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Figure 1. Location map showing seventeen 1:50 000 map sheets covering the Bay of Fundy. Sheet 1 (outlined by red box) is in southwestern Bay of Fundy, 
west of Brier Island, Nova Scotia.
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Figure 5. Iceberg scours in Grand Manan Basin. The relative age of scours is determined by the 
crosscutting pattern; younger scours crosscut older scours.

Figure 4. Esker superimposed on drumlinized terrain.

Figure 2. Fluted bedrock (A) and till megaflutes (B) on the southern flank of the Grand Manan 
Basin. The 400 m diameter bedrock feature highlighted by a dashed white circle is interpreted      
as a feeder dyke for the Jurassic North Mountain Basalt (Wade et al., 1996).
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the Canadian Coast Guard Ship (CCGS) , a SWATH (Small Waterplane Area Twin 
Hull) vessel equipped with a Kongsberg EM1000 (prior to 2003) and a Kongsberg EM1002 (post-
2003) multibeam-sonar bathymetric survey system with 111 beams operating at 95 kHz with the 
transducer mounted in the starboard pontoon,
the CCGS  equipped with a Kongsberg EM710 multibeam-sonar bathymetric survey system 
with 200 or 400 beams operating at 70–90 kHz with the transducer mounted near the centre of the 
vessel, and
hydrographic survey launches , , and  equipped with Kongsberg EM3000 (prior to 
2005) and Kongsberg EM3002 (post-2005) multibeam-sonar bathymetric survey systems with 160 to 
254 beams operating at 300 kHz.
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INTRODUCTION
The Bay of Fundy, located on the east coast of Canada between the provinces of Nova Scotia and New 
Brunswick (Fig. 1), is a macrotidal estuarine embayment (Amos et al., 1980) with the highest recorded 
tides in the world of 17 m (O'Reilly et al., 2005; Bishop, 2008). This map is one of a series of maps that 
show seafloor relief of the Bay of Fundy and topography of the surrounding areas in shaded-relief view 
(coded by colour) at a scale of 1:50 000. The maps are based on multibeam-sonar surveys completed 
between 1993 and 2009 to map 13 010 km  of the seafloor. Water-depth contours generated from the 
multibeam-sonar data are shown (in white) on the colour-coded water-depth image at a depth interval of 
20 m. Bathymetric contours (in blue) outside the multibeam survey area, presented at a depth interval of 
50 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1974a, b, c). 
The broad intertidal zone in the Bay of Fundy presented a particular surveying challenge to the collection 
of water-depth data. Historically, the intertidal zone was not surveyed due to the danger involved in 
operating vessels in coastal areas that dry between tides. As part of the multibeam-sonar mapping, the 
intertidal zone was surveyed at high tide using shallow-draft survey vessels, thus overcoming operational 
challenges associated with deeper draft survey vessels.
The complete Bay of Fundy seafloor relief map coverage is composed of seventeen adjacent map 

areas at a scale of 1:50 000 (Fig. 1). In total, fifty-one maps constitute the Bay of Fundy map suite (three 
maps per map area: seafloor relief, backscatter strength, and surficial geology).

Multibeam-sonar water-depth data were collected by the Canadian Hydrographic Service, the 
Geological Survey of Canada, and the University of New Brunswick. The survey systems use a sonar 
beam over an arc of about 130° across the ship’s track and operate by ensonifying a narrow strip of 
seafloor along track and detecting the seafloor by resolving the returned echo into multiple beams 
(Courtney and Shaw, 2000). The width of seafloor imaged on each survey line was generally four times 
the water depth. Line spacing was about two to three times water depth to provide ensonification overlap 
between adjacent lines. The survey employed a variety of survey vessels including: 

The Differential Global Positioning System was used for navigation and provided a positional 
accuracy of ±3 m. Survey speeds averaged 12 knots (22.2 km/h) on the CCGS  (and slower on the 
other survey vessels), resulting in an average data collection rate of about 2.5 km /h in water depths of 
35–70 m. The sound velocity in the ocean was measured during multibeam-sonar data collection and 
used to correct the effect of sonar-beam refraction. The 1992–2006 data were adjusted for tidal variation 
using tidal measurements and predictions from the Canadian Hydrographic Service. During the 2008 
surveys, vessel elevations were also acquired using a combination of real-time kinematic GPS systems 
(Church et al., 2008) and hydrodynamic tidal models developed by the Canadian Hydrographic Service 
and Fisheries and Oceans Canada Coastal Oceanography Group (Dupont et al., 2005).

The multibeam-sonar bathymetric data are presented at 5 m per pixel horizontal resolution. The shaded-
relief image is presented with a vertical exaggeration of the bathymetry of 10 times and an artificial 
illumination of the relief by a virtual light source positioned 45° above the horizon at an azimuth of 315°. In 
the resulting image, bathymetric features are enhanced by strong illumination on the northwest-facing 
slopes and by shadows cast on the southeast-facing slopes. Superimposed on the shaded-relief image 
are colours assigned to water depth, ranging from red (shallow) to violet (deep). In order to apply the 
widest colour range to the most frequently occurring water depths, hypsometric analysis was used to 
calculate the cumulative frequency of water depth. The resulting colour ramp highlights subtle variations 
in water depth that would otherwise be obscured.
Some features in the multibeam data are artifacts of data collection and environmental conditions 

during the survey periods. The orientation of the survey track lines can, in some instances, be identified 
by faint parallel stripes in the image. Because these artifacts are usually regular and geometric in 
appearance on the map, the human eye can disregard them and distinguish real topographic features.

The Bay of Fundy is a southwest-trending funnel-shaped bay 155 km long that is 70 km at its entrance 
and tapers to 48 km wide at its northeastern end where it bifurcates into Chignetco Bay and Minas 
Channel (Fig. 1). The floor of the bay, although hummocky in detail, presents a gently dipping profile along 
its axis from northeast to southwest. Grand Manan Island and its adjacent southeastern shoals occupy 
nearly half the entrance to the bay, and divide it into two channels. Between Brier Island and Grand 
Manan Island lie several isolated depressions that together form Grand Manan Basin. The maximum 
water depth within these depressions is 233 m and the depth to the sill between Grand Manan Basin and 
the adjoining deeper parts of the Gulf of Maine is 160 m.

Geomorphological features revealed through mapping of the Bay of Fundy seafloor reflect the geological 
history of the region. The Bay of Fundy is situated within the Carboniferous–Triassic lowland 
(Goldthwaite, 1924; Crosby, 1962; Williams et al., 1972) and is underlain by Triassic and Early Jurassic 
sandstone, shale, and basalt (Wade et al., 1996). Exposed bedrock has been modified by glacial erosion 
and exhibits a rugged surface.
During the late Wisconsinan glacial maximum, culminating in the Gulf of Maine region at 

approximately 20 ka (20 000 BP), the Bay of Fundy was covered by a regional ice sheet that terminated to 
the south on the Scotian Slope (Schnitker et al., 2001; Hundert, 2003). The glacial maximum was 
followed by a multiphased retreat of the ice front. In the Gulf of Maine, ice-front retreat and glaciomarine 
deposition began as early as 18 ka. Grounded ice was absent from the Gulf of Maine and Bay of Fundy by 
approximately 14 ka (King and Fader, 1986; Schnitker et al., 2001; Shaw et al., 2006). The Bay of Fundy 
exhibits geomorphological features formed during the Quaternary glaciation and deglaciation of the area. 
Moraines, drumlins, and megaflutes are topographically prominent. After grounded ice retreated from the 
area, icebergs scoured the seafloor in the waters east and south of Grand Manan Island.

A series of detailed maps at a scale of 1:25 000 (Fig. 2–7) highlights the geomorphological features in   
the approaches to the Bay of Fundy. For each of these detailed maps, the colour-range values are 
hypsometrically optimized and differ from the 1:50 000 map sheet colour-range values.

B. MacGowan, M. Lamplugh, and J. Griffin of the Canadian Hydrographic Service (CHS) organized the 
multibeam-sonar bathymetric surveys of the Bay of Fundy and oversaw data processing. The Canadian 
Hydrographic Service provided the data to the Geological Survey of Canada (GSC) for further processing 
and interpretation. J.E. Hughes Clarke of the Ocean Mapping Group, Department of Geodesy and 
Geomatics Engineering, University of New Brunswick, supervised collection of multibeam-sonar 
bathymetry data in the coastal areas of New Brunswick. Multibeam-sonar bathymetry data in Saint John 
Harbour, New Brunswick, were collected by D. Beaver (GSC), the University of New Brunswick, and the 
Saint John Port Authority. The authors thank the masters and crew of the CCGS  and 
CCGS  for their efforts at sea. Geographical Information Systems and cartographic support was 
provided by S. Hayward, E. Patton, G. Grant, P.A. Melbourne, and P. O’Regan. The authors thank          
R. Bennett and G. Cameron for scientific review of the map.
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The large tidal oscillations within this geomorphic setting are due to the near resonance between the 
principal lunar semidiurnal ( ) component of the tide (representing 90% of the tidal energy) and the 
natural period (about 13 hours) of the Bay of Fundy–Gulf of Maine system. Tidal current speeds are about 
0.75–1 m/s over much of the outer and central portions of the bay, but are considerably higher within 
constricted channels and passages to the northeast (Greenberg, 1990). 

After deglaciation, relative sea level fell rapidly to a lowstand of about -30 m at ca. 7 ka (Amos and 
Zaitlin, 1985; Shaw et al., 2002) and then rose (Grant, 1970). From about 6.3 ka, tidal amplitude started to 
increase. This effect is continuing today (Godin, 1992). These high tides have resulted in large zones of 
erosion in areas with high current velocities such as Cape Split, Cape D'Or, and Cape Enrage (Fig. 1). 
Tidal eddies produced by headlands have created banner banks (Dyer and Huntley, 1999) on both sides 
of coastal promontories. Coastal erosion is up to 6 m/a in some areas (Amos et al., 1991). Sediment derived 
from this coastal erosion, coupled with sediment from seafloor erosion and sediment delivered by rivers, 
has contributed to the development of broad intertidal mud flats in the inner Bay of Fundy. The coastlines 
of the bay also host salt marshes and dykelands  of the mud flats 
in the subtidal zone, the seafloor is variable in character, consisting of exposed bedrock, gravel, sand, 
and mud. In places, strong tidal currents create sand waves several metres in height and hundreds of 
metres in length (Greenberg et al., 1997).

This map shows the bathymetry of the extreme southwest portion of the Bay of Fundy where the bay 
joins the Gulf of Maine (Fig. 1). The southern flank of the Grand Manan Basin is bounded by exposed 
bedrock of Northwest Ledge (Fig. 2). The surface of the bedrock displays marked northeast-striking 
structural grain. The same strike is evident in the adjacent till megaflutes. The bedrock and the till were 
eroded through the action of rapidly moving ice within the topographically confined Grand Manan Basin 
ice stream during the last glaciation.
Farther to the southwest along the bathymetric high marking the southern flank of Grand Manan 

Basin, the seafloor is characterized by relatively short (<2 km), criss-crossing linear ridges, less than 2 m 
in height, demonstrating no preferred strike (Fig. 3). Features with the same geomorphology have been 
observed elsewhere in the Gulf of Maine and are interpreted as crevasse-fill ridges, formed by the 
squeezing of glacial material into basal crevasses beneath stagnant ice (Todd et al., 2007). South of the 
southern flank of Grand Manan Basin are sinuous ridges of sediment a few metres in height and tens of 
metres in width (Fig. 4). The ridges are superimposed on a drumlinized terrain and are interpreted as 
eskers formed beneath grounded or stagnant ice. 
The central portion of the map is dominated by Grand Manan Basin where water depths reach 200 m. 

The seafloor in the basin has been scoured into a pattern of curvilinear scours, some reaching 10 km in 
length, by the keels of icebergs calved from the front of the floating ice shelf during its retreat northeast 
into the Bay of Fundy during the last deglaciation (Fig. 5). The larger, more well defined scours reach   
200 m in width. As iceberg trajectory is dictated mainly by ocean-current direction (Todd et al., 1988; Bigg 
et al., 1996), a northeast-southwest current direction is inferred in the Bay of Fundy during the last 
deglaciation. Within the basin (Fig. 6) and along its northern margin adjacent to Northeast Bank (Fig. 7) 
irregular pits in the seafloor are particularly evident. A pit is formed by single, discrete impact of an iceberg 
keel into the seabed sediment (Fader and King, 1981). The number of pits in the seabed of Grand Manan 
Basin suggests this area witnessed a substantial flux of icebergs during the retreat of the floating ice 
shelf.
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Figure 6. Iceberg pits on bathymetric high in Grand Manan Basin.


