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Figure 1. Location map showing seventeen 1:50 000 map sheets covering the Bay of Fundy. Sheet 16 (outlined by red box) is in northeastern Bay of Fundy 
encompassing Minas Passage and Minas Basin, Nova Scotia.
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the Canadian Coast Guard Ship (CCGS) , a SWATH (Small Waterplane Area Twin 
Hull) vessel equipped with a Kongsberg EM1000 (prior to 2003) and a Kongsberg EM1002 (post-
2003) multibeam-sonar bathymetric survey system with 111 beams operating at 95 kHz with the 
transducer mounted in the starboard pontoon,
the CCGS  equipped with a Kongsberg EM710 multibeam-sonar bathymetric survey system 
with 200 or 400 beams operating at 70–90 kHz with the transducer mounted near the centre of the 
vessel, and
hydrographic survey launches , , and  equipped with Kongsberg EM3000 (prior to 
2005) and Kongsberg EM3002 (post-2005) multibeam-sonar bathymetric survey systems with 160 to 
254 beams operating at 300 kHz.

Frederick G. Creed

Matthew

Plover Pipit Heron

INTRODUCTION
The Bay of Fundy, located on the east coast of Canada between the provinces of Nova Scotia and New 
Brunswick (Fig. 1), is a macrotidal estuarine embayment (Amos et al., 1980) with the highest recorded 
tides in the world of 17 m (O'Reilly et al., 2005; Bishop, 2008). This map is one of a series of maps that 
show seafloor relief of the Bay of Fundy and topography of the surrounding areas in shaded-relief view 
(coded by colour) at a scale of 1:50 000. The maps are based on multibeam-sonar surveys completed 
between 1993 and 2009 to map 13 010 km  of the seafloor. Water-depth contours generated from the 
multibeam-sonar data are shown (in white) on the colour-coded water-depth image at a depth interval of 
20 m. Bathymetric contours (in blue) outside the multibeam survey area, presented at a depth interval of 
50 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1974a, b, c). 
The broad intertidal zone in the Bay of Fundy presented a particular surveying challenge to the collection 
of water-depth data. Historically, the intertidal zone was not surveyed due to the danger involved in 
operating vessels in coastal areas that dry between tides. As part of the multibeam-sonar mapping, the 
intertidal zone was surveyed at high tide using shallow-draft survey vessels, thus overcoming operational 
challenges associated with deeper draft survey vessels.
The complete Bay of Fundy seafloor relief map coverage is composed of seventeen adjacent map 

areas at a scale of 1:50 000 (Fig. 1). In total, fifty-one maps constitute the Bay of Fundy map suite (three 
maps per map area: seafloor relief, backscatter strength, and surficial geology).

Multibeam-sonar water-depth data were collected by the Canadian Hydrographic Service, the 
Geological Survey of Canada, and the University of New Brunswick. The survey systems use a sonar 
beam over an arc of about 130° across the ship’s track and operate by ensonifying a narrow strip of 
seafloor along track and detecting the seafloor by resolving the returned echo into multiple beams 
(Courtney and Shaw, 2000). The width of seafloor imaged on each survey line was generally four times 
the water depth. Line spacing was about two to three times water depth to provide ensonification overlap 
between adjacent lines. The survey employed a variety of survey vessels including: 

The Differential Global Positioning System was used for navigation and provided a positional 
accuracy of ±3 m. Survey speeds averaged 12 knots (22.2 km/h) on the CCGS  (and slower on the 
other survey vessels), resulting in an average data collection rate of about 2.5 km /h in water depths of 
35–70 m. The sound velocity in the ocean was measured during multibeam-sonar data collection and 
used to correct the effect of sonar-beam refraction. The 1992–2006 data were adjusted for tidal variation 
using tidal measurements and predictions from the Canadian Hydrographic Service. During the 2008 
surveys, vessel elevations were also acquired using a combination of real-time kinematic GPS systems 
(Church et al., 2008) and hydrodynamic tidal models developed by the Canadian Hydrographic Service 
and Fisheries and Oceans Canada Coastal Oceanography Group (Dupont et al., 2005).

The multibeam-sonar bathymetric data are presented at 5 m per pixel horizontal resolution. The shaded-
relief image is presented with a vertical exaggeration of the bathymetry of 10 times and an artificial 
illumination of the relief by a virtual light source positioned 45° above the horizon at an azimuth of 315°. In 
the resulting image, bathymetric features are enhanced by strong illumination on the northwest-facing 
slopes and by shadows cast on the southeast-facing slopes. Superimposed on the shaded-relief image 
are colours assigned to water depth, ranging from red (shallow) to violet (deep). In order to apply the 
widest colour range to the most frequently occurring water depths, hypsometric analysis was used to 
calculate the cumulative frequency of water depth. The resulting colour ramp highlights subtle variations 
in water depth that would otherwise be obscured.
Some features in the multibeam data are artifacts of data collection and environmental conditions 

during the survey periods. The orientation of the survey track lines can, in some instances, be identified 
by faint parallel stripes in the image. Because these artifacts are usually regular and geometric in 
appearance on the map, the human eye can disregard them and distinguish real topographic features.

The Bay of Fundy is a southwest-trending funnel-shaped bay 155 km long that is 70 km wide at its 
entrance and tapers to 48 km wide at its northeastern end where it bifurcates into Chignetco Bay and 
Minas Channel (Fig. 1). The floor of the bay, although hummocky in detail, presents a gently dipping 
profile along its axis from northeast to southwest. Grand Manan Island and its adjacent southeastern 
shoals occupy nearly half the entrance to the bay, and divide it into two channels. Between Brier Island 
and Grand Manan Island lie several isolated depressions that together form Grand Manan Basin. The 
maximum water depth within these depressions is 233 m and the depth to the sill between Grand Manan 
Basin and the adjoining deeper parts of the Gulf of Maine is 160 m.

Geomorphological features revealed through mapping of the Bay of Fundy seafloor reflect the geological 
history of the region. The Bay of Fundy is situated within the Carboniferous–Triassic lowland 
(Goldthwaite, 1924; Crosby, 1962; Williams et al., 1972) and is underlain by Triassic and Early Jurassic 
sandstone, shale, and basalt (Wade et al., 1996). Exposed bedrock has been modified by glacial erosion 
and exhibits a rugged surface.
During the late Wisconsinan glacial maximum, culminating in the Gulf of Maine region at 

approximately 20 ka (20 000 BP), the Bay of Fundy was covered by a regional ice sheet that terminated to 
the south on the Scotian Slope (Schnitker et al., 2001; Hundert, 2003). The glacial maximum was 
followed by a multiphased retreat of the ice front. In the Gulf of Maine, ice-front retreat and glaciomarine 
deposition began as early as 18 ka. Grounded ice was absent from the Gulf of Maine and Bay of Fundy by 
approximately 14 ka (King and Fader, 1986; Schnitker et al., 2001; Shaw et al., 2006). The Bay of Fundy 
exhibits geomorphological features formed during the Quaternary glaciation and deglaciation of the area. 
Moraines, drumlins, and megaflutes are topographically prominent. After grounded ice retreated from the 
area, icebergs scoured the seafloor in the waters east and south of Grand Manan Island.

A series of detailed maps at a scale of 1:25 000 (Fig. 3–7) highlights geomorphological features in Minas 
Channel and Minas Passage. For each of these detailed maps, the colour-range values are 
hypsometrically optimized and differ from the 1:50 000 map sheet colour-range values.

B. MacGowan, M. Lamplugh, and J. Griffin of the Canadian Hydrographic Service (CHS) organized the 
multibeam-sonar bathymetric surveys of the Bay of Fundy and oversaw data processing. The Canadian 
Hydrographic Service provided the data to the Geological Survey of Canada (GSC) for further processing 
and interpretation. J.E. Hughes Clarke of the Ocean Mapping Group, Department of Geodesy and 
Geomatics Engineering, University of New Brunswick, supervised collection of multibeam-sonar 
bathymetry data in the coastal areas of New Brunswick. Multibeam-sonar bathymetry data in Saint John 
Harbour, New Brunswick, were collected by D. Beaver (GSC), the University of New Brunswick, and the 
Saint John Port Authority. The authors thank the masters and crew of the CCGS  and 
CCGS  for their efforts at sea. Geographical Information Systems and cartographic support was 
provided by S. Hayward, E. Patton, G. Grant, P.A. Melbourne, and P. O’Regan. The authors thank M.Z. Li 
and J.V. Barrie for scientific review of the map.
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The large tidal oscillations within this geomorphic setting are due to the near resonance between the 
principal lunar semidiurnal ( ) component of the tide (representing 90% of the tidal energy) and the 
natural period (about 13 hours) of the Bay of Fundy–Gulf of Maine system. Tidal current speeds are about 
0.75–1 m/s over much of the outer and central portions of the bay, but are considerably higher within 
constricted channels and passages to the northeast (Greenberg, 1990). 

After deglaciation, relative sea level fell rapidly to a lowstand of about -30 m at ca. 7 ka (Amos and 
Zaitlin, 1985; Shaw et al., 2002) and then rose (Grant, 1970). From about 6.3 ka, tidal amplitude started to 
increase. This effect is continuing today (Godin, 1992). These high tides have resulted in large zones of 
erosion in areas with high current velocities such as Cape Split, Cape D'Or, and Cape Enrage (Fig. 1). 
Tidal eddies produced by headlands have created banner banks (Dyer and Huntley, 1999) on both sides 
of coastal promontories. Coastal erosion is up to 6 m/a in some areas (Amos et al., 1991). Sediment 
derived from this coastal erosion, coupled with sediment from seafloor erosion and sediment delivered by 
rivers, has contributed to the development of broad intertidal mud flats in the inner Bay of Fundy. The 
coastlines of the bay also host salt marshes and dykelands

 of the mud flats in the subtidal zone, the seafloor is variable in character, consisting of exposed 
bedrock, gravel, sand, and mud. In places, strong tidal currents create sand waves several metres in 
height and hundreds of metres in length (Greenberg et al., 1997).

This map shows the bathymetry of the northeastern Bay of Fundy, encompassing Minas Channel, 
Minas Passage, and Minas Basin. The large tidal range and topographic constrictions in this part of the 
Bay of Fundy generates strong currents. Currents of 7–8 knots (13–15 km/h) occur on the south side of 
Minas Passage adjacent to Cape Split with currents of 5–6 knots (9–11 km/h) on the north side (Canadian 
Hydrographic Service, 2003). The harnessing of these currents to generate power has been the focus of 
engineering schemes dating to 1910 (Baker, 1982) and periodically has garnered attention throughout 
the twentieth century (Daborn and Dadswell, 1988; Desplanque and Mossman, 2004). In the 1960s, a 
plan to construct a tidal dam was abandoned, partly due to predicted widespread environmental effects 
including alteration to the tidal range throughout the Bay of Fundy and Gulf of Maine. With revived interest 
in renewable energy Minas Passage is now the subject of an engineering study as a site for electricity 
generation.
Multibeam-sonar mapping of this region of the Bay of Fundy reveals a complex seafloor 

geomorphology much affected by tidal currents. During glacial and deglacial time, it is likely that sediment 
was deposited throughout Minas Channel and Minas Passage. As the ice sheet ablated and sea level 
rose, the high tidal range of the Bay of Fundy began to develop about 7000 BP (Scott and Greenberg, 
1983; Gehrels et al., 1995). Powerful currents sweeping through Minas Passage eroded the Quaternary 
sediments and created a scour trough that reaches a depth of 170 m and splays to the west and east in a 
series of separate, finger-like troughs (Shaw et al., 2010) (Fig. 2, 3). The volume of Quaternary sediment 
removed from the trough is conservatively estimated at 4 km . Outcropping bedrock lies at the core of the 
scour trough   (Fig. 4).
Approximately 44 km  of bedrock is exposed in Minas Passage, almost all of which is below 50 m 

water depth (Todd and Shaw, 2009). Although exposed bedrock predominates in Minas Passage and 
Minas Channel, there are notable current-formed sedimentary features, specifically the twinned sets of 
bedforms, or banner banks (Dyer and Huntley, 1999) that are situated on either side of the prominent 
headland of Cape Split. The orientation and asymetry of the bedforms in the Scots Bay banner bank   
(Fig. 5) indicates that bedform migration is counterclockwise, being to the south on the west side of the 
banner bank and to the north on the east side of the banner bank. This extensive sand deposit is 
surrounded by a immobile gravel seafloor (Fader and Miller, 1991), suggesting that the sand-wave field is 
a self-contained system, likely trapped within a large tidal eddy. South of the banner bank in outer Scots 
Bay is a field of barchans (Fig. 6). The geometry of these bedforms indicates net sediment transport to the 
northeast.The twin of the Scots Bay banner bank is a 3 km long, 20 m thick banner bank trapped in the 
deep bedrock trough north of Cape Split (Fig. 7). This feature is composed of gravel (Todd et al., 2010) 
and the bedforms on the northern flank of the banner bank are gravel waves.
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Figure 5. A banner bank in Scots Bay. White arrows indicate direction of net sediment transport.Figure 4. Bedrock seafloor around Black Rock, Minas Passage.Figure 3. Current-eroded scour trough in Greville Bay.Figure 2. Geomorphological interpretation of Minas Channel and Minas Passage. Figure 6. Barchans in outer Scots Bay. White arrows show direction of net sediment transport.

Figure 7. A banner bank north of Cape Split illustrating gravel waves.


