porphyry in the hinge of the F₂ Hard Rock anticline (Lafrance et al. 2004), the downward-facing synform and its axial plane cleavage are interpreted as F₂ and S₂ structures that formed during D₂ north-south shortening across the belt.

Figure 2: Geological map of the Portal stripping. Location of the map is shown in Figure 1. Co-ordinates represent the last four digits of the Northing 550xxxx and Easting 50xxxx based on the North American Datum 1983 (NAD 83), Zone 16 (Lafrance et al. 2012).

Figure 3: Field photographs of the Portal stripping. A) F_2 synformal anticline. A mafic dike occupies the hinge of the fold. Blue arrows indicate younging direction in wacke. Camera casing, 15 cm in length, for scale. B) S-shaped F_3 fold defined by folded wacke and mafic dikes, north of the main feldspar porphyry body. Photo scale is 9 cm in length. C) Close-up of F_3 fold hinge shown in Figure 3B. S_2 cleavage in wacke is folded by F_3 . Coin (18 mm diameter) for scale. D) S_2 cleavage folded by S-shaped F_3 folds along the northern margin of the main feldspar porphyry body. S₃ cleavage is defined by the intensification of S_2 along the long limb of the folds. Coin (20 mm diameter) for scale. E) Penetrative dextral shear bands indicating dextral transcurrent movement, south of the main feldspar porphyry body. Coin (19 mm diameter) for scale. F) Dextral shear bands and dextral asymmetrical strain shadow around granitic clast in conglomerate. Coin (19 mm diameter) for scale. G) Mineralized quartz vein stockwork in the main feldspar porphyry body. Photo scale is 9 cm in length (modified after Lafrance et al. 2012).

The synform is overprinted by a cleavage (S₃) oriented clockwise to bedding on both limbs of the fold (Figure 2). S₃ is a differentiated cleavage defined by chloritic and sericitic foliation planes alternating with 1-2 mm wide white felsic microlithons. It is axial planar to S-shaped F₃ folds in the wacke north of the main porphyry (Figures 3B, C) and, in the porphyry, where the penetrative sericitic S₂ cleavage is folded by F₃ folds, Along the long limbs of asymmetrical F₃ folds, S₃ forms a composite S₂-S₃ fabric expressed by the intensification and decreased spacing of S₂ (Figure 3D). From north to south across the main porphyry body, the asymmetry of F₃ folds changes from S-shaped to M-shaped to Z-shaped and thus the porphyry is folded by a large F₃ fold that has a thin north limb and a thick south limb (Figure 2). The attitude of F₃ folds is similar to that of F₂ folds. Their axial plane is steep and west-striking, and they plunge shallowly to the west (~20°) parallel to a strong stretching lineation represented by rods of presumably recrystallized quartz and feldspar aggregates in the porphyry.

A small, parasitic, F_3 fold on the north limb of the folded porphyry is overprinted by a cleavage (S₄), striking 240°-250° and dipping 80° to the north. S₄ is oriented anticlockwise to bedding and is axial planar to local asymmetrical Z-shaped F₄ folds overprinting S₃. The folds are in turn overprinted by steeply-dipping dextral shear bands striking ~115° to 125°. The orientation of the shear bands is similar to that of dextral shear fractures shown in Figure 2. Shear bands are observed across the main porphyry and wacke, but they become more abundant south of the main porphyry where they form a penetrative dextral slip cleavage (Figure 3E). A bedding- and contact-parallel, composite S₂-S₃ foliation is present in all rock types south of the main porphyry. A shallowly west-plunging stretching lineation, which is defined by rod-like elongate pebbles in conglomerate, lies along the composite foliation plane. The intersection lineation between the dextral shear bands and composite S₂-S₃ foliation is roughly perpendicular to the shallowly-plunging stretching lineation, which is consistent with the formation of these structures during dextral transcurrent shear. On horizontal surface, strong granitic pebbles are surrounded by dextral asymmetrical strain shadows. The clasts locally contain NW-SE oriented steeply dipping extensional quartz veinlets and weak elongate volcanic clasts are folded by Zshaped F₄ folds, further suggesting dextral transcurrent shear (Figure 3F). Although these structures occur throughout the Portal stripping, they are more abundant or pronounced in the southern part of the stripping where dextral transcurrent shear was more intense. F₄ and S₄ correspond to F₃' and S₃' of Lafrance et al. (2004), which are interpreted as late structures that

formed during a progressive D_3 dextral transpressional event that began with the formation of F_3 folds, a regional S_3 cleavage, and dextral transcurrent shear zones.

A set of milky fault-fill white quartz veins with minor ankerite yielded high gold values (Premier Gold Mines Ltd. pers. com.) The veins were emplaced in the main porphyry body on the south limb of the large F_3 fold (Figure 2). They strike east (100°), dip south (60°), and they are up to 10 cm thick. They are associated with a stockwork of smaller quartz veins and surrounded by silicified porphyry containing minor pyrite (Figure 3G). The quartz veins are folded by a Z-shaped F_3 fold that is parasitic to the large F_3 fold, they are transposed and locally boudinaged suggesting either early- or pre-D₃ emplacement of the gold-bearing veins.

Tombill-Bankfield Fault stripping

The Tombill-Bankfield fault is described as a zone of intense shearing, brecciation, silicification, and carbonatization (Pye 1952; Horwood and Pye 1955). It was thought to be a major break that influenced the location of most deposits in Geraldton (Pye 1952). This recently led Premier Gold Mines Ltd to excavate 3-4 m of overburden to expose bedrock where a drill hole intersected black smoky quartz veins along the trace of the fault. This new stripping is the best known exposure of the fault at surface, but it will be reburied during the coming year.

The fault occurs at the contact between diorite to the south and sandstone to the north (Figure 4). The sandstone is interleaved with diorite, mafic pillowed flows, and a fine-grained, synvolcanic, mafic dike. Diorite is greenish dark grey on outcrop and fresh surfaces. It consists of ~45% chloritized green amphibole, up to 1 cm in size, surrounded by greenish white feldspar. Epidote-quartz-amphibole patches and veins occur throughout the rock and are cut by late quartz-iron carbonate veins. Local tourmaline-rich quartz veins and breccias are present. Sandstone varies in color and composition from a more sericitic, greenish light grey rock with bed thicknesses of 2 to 10 cm and grain size of 1-2 mm, to a more chloritic, brownish dark grey, interlayered sandstone-mudstone with bed thicknesses of 2-5 cm. Mafic pillowed flow consists of dark green, aphyric pillows with thin, ~1 cm thick, selvages (Figure 5A). The synvolcanic dike is dark green, aphyric and massive. It is in sharp contact with the diorite and mafic pillowed

flow. The mafic pillowed flow and synvolcanic dike are cut by multiple epidote-quartz veins which are in turn transected by quartz-iron carbonate-tourmaline veins.

The diorite has a strong differentiated foliation (S_2) defined by feldspar-rich, felsic bands, alternating with amphibole –rich, mafic bands (average thickness of 3-5 mm). S₂ strikes east $(\sim 100^{\circ})$ and dips steeply (70°-85°) to the south. It is folded by Z-shaped F₃ folds associated with an axial plane S3 cleavage defined by chlorite. S3 is oriented anticlockwise to S2; it strikes eastnortheast ($70^{\circ}-85^{\circ}$) and dips steeply ($70^{\circ}-85^{\circ}$) to the south. S₃ becomes more intense and closely spaced in narrow shear zones (<50 cm thick) surrounding less deformed, metre wide, lozenges of diorite. The shear zones contain a shallowly west-plunging ($\sim 15^{\circ}$), chloritic, mineral lineation, similar in orientation to F₃ fold axes. Dextral shear bands, striking ~°120 or ~°300 and dipping steeply (80°-85°) to the south or north, and Z-shaped drag folds defined by folded quartz-iron carbonate veins, are present along most shear zones, suggesting dextral transcurrent shear. Pillows in the mafic pillowed flow are flattened parallel to S₂. The strain appears to increase in intensity within sandstone and mudstone where S₂ is oriented parallel to bedding and S₃ is oriented anticlockwise to S₂ as observed in the diorite. Similar dextral shear sense indicators, that is, shear bands and drag folds, are developed in sheared sandstone/mudstone and mafic pillowed flow but, in addition, spectacular dextral asymmetrical strain shadows are present around pillow fragments (Figure 5B).

Black smoky fault-fill quartz veins occur along the fault. The fault is oriented parallel to S_2 and so it formed either during or after D_2 . The veins are individually 1-15 cm thick and collectively ~1 m thick, and they strike 90°-105° and dip 75°-85°S parallel to the fault. They are cut by multiple, mm-thick, milky white, quartz veins, filling fractures that are perpendicular to the margins of the black smoky quartz veins and that span the width of those veins. A 1.5 m-thick, bleached (light grey), alteration halo surrounds the black smoky quartz veins. The veins were broken up and brecciated (Figure 5C), and an anticlockwise S_3 cleavage formed in the alteration halo, during D_3 dextral shear reactivation of the fault. Pyrite and chalcopyrite(?) occupy dextral shear bands that have a strike of 125°-140° and a dip of ~70° to the south (Figure 5D), similar to the orientation of shear bands associated with narrow dextral shear zones north and south of the fault. Thus, the smoky quartz veins were emplaced either during D_2 or early during D_3 , and sulphide mineralization was remobilized into shear bands during D_3 dextral shear.

Grab samples of of the veins yielded low gold values so no further exploration work is planned for this stripping and fault (Premier Gold Mines Ltd., pers. com.).

Figure 4: Geological map of the Tombill-Bankfield fault stripping. Location of the map is shown in Figure 1. Co-ordinates are based on the North American Datum 1983 (NAD 83), Zone 16. Modified after Lafrance et al. 2012.

Figure 5: Field photographs of the Tombill-Bankfield stripping. A) Pillow in mafic pillowed flow. Pencil is 10 cm in length. B) Dextral asymmetrical strain shadows around pillow fragment. Coin (19 mm diameter) for scale. C) Fractured and broken-up smoky black quartz vein along the Tombill-Bankfield fault. Photo scale is 9 cm in length. D) Sulphide mineralization (indicated by yellow arrows) was emplaced along dextral shear bands during D₃ (Lafrance et al. 2012).

Conclusions

Mineralization at the Portal stripping consists of auriferous quartz veins that are pre- or early-D₃. The ore zones are deformed and folded, which are important controls on their geometry and distribution. On the other hand, at the Tombill-Bankfield Fault stripping, sulphide mineralization emplaced in or remobilized into shear bands syn-D₃ and fault-fill veins are either syn-D₂ or early-D₃. Thus, there are at least two mineralizing events in the Geraldton area. Ore zones may have formed during more than one mineralization event or, alternatively, they may have formed during one mineralization event and were subsequently upgraded during a subsequent event.

Preliminary observations on gold mineralized zones in the Geraldton area

Close to 2500 m of core from four drill holes was logged during the 2012 summer field season. Three of the four drill holes (MM179, MM179C, MM179D) intersected the F Zone whereas the fourth drill hole (MM106D) intersected the North Zone. The two zones represent the bulk of the resources delineated in Geraldton. MM179C and MM179D are wedged drill holes from drill hole MM179. MM106D is a wedged drill hole from drill hole MM106. These drill holes were recommended for detailed study by geologists of Premier Gold Mines Ltd. because of their high gold intercepts and the key information and features about the mineralization styles. Premier Gold Mines provided access to their drill hole database, which include gold assay results and important information on rock type and alteration.

The F Zone and North Zone are located on the north limb of the Hard Rock anticline. Different styles of alteration and gold mineralization are associated with the two zones. They reflect the rock types hosting mineralization, and they are subdivided into porphyry-, sandstone-, sandstone-minor iron formation, and iron formation-hosted styles of gold mineralization and alteration. The most important observations from each drill hole are summarized below. The complete drill logs are in Appendix A.

MM179

An altered quartz-feldspar porphyry intrusion was intersected at down hole depths of 663.6 m to 737.7 m. The intrusion is thoroughly altered and mineralized. The mineralization is associated with quartz-ankerite-calcite veins with strongly silicified wallrocks that contain up to 5 % pyrite \pm arsenopyrite \pm pyrrhotite. Disseminated pyrite is present throughout the intrusion but pyrite is coarser grained within higher gold grade intervals.

At depths of 744 m to 745.5 m, a mineralized 1.5 m interval is present within sandstone interlayered with mudstone and minor iron formation. The interval contains 5 % disseminated pyrite \pm arsenopyrite \pm pyrrhotite in chlorite-sericite alteration haloes surrounding quartz-carbonate (ankerite+calcite) veins.

The F Zone was intersected at a down hole depth of 774 m within interlayered mudstonesandstone. The zone is only 1.5 m thick. The alteration and sulphide minerals are similar to those described above and consist of sericitic and carbonate-rich alteration halo with 2-3 % pyrite-pyrrhotite-arsenopyrite surrounding quartz-ankerite veins.

A different style of alteration and mineralization is present in green mudstone interlayered with iron formation, intersected at depths of 819.1 m to 845.4 m. Massive pyrite replacement zones are associated with quartz-ankerite-minor calcite-pyrite veins with chlorite selvages. No pyrrhotite or arsenopyrite is present.

MM179C

The first mineralized interval is at down hole depths of 603 m to 606 m, where it is hosted by interlayered mudstone, sandstone, and minor iron formation. It consists of quartz-ankerite \pm calcite veins surrounded by alteration halo of sericite \pm chlorite in mudstone and carbonate (calcite, ankerite) in sandstone. Chalcopyrite-pyrite as well as minor arsenopyrite-pyrrhotite are present within both the veins and alteration haloes. The same interlayered mudstone-sandstoneiron formation hosts another mineralized zone (616.5-635 m) with similar features, called the SP zone or South Porphyry zone. In addition to the alteration features described above, interlayered iron formation beds are partially replaced by pyrrhotite-pyrite-chalcopyrite-arsenopyrite. This replacement texture appears to be associated with quartz-carbonate veins. Late fractures filled with coarse grained pyrite-pyrrhotite and chlorite cut across the veins and massive sulphide replacement bands.

From 655 m to 666.4 m, iron formation beds interlayered with mudstone and sandstone are replaced by pyrrhotite in turn overgrown by semi-massive arsenopyrite±pyrite (665-666 m). The sulphides are associated with calcite alteration of the host rocks and with quartz-carbonate veins.

The F Zone is intersected at a depth of 670.5 m. It drastically increases in thickness from 1.5 m in previous drill hole MM179 to 32.5 m in this drill hole. The F Zone straddles several rock types so the style of alteration and mineralization changes across the zone. From 670.5 m to 675.5 m, the F Zone is hosted by a quartz-feldspar porphyry intrusion, strongly altered to carbonate and containing 2-3 %, coarse grained, disseminated pyrite-arsenopyrite associated with

quartz-carbonate veins. The veins make up 2-3% of the rock and are surrounded by strong calcite-chlorite-sericite selvages. From 675.5 m to 680.4 m, the F Zone mineralization is associated with quartz-ankerite veins with strong sericite alteration halo within interlayered mudstone and sandstone. Pyrite, arsenopyrite, and free gold are present in the veins. From 680.4 m to 689.5 m, the F Zone mineralization consists of semi-massive sulphide ore with up to 70% pyrite and arsenopyrite. The distribution of the sulphides is spatially zoned within the alteration haloes surrounding quartz-ankerite veins. Sulphides are coarser and pyrite is more abundant close to the veins whereas the sulphides become finer-grained and arsenopyrite is more abundant away from the veins. From 689.5 m to 692.4 m, the F Zone is in a quartz-feldspar porphyry intrusion with alteration and mineralization similar to that described above, and from 692.4 to 712 m, the F zone is hosted by interlayered mudstone-sandstone. The abundance of quartz-ankerite veins with sericite-arsenopyrite-pyrite halo decreases towards the end of this interval. Late pyrrhotite-arsenopyrite-chalcopyrite stringers cut across black mudstone horizons, and pyrite-pyrrhotite-infilled fractures cut across the quartz-ankerite veins.

The F Zone reappears between the depths of 717.6 m to 725.6 m after a barren interval of roughly 5 m in thickness. Interlayered mudstone-sandstone contain 40 % sericite-ankerite \pm chlorite in alteration halo around quartz-ankerite \pm calcite veins. The veins increase in abundance from 5-7% of the rock in the upper part of the interval to 40 % below 723 m.

From 729.4 m to 731 m, quartz-ankerite veins with pyrite-arsenopyrite-pyrrhotite alteration halo are present in interlayered mudstone-sandstone. Pyrrhotite is replaced by coarse-grained arsenopyrite within the alteration halo. A younger set of chlorite-pyrrhotite veins cut across the quartz-ankerite veins.

MM179D

The F Zone was intersected at a depth of 656 m. It is 3 m thick and it consists of quartzankerite ± pyrrhotite with chlorite-biotite-arsenopyrite selvages in interlayered mudstonesilttone-sandstone. Other mineralized intervals in the same host rocks were intersected at depths of 648.5 m to 659 m, and 731.5 m to 737.5 m. They are characterized by quartz-ankerite ± calcite±chlorite veins with minor pyrite-chalcopyrite-pyrrhotite. The veins are surrounded by sericite-ankerite-pyrite and chlorite-biotite±sericite±calcite±arsenopyrite alteration haloes. Magnetite-rich iron formation beds interlayered with mudstone and sandstone (613-614.7 m) are replaced by coarse grained pyrite-arsenopyrite-pyrrhotite associated with 2-3 % of quartz-calcite veins surrounded by strong chlorite alteration halo.

Reddish black-black iron formation interlayered with mudstone hosts two mineralized intervals within the so-called K zones (783.7-784.9; 787.4-791 m). The mineralized intervals are characterized by brownish yellow, sericite-chlorite-carbonate alteration surrounding quartz-carbonate veins. Disseminated pyrite (2-3 %) occurs in the alteration halo, the veins and as sulphide replacement of iron formation beds.

MM106D

The best mineralized intervals are associated with iron formation at depths of 769 m to 771.3 m and 779.2 m to 822.2 m. Iron formation is black and magnetite-rich and/or dark red and composed of cherty jasper beds. The mineralized intervals consist of semi-massive pyrite±arsenopyrite±pyrrhotite replacement zones surrounding quartz-ankerite±chlorite veins.

Mineralization occurs in mafic dikes (619.2-656.7 m) intercalated with quartz-feldspar porphyry (656.7-680.4 m). Quartz-ankerite±pyrite±tourmaline veins are surrounded by chlorite-sericite-pyrite-fuchsite(?) halo in mafic dikes and by intense sericite-ankerite-pyrite alteration halo in porphyry.

Quartz-ankerite veins with sericite alteration haloes are present with interbedded sandstone and mudstone. 2-3%, disseminated pyrite-arsenopyrite±pyrrhotite are present in both the veins and their alteration haloes.

Synthesis

The **<u>F</u> Zone** comprises two main styles of mineralization: sandstone-hosted and porphyryhosted mineralization and alteration. Sandstone-hosted mineralization is characterized by quartz-ankerite±calcite veins with chlorite selvages. The veins have a strong yellow-brown sericite-(chlorite?) alteration halo in mudstone and a strong carbonate-sericite alteration halo in sandstone. Pyrite +/- arsenopyrite +/- pyrrhotite +/- chalcopyrite are present in the veins and in their alteration halo. Pyrite and arsenopyrite are commonly coarse-grained and rare free gold is locally present in the veins. The veins are typically strongly folded and commonly transposed and boudinaged parallel to a bedding-parallel foliation. Typical sediment-hosted F Zone style mineralization is shown on Figure 6a.

Porphyry-hosted mineralization is characterized by strong carbonate (calcite certainly, ankerite?) -sericite \pm chlorite alteration halo surrounding deformed quartz-ankerite veins. Gold grades are lower within the porphyry relative to the interlayered mudstone-sandstone but alteration is more pervasive and gold is more evenly distributed.

The <u>North Zone</u> is hosted by magnetite-rich iron formation interlayered with grey to green mudstone-sandstone. Gold-bearing semi-massive sulphides have replaced beds in iron formation and possibly interlayered sandstone and mudstone. The sulphides include pyrite +/- arsenopyrite +/- pyrrhotite +/- chalcopyrite. The sulphides surround strongly deformed quartz-ankerite±chlorite veins with chlorite and/or calcite haloes. Pyrite and arsenopyrite overgrow earlier sulphide minerals (pyrite-pyrrhotite), and arsenopyrite is in turn locally overgrown by later coarse grained pyrite. Variations of North Zone style alteration and mineralization are shown on Figure 6/b-f.

Iron formation-hosted mineralization is commonly surrounded by sandstone-hosted mineralization. The latter consists of gold-bearing quartz-ankerite veins with strong sericite-carbonate \pm chlorite alteration halo, alternating with semi-massive sulphide (arsenopyrite-pyrite) replacement zones roughly concordant to bedding and foliation. Sulphide minerals within the alteration haloes are typically zoned with pyrite adjacent to the veins and arsenopyrite more distal to the veins.

Figure 6. a, *BGBST2012_152*: MM179C 677.5-677.9 m Strongly sericitized rock characteristic of the F Zone. Semi-massive sulphide replacement mineralization typically associated with quartz-carbonate veins: **b**, *BGBST2012_154*: *MM179C* 681.27-681.50 m; **c-d**, *BGBST2012_300*: *MM106D* 785.33-786 m; **e-f**, *BGBST2012_304*: *MM106D* 797.2-797.76 m.

Petrography

The following observations are from four thin sections that are representative of the F Zone and North Zone.

BGBST2012_152

The thin section is from interval 677.5 m to 677.7 m in drill hole MM179C drill hole. It represents the F zone. The host rock is interlayered mudstone-sandstone.

<u>Texture</u>: The rock has an equigranular granoblastic texture with a foliation defined by sericite. Sulphide-bearing quartz-carbonate veins (Figure 7a) are boudinaged and the foliation wraps around the veins. The rock consists of 60% sericite, 25 % carbonate, 10 % quartz and 5 % opaque grains where it is most sericitized, and it consists of 50 % carbonate, 30 % sericite, 13 % quartz and 7 % opaque minerals where

it is least sericitized. Slightly folded veins of quartz-carbonate veins include magnetite, pyrite, arsenopyrite, and chalcopyrite (Figure 7b, c). Disseminated magnetite and chalcopyrite are present in the altered rock and magnetite also occurs as inclusions in pyrite and arsenopyrite in the veins. Pyrrhotite occurs with magnetite and chalcopyrite as inclusions in pyrite.

BGBST2012_154

The thin section is from 681.27-681.5 m in drill hole MM179C. It is from the North Zone. The host rock is an interlayered mudstone-siltstone.

The thin section is subdivided into 7 sections representing veins, and alternating strongly altered and less altered mineralized layers.

- This section is a quartz-carbonate vein surrounded by strong sericite and minor chlorite defining a foliation. Pyrite is elongate parallel to foliation. Magnetite occurs as inclusions in pyrite and as dissemination in the altered rock. Trace native gold fills fractures in pyrite (Figure 7d) and occurs as separate grains in the altered rock.
- These two sections are strongly mineralized and they consist of 50 % opaque minerals, 30 % carbonate, 10 % sericite and 10 % quartz. Quartz and carbonate occur as veins and

as groundmass. Sericite alteration is stronger adjacent to the veins where it is associated with opaque minerals, including pyrite, minor magnetite and gold.

- Less mineralized section is similar to section 1 but it contains more quartz and carbonate, as well as sericite and opaque minerals in equal proportion
- Less mineralized section comprises 40 % fine grained quartz, 35 % chlorite, 20 % carbonate and 5 % opaque minerals (Figure 7e). The latter consists of 2 % arsenopyrite and 2 % pyrite with trace inclusions of chalcopyrite, pyrrhotite and magnetite in pyrite grains.

- This section comprises 45 % fine grained quartz, 45 % carbonate, 5-10 % opaque minerals (arsenopyrite, pyrite, magnetite) as well as minor chlorite and sericite defining a weak foliation (Figure 7f).
- Strongly mineralized section consists of coarse-grained pyrite (14%) and arsenopyrite (5%) with fine-grained chalcopyrite (1%) and magnetite surrounded by a groundmass matrix of quartz (50%), carbonate (25 %) and sericite (5 %).
- Strongly mineralized section similar to section 2 consists of 30 % pyrite, 18 % arsenopyrite, 1 % chalcopyrite and minor magnetite, surrounded by a quartz, carbonate, and sericite matrix.

In general, pyrite grains are anhedral, microfractured, and elongate parallel to foliation (Figure 8a). Arsenopyrite appears to overgrow pyrite. Pyrite and arsenopyrite were emplaced prior to or during deformation whereas gold may be coeval with or later that the sulphide minerals.

BGBST2012_300B

The thin section is from the interval 785.33 m -786 m in drillhole MM106D. It represents strongly sulphide-rich layers from the North Zone.

Two sections are observed:

1. The first section contains 40-45 % opaque minerals, 30 % quartz, 30 % carbonate, minor sericite and trace chlorite. It likely represents a recrystallized vein. The mineralization

consists of arsenopyrite (24 %) intergrown with anhedral, coarser grained pyrite (19 %) (Figure 8b). Minor pyrrhotite, chalcopyrite and magnetite are also present. Gold occurs as inclusions and fracture-filling in pyrite (Figure 8c).

2. The second section represents presumably the strongly sericitized wall rock of the vein in section 1. It consists of sericite, carbonate, quartz, sulphide and lesser biotite and chlorite. Sericite defines a foliation overprinted by a crenulations cleavage (Figure 8d) and kink bands. Lath-shaped arsenopyrite occurs along and are elongated parallel to the foliation and crenulations cleavage (Figure 8e). Sulphide

grains underwent cataclasis parallel to foliation. Associated with quartz-carbonate veins are coarse-grained, subhedral, arsenopyrite and pyrite, which mutually overgrow each other suggesting that they are coeval. Trace pyrrhotite, arsenopyrite and native gold occur as inclusions in pyrite.

BGBST2012_304

The thin section is from interval 797.2-797.76 m in drill hole MM106D drillhole. It is from the North Zone.

It is subdivided in 3 sections:

 The first section consists of 35 % chlorite, 20 % carbonate, 15 % sericite, 15 % opaque minerals, and 5-5 % biotite and quartz (Figure 9a). Magnetite (5 %) occurs in a band parallel to foliation (Figure 9b) and is overgrown by pyrrhotite (2 %), which is in turn overgrown by coarse grained pyrite (7 %), arsenopyrite (1 %) and chalcopyrite (trace). Magnetite and chalcopyrite also occur as inclusions in pyrite. Chlorite defines a foliation that wraps around the sulphide grains. Calcite and quartz crystallized in strain shadows surrounding magnetite grains.

2a. It consists of 40 % carbonate, 30 % sericite, 25 % quartz, 2
% pyrite, 1 % pyrrhotite, arsenopyrite, and trace magnetite. Pyrite and arsenopyrite

overgrow magnetite. Magnetite, pyrrhotite, and chalcopyrite occur as fine inclusions in pyrite whereas arsenopyrite contains pyrrhotite and magnetite inclusions only (Figure 9c)
2b. Folded finer-grained section consists of 40 % opaque minerals, 30 % carbonate, 20 % sericite and 10 % quartz (Figure 9d). Magnetite and pyrrhotite were found as inclusions in coarse grained pyrite. Native gold is present as inclusions in pyrite (Figure 9e).

The third section represents a vein composed of 50 % carbonate (inequigranular, interlobate), 35 % carbonate (inequigranular, interlobate), 5 % feldspar (aggregate of coarse feldspar; sericitized), 5 % sericite, 3% anhedral pyrite and 2 % euhedral arsenopyrite.

Summary

The F Zone is characterized by strong sericite and carbonate alteration. It comprises 5-10 % opaque minerals including pyrite>arsenopyrite, lesser magnetite and chalcopyrite, and trace pyrrhotite. Magnetite, pyrrhotite and chalcopyrite occur as inclusions in coarse grained, anhedral-subhedral pyrite and arsenopyrite.

The North Zone is characterized by semi-massive sulphide replacement of the host rock surrounded with variably intense carbonate and sericite alteration. The emplacement of the sulphide is associated with quartz-carbonate veins. Sulphide minerals typically represent more than 50 % of the rock and consist mainly of pyrite with slightly less abundant arsenopyrite and lesser pyrrhotite, chalcopyrite, magnetite and native gold. Gold mostly occur as inclusions or in fractures in pyrite as well as occasionally as unique specks. Fine grained, disseminated, euhedral arsenopyrite occurs along foliation and crenulations cleavage in sericite-rich bands.

Figure 7. *BGBST2012_152*: **a**, Quartz-carbonate-sulphide vein is wrapped around by the foliation defined by sericite. **b**, A general overview of the texture in this strongly sericitized rock. Slightly folded quartz-carbonate-opaque (pyrite-arsenopyrite-magnetite). Strong foliation wraps around opaque grains. **c**, Sulphide grains oriented parallel to folitation. The sulphide grains, generally pyrite and to a lesser degree arsenopyrite appear to be anhedral-subhedral. *BGBST2012_154*: **d**, Specks of native gold in large, resorbed pyrite. **e**, Overview of the fourth subsection representing a less mineralized interval. **f**, General overview of the fifth subsection representing a moderately mineralized zone.

Figure 8. *BGBST2012_154*: **a**, Subhedral pyrite grain broken up by shear fractures and wrapped around by sericite-defined foliation. Elongated parallel to foliation. *BGBST2012_300B*: **b**, Overview photograph of the first, arsenopyrite-rich zone showing overgrowing anhedral pyrite and subhedral arsenopyrite. **c**, A speck of native gold in large, resorbed pyrite grain. **d**, Overview photograph of crenulation clevage in strongly sericitized wall rock. **e**, Recrystallized sericite in shear zones with abundant disseminated, lath-shaped arsenopyrite emplaced in the crenulation clevage and oriented along the older foliation.

Figure 9. *BGBST2012_304*: **a**, Average overview photograph showing possibly the least altered host rock in the first subsection **b**, Magnetite appears in a well-definable zone (first subsection) and is overprinted by pyrrhotite which is overprinted by coarse grained pyrite and arsenopyrite. **c**, An overview photograph showing the less mineralized quartz-rich zone (2a) that surrounds the folded, strongly mineralized semi-massive sulphide band. **d**, Overview photograph of semi-massive pyrite mineralization in 2b zone. **e**, Specks of native gold in large, resorbed pyrite grain.

Geochemistry

113 samples out of 262 collected samples were selected for geochemical analysis. Care was taken to select samples without veins to minimize dilution due to the introduction of vein material.105 samples were analysed for major element oxides (XRF), CO₂ (Coulometry), S_(total) (Leco), FeO (Titration), As-Bi-Se-Sb-Te (Aqua regia ICP-MS) and 46 trace elements (Li meta/tetraborate fusion ICP-MS; ICP-MS following four-acid digestion for chalcophile elements) at Activation Laboratories in Ancaster, Ontario. Additional analyses were done by fire assay for Au, Ag, and by ICP following aqua regia dissolution for Cu, Zn, Pb, Ni if they exceeded the ICP-MS upper detection limits for those elements. Another 8 samples were analyzed for their major element oxide and trace element composition only.

The analyses were done to establish the geochemical footprint of the mineralized zones. Preliminary results are presented below as binary diagrams with Au, pathfinder trace metals, alkali oxides, and alteration indexes along the x- and y-axes.

<u>Au versus total S</u>: Samples are divided according to rock type (Fig. 10). Sulphur shows good correlation with gold regardless of the host rock.

<u>Au versus SiO₂</u>: SiO₂ shows a well-defined negative correlation with Au suggesting significant change in the silica content compared to the other elements accompanying the mineralization process (Fig. 11).

<u>Au versus CO₂</u> plot shows no correlation with gold suggesting that carbonation is not closely associated with the gold mineralization. It is likely a more extended process than the mineralization itself (Fig. 12).

<u>Au versus SiO₂/(CO₂+S)</u> plot suggests enrichment in gold with increasing sulphidation (- carbonation) and decreasing relative silica content (Fig. 13).

<u>K₂O versus Na₂O</u>: There is generally a reverse correlation between K₂O and Na₂O (Fig. 14) for most rock types in the North Zone and F Zone likely due to replacement of feldspars during

sericitization. This correlation is very strong within porphyry in the F zone and in sandstone in the North Zone, but is lacking in sandstone within the F Zone.

<u>Au versus Na₂O:</u> Na value is relatively low in every strongly sulphidized samples with high gold value suggesting Na depletion (presumably during sericitization) associated with the North Zone style mineralization process (Fig. 15).

<u>Au versus pathfinder trace metals:</u> Binary plots of Au versus Te, Ag, As, Bi, Sb, W show poor correlations between Au and these elements. As and Te values correlate positively with Au values and samples with higher Au values generally have higher As and Te values (Fig. 16). However, some samples with high Au values have low As and Te values and others with low Au values have high As and Te values. Arsenic shows moderate correlation with Au suggesting that part of the mineralization is associated with As enrichment, but the spread of the data also suggests gold mineralization occurring without strong As enrichment (Fig. 17.)

Figure 10: Au versus total S binary diagram

Figure 11: Au versus SiO₂ binary diagram

Figure 12: Au versus CO₂ binary diagram

Figure 13: Au versus $SiO_2/(CO_2 + S)$ binary diagram

Figure 14: K₂O versus Na₂O binary diagrams

Figure 15: Au versus Na₂O binary diagram

Figure 17: Au versus As binary diagram

Preliminary Conclusions

- The Geraldton area underwent three ductile deformation events (D₁ to D₃).
 Mineralization was emplaced syn-D₂ or early-D₃ as well as later during D₃. Thus, the mineralized zones in the Geraldton area formed during at least two mineralizing events.
- (2) The F Zone is hosted by quartz-feldspar porphyry and interlayered sandstone and mudstones. It is characterized by quartz-ankerite±calcite veins with chlorite selvages and strong sericite-carbonate± chlorite alteration haloes. Sulphide minerals, such as pyrite +/- arsenopyrite +/- pyrrhotite +/- chalcopyrite, are present in the veins and their alteration haloes. The North Zone is characterized by gold-bearing semi-massive sulphide zones (pyrite +/- arsenopyrite +/- pyrrhotite +/- chalcopyrite) replacing beds in iron formation and possibly interlayered sandstone and mudstone. Folded quartzankerite±chlorite veins with chlorite and/or calcite selvages are associated with the semimassive sulphide replacement zones.
- (3) At the F Zone, magnetite, pyrrhotite and chalcopyrite in the altered wallrocks of quartzankerite veins were found as inclusions in coarser grained pyrite and arsenopyrite.
- (4) At the North Zone, gold occurs as inclusions in pyrite and in fractures cutting through pyrite grains. As the main foliation (S₂?) in drill core commonly wraps around pyrite grains and euhedral arsenopyrite crystals occur along the foliation and later crenulations cleavage, this suggests that the emplacement and growth of sulphide minerals and possibly gold, span several deformation events or was emplaced in an active deformation zone with possible remobilization during a younger deformation.
- (5) Preliminary geochemistry of altered rocks at the North Zone and F Zone suggests that i) gold grades are generally higher in rocks with higher total sulphur; ii) gold mineralization is associated with sulphidation and carbonation of the host rock, however, sulphidation seems to be the key process in gold enrichment; iii) the breakdown of feldspar during sericitization produced an inverse correlation between K₂O and Na₂O; iv) altered rocks with high Au values generally have high As and Te values.

<u>References</u>

- Anglin, C.D. 1987. Geology, structure and geochemistry of gold mineralization in the Geraldton area, northwestern Ontario; Unpublished M.Sc. thesis, Memorial University of Newfoundland, St. John's, Newfoundland.
- Anglin, C.D., Franklin, J.M., Loveridge, W.D., Hunt, P.A. and Osterberg, S.A. 1988. Use of zircon U-Pb ages of felsic intrusive and extrusive rocks in eastern Wabigoon Subprovince, Ontario, to place constraints on base metal and gold mineralization; *in* Radiogenic age and isotopic studies: report 2, Geological Survey of Canada, Paper 88-2, p.109-115.
- Devaney, J.R. and Williams, H.R. 1989. Evolution of an Archean subprovince boundary: a sedimentological and structural study of part of the Wabigoon-Quetico boundary in northern Ontario; Canadian Journal of Earth Sciences, v.26, p.1013-1026.
- Dubé B., Mercier-Langevin, P., Castonguay, S., McNicoll, V.J., Pehrsson, S.J., Bleeker, W.,
 Schetselaar, E.M. and Jackson, S. 2011. Targeted Geoscience Initiative 4. Lode Gold
 Deposits in Ancient, Deformed and Metamorphosed Terranes—Footprints and Exploration
 Implications: A Preliminary Overview of Themes, Objectives andTargeted Areas; *in*Summary of Field Work and Other Activities 2011, Ontario Geological Survey, Open File
 Report 6270, p.38-1 to 38-10.
- Eilu, P., Mikucki, E.J. and Dugdale, A.L. 2001. Alteration zoning and primary geochemical dispersion at the Bronzewing lode-gold deposit, Western Australia. Mineralium Deposita, v.36, p.13-31.
- Hart, T.R., terMeer, M. and Jolette, C. 2002. Precambrian geology of Kitto, Eva, Summers,Dorothea, and Sandra Townships, northwestern Ontario: Phoenix bedrock mapping project;Ontario Geological Survey, Open File Report 6095, 206p.
- Horwood, H.C. and Pye, E.G. 1955. Geology of Ashmore Township; Ontario Department of Mines, 60th Annual Report, v.60, Part 5, 105p.

- Lafrance, B., DeWolfe, J.C. and Stott, G.M. 2004. A structural reappraisal of the Beardmore-Geraldton Belt at the southern boundary of the Wabigoon subprovince, Ontario, and implications for gold mineralization; Canadian Journal of Earth Sciences, v.41, p.217-235.
- Lafrance, B., Tóth, Z., Dubé, B. and Mercier-Langevin, P. 2012. Targeted Geoscience Initiative
 4. Lode Gold Deposits in Ancient Deformed and Metamorphosed Terranes: Geological Setting of Banded Iron Formation–Hosted Gold Mineralization in the Geraldton Area, Northern Ontario. Summary of Field Work and Other Activities 2012, Ontario Geological Survey, Open File Report 6280, p.48-1 to 48-10.
- Macdonald, A.J. 1988. The Geraldton Gold Camp: The role of banded iron formation; Ontario Geological Survey, Open File Report 5694, 176p.
- Mason, J. and White, G. 1986. Gold occurrences, prospects, and deposits of the Beardmore-Geraldton Area, districts of Thunder Bay and Cochrane; Ontario Geological Survey, Open File Report 5630, 680p.
- Pye, E.G. 1952. Geology of Errington Township, Little Long Lac Area; Ontario Department of Mines, 60th Annual Report, v.60, Part 6, 140p.
- Tomlinson, K.Y., Hall, R.P., Hughes, D.J. and Thurston, P.C. 1986. Geochemistry and assemblage accretion of metavolcanic rocks in the Beardmore-Geraldton greenstone belt, Superior Province; Canadian Journal of Earth Sciences, v.33, p.1520-1533.

Appendix:

Appendix includes:

- Location map for samples and drill holes (Figure 18-20.)
- Drill hole sections with location of samples (Figure 21- 22.)
- Detailed drill logs

Figure 18: Location of the logged drill holes and mapped outcrops

Figure 19: Location map for the samples on the Portal outcrop

Figure 20: Location map for the samples on the Tombill-Bankfield Fault outcrop

Figure 21. Section of MM 179, MM 179C and MM 179D drill holes.

S	мм106D
	1:3000
	100
Drill Hole #: MM106D Zone: North Zone Date logged: Sept. 1 Northing: 5503397.00 Elevation: 344.00 m	4-22, 2012
Length: 664.5 m	
Legend	200
Wacke (Interlayered mudstone-sandstone, Sandston	e)
Porphyry	
Iron formation (Interlayered with mudstone-sandstone	300
Mafic dike	
Ultramafic dike	
	400
Conglomerate	242
Iron formation (Interlayered red jasper-rich-black mag	netite-rich) -243,244 -246
Massive sulphide replacement	247
No core (e.g. stope)	250 249 500
The numbers show the last three digits of the sample numbers: BGBST2012_XXX.	-253,254 -255 -256 -257 -258 -258
	260 - 261 263 - 262,267 266 - 264,265 270 - 268,269 272 - 271 274 - 273
27 289,290	77.278 - 279 280 - 281.282 285 - 283.284 292 - 283.284 292 - 283.284 293 - 293.294
301,3 30	197 - 295,296 03 - 299,300,302 14 - 305 - 800
306,3 310,311 314	-312,313 -315,316 -317
318	-319 000
320	321
323	324,325
328,329 331,33233	
33533 33733 339- 341340	6 8

Figure 22. Section of MM 106 drill hole.

		Coord	inates	Interv	al (m)			
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
BGBST2012_093	MM179	5502966	502305	87.00	87.35	Wacke		
BGBST2012 094	MM179	5502966	502305	136.82	137	Wacke	less altered	
BGBST2012 095	MM179	5502966	502305	172.83	172.95	Ultramafic dyke		
BGBST2012 096	MM179	5502966	502305	196.7	196.9	Sandstone	Calcitized average sandstone.	
BGBST2012 097	MM179	5502966	502305	218	218.18	Porphyry	highest analized value in the inteval	
						- 1 5 5	pyrite-bearing alteration haloe around Q-	
BGBST2012 008	MM170	5502966	502305	218.87	210.05	Pornhyry	turmaline vein	
D0D512012_070	IVIIVII /)	5502700	302303	210.07	217.05	Interlayorad		
						mudatana		
DCDCT2012 000	10/170	5502066	502205	220.65	201	inudstone-	A	
BGBS12012_099	IVIIVI1/9	5502966	502305	320.03	321	sandstone	Average sample for this interval	
						Interlayered		
						mudstone-	Aspy containing sandstone with Q-	
BGBST2012_100	MM179	5502966	502305	414.7	414.85	sandstone	ankerite veins	
BGBST2012_101	MM179	5502966	502305	440.3	440.5	Sandstone	Average sandstone, trace py	
BGBST2012_102	MM179	5502966	502305	511.65	511.93	Sandstone	Average sandstone with veins, py, apy	
						Interlayered		
						mudstone-	Average sandstone with veins and	
BGBST2012_103	MM179	5502966	502305	591.25	591.55	sandstone	disseminated py (5%)	
							Before SP zone with disseminated py-po	
BGBST2012 104	MM179	5502966	502305	657.13	657.33	Greenshale	and a vein of Q and minor ankerite	
							SP zone: strongly chloritized, strongly	
							folded rock with O-Fe-crb. And py	
BGBST2012 105	MM179	5502966	502305	657 78	657.98	Greenshale	mostly po in microfractures	
<u>D0D012012_105</u>	101101179	5502700	502505	001.10	057.90	Greenshare	SP zone: Strongly folded O-crh Veins	
							by po fine veinlets parallel to the	
DCDST2012 104	MM170	5502066	502205	658 0	650.1	Graanshala	foliation with VG	
BGBS12012_106	IVIIVI1/9	5502966	502305	038.9	639.1	Greenshale		
							X zone: Characterized by disseminated	
BGBST2012_107	MM179	5502966	502305	666.45	666.65	Porphyry	py and also by Q-turmaline(?) vein	
							Q-chlorite vein with silicification around	
							the margin of the vein. Disseminated py.	
							Representative of the pervasive very low	
							grade mineralization through the	
BGBST2012 108	MM179	5502966	502305	675.14	675.34	Porphyry	porphyry.	
							Wide Q-chlorite vein cut across Q-fsp.	
BGBST2012 109	MM179	5502966	502305	685.37	685.64	Porphyry	Veins. Disseminated pv.	
000012012_10)		2202200	002000	000.07	000.01		Higher gold value associated with a few	
							narrow veins (< 1 cm). Dissmeninated nv.	
DCDST2012 110	MM170	5502066	502205	602.25	602 45	Dornhuru	narrow venis (< rein). Dissinenniated py-	
BGB312012_110	IVIIVI1/9	3302900	302303	092.23	092.43	roipiiyiy	po-apy.	
DODGT0010 111	10/170	5500066	500005	207	707.00	D 1	Coarse and line grained porphyry in the	
BGBS12012_111	MM179	5502966	502305	/0/	707.38	Porphyry	same sample without sharp contact.	
						Interlayered	Strongly deformed mineralization with	
						mudstone-	yellowish alteration with strong py-po-	
BGBST2012_112	MM179	5502966	502305	744.13	744.33	sandstone	apy dissemination	
						Interlayered		
						mudstone-		
BGBST2012 113	MM179	5502966	502305	767.4	767.7	sandstone	Apy needles around Q-crb. Vein	
_						Interlayered	Q veins with strong Fe-crb. Alteration	
						mudstone-	and disseminated py-po in alteration	
BGBST2012 114	MM179	5502966	502305	774.35	774.45	sandstone	haloe	F Zone
							A 4 mm speck of gold in a O-vein	
						Interlayered	associated with a very weak alteration	
						mudstona	haloo Vory work dissom By around alt	
DCDST2012 115	MM170	5502066	502205	804.44	20162	sandstone-	haloo	
BGBS12012_115	IVIIVI1/9	5502966	502305	804.44	804.62			
DODGT0010 11(10/170	5500066	500005	025.05	02612	iron formation	Q-veins with py replacing IF. Vein is	
BGBS12012_116	MM179	5502966	502305	835.95	836.13	with greenshale.	parallel to the axial plane of folds.	
						Iron formation		
BGBST2012_117	MM179	5502966	502305	837.43	837.69	with greenshale.	Possibly refolded fold in IF	
							Q-ankerite veins with po-py-apy and	
BGBST2012_118	MM179	5502966	502305	883.7	883.95	Sandstone	alteration haloe.	
BGBST2012_119	MM179	5502966	502305	898.9	898.67	Iron formation	Massive po-py above the dike(?).	
							Dyke with strong chlorite-Fe-crb.	
							Alteration and veins along it with 5-10	
BGBST2012 120	MM179	5502966	502305	898.9	899.24	Iron formation	% py-apy	
							Best mineralized interval in IF, but no	1
							sulphides. It shows the 2 generations of	
BCBST2012 121	MM170	5502044	502205	002 45	004.05	Iron formation	folds	
DOD012012_121	1011011/9	5502900	302303	903.03	704.03		10140.	
						Interlayered		
						mudstone-	The second generation of veins is cut by	
BGBST2012_122	MM179C	5502965	502300	355.6	355.85	sandstone	the third py-bearing veins	

		Coordi	inates	Interv	al (m)		n.	ь и
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
						Interlayered		
					400 50	mudstone-	Q-ankerite veins are cutting across early	
BGBST2012_123	MM179C	5502965	502300	409.35	409.58	sandstone	calcite veins.	
						Interlayered	Tete estate and in a setting the such the	
DCDST2012 124	MM170C	5502065	502200	418.2	119 15	mudstone-	early calcite vein/bands	
BGBST2012_124	MM179C	5502965	502300	384.15	384.36	Sandstone	Protolit sandstone	
	MINIT/JC	5502705	502500	501.15	501.50	Interlayered		
						mudstone-	Veins/Fractures are filled by py-po-cpy-	
BGBST2012 126	MM179C	5502965	502300	424.53	424.66	sandstone	apy?	
_						Interlayered		
						mudstone-		
BGBST2012_127	MM179C	5502965	502300	432.34	432.49	sandstone	Calcite-Q vein overprinted Fe-crb. Vein	
						Interlayered		
DCDCT2012 120	10.01700	5502065	502200	140.55	140.76	mudstone-	Q-ankerite vein cutting through the	
BGBS12012_128	MM1/9C	5502965	502300	449.55	449.76	Lamprophyro	ankerite band.	
BGB512012_129	IVIIVI1/9C	3302903	302300	400.0	400.7	Interlayered		
						mudstone-	Py-po-apy associated with O-ankerite	
BGBST2012 130	MM179C	5502965	502300	479.05	479.35	sandstone	vein with moderate chloritic selvage	
						Interlayered		
						mudstone-	Crosscutting relationship between early	
BGBST2012_131	MM179C	5502965	502300	525.6	525.85	sandstone	Fe-band and a younger Q-vein	
							Strong Fe-carbonatic alteration without a	
						T . 1 1	sharp contact to its host rock. This	
						Interlayered	assamblage was often described as a	
DCDST2012 122	MM170C	5502065	502200	5121	512 87	mudstone-	At the contact, it contains calcite vains	
D0D512012_152	WIWIT79C	5502905	502500	545.4	545.67	Interlayered	The the contact, it contains calcule veins.	
						mudstone-	Quartz-ankerite/feldspar vein for study	
BGBST2012_133	MM179C	5502965	502300	548.8	549	sandstone	of vein-filling.	
							Control sample for weakly calcitized	
BGBST2012_134	MM179C	5502965	502300	514.9	515	Sandstone	sandstone	
DCDCT2012 125	10/1700	5502065	502200	5 (7.15	5(7.24	C 1-4	Control sample for moderately calcitized	
BGBS12012_135	MM1/9C	5502965	502300	567.15	567.24	Interlayorad	sandstone	
						mudstone-	Control sample from interlayered	
BGBST2012 136	MM179C	5502965	502300	588.13	588.64	sandstone-IF	mudstone-sandstone with IF bands	
_							Biotite-chlorite-pyrite occurs in veins	
						Interlayered	and alteration haloe, strongly def.	
						mudstone-	(boudinaged+folded) veins out of the	
BGBST2012_137	MM179C	5502965	502300	595.8	596	sandstone	mineralization, disseminated py	
						T . 1 1		Determine the
						mudstone	Quartz ankarita vains with purita	for voins in
BGBST2012 138	MM179C	5502965	502300	603 58	603.81	sandstone-IF	bearing haloe	sandstone
B0B312012_138	WIWIT/9C	3302903	302300	005.58	003.81	sandstone-n	Quartz-ankerite veins with sericitic	sandstone
							haloe, fine grained disseminated	
BGBST2012_139	MM179C	5502965	502300	605.5	605.7	mudstone	sulphide	
							Carbonatic alteration haloe around	
							quartz-carbonate(calcite+ankerite) with	
					. .	G 1.	disseminated py and apy in the alteration	
BGBS12012_140	MM179C	5502965	502300	611.5	611.74	Sandstone	haloe in sandstone	
							SP Zone: Carbonatic alteration haloe	Shows the
							probably sericitic alteration haloe in	voungest
BGBST2012 141	MM179C	5502965	502300	616.73	617.03	mudstone	mudstone	clevage.
_								-
							Sericitic alteration haloe overprinted by	
							a young, Q-calcite vein. Q-ankerite veins	
						Interlayered	and their haloe overprint Fe-carbonate	
DCD072012 142	MD (170C	5500075	502200	(17.24	(17.00	mudstone-	bands, these are overprinted by a narrow,	Vein
BGBS12012_142	MM179C	5502965	502300	617.24	617.39	sandstone-IF	mm-wide Q-calcite vein.	generations.
						Interlayered	Quartz-crb Vein containing no altered	
						mudstone-	fragment and surrounded by a haloe of	
BGBST2012_143	MM179C	5502965	502300	620.3	620.62	sandstone-IF	10 % po. A half meter before IF.	
						Interlayered	IF bands replaced by mostly po and	
DCDST2012 144	MM 170C	5500075	502200	(2)	(01.10	muastone-	monor apy. Calcite veins occur probably	
DODS12012 144	IVIIVIT/9C	5302965	502300	021	021.19	sanustone-IF	paramento me axiai piane or tolus.	1

S1- #	D	Coordi	inates	Interv	al (m)	Lithology	Passon	Reason II
Sample #	Drill Hole #	Northing	Easting	from	to		Keason	Keason II.
						interlayered	O-ank Vein with bleached po-bearing	
BGBST2012 145	MM179C	5502965	502300	631.46	631.67	sandstone-IF	alt. haloe.	
						Interlayered		
						mudstone-	Po-rich band in IF which is cut by py-po-	
BGBST2012_146	MM179C	5502965	502300	632.55	633	sandstone-IF	chl. Veins.	
						Interlayered	Antropite wein with chlorite heles	
BGBST2012 147	MM179C	5502965	502300	643.6	643.8	sandstone-IF	overprinting ankerite bands	
D0D012012_14/	MINIT/JC	5502705	302300	045.0	045.0	sundstone n	Quartz-ankerite veins with chlorite-	
BGBST2012_148	MM179C	5502965	502300	648.9	649.1	mudstone	bitotite selvage, py, apy, po.	
						Interlayered	Boudinaged IF bands Q-veins in neck of	
DCDCT2012 140	10/1700	5502065	502200	((1))	665.16	mudstone-	boudinsand replacement of coarse	
BGBS12012_149	MM1/9C	5502965	502300	664.9	665.16	sandstone-IF	grained apy.	
						Interlayered	IF bands replaced by po with late py-chl.	
						mudstone-	Cut by Q-ank. Francture in the fold	
BGBST2012_150	MM179C	5502965	502300	665.68	665.82	sandstone-IF	hinge in Q-ank. Vein filled with po.	
							Disseminated po replacing IF, itself is	
						Interlayered	replaced by coarse apy. Q veins and py	
BCBST2012 1514	MM179C	5502065	502300	666.07	666 27	sandstone-IF	boudinage prior to folding of IF bands	
BGBST2012_151R BGBST2012_151B	MM179C	5502965	502300	670.2	670.33	Porphyry	F Zone: Vein with alteration haloe	
						Interlayered	F Zone: Strong sericitic alteration haloe	
						mudstone-	with vein of Q-ank-gold. Apy-py in	
BGBST2012_152	MM179C	5502965	502300	677.5	677.9	sandstone	alteration haloe.	
						Interlayered	F Zone: Boudinaged and folded Q vein	
BGBST2012 153	MM179C	5502965	502300	679 38	679 56	sandstone	by only	
B6B512012_155	MINIT/JC	5502705	502500	077.50	077.50	sundstone	F Zone: Semi-massive py-apy bands	
						Semi-massive	around a Q-ankerite -gold vein and	
BGBST2012_154	MM179C	5502965	502300	681.27	681.5	sulphide	sericitic alt. haloe	
						a · ·		
DCDST2012 155	MM170C	5502065	502200	695.05	695 75	Semi-massive	F Zone: Apy-rich banded semi-massive	
B0B312012_133	WIWI / 9C	5502905	302300	085.05	085.25	Interlayered	F Zone: Uniformly altered (sericite) rock	
						mudstone-	that contains sulphides (pyrite) along	
BGBST2012_156	MM179C	5502965	502300	688.29	688.44	sandstone	foliation.	
						Interlayered		
DCD072012 157	MM170C	5502065	502200	(00.55	(00 77	mudstone-	E Zana: Quartz ankarita vaing with gold	
BGBS12012_157	MM179C	5502965	502500	088.33	088.//	sandstone	F Zone. Qualtz-ankerne venis with gold	
BGBST2012 158	MM179C	5502965	502300	689.65	690	Porphyry	F Zone: Silicified porphyry with 5% py	
						Interlayered		
						mudstone-	F Zone: Py and po in late francture in a	
BGBST2012_159	MM179C	5502965	502300	693.44	693.55	sandstone	Q-ank. Vein	
						Interlayered	F Zone: Banded any no overprinted by	
BGBST2012 160	MM179C	5502965	502300	697.8	697.9	sandstone	pv in black mudstone.	
				0,,10		Interlayered	F.5	
						mudstone-	Two strongly def. Q-ank veins with	
BGBST2012_161	MM179C	5502965	502300	704.27	704.57	sandstone	sericitic alt. haloe with py.	
						T	Strongly deformed Q-ankerite vein with	
						mudstone-	haloe. Last observed alteration haloe	
BGBST2012 162	MM179C	5502965	502300	708.3	708.6	sandstone	around Q-ank. Veins.	
						Interlayered	F Zone: Strong sericitic alteration with	
						mudstone-	py-apy associated with gold-bearing Q-	
BGBST2012_163	MM179C	5502965	502300	720	720.38	sandstone-IF	ankerite veins.	
						Interlayered	F Zone: Po hands overprinted by coorse	
BGBST2012 164	MM179C	5502965	502300	724.6	725	sandstone-IF	grained py with chlorite selvage.	
			2.22000	, 2	, 20		Chlorite veins associated with po seems	
							to appear in the neck of the boudins of Q	noname
BGBST2012_165	MM179C	5502965	502300	729.45	729.65		ank veins	mineralization
						Interile 1	Crosscutting relationship between Q-	
						mudstone-	Calcule vein and another mostly Q vein. Minor py-apy bith in veins and in	
BGBST2012 166	MM179C	5502965	502300	732.74	732.94	sandstone	sandstone.	
						Interlayered	1	
						mudstone-	Alteration haloe around Q-ankerite vein	
BGBST2012_167	MM179C	5502965	502300	730.49	730.8	sandstone	with disseminated py	

		Coord	inates	Interv	al (m)			
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
						Interlayered		
						mudstone-		
BGBST2012_168	MM179C	5502965	502300	740.82	741	sandstone	Biotite around Q-ank vein	
						Interlayered		
						mudstone-	Biotite in chloritic selvage around Q-	
BGBST2012_169	MM179C	5502965	502300	763.53	763.7	sandstone	ankerite vein	
						Interlayered	Fortune zone: Average sample with	
						mudstone-	veins of Q-ankerite-calcite with py-po	
BGBST2012_170	MM179C	5502965	502300	789.95	790.21	sandstone	stringers	
						Interlayered		
						mudstone-		
BGBST2012_171	MM179C	5502965	502300	792.12	792.27	sandstone	Po in calcite vein without gold.	
						Interlayered		
						mudstone-	Collected to examine the relationship of	
BGBS12012_172	MM179C	5502965	502300	795.6	795.83	sandstone	the veins.	
						Interlayered		
	104000			T O 4 (D		mudstone-	Control sample for the strongly	
BGBS12012_173	MM179C	5502965	502300	794.62	/94./	sandstone	chloritized-carbonatized zone.	
						Interlayered		
DODOTANIA ISI	104000					mudstone-	Py-po with strongly deformed Q-ankerite	
BGBS12012_174	MM179C	5502965	502300	798.7	798.95	sandstone	vein	
						Interlayered		
	104000					mudstone-	Collected to examine the relationship of	
BGBST2012_175	MM179C	5502965	502300	799.17	799.58	sandstone	the veins.	
BGBS12012_176	MM179C	5502965	502300	803.03	803.2	Sandstone	Sandstone without gold	
							Chlorite-calcite vein cut across quartz-	
							ankerite/feldspar? Vein in sandstone.	
						a 1.	Pyrite-pyrrhotite associated with calcite	
BGBS12012_182	MM179D	5502965	502300	433.6	433.94	Sandstone	veins and chlorite selvage.	
						T . 1 1	Ankerite vein cut across quartz-	
						Interlayered	ankerite/feldspar? It also contains	
DCDCT2012 102	10/1705	5500065	500000	150	156.15	mudstone-	younger calcite-chlorite vein with pyrite	
BGBS12012_183	MM179D	5502965	502300	456	456.15	sandstone	and pyrrhotite.	
BGBS12012_184	MM179D	5502965	502300	463.19	463.32	Maric dike	Maric dike.	
DCDST2012 195	MM170D	5502065	502200	472.06	472.22	C 1-4	Sandstone protont. Moderately	
BGBS12012_185	MM1/9D	5502965	502300	472.00	472.23	Sandstone	Discritized. Disseminated py	
						mudstana	Biotite appears around around both	
DCDST2012 196	MM170D	5502065	502200	5176	517 70	sandstone-	qualizational calculation of the solution of t	
BGB512012_160	WIWIT/9D	5502905	302300	317.0	317.79	sandstone	emonte, pyrite and pyritotite.	<u> </u>
							Iron formation containing groundhale	
							(graan mudstana) with sami massiva	
						Iron formation	(green industone) with semi-massive	
BGBST2012 187	MM179D	5502065	502300	5/13	5/13 21	with greenshale	replacing thin magnetite-bearing layers	
B0B312012_18/	IVIIVI1/9D	3302903	302300	545	343.21	with greenshale.	Highest analized gold value in the	
							interval. Creanish gray conditions	
						Interlayered	midstone with quartz-calcite veins	
						mudstone-	associated with pyrite-pyrthotite and	
BGBST2012 188	MM179D	5502965	502300	549 21	549 47	sandstone	disseminated pyrite pyritotite und	
200012012_100		2202702	202300	5 77.21	577.47	Interlayered	Yellowish alteration baloe around quartz	<u> </u>
						mudstone-	calcite veins with fine grained	
BGBST2012 189	MM179D	5502965	502300	555 41	555 59	sandstone	disseminated sulphide (pvrite)	
				555.11	222.07		Calcitized average sandstone with	†
BGBST2012 190	MM179D	5502965	502300	569.65	569.81	Sandstone	disseminated sulphide.	
				2 37.00	207.01		Greenshale with iron formation with	†
						Iron formation	calcite-pyrite veins within iron	
BGBST2012 191	MM179D	5502965	502300	576	576.2	with greenshale.	formation and disseminated pyrite.	
							Very strong calcitization and	1
							chloritization most probably in	
							sandstone but the original lithology can	
							not be determined, because of the strong	
BGBST2012 192	MM179D	5502965	502300	592.5	592.75	Sandstone	alteration.	
				- / 2.0	2,2.70		This represents the entire interval	†
							Quartz-calcite vein with chloritic	
							selvage and sulphides in it (pyrite-	
							pyrrhotite). Weak disseminated	
							arsenopyrite also appears in the	
BGBST2012 193	MM179D	5502965	502300	603.8	604.17	Sandstone	sandstone.	
	İ					Interlayered		
						mudstone-	Quartz-calcite veins with sulphides and	
BGBST2012 194	MM179D	5502965	502300	605	605.18	sandstone	chlorite-sericite selvage.	

		Coord	inates	Interv	al (m)			
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
						Interlayered	Strong sericitic haloe appears with 10 %	
						mudstone-	disseminated pyrite and minor pyrrhotite	
BGBST2012_195	MM179D	5502965	502300	612.27	612.68	sandstone	at the end of this interval.	
							Semi-massive sulphide replacement in	
						Iron formation	iron formation in green mudstone	
BGBST2012_196	MM179D	5502965	502300	613.61	614.15	with greenshale.	(greenshale).	
						Iron formation	Weak arsenopyrite-pyrite replacement in	
BGBST2012_197	MM179D	5502965	502300	614.57	614.67	with greenshale.	iron formation.	
							Iron formation bands replaced with 5 %	
							arsenopyrite associated with quartz-	
DCDCT2012 100	10/1705	5500065	500000	(25.05	(25.20)	Iron formation	calcite veins in green mudstone	
BGBS12012_198	MM1/9D	5502965	502300	635.05	635.28	with greenshale.	(greensnale).	
BGBS12012_199	MM1/9D	5502965	502300	639.38	639.58	Interlace	Average sandstone.	
						mudatana	(agricitic) alteration halos around quarta	
DCDST2012 200	MM170D	5502065	502200	642	612 55	inudstone-	(selicite) alteration haloe around quartz-	
BGBS12012_200	MINIT/9D	5502965	502300	043	043.33	sandstone	carche-pyrnothe venis.	
							Pyrite and pyrinoitie-bearing quariz-	
						Interlayorad	bearing, probably soricitic alteration	
						mudstone	belog. Quartz ankerita/faldspar? Voins	
DCDST2012 201	MM170D	5502065	502200	640.25	640.67	sandstone	cut across these voins	
565512012_201	IVIIVI1/7D	3302703	502500	047.23	047.07	Interlavered	Quartz-ankerite/feldenar? Voine with	
						mudstone-	strong sericite-ankerite alteration haloe	
BGBST2012 202	MM170D	5502065	502300	654.3	654 57	sandstone	with disseminated pyrite	
D0D512012_202	WIIWIT / JD	5502905	302300	054.5	034.37	sandstone	with disseminated pyrite.	
							Quartz ankarita voins with soriaita	
							ankerite alteration haloe with	
							disseminated pyrite and quartz-ankerite-	
						Interlayered	calcite-nyrrhotite veins with chlorite	
						mudstone-	selvage. Disseminated arsenopyrite	
BGBST2012 203	MM179D	5502965	502300	656	656 48	sandstone	appears between these veins.	
	initiation () ()	0002900	202200	000	000.10		-FF	
							Pyrite-bearing sericite alteration haloe	
						Interlayered	overprinting chlorite around quartz-	
						mudstone-	ankerite/feldspar? Vein that also	
BGBST2012 204	MM179D	5502965	502300	658.61	658.86	sandstone	contains pyrite-chalcopyrite-pyrrhotite.	
							Average alightly ankeritized and	
BGBST2012 205	MM179D	5502965	502300	665.44	665.71	Sandstone	chloritized sandstone.	
						Interlayered		
						mudstone-	Pyrite and pyrrhotite replace iron	
BGBST2012_206	MM179D	5502965	502300	669.24	669.49	sandstone-IF	formation around quartz-ankerite? Vein	
						Interlayered	Green vein cutting through iron	
						mudstone-	formation. Arsenopyrite emplaced in	
BGBST2012_207	MM179D	5502965	502300	674.45	674.58	sandstone-IF	iron formation and in the vein.	
						Interlayered		
						mudstone-	Pyrite veinlets cutting through the iron	
BGBST2012_208	MM179D	5502965	502300	676.1	676.2	sandstone-IF	formation.	
							Quartz-ankerite vein with pyrite-bearing	
							sericite alteration haloe and another	
						Interlayered	quartz-ankerite? Vein with narrow	
						mudstone-	chlorite selvage that contains	
BGBST2012_209	MM179D	5502965	502300	685	685.38	sandstone-IF	arsenopyrite and pyrrhotite.	
							Sericitic alteration haloe in mudstone.	
							Sulphide (pyrite) appears mostly in vein.	
							Quartz-ankerite? Vein cut through	
BGBST2012_210	MM179D	5502965	502300	688.88	689.12	mudstone	ankerite-quartz vein.	
						Interlayered	Boudinaged ankerite? Veins. Quarts is	
						mudstone-	emplaced in extensional veinlets in	
BGBST2012_211	MM179D	5502965	502300	694.72	694.92	sandstone-IF	ankerite veins.	
						Interlayered		
	10/1505		500000	(00.0-	(00 F -	mudstone-	Interlayered mudstone-sandstone with	
BGBST2012_212	MM179D	5502965	502300	699.33	699.54	sandstone	calcitic alteration.	
							Interlayered green mudstone-iron	
						I C ···	formation with calcite alteration,	
DODOTTO 10	10 4555		500055			Iron formation	pyrrnotite replaces iron formation. Veins	
BGBST2012_213	MM179D	5502965	502300	704.4	704.58	with greenshale.	have strong chlorite alteration selvage.	

Sample #	Drill Hole #	Coord Northing	linates Easting	Interv	al (m) to	Lithology	Reason	Reason II.
Sample "		litor thing	Lasting	nom	10			
							Pyrite and trace arsenopyrite appear as	
							dissemination around veins in sandstone	
							or as vein filling in mudstone.	
							Arsenopyrite rarely appears as coarse	
BGBST2012 214	MM179D	5502965	502300	705.48	705.71	Sandstone	chlorite selvage.	
							Abundant pyrrhotite appears as narrow	
BGBST2012_215	MM179D	5502965	502300	718.73	719.02	mudstone	veinlets in green mudstone.	
						Interlayered		To define the
BGBST2012 216	MM179D	5502965	502300	714 42	714 76	sandstone	Quartz-calcite veins cut by calcite vein	veins
200012012_210		0002700	002000	, 2	,,,,,,	Interlayered		
						mudstone-	Weak sericite alteration haloe around	
BGBST2012_217	MM179D	5502965	502300	720.48	720.72	sandstone	quartz-calcite veins.	
DCDGT2012 210	10(1700	5502065	502200	722.10	722.5	S	Average sandstone with calcite	
BGBS12012_218	MM1/9D	5502965	502300	/22.18	122.5	Interlayered	Alteration.	
						mudstone-	biotite veins with strong chlorite	
BGBST2012_219	MM179D	5502965	502300	723.16	723.43	sandstone	selvage.	
							Calcite-chlorite vein overprinting an	
						Interlayered	older quartz-calcite-ankerite? (pinkish)	
BGBST2012 220	MM179D	5502965	502300	724 34	724 72	sandstone	strong chlorite selvage.	
				, <u> </u>	, 21.72		Calcite-sericite-chlorite alteration haloe	
							around quartz-calcite veins. The	
							alteration haloe contains fine-coarse	
							grained pyrite, platy arsenopyrite and	
						Interlayered	trace pyrrhotite and black biotite? Grains	
BGBST2012 221	MM179D	5502965	502300	731.83	732	mudstone-	and arsenopyrite	
B0B512012_221	WINT / JD	5502905	302300	/51.05	152	sandstone		
							Quartz-calcite-chlorite-pyrrhotite veins	
							pyrrhotite-bearing chlorite-biotite	
							selvage. Disseminated pyrite also	
DODOTONIO 202	10 (1705	5502075	502200	726.22	726.54	G 14	appears in sandstone around the veins	
BGBS12012_222	MM179D	5502965	502300	/36.33	/36.54	Interlayorad	and trace in veins. No sericite alteration.	
						mudstone-	Sericite-chlorite alteration haloe with	
BGBST2012 223	MM179D	5502965	502300	750.38	750.66	sandstone	pyrite. No pyrrhotite.	
							Strongly altered dike and maybe	
DODOTONIO COL	10 (1705	5502075	502200	77 0 (7	770.00	D'1 0 C 1' (0	replaced porphyry grains but they seem	
BGBS12012_224	MM179D	5502965	502300	//8.6/	//8.88	Dike? Sediment?	to be emplaced parallel to bedding.	
							Pyrrhotite mostly in chlorite/biotie?	
							alteration haloe and minor in quartz-	
							calcite vein. Pyrite also appears in this	
							alteration haloe. Green mudstone hosts a	
							vein of quartz-calcite-pyrrhotite with	
						T (1 1	chlorite selvage. Green mudstone also	
						mudstope-	contains disseminated pyrite, farther arsenonyrite and nyrrhotite. The sample	
BGBST2012 225	MM179D	5502965	502300	763.12	763.65	sandstone	also contains average sandstone.	
							K zone: Green mudstone with trace iron	1
							formation. The rock is affected by veins	
							of quartz-ankerite, ankerite bands and by	
							strong sericite alteration. 2-3 %	
							disseminated pyrite in veins and in	
						Interlayered	Moderate pyrite replacement in iron	
						mudstone-	formation. Trace arsenopyrite and	
BGBST2012_226	MM179D	5502965	502300	783.7	<u>78</u> 4.35	sandstone-IF	pyrrhotite.	K zone
BGBST2012_227	MM179D	5502965	502300	789.38	789.52	Sediment?	K zone	for vein study
DODOTANIA AAA	10/1707		500000	7 00.07		G 1:	Coarse grained pyrite in ankerite-	V
BGBST2012_228	MM179D	5502965	502300	789.82	790	Sediment?	sericite? Alteration	K zone
BGBST2012 229	MM179D	5502965	502300	790.17	790 51	Sediment?	fine grained sediment?	K zone
	111111/90	5552705	502500	/ / / /	170.31	Iron formation	Branea seament:	
BGBST2012_230	MM179D	5502965	502300	792.76	793.18	with greenshale.	Strong sericite-calcite alteration haloe	
						Iron formation	Average interlayered jasper- and	
BGBST2012_231	MM179D	5502965	502300	797.71	797.95	with greenshale.	magnetite-rich iron formation.	

		Coord	inates	Interv	al (m)	T 11 1	D	р. н
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
							Pinkish quartz-ankerite/feldspar? Vein	
						Iron formation	and light grey bleeching alteration haloe	
BGBST2012_232	MM179D	5502965	502300	797	797.35	with greenshale.	with probably magnetite grains.	
						Iron formation	Durite replacement in iron fermation and	
DCDST2012 222	MM170D	5502065	502200	802.07	802.22	with greenshale	disseminated assenonyrite in greenshale	
B0B512012_255	IVIIVI1/9D	3302903	302300	802.07	802.22	with greenshale.	Average green grey mudstone with iron	
						Iron formation	formation rankaad by purity Ankarita	
BGBST2012 234	MM179D	5502965	502300	803	803 35	with greenshale	hands annear	
D0D512012_254	WIWIT77D	5502705	302300	005	005.55	with greenshare.	Average grey mudstone interlayered	
							with reddish black iron formation Small	
						Iron formation	black, probably magnetite grains appear	
BGBST2012 235	MM179D	5502965	502300	800.59	800.83	with greenshale.	in mudstone.	
							Average sandstone with carbonate	
BGBST2012 236	MM179D	5502965	502300	813	813.24	Sandstone	alteration and quartz-ankerite vein.	
						Iron formation	Iron formation interlayered with strongly	
BGBST2012_237	MM179D	5502965	502300	828.5	828.75	with greenshale.	calcitized green mudstone.	
							Interlayered iron formation-mudstone.	
						Iron formation	Iron formation contains pyrite and	
BGBST2012_238	MM179D	5502965	502300	838	838.11	with greenshale.	calcite.	
							Light green dike consists of 50 % white	
							minerals and 50 % chlorite. It contains 2	
							% veins of quartz-ankerite/feldspar? And	
							quartz-calcite, and all of them have	
							chlorite selvage means the appearance of	
BGBST2012_239	MM179D	5502965	502300	821.19	821.45	Matic dike	the white minerals is less abundant.	
						Interlayered	NT 1 1 1 4 1 1	
DCDST2012 240	MM170D	5502075	502200	842.00	042.22	mudstone-	Nonmineralized interlayered green	
BGBS12012_240	MINIT/9D	5502965	502300	842.09	842.22	Interlayorad	Interlayered green mudstone sandstone	
						mudstone	with one grain assenopyrite in quartz.	
DCDST2012 241	MM170D	5502065	502200	842 64	842 70	sandstone	calcite vein	
D0D512012_241	IVIIVI179D	5502705	302300	045.04	045.79	Sundotone		
							15.20 % white minerals (fsp2) 30 %	
							black and light green chlorite in light	
BGBST2012 242	MM106D	5503397	503577	429.4	429.62	Mafic dike	grev? Matrix	
000012012_212	MINITOOD	5505571	505577	127.1	127.02		Light grey mafic dike. It contains large	
							zonal, absolutely chloritized	
							phenocrysts. Pseudomorph after	
BGBST2012 243	MM106D	5503397	503577	447.95	448.16	Mafic dike	pyroxene?	
							Light grey mafic dike. It contains large,	
							zonal, absolutely chloritized	
BGBST2012_244	MM106D	5503397	503577	448.94	449.15	Mafic dike	phenocrysts.	
							Quartz-ankerite-biotite-pyrite-pyrrhotite	
						~ .	vein is cut by ankerite-biotite?-pyrite	
BGBST2012_245	MM106D	5503397	503577	433.4	443.58	Sandstone	veinlet in fine grained sandstone.	
							Dike containing of 30 % white minerals	
DCDST2012 246	MMIOCD	5502207	502577	461	4(1.2	Mafia dila	and 15-20 % chloritized phenocrysts in	
BGBS12012_240	MINITUOD	5505597	503577	401	401.2	Ivialic dike		
							disseminated purity are out by quartz	
						Interlayered	ankerite?-chlorite veins Black and green	
						mudstone-	chlorite. Interlayered mudstone-	
BGBST2012 247	MM106D	5503397	503577	466 3	466 51	sandstone	sandstone	
							Chlorite-rich sandstone with ankerite	
BGBST2012 248	MM106D	5503397	503577	491.48	491.65	Sandstone	bands and veinlets. Average sandstone.	
							Strongly altered dike contact with	
BGBST2012_249	MM106D	550 <u>33</u> 97	503577	493.18	493.33	Dike? Sediment?	ankeritic sediment.	
						Interlayered	Quartz-ankerite vein cuts quartz-ankerite	
						mudstone-	veins that has displacement along it.	
BGBST2012_250	MM106D	5503397	503577	500.64	500.74	sandstone	Weak ankerite haloe.	
							Average, moderately ankeritized	
							interlayered mudstone-sandstone. It	
						Interlayered	shows a folded foliation and a new	
						mudstone-	foliation formed parallel to the axial	
BGBST2012_251	MM106D	5503397	503577	511.3	511.47	sandstone	plane.	
BGBST2012_252	MM106D	5503397	503577	513.6	513.8	Matic dike	Dike.	ļ

		Coord	linates	Interv	al (m)			
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Keason	Reason II.
							Strong green-yellow alteration haloe of	
							presumably chlorite and minor fuchsite	
							appears at the contact of a dike	
BGBST2012_253	MM106D	5503397	503577	553.6	553.78	Sediment?	emplaced in sediment.	
						Interlayered	Disseminated pyrite associated with	
DODGT2012 254		5502207	602677	552.22	552 40	mudstone-	strong ankerite alteration haloe around a	
BGBS12012_254	MM106D	5503397	503577	552.23	552.46	sandstone	quartz-ankerite vein in sediment.	
						Interlayorad	Quartz-ankerite vein cuts across quartz-	
						mudstone-	nyrite vein cut through everything else	
BGBST2012 255	MM106D	5503397	503577	566.06	566 53	sandstone	and have bleeching haloe around them	
D0D512012_233	WIWITOOD	5505577	505577	500.00	500.55	Interlayered	and have bleeching haloe around them.	
						mudstone-	Average mudstone and sandstone with	
BGBST2012 256	MM106D	5503397	503577	579.2	579.59	sandstone	moderate ankerite alteration and bands.	
				• • • • •				
							Dike consists of 30-40 % yellow and	
							pink phenocrysts, 30-40 % chlorite and	
BGBST2012 257	MM106D	5503397	503577	583.96	584.17	Mafic dike	20-30 % fine grained phenocrysts.	
						Interlayered	Iron formation quartz-ankerite-chlorite-	
						mudstone-	pyrite vein with moderate ankerite	
BGBST2012_258	MM106D	5503397	503577	596.63	597	sandstone-IF	alteration haloe.	
							Average iron formation with presumably	r
							ankerite-pyrite veinlets emplaced	
BGBST2012_259	MM106D	550 <u>33</u> 97	503577	610.4	<u>61</u> 0.53	Iron formation	parallel to the bedding.	
BGBST2012_260	MM106D	5503397	503577	617.01	617.26	Iron formation	Iron formation with sedimentary dike.	
							Dark green mafic dike with pinkish	
BGBST2012_261	MM106D	5503397	503577	620.41	620.68	Mafic dike	green vein.	
							Green-brownish grey mafic dike. Same	
							as earlier. It contains pinkish (ankerite?)	
							patches and veins that can be cut by	
							quartz-ankerite? Veins associated with	
BGBST2012_262	MM106D	5503397	503577	628.41	628.69	Mafic dike	chlorite selvage.	
							Same dike with other quartz-ankerite	
							veins associated with bleaching and	
BGBST2012_263	MM106D	5503397	503577	633.36	633.54	Mafic dike	chlorite alteration haloe.	
							Average biotite?/two types of chlorite?-	
BGBST2012_264	MM106D	5503397	503577	655.48	655.63	Mafic dike	bearing mafic dike.	
							Quartz-ankerite veins associated with	
	104060						strong chlorite-sericite?-fuchsite	
BGBS12012_265	MM106D	5503397	503577	655.71	656.2	Matic dike	alteration haloe.	
DODGT2012 2//		5502207	602677	646.11	(1(22	M.C. 131-	Quartz-ankerite-chlorite-pyrite veins in	
BGBS12012_266	MM106D	5503397	503577	646.11	646.33	Maric dike	Access of a dilac suith suit	
DCDST2012 267	MM106D	5502207	502577	627.6	677 75	Mafia dika	histita/brownish ablarita	
BGBS12012_20/	MM106D	5505597	503577	027.0	627.75		Strong groop (goriaita) write baaring	
							alteration halos around quartz-ankerite?	
DCDST2012 268	MM106D	5502207	502577	657 52	657.0	Pornhyry	Veins in porphyry	
BGB312012_208	WIWITOOD	5505597	303377	037.32	037.9	Torphyry	Strong sericite alteration haloe around	
							quartz-ankerite? Veins with gradual	
BGBST2012 269	MM106D	5503397	503577	658.8	659 27	Porphyry	change.	
				000.0	007.21	· x · J · J	Greenish alteration haloe around quartz-	1
BGBST2012 270	MM106D	5503397	503577	664 31	664 74	Mafic dike	ankerite veins in mafic dike	
								1
							Two generations of quartz-ankerite veins	3
BGBST2012 271	MM106D	5503397	503577	666.4	666.85	Porphyry	with strong alteration haloe in porphyry.	
BGBST2012 272	MM106D	5503397	503577	669.6	670.21	Mafic dike	Strong alteration haloe in mafic dike.	1
		1	1					1
							Strong green alteration haloe in porphyry	/
							with pyrite around quartz-ankerite veins.	
							According to Premier's log, a speck of	
BGBST2012_273	MM106D	5503397	503577	675	675.42	Porphyry	gold was observed in this interval.	
BGBST2012_274	MM106D	5503397	503577	678.19	678.36	Mafic dike	Average, nonmineralized mafic dike.	
BGBST2012_275	MM106D	5503397	503577	678.53	678.77	Porphyry	Average, nonmineralized porphyry.	
	T	ľ	Τ		-	Interlayered	Average iron formation with different?	
						mudstone-	Types of pyrite and a late quartz-	
BGBST2012_276	MM106D	550 <u>33</u> 97	503577	702.62	702.83	sandstone-IF	ankerite? Vein.	
						Interlayered		
						mudstone-	Late, pyrite-bearing vein in an average	
BGBST2012_277	MM106D	5503397	503577	704.1	704.24	sandstone-IF	mudstone-sandstone.	
						Interlayered		
						mudstone-	Average sediment with ankerite	
BGBST2012 278	MM106D	5503397	503577	704.3	704.44	sandstone-IF	alteration and vein.	1 _

a . "		Coord	linates	Interva	al (m)	T :411	Deserv	D
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Keason	Keason II.
BGBST2012 270	MM106D	5503307	503577	709.6	710.02	Mafic dike	Abundant quartz-ankerite veining at the upper contact of the mafic dike	
B0B312012_279	WIWITOOD	5505597	303377	709.0	/10.02		Strong vellow alteration in mafic dike at	
BGBST2012 280	MM106D	5503397	503577	713.75	713.92	Mafic dike	the contact with iron formation.	
						Interlayered	Bleaching and ankerite alteration in	
						mudstone-	mudstone-sandstone with trace iron	
BGBST2012_281	MM106D	5503397	503577	714.7	714.86	sandstone-IF	formation. Average below the dike.	
						mudstone-	replacement of iron formation and	
BGBST2012_282	MM106D	5503397	503577	717.19	717.43	sandstone-IF	subordinately veinfilling.	
						Interlayered		
				7 20 / 5		mudstone-	Nonmineralized strongly altered	
BGBS12012_283	MM106D	5503397	503577	730.45	730.65	sandstone	Mudstone-sandstone.	
						Interlayered	with alteration haloe that contains	
						mudstone-	disseminated pyrite and trace	
BGBST2012_284	MM106D	5503397	503577	731.82	732.24	sandstone	arsenopyrite.	
							Quartz-ankerite veins associated with	
							chlorite-ankerite alteration in iron formation and mudstone-sandstone. It	
						Interlayered	contains minor iron formation replaced	
						mudstone-	by pyrite and arsenopyrite. No	
BGBST2012_285	MM106D	5503397	503577	733.67	734.24	sandstone-IF	penetrating sericite alteration.	
						Interlement ¹	Folded quartz-ankerite vein associated	
						mudstone-	haloe that contains disseminated	
BGBST2012 286	MM106D	5503397	503577	737.64	737.88	sandstone	sulphide.	
						Interlayered	Moderate-strong alteration in mudstone-	
						mudstone-	sandstone. Preserved, older alteration	
BGBST2012_287	MM106D	5503397	503577	739.08	739.48	sandstone	and alteration haloe.	
						mudstone-	Iron formation replaced by pyrite along a	
BGBST2012 288	MM106D	5503397	503577	722.67	722.83	sandstone-IF	quartz-ankerite vein.	
						Interlayered	Broken, preasumably altered iron	
						mudstone-	formation with carbonate?-sulphide	
BGBST2012_289	MM106D	5503397	503577	748.1	748.39	sandstone-IF?	(arsenopyrite+?) as cementation.	
						mudstone-		
BGBST2012 290	MM106D	5503397	503577	749.1	749.9	sandstone-IF?	Breccia.	
BGBST2012_291	MM106D	5503397	503577	750.42	750.68	Diabase?	Black, fine grained dike.	
						Interlayered	Quartz-ankerite vein with pyrite- and	
BGBST2012 203	MM106D	5503307	503577	766.01	767 41	mudstone-	alteration haloe	
D0D012012_2)5	WIWITOOD	5505571	505577	700.71	707.41	sundstone		
							Pyrite is getting semi-massive in	
						Interlayered	association with quartz-ankerite veins,	
DCDGT2012 204		5502207	502577	7(0.40	7(0	mudstone-	but no gold. Pyrite also appears in the	
BGBS12012_294	MM106D	5505597	503577	/08.48	/09	sandstone	neck of boudins of quartz-ankerne venis.	·
							Average iron formation with bleaching.	
						Iron formation	Arsenopyrite in green mudstone and iron	
BGBST2012_295	MM106D	5503397	503577	773.75	773.87	with greenshale.	formation. Ankerite alteration.	
						Interlayered	Fractures filled with somi massive series	
BGBST2012 296	MM106D	5503397	503577	774 53	774 7	sandstone-IF	associated with quartz-ankerite vein	
<u>DGD012012_2/0</u>	MINITOOD	5505571	505511	771.00	,,,	Iron formation	Average sediment with quartz-ankerite	
BGBST2012_297	MM106D	5503397	503577	778.76	779.2	with greenshale.	veins and a speck of gold.	
				T				
							Quartz-ankerite'-chlorite vein with semi-	-
						Iron formation	haloe. Disseminated pyrrhotite appears	
BGBST2012_298	MM106D	5503397	503577	770.9	771.2	with greenshale.	in the sediment farther from veins.	
							Massive sulphide replacement (py>po)	
DODOTOOLO COO	10/10/2	5500005	502577	201.02	7 01 07	Semi-massive	associated quartz-ankerite veins and very	
BGBS12012_299	MM106D	5503397	503577	/81.02	/81.87	suipnide Semi-massivo	strong bleaching.	
BGBST2012 300	MM106D	5503397	503577	785.33	786	sulphide	without gold.	
				, 00.00	,00			·
							Chlorite-sericite alteration haloe around	
DODGTOOLO COL	10/10/2	5500005	502577		7 00 -	Iron formation	quartz-ankerite veins with pyrite,	
BGBS12012_301	MM106D	5503397	503577	788	788.3	with greenshale.	arsenopyrite and trace pyrrhotite.	
BGBST2012 302	MM106D	5503397	503577	784.96	785.16	Iron formation	Average nonmineralized iron formation	
					,			52

a . "		Coord	inates	Interv	al (m)	T :4h -1	Deserve	D
Sample #	Drill Hole #	Northing	Easting	from	to	Litnology	Reason	Reason II.
						interlayered mudstone-	Average mudstone-sandstone between	
BGBST2012_303	MM106D	5503397	503577	789.05	789.41	sandstone	mineralized zones.	
							Semi-massive pyrite-pyrrhotite-	
						Semi-massive	arsenopyrite associated with quartz-	
BGBST2012_304	MM106D	5503397	503577	797.2	797.76	sulphide	haloe.	
						Semi-massive	Semi-massive pyrite≈pyrrhotite>	
BGBST2012_305	MM106D	5503397	503577	800.8	801	sulphide Semi-massive	arsenopyrite.	
BGBST2012_306	MM106D	5503397	503577	805.6	805.81	sulphide	Semi-massive pyrite-arsenopyrite.	
							Pyrite-pyrrhotite > arsenopyrite	
							associated with with quartz-ankerite	
						Semi-massive	overgrown by pyrite and arsenopyrite. Is	
BGBST2012_307	MM106D	5503397	503577	807	807.3	sulphide	apy overgrown by pyrite?	
						Semi-massive	Pyrite and arsenopyrite overgrows	
BGBST2012 308	MM106D	5503397	503577	813.2	813.32	sulphide	ankerite-chlorite vein	
							Folded semi-massive	
							pyrite>arsenopyrite>pyrrhotite. Pyrite	
							associated with quartz-ankerite-chlorite	
						Semi-massive	vein that have chlorite-sericite alteration	
BGBST2012_309	MM106D	5503397	503577	815.31	815.49	sulphide	haloe.	
							This represents the entire semi-massive	
						Semi-massive	mineralization consists of fine-coarse	
BGBST2012_310	MM106D	5503397	503577	818.95	819.58	sulphide	grained pyrite and arsenopyrite.	
DCDST2012 211	MM104D	5502207	502577	811	012 10	Semi-massive	Semi-massive pyrite, pyrrhotite and	
B0B312012_311	WIWITOOD	5505597	505577	022	622.10	sulpinde		Relationship
						Iron formation		between
DCDGT2012 212	N0.(10/D	5502207	502577	826.24	026.5	and semi-massive	Brecciated iron formation and quartz-	sulphides and
BGBS12012_312	MM106D	5503397	503577	826.24	826.5	suipnide	ankerite veins. Average jasper- and magnetite-rich iron	brecciation.
						Iron formation	formation interlayered with bleached	
BGBST2012_313	MM106D	5503397	503577	827.2	827.38	with greenshale.	sediment. Pyrite stringers.	
							Average interlayered mudstone-fine	
							veins have disseminated sulphide-	
						Iron formation	bearing bleaching and sericite alteration	
BGBST2012_314	MM106D	5503397	503577	834.98	835.34	with greenshale.	haloe.	
						Semi-massive	quartz-ankerite veins with moderate	
BGBST2012_315	MM106D	5503397	503577	840.31	840.51	sulphide	alteration haloe.	
							Quartz-ankerite veins can have	
						Iron formation	that also contains disseminated pyrite	
BGBST2012_316	MM106D	5503397	503577	840.8	841.5	with greenshale.	and pyrite stringers.	
						T C C	Quartz-ankerite veins with	
BGBST2012 317	MM106D	5503397	503577	848.17	848.4	with greenshale.	selvage.	
				2.0.17	0.0.1		Quartz-ankerite vein with moderate	
						Interlayered	bleaching and chlorite alteration haloe.	
BGBST2012 318	MM106D	5503397	503577	897 38	897 55	mudstone- sandstone-IF	Pyrite and pyrrhotite appear in vein in mudstone.	
202012012_210	IVIIVI I UUD	5505571	505511	071.30	071.33	Interlayered		
						mudstone-	Average ankerite alteration in mudstone-	
BGBST2012_319	MM106D	5503397	503577	899.73	900	sandstone	sandstone.	
							alteration haloe in sandstone with	
BGBST2012_320	MM106D	5503397	503577	902.28	902.75	Sandstone	disseminated pyrite and pyrrhotite.	
						Interlayered		
BGBST2012 321	MM106D	5503397	503577	940.05	940 38	mudstone-	Average green mudstone-sandstone	
BGBST2012_322	MM106D	5503397	503577	946.3	946.51	Iron formation	Average iron formation.	
	1							
BGBST2012_323	MM106D	5503397	503577	969	969.19	Iron formation	Possibly refolded fold in iron formation	
BGBS12012_324 BGBST2012_325	MM106D MM106D	5503397	503577	973.71	973.86	Iron formation	Refolded!! Jasper-rich iron formation	
		2000071	202011	,,,,,1	215.00		Average, tightly folded jasper-rich iron	
BGBST2012_326	MM106D	5503397	503577	974.6	<u>9</u> 74.75	Iron formation	formation	

Coordinates Interval (m)								
Sample #	Drill Hole #	Northing	Easting	from	to	Lithology	Reason	Reason II.
							Transposed quartz-biotite-hematite vein	
BGBST2012 327	MM106D	5503397	503577	975.2	975.33	Iron formation	in jasper-rich iron formation.	
						Interlayered	Quartz-carbonate+hematite? Vein with	
						mudstone-	bleaching-chlorite-sericite alteration	
BGBST2012_328	MM106D	5503397	503577	984.73	984.93	sandstone-IF	haloe	
							Quartz-hematite-carbonate vein and	
							small sedimentary dike in iron	
BGBST2012_329	MM106D	5503397	503577	985.78	985.9	Iron formation	formation.	
								Semi-massive
								pyrite and pyrite
						Interlayered		stringers in iron
						mudstone-		formation and
BGBST2012_330	MM106D	5503397	503577	990	990.46	sandstone-IF	Bleached sandstone	green mudstone
						Iron formation		
						with greenshale		
						and semi massive	Semi-massive pyrite in green mudstone	
BGBST2012_331	MM106D	5503397	503577	992.9	993.16	pyrite	and iron formation	
						Interlayered	Semi-massive pyrite and arsenopyrite,	
						mudstone-	overgrowing texture! Py texture with	
BGBST2012_332	MM106D	5503397	503577	993.61	994.21	sandstone-IF	transposed, boudinaged vein.	
							Average interlayered iron formation-	
						Iron formation	green mudstone with disseminated	
BGBST2012_333	MM106D	5503397	503577	995.09	995.35	with greenshale.	pyrite.	
								Overgrowing
								relationship
						Interlayered	Semi-massive fine-coarse grained	between pyrite
						mudstone-	arsenopyrite-pyrite associated with	and
BGBST2012_334	MM106D	5503397	503577	996.61	996.81	sandstone-IF	quartz vein.	arsenopyrite.
							Average calcifized sandstone with quartz	
D CD CTANIA AAA	104065			1000 01		G 1.	calcite-biotite-pyrite-pyrihotite with	
BGBS12012_335	MM106D	5503397	503577	1002.86	1003.15	Sandstone	weak chlorite selvage.	
						Interlayered	Quartz-carbonate-biotite vein associated	
DODGTO010 00(5502207	502577	1010.05	1010 5	mudstone-	with weak chlorite selvage with	
BGBS12012_336	MM106D	5503397	503577	1012.35	1012.5	sandstone	disseminated pyrite and pyrmotite.	
						Interlayered	Quartz-calcite vein with pyrrhotite that	
DCD072012 227	10(10(D	5502207	502577	1026.6	1026.04	mudstone-	is overgrown by pyrite in green	
BGBS12012_337	MM106D	5503397	503577	1026.6	1026.84	sandstone	Augustone-sandstone.	
BGBS12012_338	MM106D	5503397	503577	1036.41	1036.56	mudstone	Average calculzed mudstone.	
DCDST2012 220	MM106D	5502207	502577	1052 52	1052 77	Sandstona	Average enterrite alteration in conditions	
000512012_339	IVIIVITUOD	550559/	503577	1052.55	1052.77	Sanustone	Average ankerite calcite biotite purite	
DCDST2012 240	MM106D	5502207	502577	1060.24	1060 42	Sandstone	pyrthotite in ankeritic canditors	
DCDS12012_340	MM106D	5502207	502577	1070.10	1000.43	mudetone	Average ankeritized mudstone	
DOD312012_341	INTN 106D	3303391	303377	10/0.19	10/0.42	muustone	Average ankentized industone.	I