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DESCRIPTIVE NOTES

INTRODUCTION

The Bay of Fundy, located on the east coast of Canada between the provinces of Nova Scotia and New
Brunswick (Fig. 1), is a macrotidal estuarine embayment (Amos et al., 1980) with the highest recorded
tides in the world of 17 m (O'Reilly et al., 2005; Bishop, 2008). This map is one of a series of maps that
show seafloor relief of the Bay of Fundy and topography of the surrounding areas in shaded-relief view
(coded by colour) at a scale of 1:50 000. The maps are based on multibeam-sonar surveys completed
between 1993 and 2009 to map 13 010 km’ of the seafloor. Water-depth contours generated from the
multibeam-sonar data are shown (in white) on the colour-coded water-depth image at a depth interval of
20 m. Bathymetric contours (in blue) outside the multibeam survey area, presented at a depth interval of
50 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1974a, b, c).
The broad intertidal zone in the Bay of Fundy presented a particular surveying challenge to the collection
of water-depth data. Historically, the intertidal zone was not surveyed due to the danger involved in
operating vessels in coastal areas that dry between tides. As part of the multibeam-sonar mapping, the
intertidal zone was surveyed at high tide using shallow-draft survey vessels, thus overcoming operational
challenges associated with deeper draft survey vessels.

The complete Bay of Fundy seafloor relief map coverage is composed of seventeen adjacent map
areas at a scale of 1:50 000 (Fig. 1). In total, fifty-one maps constitute the Bay of Fundy map suite (three
maps per map area: seafloor relief, backscatter strength, and surficial geology).

MULTIBEAM BATHYMETRY DATA COLLECTION

Multibeam-sonar water-depth data were collected by the Canadian Hydrographic Service, the

Geological Survey of Canada, and the University of New Brunswick. The survey systems use a sonar

beam over an arc of about 130° across the ship’s track and operate by ensonifying a narrow strip of

seafloor along track and detecting the seafloor by resolving the returned echo into multiple beams

(Courtney and Shaw, 2000). The width of seafloor imaged on each survey line was generally four times

the water depth. Line spacing was about two to three times water depth to provide ensonification overlap

between adjacent lines. The work employed a variety of survey vessels including:

e the Canadian Coast Guard Ship (CCGS) Frederick G. Creed, a SWATH (Small Waterplane Area Twin
Hull) vessel equipped with a Kongsberg EM1000 (prior to 2003) and a Kongsberg EM1002 (post-
2003) multibeam-sonar bathymetric survey system with 111 beams operating at 95 kHz with the
transducer mounted in the starboard pontoon,

e the CCGS Matthew equipped with a Kongsberg EM710 multibeam-sonar bathymetric survey system
with 200 or 400 beams operating at 70-90 kHz with the transducer mounted near the centre of the
vessel, and

e hydrographic survey launches Plover, Pipit, and Heron equipped with Kongsberg EM3000 (prior to
2005) and Kongsberg EM3002 (post-2005) multibeam-sonar bathymetric survey systems with 160 to
254 beams operating at 300 kHz.

The Differential Global Positioning System was used for navigation and provided a positional
accuracy of £3 m. Survey speeds averaged 12 knots (22.2 km/h)on the CCGS Creed (and slower on the
other survey vessels), resulting in an average data collection rate of about 2.5 km?/h in water depths of
35-70 m. The sound velocity in the ocean was measured during multibeam-sonar data collection and
used to correct the effect of sonar-beam refraction. The 1992—-2006 data were adjusted for tidal variation
using tidal measurements and predictions from the Canadian Hydrographic Service. During the 2008
surveys, vessel elevations were also acquired using a combination of real-time kinematic GPS systems
(Church et al., 2008) and hydrodynamic tidal models developed by the Canadian Hydrographic Service
and Fisheries and Oceans Canada Coastal Oceanography Group (Dupontetal., 2005).

BATHYMETRIC DATA DISPLAY

The multibeam-sonar bathymetric data are presented at 5 m per pixel horizontal resolution. The shaded-
relief image is presented with a vertical exaggeration of the bathymetry of 10 times and an artificial
illumination of the relief by a virtual light source positioned 45° above the horizon at an azimuth of 315°. In
the resulting image, bathymetric features are enhanced by strong illumination on the northwest-facing
slopes and by shadows cast on the southeast-facing slopes. Superimposed on the shaded-relief image
are colours assigned to water depth, ranging from red (shallow) to violet (deep). In order to apply the
widest colour range to the most frequently occurring water depths, hypsometric analysis was used to
calculate the cumulative frequency of water depth. The resulting colour ramp highlights subtle variations
in water depth that would otherwise be obscured.

Some features in the multibeam data are artifacts of data collection and environmental conditions
during the survey periods. The orientation of the survey track lines can, in some instances, be identified
by faint parallel stripes in the image. Because these artifacts are usually regular and geometric in
appearance on the map, the human eye can disregard them and distinguish real topographic features.

BAY OF FUNDY GEOMORPHOLOGY

The Bay of Fundy is a southwest-trending funnel-shaped bay 155 km long that is 70 km wide at its
entrance and tapers to 48 km wide at its northeastern end where it bifurcates into Chignetco Bay and
Minas Channel (Fig. 1). The floor of the bay, although hummocky in detail, presents a gently dipping
profile along its axis from northeast to southwest. Grand Manan Island and its adjacent southeastern
shoals occupy nearly half the entrance to the bay, and divide it into two channels. Between Brier Island
and Grand Manan Island lie several isolated depressions that together form Grand Manan Basin. The
maximum water depth within these depressions is 233 m and the depth to the sill between Grand Manan
Basin and the adjoining deeper parts of the Gulf of Maine is 160 m.

The large tidal oscillations within this geomorphic setting are due to the near resonance between the
principal lunar semidiurnal (M,) component of the tide (representing 90% of the tidal energy) and the
natural period (about 13 hours) of the Bay of Fundy—Gulf of Maine system. Tidal current speeds are about
0.75-1 m/s over much of the outer and central portions of the bay, but are considerably higher within
constricted channels and passages to the northeast (Greenberg, 1990).

Geological history

Geomorphological features revealed through mapping of the Bay of Fundy seafloor reflect the geological
history of the region. The Bay of Fundy is situated within the Carboniferous—Triassic lowland
(Goldthwaite, 1924; Crosby, 1962; Williams et al., 1972) and is underlain by Triassic and Early Jurassic
sandstone, shale, and basalt (Wade et al., 1996). Exposed bedrock has been modified by glacial erosion
and exhibits a rugged surface.

During the late Wisconsinan glacial maximum, culminating in the Gulf of Maine region at
approximately 20 ka (20 000 BP), the Bay of Fundy was covered by a regional ice sheet that terminated to
the south on the Scotian Slope (Schnitker et al., 2001; Hundert, 2003). The glacial maximum was
followed by a multiphased retreat of the ice front. In the Gulf of Maine, ice-front retreat and glaciomarine
deposition began as early as 18 ka. Grounded ice was absent from the Gulf of Maine and Bay of Fundy by
approximately 14 ka (King and Fader, 1986; Schnitker et al., 2001; Shaw et al., 2006). The Bay of Fundy
exhibits geomorphological features formed during the Quaternary glaciation and deglaciation of the area.
Moraines, drumlins, and megaflutes are topographically prominent. After grounded ice retreated from the
area, icebergs scoured the seafloorin the waters east and south of Grand Manan Island.

After deglaciation, relative sea level fell rapidly to a lowstand of about -30 m at ca. 7 ka (Amos and
Zaitlin, 1985; Shaw et al., 2002) and then rose (Grant, 1970). From about 6.3 ka, tidal amplitude started to
increase. This effect is continuing today (Godin, 1992). These high tides have resulted in large zones of
erosion in areas with high current velocities such as Cape Split, Cape D'Or, and Cape Enrage (Fig. 1).
Tidal eddies produced by headlands have created banner banks (Dyer and Huntley, 1999) on both sides
of coastal promontories. Coastal erosion is up to 6 m/a in some areas (Amos et al., 1991). Sediment
derived from this coastal erosion, coupled with sediment from seafloor erosion and sediment delivered by
rivers, has contributed to the development of broad intertidal mud flats in the inner Bay of Fundy. The
coastlines of the bay also host salt marshes and dykelands (Ganong, 1903, Gordon et al., 1985).
Seaward of the mud flats in the subtidal zone, the seafloor is variable in character, consisting of exposed
bedrock, gravel, sand, and mud. In places, strong tidal currents create sand waves several metres in
heightand hundreds of metres in length (Greenberg et al., 1997).

Geomorphology of this map

A series of detailed maps at a scale of 1:25 000 (Fig. 2—4) highlights geomorphological features in
northern Bay of Fundy and Passamaquoddy Bay, New Brunswick. For each of these detailed maps, the
colour-range values are hypsometrically optimized and differ from the 1:50 000 map sheet colour-range
values.

The seabed in this part of the Bay of Fundy is mainly mud (Fader et al., 1977). In places, low relief in
the muddy seabed remain obscure. Letete Passage (from the Bay of Fundy to Passamaquoddy Bay)
(Fig. 3) is generally shallow and narrow and experiences strong current velocities (Forrester, 1960).
Within Letete Passage the seabed is bedrock dominated with sediment accumulations in small basins.

Passamaquoddy Bay is a small (575 km®) semi-enclosed body of water situated at the mouth of the St.
Croix River. Water depths in Passamaquoddy Bay are generally less than 40 m, but reach greater than
80 m north of Macs Island at the eastern side of the bay. Glacial and postglacial sediments overly bedrock
and are over 50 mthickin places (G.B.J. Fader, internal report; 1988; Pecore and Fader, 1990). Holocene
clay on the seabed in Passamaquoddy Bay is characterized by the presence of shallow, cone-shaped
depressions called pockmarks (Fig. 4) (King and MacLean, 1970; Wildish et al., 2008). Pockmarks are
found worldwide and are formed from fluid seepage at the seabed (Fader, 1991; Judd and Hovland,
2007). Sedimententrained in the fluid ebullition is dispersed by local currents.
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Figure 1. Location map showing seventeen 1:50 000 map sheets covering the Bay of Fundy. Sheet 10 (outlined by red box) is in northwestern Bay of Fundy including

Passamaquoddy Bay.
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