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                                               An outline of phase equilibrium 
                                                                 Edgar Froese 
                                            Geological Survey of Canada 
                                                 edgarfroese@rogers.com 

Abstract 
              A collection of systems of different composition defines a composition space which can be 
described by components defined as the minimum number of combinations of elements in fixed 
proportion required to express the composition of all phases in the considered systems.  At stable 
equilibrium, and at constant pressure and temperature, each system is characterized by a minimum Gibbs 
energy G .  In the space defined by the components n, there exists a minimum  surface. If the 
compositional variation from system to system is continuous, the change of G  along the minimum  
surface can be described in differential form by  
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where refers to components other .  Designating the partial molar Gibbs energy of a component as ˆin in

G , and integrating the expression gives  
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            where G is the molar Gibbs energy and X is the mole fraction of a component.  A projection of the 
minimum molar G surface onto the composition base, in terms of X, results in a phase diagram. 

 
Introduction 
   The first law of thermodynamics for a closed system (Denbigh, 1981), exchanging only pressure- 
volume work with  the surroundings, is 
                            (1)  d dq PdU
where U  is the total internal energy, q is the heat exchanged with the surroundings, P is the pressure,  
and  is the total volume. V
    The second law of thermodynamics implies, for changes in a closed system, the following 
relationship: 
                             (2)  'dq Td dqS
where T is the absolute temperature,  is the total entropy, and q’ is the uncompensated heat,  S
which is zero for reversible changes and positive for irreversible changes (Prigogine and Defay, 1954). 
Substituting equation (2) into equation (1) gives 

         (3) 'd Pd Td dq   U V S
and, at constant pressure and temperature,   
                   ( ) 'd P T dqU V S              (4) 
Defining the expression in brackets as , the total Gibbs energy, leads to G
                                                  (5)   'd dG q

              Reaction equilibrium is concerned with the evaluation of dq’ as a measure of irreversibility of a 
chemical reaction in a closed system whose composition is given by one side of the reaction equation; a 
summary is given by Froese (2006).  Chemical reactions are written in terms of species; these are 
stoichiometric combinations of elements having a definite aggregate state or crystal structure.  In order to 
evaluate dq’ in terms of mole numbers of species, an additional postulate is introduced (Denbigh, 1981) 



by assuming that the mole numbers of species can be treated as state variables and d  can be expressed 
by 
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where is the number of moles of species i and is the number of moles of all species other than i. in ˆin

A reaction equation relates the change of mole number of species  in such a way that  in

        i idn d                                 (7) 

where  i  is the stoichiometric coefficient and  , as defined by equation (7), is the extent of reaction  

(Prigogine and Defay, 1954).  Designating the partial derivative as the partial molar Gibbs energy of a 

species as G  and substituting (7) into (6) leads to 
        'i id G d dG  q                 (8) 

Division by d  gives 
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A reaction will tend to decrease G  until  reaches a minimum value at stable equilibrium. G
               In contrast to reaction equilibrium, phase equilibrium is concerned with various closed systems 
of different composition, each at stable equilibrium.  The composition of the various systems can be 
represented in composition space which can be defined in terms of components; these are the minimum 
number of element combinations in a fixed ratio required to express the composition of all phases in all 
considered systems.  Although each system has reached minimum G , in a comparison of different 
systems, there is a change in .  In order to express such variation in  from system to system in 
differential form, the closed systems in composition space must be regarded as forming a continuum.  
The systems of different composition define a minimum G  surface in composition space, which is 
expressed in terms of components; The minimum  surface is a function of the components and, 
therefore, the variation of G  from system to system along the minimum  surface is given by 

G G
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where is the number of moles of component i and is the number of moles of all components other 

than i.  This is essentially equation 92 in Gibbs (1876).  It looks similar to equation (6) but, in this case, 
there is no inequality and dG is not equal to -dq’.  And, very importantly, the n’s refer to components 
rather than species.  This distinction, in many cases, has to be inferred from the context but Anderson 
(2005) has made it explicitly.  The partial derivative in equation (10) is the partial molar Gibbs energy 

in in̂

G  
of a component.  Thus 
    i id G dG n              (11) 

This equation can be integrated if, during integration, the iG ’s are kept constant by keeping the ratios 

between the ’s constant (Denbigh, 1981), resulting in in

    i iG nG                                  (12) 

Division by   gives 
i
n

    i iG G X                            (13) 

where G is the molar Gibbs energy of a system in composition space and X  is the mole fraction of a 
component. 

 4



               These concepts are illustrated in Fig. 1a, where the molar G of forsterite and enstatite, taken 
from Berman (1988), are plotted against the composition MgO – SiO2.  Also shown  is G of a mixture of 
0.5 moles of periclase (MgO) and 0.5 moles of quartz (SiO2).  Reaction equilibrium would be concerned 
with changes in total  of a system of composition 0.5 MgOG SiO2 represented by the reaction 
           0.5 MgO (periclase) + 0.5 SiO2 (quartz) = 0.5 MgSiO3 (enstatite)   (14)      
According to equation (9), the system will tend to vary  until a minimum  is reached, which will be 
when periclase and quartz have been converted to enstatite.  The system has been chosen to be of such 
composition that the total Gibbs energy  is equal to the molar Gibbs energy G, so that it can be shown 
in Fig. 1. 

G

G

           By way of contrast, phase equilibrium considers the G changes along the straight line 
connecting forsterite and enstatite.  The line represents a continuum of closed systems, each at minimum 
G according to equation (13); the value of G of any system along this line is given by 
            

2MgO MgO SiO SiOG G X G X
2

    (15) 

and the values of MgOG  and 
2SiOG  are given by the intercepts at the ends of the composition scale. 

If this line is projected onto the composition base, a phase diagram is obtained.   
     

Composition space 
   The composition space in which one wishes to examine a collection of closed systems depends 

on the composition of phases to be considered.  The minimum number of compositional variables 
required to express the composition of all species in all phases in all systems is usually obvious if the 
species consist of few elements.  In dealing with more complex species, it is better to follow a procedure 
suggested by Smith and Missen (1982) and used e.g. by Gordon (1991) involving the construction of a 
formula matrix.  The columns consist of the composition of species and the rows are formed by elements.  
An example is given in Table 1. 
 
 Table 1.  An example of a formula matrix. 
 
           quartz  sillimanite K feldspar  steam        almandine       pyrope                   annite                phlogopite         Fe cordierite          cordierite 
   
               SiO2                 KAlSi3O8                      Fe3Al2Si3O12                           KFe3Si3AlO10(OH)2                                            Fe2Al4Si5O18  

                              Al2SiO5                     H2O                              Mg3Al2Si3O12                                          KMg3Si3AlO10(OH)2                                     Mg 2Al4Si5O18 

   

Si        1        1         3        0              3            3             3                  3                  5                5                       
Al       0        2         1        0              2            2             1                  1                   4                4 
Fe       0        0         0        0              3            0             3                 0                    2                0 
Mg      0        0         0        0             0             3            0                  3                    0                2 
K        0         0        1        0              0             0            1                  1                   0                0 
H        0         0        0        2              0             0            2                  2                   0                 0 
O        2         5        8        1            12          12           12                 12                  18             18 
 

             The composition space required to represent these species is given by the space spanned by the 
columns.  This space is adequately specified by giving a minimum number of vectors (basis vectors) that 
span this space.  This number is given by the rank; in this example, it is 6.  Any six vectors could be 
chosen, i.e. any six combination of elements with a fixed ratio; these are the components.  They have no 
attributes of aggregate state or crystal structure; they convey only an information of composition.  On the 
minimum  surface of a continuum of systems in a multi-component composition space, components 
and combinations of components have defined values of G  and thus any mass balance is also a  
energy balance. 

G
G
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Systems in multi-component space 
  Graphical representation in the form of phase diagrams presents difficulties if the collection of 

closed systems to be considered requires a multi-component space.  Phase diagrams are limited to three, 
or, at the most, four components.  Some relief from this restriction is provided by Korzhinskii’s (1959) 
suggestion that iG , the partial molar Gibbs energy of a component, rather than the mole number  of a 

component, can be used as an independent variable.  Thus, it is convenient to recognize two groups of 
components.  In the first group (j-components), the n’s are chosen as independent variables and, in the 
second group (k-components), the 

in

iG ’s.  This designation, taken from Thompson (1970), catches the 

essence of his distinction but he, in addition, discussed geological reasons for making such choice.  Thus 
equation (12) can be written as two sums: 
                 j j kG n G nG k                      (16) 

or       
                   ( )k k j jG n G nG                         (17) 

The left side of equation (17) is a function derived by Korzhinskii (1959) and designated as .  

Thompson (1970) used the letter , which is better established in the geological literature and is used 
here.  Since G  is at a minimum, if all 

0G
L

'kG s  are kept constant, L  also has a minimum value and is equal 

to  
             j jG nL                                                  (18) 

Division by jn gives   
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                 j jL G  X                                                   (19) 

where L is the molar value of the L function and X is the mole fraction of a component.   
           Considering the composition space MgO –SiO2, if  and MgOn

2SiOG  are chosen as independent 

variables, MgO is a j-component and SiO2 is a k-component (Fig. 1b).  If a line is drawn through the 
molar Gibbs energy G of enstatite and the chosen value of 

2SiOG , the molar Gibbs energy of enstatite can 

be expressed as 
            

3 2MgSiO MgO SiO0.5 (0.5) (0.5)G G G    (20) 

and the intercept on the MgO axis in a system containing enstatite at the imposed value of 
2SiOG  is given 

by  
               

3MgO MgSiO SiOG G G
2

                           (21) 

The star here is used to indicate that MgO is the only j-component in the composition space and, 
therefore, 

MgOG  is equal to .  A projection of L 
MgOG  onto the composition axis MgO – SiO2 results in a 

one-dimensional  phase diagram (Fig. 1b).  If a line is drawn from 
2SiOG through forsterite, the intercept 

on the MgO axis gives 
MgOG  in a system containing forsterite at the imposed value of 

2SiOG .  This 
MgOG  

value is more positive than in the case of enstatite and, therefore, forsterite does not appear on the phase 
diagram. 
                  The outlined approach is, of course, particularly useful for systems in a multi-component 
composition space.  In the example given in Table 1, the components could be grouped as follows: 
j-components:  FeO, MgO 
k-components: SiO2, Al2SiO5, KAlSi3O8, H2O  

Values of molar Gibbs energies of species, taken from Berman’s database June92.GSC, are given in 
Table 2.  They imply a particular choice of energy datum, as given by Berman (1988). 
 



 
                         

 
                                                                        Table 2.  Thermodynamic data at 700oC and 4 kb 

 
 

Species         Formula                           G                           
FeOG                   


FeOG     

                 

MgOG                 


MgOG                                

                                                            J mol-1
                                     J mol-1

              J mol-1
                   J mol-1

               J mol-1
     

                                                                                                                 + 359 156                            + 683 155      
                                                                                                                            
                                                                                
quartz           SiO2                              -968 891                   
sillimanite    Al2SiO5                     -2 733 074 
K feldspar    KAlSi3O8                  -4 257 530 
steam            H2O                             -378 112 
 
almandine    Fe3Al2Si3O12              -5 748 323                     - 359 156              0 
pyrope         Mg3Al2Si3O12             -6 690 443                                                                   -673 196           9 954 
                                                                                   
annite            KFe3Si3AlO10(OH)2   -5 705 508                    - 356 622         2 534 
phlogopite    KMg3Si3AlO10(OH)2  -6 681 090                                                                    -681 816          1 334 
 
Fe cordierite Fe2Al4Si5O18              -9 082 456                    -354 818           4 338                                        
cordierite      Mg2Al4Si5O18             -9 739 121                                                                    -683 150                 0 

                                                                                                                      

For species listed in Table 2, the value of either 
FeOG  or 

MgOG  can be obtained by subtracting appropriate 

amounts of the k-components, following the pattern of equation (21) but involving more than one k-
component.  This is done in Table 3, using the following G  values of the k-components: 
           

2SiOG     =   G of quartz 

          
2 5Al SiOG  =  G of sillimanite 

          
3 8KAlSi OG =  G of K feldspar 

          
2H OG      =  G of steam 

 
 
         Table 3.  

FeOG  and 
MgOG  values of species at specified  G ’s of k-components 

 

almandine        Fe3Al2Si3O12                 
3 2 3 12 2 5 2

* 21 1
FeO Fe Al Si O Al SiO SiO3 3 3- -G G G G  

pyrope              Mg3Al2Si3O12                    
   

3 2 3 12 2 5 2

21 1
MgO Mg Al Si O Al SiO SiO3 3G G G G3   

 
annite             KFe3Si3AlO10(OH)2       

  
3 3 10 2 3 8 2

1 1
FeO KFe Si AlO (OH) KAlSi O H O3 3G G G G 1

3   

phlogopite      KMg3Si3AlO10(OH)2     
  

3 3 10 2 3 8 2

1 1
MgO KMg Si AlO (OH) KAlSi O H O3 3G G G G 1

3   

 
Fe cordierite   Fe2Al4Si5O18           

   
2 4 5 18 2 5 2

31
FeO Fe Al Si O Al SiO SiO2 2G G G G  

cordierite        Mg2Al4Si5O18               
2 4 5 18 2 5 2

31
MgO Mg Al Si O Al SiO SiO2 2G G G G   
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              The values of 
FeOG  and 

MgOG  of  species listed in Table 2 can be plotted on a diagram of 

 j jG X  against the composition axis FeO - MgO (Fig. 2). The large difference between the 
FeOG  values 

and the 
MgOG  values of Fe and Mg species causes difficulties in plotting.  Since 

FeOG  and 
MgOG  bear no 

relation to each other, the origin of the energy axes can be shifted arbitrarily.  To achieve a more readable 
plot, 

FeOG of Fe3Al2Si3O12  and 
MgOG  of Mg2Al4Si5O18 have been set to 0.  If almandine and pyrope were 

the only species considered and did not form a solid solution, j jG X  of a system including both would 

be given by 
              FeO FeO MgO MgOj jG X G X G X                                                        (22) 

and, assuming an ideal solution of components FeO and MgO, 
                  FeO FeO FeO MgO MgO MgO( ln ) ( ln )j jG X G RT X X G RT X X     (23)                           

For instance, in a system of composition of XMgO  = 0.3,  j jG X  = - 1956 J mol-1.  The values of 

 j jG X  can be shown as a curve (Fig. 2).  Similar curves can be calculated for biotite and cordierite.  If  

garnet, biotite, and cordierite are considered in the same composition space, the minimum  j jG X  line 

is given by curved lines of the solid solutions connected by straight-line segments formed by common 
tangents.  A phase diagram is obtained by projecting the minimum  j jG X  line onto the composition 

axis (Fig. 2).  The phase diagram calculated with the program Theriak/Domino (de Capitani and 
Petrakakis, 2010) gives the following compositions in terms of XMgO: garnet = 0.124, biotite = 0.359  and 
0.526, cordierite = 0.621. 
           A tangent at any point of the minimum  j jG X  line has intercepts FeOG  and MgOG  on the FeO 

and MgO axes.  The variation of FeOG  with composition is shown in Figure 3.  A different shift of the 

origin of the energy axes would not change the phase diagram but the intercepts FeOG  and MgOG  on the 

FeO and MgO axes would have different values.   
 
Ternary phase diagrams  
            Because biotite and orthopyroxene contain an appreciable amount of aluminum, a more realistic 
grouping of components is as follows:  
           j-components:  Al2O3, FeO, MgO 
                 k-components: SiO2, KAlSi3O8, H2O 

  The minimum  j jG X  values of systems with varying amounts of j-components can be 

calculated and plotted against a triangular base of Al2O3 –FeO – MgO; they form a surface in space.  This 
minimum  j jG X  surface can be projected onto the composition base producing a ternary phase 

diagram (Fig. 4); this diagram, showing biotite and orthopyroxene as ternary solutions, has been 
calculated using the program Theriak/Domino (de Capitani and Petrakakis, 2010).  The database used 
was that of Holland and Powell (1998) incorporating nonideal solution models.  In  metamorphic 
petrology, it is common practice to include the total amount of Al2O3 of a composition to be plotted and 
subtract enough Al2O3 required to combine with other oxides to form k-components.  Thus, in Figure 4, 
the top corner would be labelled  Al2O3 – K2O.   

   A tangent plane at any point of the minimum  j jG X  surface will form intercepts on the axes 

of the three j-components; these give the G  values of Al2O3, FeO, and MgO, which can be shown as 
contours on the ternary phase diagram.  In Fig. 4, a contour each of FeOG  and MgOG  is shown 

diagrammatically.  Such a contour is a curved line in a one-phase field.  It is not defined if there is a fixed 
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ratio of some j-components in the phase; e.g., in cordierite, Al2O3 is equal to (FeO + MgO).  The contour 
coincides with a tie line in two-phase fields and is absent in three-phase fields; see also  Figure 43 in 
Korzhinskii (1959). 
 
Phase rule 
              A continuum of thermodynamic systems has c + 2 independent variables, where c is the number 
of components and 2 stands for pressure and temperature.  The choice of either n or G  as the 
independent variable of a component is subject to some restrictions.  Equation (11) has been integrated by 
assuming that G  is a function of the mole number of components and that the partial molar Gibbs 
energies of components are kept constant.  This is achieved by keeping the ratios of the components 
constant and from the additional knowledge that intensive properties like G are affected only by the 
relative amounts and not by the absolute amounts of components (Denbigh, 1981).  If the resulting 
equation (12) is differentiated again, and allowing the iG s to vary, the following relationship is obtained: 

            i i id G dn n dG iG     (23) 

In view of the validity of equation (11), it follows that 
               0i in dG                                (24) 

which is the Gibbs-Duhem equation, essentially the same as equation 97 in Gibbs (1876).  The Gibbs-
Duhem equation gives a different relationship of the G ’s for each phase.  Therefore, for each system, the 
number of independent n’s chosen must be equal at least to the number of phases p.  Since the total 
number of independent variables is equal to c + 2, the maximum number of independent intensive 
variables P, T, and G ’s, designated by the variance f, is given by the phase rule 
            f = c + 2 – p                            (25)  
           In the diagram shown in Fig. 4, there are three extensive variables corresponding to the j-
components.  The mole numbers can be given by specifying jn = 1 and giving two mole fractions 

which are numerically equal to mole numbers.  There are three k-components.  Thus, the total number of 
components is 6 and 
            f = 8 – p                                  (26)                      
Since P, T, and G ’s of the three k-components have been chosen as independent intensive variables for 
the diagram as a whole, the option for choosing additional intensive variables is reduced to  
            f = 3 – p                                  (27)     
In Figure 4, the G ’s of the j-components can be shown as contours in their dependence on the jX ’s. 

               In order to define any system within the compositional variation given by the j-components, 
there are several options.  In one-phase fields, either two mole fractions, or the G ’s of two j-components,  
or one mole fraction and G  of one j-component can be chosen.  In two-phase field, either one mole 
fraction or G  of one j-component  in one phase can be chosen.  And in three-phase fields, the choice is 
limited to two mole fractions. 
  
Univariant curves around an invariant point 
            The phase diagram of Figure 4 includes some three-phase assemblages; these are stable over a 
field on a pressure-temperature diagram and, accordingly, are designated as bivariant.  Assemblages of 
four phases in a system with three j-components are univariant, i.e., they are stable along a curve on a 
pressure-temperature diagram.  At any one point along the univariant line, there is a bulk composition, in 
terms of j-components, that can be expressed by two alternate configurations of the phase assemblage, as 
illustrated by Gibbs (1876): 
1. The composition of one phase falls inside a triangle formed by the compositions of the other three 

phases. 
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2. The compositions of the four phases form a quadrilateral and a particular bulk composition can be 
expressed by a combination of two opposite diagonal phases. 

This composition equivalence is expressed graphically by the appearance (or disappearance) of a phase or 
by an exchange of tie lines.  A mass balance can be written in terms of the composition of phases and the 
composition of k-components.  For instance, at a point of the univariant curve representing the univariant 
assemblage biotite-sillimanite-garnet–cordierite, one could write 
              biotite + sillimanite + SiO2 = garnet + cordierite + KAlSi3O8 + H2O 
Such mass-balance equation is commonly also called a reaction but it differs from reactions encountered 
in the study of reaction equilibrium which are written in terms of the composition of species with fixed 
stoichiometric coefficients.  It may be more appropriately called a compatibility equation.  The numerical 
coefficients of the phases and of the k-components change along the univariant curve.  Such change can 
lead to a sign reversal of the numerical coefficient of a reactant or product creating a singular point (Abart 
et al., 1992), where the reactant or product disappears from the equation.   
             Univariant curves will intersect in an invariant point.  The example shown in Figure 5 has been 
calculated with the program Theriak/Domino (de Capitani and Petrakakis, 2010) and using the database 
of Holland and Powell, 1998).  The intersection of pressure-temperature curves and their position are 
entirely determined by the change of the partial molar Gibbs energy of all components with pressure and 
temperature.  Such regularity has been summarized in the form of Schreinemakers’ rules (Zen, 1966).  
Lindsley et al. (1968) suggested the following convenient procedure to check the consistency of the 
arrangement of univariant curves around an invariant point.  The compatibility equation is written onto 
the univariant curve, with reactants and products on opposite sides of the curve.  A univariant curve is 
labelled with the phase not involved in the compatibility equation.  If the univariant curve is extended 
metastably into the sector across the invariant point, the labelled phase must be present in the two halves 
of the two compatibility equations in the sector.  Thus the metastable extension of univariant curve 
(biotite) falls into the sector on the left of Figure 5 with compatibilities (biotite + garnet)  and (biotite + 
sillimanite) . 
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Figures 
Fig. 1.  Phase relations in the composition space MgO – SiO2.  

a) with   MgO  and SiO2  as j-components 
b) with   MgO  as j-component and SiO2 as k-component.  

Fig. 2.  Phase relations in the composition space FeO - MgO - SiO2 - Al2SiO5 - KAlSi3O8 - H2O 
            with FeO and MgO as j-components and SiO2, Al2SiO5,  KAlSi3O8, and H2O 
            as k-components. 
Fig. 3.  The variation of FeOG in the composition space FeO - MgO - SiO2 - Al2SiO5 - KAlSi3O8 - H2O   

             with FeO and MgO as j-components and SiO2, Al2SiO5, KAlSi3O8, and H2O as k-components. 
Fig. 4.  Phase relations the composition space Al2O3 - FeO - MgO - SiO2 - KAlSi3O8 - H2O with Al2O3 ,    
             FeO, and MgO as j-components and SiO2, KAlSi3O8, and H2O as k- components. 
Fig. 5.  Univariant curves around the invariant point biotite-sillimanite-garnet-cordierite-orthopyroxene in         
             the composition space Al2O3 - FeO - MgO - SiO2 - KAlSi3O8 - H2O with Al2O3 ,    
             FeO, and MgO as j-components and SiO2, KAlSi3O8, and H2O as k- components. 
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